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Abstract: This paper proposes a high-efficient decoupling method with energy conservative 6 

property for solving a system with multiple subdomains and time steps efficiently. The 7 

proposed method can incorporate New General-α integration schemes with desirable 8 

algorithmic damping and accuracy to filter spurious high-frequency vibration contents and 9 

retain the second-order accuracy. The method can decompose the coupling system into several 10 

independent subdomains with different time steps. Different integration schemes can be 11 

adopted to solve each subdomain independently. Accuracy and stability for each decoupling 12 

subdomain are ensured by adjusting its integration parameters. Desirable algorithmic damping 13 

is employed to filter the high-frequency spurious vibration contents by using General-α 14 

integration schemes, simultaneously, the second-order accuracy is ensured in solved numerical 15 

results. Since vibrations are not split into link vibrations and free vibrations for all decoupling 16 

subdomains, computational efficiency is improved significantly compared with existing 17 

methods. To derive the decoupling method conveniently, the coupling dynamic system with 18 

two subdomains and different time steps is built in a Newmark compact form firstly. 19 

Subsequently, a decoupling strategy is formulated to decompose and solve the coupling system 20 

independently. Accordingly, New General-α schemes are investigated and incorporated in the 21 

proposed method to obtain desirable algorithmic damping and accuracy in numerical results. 22 

Finally, three illustrative examples are employed to demonstrate the accuracy, efficiency, 23 

energy property, and adaptability for multi-subdomains (≥3) of the proposed method. 24 
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1 Introduction 28 

Nowadays, as the scale and complexity of engineering problems are increasing significantly, 29 

studies are needed to develop more accurate and efficient methods to meet the relevant needs 30 

for these complex engineering problems (e.g., safety-related impact simulations for aircraft 31 

components, large-scale engineering problems with millions of elements, multi-physical 32 

phenomena as coupled fluid-structure problems [1][2]). Considering accuracy, stability, and 33 

computational efficiency [3][4][5], a single method (explicit or implicit) is inefficient to solve 34 

the above problems by using an entire model with a unique time step. One potential solution is 35 

to divide the entire domain into several subdomains. According to the frequency contents, 36 

applied loads, and possible nonlinear behaviors of each subdomain [6][7][8], different time 37 

steps and schemes (explicit or implicit) can be adopted for different subdomains [9]. Each 38 

subdomain is solved independently and efficiently, then coupled with each other [10] at 39 

interconnected system time steps. 40 

In recent decades, three classical methods were proposed [2][14] to implement a couple of 41 

different subdomains: mixed-method, multi-time-step method, and mixed-multi-time-step 42 

method. Mixed method (explicit or implicit) [15]-[23] with a unique time step was proposed 43 

by using nodal partitioning or element partitioning [11][12][13]. Multi-time-step method (also 44 

called sub-cycling) [24] was proposed and improved [27]-[32]. This algorithm uses nodal 45 

groups or element groups to partition the mesh into multiple subdomains that are updated with 46 

different time steps [25] [26]. However, proof of stability is available only for some particular 47 

time integration schemes with limitation on the time step ratio [33][37], or only statistically 48 

stable [34], or with possible numerical dissipation at the interface between different 49 
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subdomains [35][36][38][39]. Mixed-multi-time-step method (MMTS) was proposed until the 50 

method of finite element tearing and interconnecting (FETI) was developed by Farhat and Roux 51 

[40][41][42]. Using FETI method, a complex or large-scale structure can be divided into 52 

different subdomains with non-overlapping elements [11][12][13], and each subdomain is 53 

solved separately. By imposing velocity continuity conditions on the interfaces shared nodes, 54 

Gravouil and Combescure (GC method) proposed [43][44] and improved [49]-[55] the MMTS 55 

methods to couple arbitrary Newmark scheme. However, energy conservative can only be 56 

retained for the case with a unique time step for all subdomains [1][45]-[48][56]. To address 57 

this issue, Prakash and Hjelmstad [9] proposed an algorithm (the PH method) with energy 58 

conservative property. Recently, two new coupling methods, BGC-micro and BGC-macro, 59 

were developed [2][10] to couple the Newmark scheme and HHT-α scheme in linear dynamics. 60 

The BGC-micro and BGC-macro methods with Newmark scheme exactly match GC [43][44] 61 

and PH [9], respectively [57]. However, for all MMTS methods, the border program [57] with 62 

complex storage should be introduced to solve the coupling dynamic system. More specifically, 63 

the dynamic responses of each subdomain are divided into two independent vibrations [58] [59] 64 

in the analysis, i.e., vibrations under external loads and vibrations with link forces. Therefore, 65 

efficiency of multi-time step coupling methods could be further improved. Furthermore, 66 

dynamic equations are built at each micro time step, thus, even though, BGC-Micro/GC is 67 

energy dissipative, they are still very promising owing to their ease of implementation 68 

compared with BGC_Macro/PH [2]. A potential method combining advantages of the two 69 

above methods (GC and PH), i.e., dynamic equations are built at micro time steps and energy 70 

conservation is ensured in numerical results, is developed herein. 71 



4 

In this paper, a decoupling method with energy conservative property is proposed for solving 72 

a coupling system with multiple subdomains and time steps efficiently. New General-α 73 

integration schemes with desirable algorithmic dissipation and accuracy are investigated and 74 

incorporated in the method to filter spurious vibration contents and retain the second-order 75 

accuracy. The proposed method can decompose the coupling system into several independent 76 

subdomains with different time steps. Different integration schemes are then employed to solve 77 

each subdomain independently. Accuracy and stability for each independent subdomain can be 78 

ensured by adjusting its integration parameters. Desirable algorithmic damping and accuracy 79 

can be obtained simultaneously. Computational efficiency is improved significantly. 80 

To illustrate the derivation and demonstration process of the proposed method, the remainder 81 

of this paper is organized as follows: Firstly, the compact form of Newmark method is 82 

introduced to build the coupling system with multiple subdomains and time steps conveniently. 83 

Subsequently, a decoupling strategy is formulated to solve each subdomain independently and 84 

efficiently. Accordingly, the decoupling method is implemented, and its energy conservation 85 

property is verified. Then, New General-α integration schemes are investigated and 86 

incorporated in the proposed method to obtain desirable algorithmic damping and accuracy. 87 

Finally, to demonstrate the accuracy, efficiency, energy property, and adaptability for multi-88 

subdomains (≥3), three illustrative examples are investigated. 89 

2 Establishment of coupling system 90 

2.1 Compact form of dynamic equations 91 

A continuous domain Ω, as depicted in Fig. 1 (a), is decomposed into S subdomains by using 92 

FETI method [40]. The interconnected subdomains have shared nodes at interfaces Γb created 93 
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by partitioning of the entire domain Ω. For an individual subdomain, as shown in Fig. 1 (b), 94 

additional forces Λ are applied to the corresponding subdomains, which leads to 95 

interconnect/couple with other subdomains. 96 

        97 

(a) An entire domain             (b) a typical subdomain 98 

Fig. 1. A partitioned problem 99 

Hamilton’s principle is adopted to build the dynamics equation of the coupling system as 100 

follows: 101 

1+ + + =   
Tk k k k k k k k k : k SM a C v K u L P           (1a) 102 

1

0
=

=
S

k k

k

L v                           (1b) 103 

where the superscript k on a quantity refers to the corresponding subdomain; k
M , k

K , k
C , 104 

k
P , k

u , and k
v  are the mass matrix, stiffness matrix, damping matrix, external excitation 105 

vector, displacement vector, and velocity vector of the kth subdomain Ωk, respectively; Λ is a 106 

Lagrange multiplier; k
L  is a Boolean matrix of dimension L × Nk; and Nk and L are the number 107 

of degrees of freedom (DOF) of the kth subdomain Ωk and its interface Γb, respectively. The 108 

velocity continuity condition (i.e., Eq. (1b)) is imposed on the interfaces of interconnected 109 

subdomains. Further detailed information on Eq. (1) and Boolean matrix can be found in 110 

[9][40]. 111 

The unknowns in Eq. (1) are the kinematic quantities (i.e., k
a  , k

u  , and k
v  ) of all 112 

subdomains and Lagrange multipliers Λ. The multipliers are regarded as interface 113 

P(t)

Гt

ГbΩk

Ωk

P(t)

Гt

(t)

Гb
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reactions/link forces acted on interfaces of interconnected subdomains. In the absence of 114 

interface link forces Λ, all kinematic quantities can be solved by introducing a dynamic method 115 

only, e.g., Newmark method or New Generalized-α (NG) [64]. However, for coupled multi-116 

subdomains with different time steps, besides adopting a dynamic method within the solving 117 

process, a complementary equation/assumption is also required to solve the intermediated 118 

interface link forces at micro time steps (non-system time step)[44]. Simultaneously, zero 119 

energy dissipation [45]-[48] needs to be ensured in interfaces of shared nodes. 120 

To conveniently elaborate the computational process for the coupling system with multiple 121 

subdomains and time steps, a compact form of the dynamic equation is discussed below firstly. 122 

Note that its energy form is only verified strictly [1][11][59] for all dynamic methods with a 123 

single time step. Therefore, the compact form of Newmark method is introduced to build and 124 

simplify the coupling dynamic equations. To obtain desirable algorithmic damping and 125 

accuracy, NG schemes without overshoot are also investigated in the later sections. The 126 

expressions of displacement and velocity for Newmark scheme and the incremental form of 127 

dynamic equations without damping are, respectively: 128 

( ) 2 2

1 1
1

2n n n n nh h h + += + + − +u u v a a                 (2a) 129 

( )( )1 11n n n nh  + += + − +v v a a                        (2b) 130 

1 1 1 1

T

n n n n+ + + + +  +  =M a K u L P                      (3) 131 

where the subscript is the time step as n indicates time tn; h is the time step size; and two 132 

parameters γ and β are adopted to adjust the accuracy and stability of Newmark scheme. Eq. 133 

(2) can be written as the incremental form: 134 

2

1 1

2

2
n n n n

h
h h

  

 
+ +

−
 =  + +u v v a                  (4a) 135 
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1 1

1 1
n n n

h 
+ + =  −a v a                             (4b) 136 

where Δ is the increment of kinematic quantities from time tn to tn+1, which are expressed as: 137 

1 1

1 1

1 1

, 1 , 1 ,

1 1

n n n

n n n

n n n

ext n ext n ext n

n n n

+ +

+ +

+ +

+ +

+ +

 = −

 = −

 = −
 = −

 = −   

u u u

v v v

a a a

P P P

                        (5) 138 

Substituting Eq. (4) into Eq. (3), the dynamic equation is written as: 139 

1 1 1

T

n n n+ + + +  =*
K v L F                       (6) 140 

where the dynamic operator matrix *
K   and the generalized load vector 1+nF   are, 141 

respectively, defined as follows: 142 

1
=

h

h



 

*
K M + K                             (7) 143 

2

1

2 1

2
+

 −
=  − + + 

 
n n n n nh h

 

 
F P K a v Ma         (8) 144 

To simplify the dynamic equations, equations (i.e., Eqs. (4) to (6)) are written in a compact 145 

form as follows: 146 

1 1 1

T

n n n+ + + +  =*
                    (9) 147 

where the generalized load vector is: 148 

1 1n n n+ + = −                          (10) 149 

The matrices involved in Eqs. (9) and (10) are defined below: 150 

0

= 0 0

1
0

 
− 

 
 
 
 −
  

h

h







* *

I I

K

I I

        

0

=

0

T T

 
 
 
  

L             (11a) 151 
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=

n

n n

n

 
 
 
  

u

v

a

                 1=

n

n n

n

+

 
 

 
 
  

u

v

a

          (11b) 152 

1 ,

0

=

0

n ext n+

 
 

 
  

P      

2

2

2
0

2

2 1
= 0

2

1
0 0

 −
− − 

 
 −

− 
 
 
 
 

h h

h h

 



 

 



I I

K K M

I

  (11c) 153 

To illustrate the coupling process, a domain split into two subdomains with different time 154 

steps is discussed below. 155 

 156 

2.2 Coupling equations of two subdomains 157 

A domain with two subdomains (A and B) and different time sub-steps (ΔT and Δt), as shown 158 

in Fig. 2, is employed to elaborate the coupling method. It is easy to extend to multi-subdomain 159 

(≥ 3) system, which is demonstrated in the later sections. The ratio of macro (system) time step 160 

ΔT to micro time step Δt is m. The beginning time step and ending time step for the two 161 

subdomains are t0 and tm, respectively. 162 

 163 

Fig. 2. Two subdomains with different time steps 164 

Dynamic responses of two subdomains are computed by using Eq. (6). More specifically, 165 

for subdomain A, dynamic equations built at tm are: 166 

tn+1

tn+1

A

Btn+1

△T
Sub A

t0 tm

t0 t0+m△t

Time

tn

t0 t0+△T

Sub B
△t
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2

0 0

0

2

2

1 1

A T A A

A m A m m

A A A AA A A A
m m A A

A A

A A A

m m

A A A

h
h h

h

  

 

 




 +  =
 −
 =  + +



 =  −



*
K v L F

u v v a

a v a

              (12) 167 

For subdomain A with macro time steps, a substructure with large-scale, or low-frequency 168 

vibrations, or linear behaviors should be assigned to this subdomain to improve computational 169 

efficiency. The implicit scheme with unconditional stability for Newmark method is 170 

appropriate in this subdomain and the relevant parameters [59][60] are limited as: 171 

2
1 1

1/ 2
4 2

 
  + 

 
and                         (13) 172 

Note that when γ = 1/2, Newmark method is non-dissipation and has second-order accuracy. 173 

For β = 1/12, Newmark method has third-order accuracy [4][5]. 174 

For the subdomain B, dynamic equations set at arbitrary time step tj are: 175 

 

2

1 1

1

2

2

1 1

1,

− −

−

  +  =


− =  + +


 =  −


 

B T B B

B j B j j

B B B BB B B B
j j B j j

B B

B B B

j j j

B B B

h
h h

h

j m

  

 

 

*
K v L F

u v v a

a v a

             (14) 176 

Considering micro time steps, a substructure with small-scale, or high-frequency vibrations, 177 

or nonlinear behavior should be assigned in this subdomain to improve accuracy and 178 

computational efficiency. Thus, the explicit scheme with the high efficiency and conditional 179 

stability is suitable and the relevant parameters [59][60] are limited as: 180 

1/ 2 2 and                             (15) 181 

The critical time step size of the explicit scheme [59][60] is: 182 
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max

1

/ 2
 

−
t

  
                            (16) 183 

where ωmax is the maximum frequency of a substructure/subdomain. According to structural 184 

properties, e.g., frequency content, linearity property, and scale of subdomains, an entire 185 

domain can be divided into different subdomains. The implicit and explicit schemes of 186 

Newmark method are then used in the corresponding subdomains. The unconditional stability 187 

of the implicit schemes and the high efficiency of the explicit schemes are retained in the 188 

solving process simultaneously. To efficiently suppress high-frequency spurious vibrations and 189 

overshoot and retain the second-order accuracy, simultaneously, New General-α [64][65] (NG) 190 

is studied and incorporated to this method in the later sections. 191 

Using the compact form, i.e., Eq. (9), dynamic equations and its continuity condition are, 192 

respectively, expressed as follows: 193 

 

*

0

*

1 1,

A T A A

A m A m m A

B T B B

B j B j j B j j m−

  +  =  −


 +  =  −  




           (17) 194 

( ) 0 +  =
m

T T T T

A A Bj B

j

v L v L                             (18) 195 

To solve the above coupling dynamic system, redundant link forces Λj at intermediated time 196 

step tn need to be assumed/solved firstly. It is worth noting that if link forces are given/solved 197 

in the coupling dynamic system, both subdomains can be decoupled into two independent 198 

subdomains, information exchange, e.g., displacements, velocities, and accelerations, is only 199 

performed at the system time step tm, and computational efficiency can be improved 200 

significantly. Moreover, for the application of multiple subdomains (≥ 3), and the complex and 201 

time-consuming recursive coupling approaches [61]-Error! Reference source not found. are 202 

avoided. Therefore, to solve each subdomain dependently and efficiently, a decoupling strategy 203 
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is introduced and demonstrated in the following sections. 204 

 205 

3 Decoupling strategy for the coupling system 206 

To decouple the coupling system, supplementary conditions are introduced to solve redundant 207 

link forces Λj at intermediated time step tj firstly, which leads to consistency of the number of 208 

unknowns and velocity continuity conditions. Subsequently, all subdomains are only coupled 209 

at the system time steps (e.g., t0 and tm), thus, using the initial information at the beginning time 210 

step (i.e., t0), velocity increments within the system time step are solved for a single subdomain. 211 

Additionally, all interface link forces can be solved by substituting the solved velocity 212 

increments into the velocity continuity conditions. Finally, using the solved link forces, the 213 

coupling system are decomposed into several dependent subdomains, and each subdomain is 214 

solved dependently and efficiently. Link force assumption, calculation of velocity increment, 215 

and calculation of link forces are discussed successively as below. 216 

3.1 Link force assumption for micro time steps 217 

Responses and link forces of two interconnected subdomains are only coupled at the system 218 

time steps, therefore, to calculate intermediated link forces at micro time steps, a linear 219 

interpolation is adopted as follows: 220 

 0    1 1,j m

j j
j m

m m

 
= − +   
 

                  (19) 221 

where 0  and m  refer to the link forces at the beginning (t0) and end (tm) system time 222 

steps, respectively. According to the assumption, the link force increments are constant as 223 

follows: 224 

 1, =  j j m                             (20) 225 
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So far, due to the supplementary equation, the number of link forces (i.e., redundant 226 

unknown quantities) is identical with the number of the velocity continuity conditions for the 227 

coupling dynamic system. Therefore, all link forces can be solved by using corresponding 228 

velocity continuity conditions as discussed below. 229 

 230 

3.2 Calculation of velocity increment 231 

To solve link forces at the system time step by using velocity continuity conditions, the velocity 232 

increment within the system time step ΔT is derived in this section. To calculate the velocity 233 

increment within the system time step for an individual subdomain with m time steps, 234 

substituting Newmark scheme (Eq. (4)) into the dynamic equation (Eq. (3)), one has: 235 

( )
1* *

1 1

T

n n n nh
−

+ + =  −  − −v K P L R a Kv                (21a) 236 

* 22 1

2

−
−h

 

 
R = K M                               (21b) 237 

To solve the velocity increment 
1n+v   at any time step by using the initial system 238 

information at time step t0, e.g., v0, replacing velocity 
nv  and acceleration 

na  items at the 239 

right side of Eq. (21a) with 
1n n− +v v  and 

1n n− +a a  respectively, one has: 240 

( )
1* * *

1 1 1 1

T

n n n n n nh h
−

+ + − − =  −  − − −  − v K P L R a Kv R a K v           (22) 241 

Rewriting Eq. (21a) at the time step tn-1 and substituting it into the right side of Eq. (22), a 242 

recursive expression of velocity increment is derived as follows: 243 

( )( ) ( )
1* * *

1 1 1,2...n n n n nh n m
−

+ + =  − −  − −  =v K P P R a K K v         (23) 244 

Note that the link force item ΔΛ at Eq. (23) has been merged into the velocity and 245 

acceleration increments at the time step tn-1. To eliminate the acceleration increment at Eq. (23), 246 

the acceleration item at the right of Eq. (4b) is written as: 247 
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( )1 1 1

1 1
+ + − =  −  +n n n n

h 
a v a a                          (24) 248 

Rewriting Eq. (4b) at the time step tn and substituting it into Eq. (24), one has: 249 

1 1 12 2

1 1 1
n n n n

h h



  
+ + −

−
 =  −  −a v v a                      (25) 250 

Repeating the above procedure, the acceleration increment 
1+ na  is solved as follows: 251 

( )
1

1 1 1 0

1

1 1 1 1 1
0,1...

−

+ + + −

=

    − −
 =  −  − =        


i n

n

n n n i

i

n m
h

 

    
a v v a       (26) 252 

To eliminate the acceleration item at Eq. (23), substituting (26) into Eq. (23), the simplified 253 

velocity increment is written as follows: 254 

1

1

*

1 0

*

1 1* 1

2
1

1 1

1

n

n n

n i
n

n i n

ih



 



 

−

−

+

+ −
−

−

=

  −
 − + + 
  

 =  
 −  −   
  



P P R a

v K

R
v GG v

                  (27a) 255 

2 2

1 1 2 1

2
h

h

  


  

 + + +
− + 

 
GG = K M                          (27b) 256 

The velocity increment (Eq. (27)) is a recursive form. Therefore, by substituting the solved 257 

velocity increment at the previous steps into Eq. (27) and simplifying them, the velocity 258 

increment at arbitrary time step tn+1 can be solved by using the first velocity increment Δv1 and 259 

initial acceleration a0 as follows: 260 

1
* *

1 2 1 0 1 1

1

1 1
n i

n

n i n i n i n

i



 

−
−

+ + − + − +

=

  −
 =  − + +     

v A P P R a A K v            (28) 261 

where coefficients are defined as: 262 

( )
1

1
*

1 1 2
1

1 1
1... 1

i k
i

i i k

k

i m
h



 

− −
−

+

=

  −
=  +  = −    

A A GG A R A            (29a) 263 

1*

1

−

=A K                                     (29b) 264 

The link forces ΔΛ are only involved in the first velocity increment Δv1. By adding up all 265 
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velocity increments, the total velocity increment over the time interval from t0 to tm is solved 266 

as: 267 

1
1

* *

1 0 1

1 1 1

1 1
m jjm m

i m j m j i

j i i



 

− −
−

+ − −

= = =

     −  
  =  − +  +              

  V A P P R a A K v       (30) 268 

Simplifying coefficients of Eq. (30), the total velocity increment is rewritten as: 269 

1
*

1 1 1

1

m

m j j

j

−

+ −

=

 = + V b F b K v                          (31a) 270 

( )
1

1

1,,,
+ −

=

= =
m i

i k

k

i mb A                          (31b) 271 

( )
1

*

1 0

1 1
1,, , 1

m j

j m j m j j m


 

− −

+ − −

  −
=  − +  = −    

F P P R a      (31c) 272 

To solve the link force, the velocity increment Δv1 is divided into two parts, i.e., the velocity 273 

increment 
1v  generated by free vibration and the velocity increment Δw1 generated by link 274 

vibration, as follows: 275 

1 1 1 =  + v v w                                (32a) 276 

( )
1* *

1 1 0 0h
−

 =  − −v K P R a Kv                    (32b) 277 

1*

1

T−

 = − w K L                             (32c) 278 

By substituting Eq. (32) into Eq. (31), the total incremental velocity is divided into two parts, 279 

i.e., V  and ΔW, which are, respectively, written as follows: 280 

 =  +V V W                               (33a) 281 

1
*

1 1 1

1

m

m j j

j

−

+ −

=

 = + V b F b K v                     (33b) 282 

*

1 1 = W b K w                              (33c) 283 

 284 

 285 
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3.3 Calculation of link forces 286 

To solve link forces using the interface continuity condition, velocity increment equation of 287 

two interconnected subdomains is built at tm as follows: 288 

0 +  =A B

A m BL v L V                          (34a) 289 

( )
m

B T T

Bj B

j

 = V v L                          (34b) 290 

Velocity increment of each subdomain is divided into the free vibration and link vibration, 291 

the above continuity condition is rewritten as follows: 292 

( ) ( ) 0 + +  + =A A B B

A m m BL v w L V W           (35) 293 

Considering the constant increment of link forces at micro time steps, i.e., Eq. (20), total link 294 

forces are calculated as follows: 295 

m m =                                (36) 296 

The velocity increment under link forces [2][11][14] for the subdomain A is calculated as 297 

follows: 298 

A T

m A Am = − *-1
w K L                          (37) 299 

By substituting Eq. (32c) into Eq. (33c), the velocity increment under link forces for the 300 

subdomain B is written as follows: 301 

1

B T

B =− W b L                             (38) 302 

According to Eq. (33b), for the subdomain B, the velocity increment under external 303 

excitation is: 304 

1
*

1 11 1

1

m
B B B

m j j

j

−

+ −

=

 =  +V b K v b F                      (39) 305 

Substituting Eqs. (37) - (39) into the velocity continuity condition, i.e., Eq. (35), one has: 306 
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( )
1

*

1 11 1 1

1

m
A B B A T T

A m B m j j A A B

j

m
−

+ −

=

 
 +  + = +  

 
 *-1

L v L b K v b F L K L b L          (40) 307 

The link forces at each micro time step are derived as: 308 

\ = H DV                               (41) 309 

where H is the condense factor and DV is the velocity quantity related to the two subdomains, 310 

which can be written, respectively, as follows. 311 

1

A T B T

A A Bm= +*-1
H L K L L b L                           (42a) 312 

1
*

1 11 1

1

m
A B B

A m B m j j

j

−

+ −

=

 
=  +  + 

 
DV L v L b K v b F               (42b) 313 

So far, all link forces are solved for the coupling system with two subdomains, the coupling 314 

system can be decoupled into two independent subdomains. Moreover, it is easy to extend to 315 

the case with multi-subdomains (≥ 3) and the detail solving process of link forces is given in 316 

Appendix I for a system with three subdomains. 317 

 318 

4 Implementation and energy investigation of the proposed method 319 

4.1 Implementation of the decoupling method 320 

The coupling system is decoupled into several dependent subdomains by using solved link 321 

forces. Substituting the solved link forces into the coupling equation (17), the coupling system 322 

equations are decomposed into two independent equations as follows: 323 

 

*

0

*

1 1,

A A A

A m m A

B B B

B j j B j j m−

  = −


 = −  

                   (43) 324 

where the equivalent force matrix ℝ𝑗
𝐵 is defined below: 325 

A A T

m m Bm=  −                                (44a) 326 

B B T

j j B=  −                                 (44b) 327 
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Compared with other multi-time-step coupling methods, e.g. the GC method [43][44] and 328 

the BGC_Micro method [10][11], loads of all subdomains are not split into external loads and 329 

link forces. Corresponding structural vibrations are not divided into free vibration and link 330 

vibration. Each subdomain is calculated independently, thus, it is very convenient to extend the 331 

method to the application associated with multiple subdomains (≥ 3). Furthermore, complex 332 

operations, e.g., determining the number of quantization levels of time steps and the time-step 333 

value at each quantization level [62][63], can be avoided by parallel operation of multiple 334 

subdomains with different time steps. Therefore, the developed method is featured with 335 

decoupling and high-efficiency properties. The flowchart of the solving procedure is given in 336 

Appendix II. 337 

 338 

4.2 Investigation of energy property 339 

The pseudo-energy form of a dynamic system without structure damping is employed to 340 

demonstrate the energy property of the proposed method, which is written as: 341 

1
1 1 1 1

2 2 2

n

T T T T

n h


+

   
+ =   − −    

   
a Aa v Kv v R a A a                (45a) 342 

( ) ( )1 1

T

n n n n+ + − + −R = P P L                        (45b) 343 

21

2
h 

 
+ − 
 

A = M K                              (45c) 344 

Further details on the pseudo-energy are given in [1]. Pseudo-energy form is designated as: 345 

, , , ,kin n int n ext n diss nE E E E + = +                        (46a) 346 

, 1 1 1

1 1

2 2

T T

kin n n n n nE + + + = −a Aa a Aa                       (46b) 347 
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int, 1 1 1

1 1

2 2

T T

n n n n nE + + + = −v Kv v Kv                        (46c) 348 

   diss, 1 1 1 1 1

1

2

T T

n n n n nE + + + + +

 
 = − − − 

 
a B a a C a              (46d) 349 

 ext, 1 1

T

n nE
h

+ +


 =

R
v                               (46e) 350 

A subdomain without external loads is employed to discuss the dissipative property, thus, 351 

Eq. (46e) is rewritten as: 352 

( )( ), , 1

1 T T

link n ext n n nE E
h

+ =  =  − v L                    (47) 353 

According to the requirements of stability derived in [1] (i.e., 1/ 2    and A   are 354 

positive definite), the stability of individual subdomain under link forces can be ensured if the 355 

first item on the right side of Eq. (45a) is equal to or less than zero. Namely, the pseudo-energy 356 

on the left side of Eq. (62), including pseudo kinetic energy , kin nE  and pseudo potential 357 

energy , int nE , is bounded and non-divergent. 358 

Similarly, for the domain with two subdomains and different time steps, as shown in Fig. 2, 359 

the sum of pseudo-energy is derived as: 360 

( )

( ) ( )

, int, , j int, j

1

diss, diss, link, link,

1 1

=

= =

 + +  + =

 +  + + 



 

m
A A B B

kin m m kin

j

m m
A B A B

m m m m

j j

E E E E

E E E E

                 (48) 361 

Referring to Eq. (47), the total interface pseudo-energy for two subdomains with different 362 

time steps is written as: 363 

( ) ( )link, 0 1

1 1m
AB T T T T

n A A m Bj B n n

jA B

E
h h

+

 
 = −  − −  − 

 
   v L v L            (49) 364 

Substituting Eq. (19) and the time step ratio (i.e., hA = m hB) into Eq. (49), the total interface 365 
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pseudo-energy generated by all link forces is written as follows: 366 

( )link,

1  
 = −  +   

 


m
AB T T T T

n A A Bj B

jB

E
h

v L v L                    (50) 367 

Substituting the velocity continuity condition Eq. (18) into Eq. (50), one has: 368 

link, 0AB

nE =                                 (51) 369 

Therefore, if the continuity condition (Eq. (18)) and the assumption of linear interpolation 370 

of the link forces (Eq. (19)) are fulfilled in the system-solving process, the zero pseudo-energy 371 

at the interface of interconnected subdomains can be guaranteed and the entire system is stable. 372 

Moreover, the total interface pseudo-energy is only related to link forces, as indicated in Eq. 373 

(49), and algorithmic parameters have no influence on the pseudo-energy. It is worth noting 374 

that the floating-point operation errors of numerical results could be amplified by the time step 375 

hB and accumulated for pseudo-energy. Therefore, to match the theoretical solution (50), 376 

rational number operation should be chosen in the analysis. 377 

 378 

5 Extension of New General-α 379 

In the above sections, Newmark method is employed to decouple and solve the coupling system. 380 

However, desirable algorithmic damping is often required to filter the spurious high-frequency 381 

contents generated by spatial discretization [3][4][5]. Due to desirable accuracy and 382 

algorithmic dissipation properties and without overshoot, six integration schemes of NG [64], 383 

as given in Table 1, are investigated and incorporated the decoupling system. More information 384 

on NG can be obtained in [64]. To decouple the coupling system, link forces are also calculated 385 

firstly. More specifically, using the initial information at the beginning system time step (i.e., 386 

t0), velocity increments within the system time step are solved firstly. Subsequently, 387 
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substituting the solved velocity increments into the velocity continuity conditions built at time 388 

step tm, all interface link forces are solved. Finally, using the solved link forces, the coupling 389 

system are decomposed into several dependent subdomains. Calculations of velocity increment 390 

and link forces are discussed successively as below. 391 

Table 1 Algorithmic parameters of NG method 392 

 NOCH-α CH-α  NOHHT-α HHT-α  NOWBZ-α WBZ-α  

ρ [0,1] [0,1] [1/2,1] [1/2,1] [0,1] [0,1] 

α 
2𝜌 − 1

1 + 𝜌
 

2𝜌 − 1

1 + 𝜌
 0 0 

𝜌 − 1

1 + 𝜌
 

𝜌 − 1

1 + 𝜌
 

δ 
3𝜌 − 1

2(1 + 𝜌)
 

𝜌

1 + 𝜌
 

1 − 𝜌

2(1 + 𝜌)
 

1 − 𝜌

1 + 𝜌
 

𝜌 − 1

2(1 + 𝜌)
 0 

η 
𝜌

1 + 𝜌
 

𝜌

1 + 𝜌
 

1 − 𝜌

1 + 𝜌
 

1 − 𝜌

1 + 𝜌
 0 0 

ε 
𝜌

(1 + 𝜌)2
 
𝜌2 + 2𝜌 − 1

2(1 + 𝜌)2
 

𝜌

(1 + 𝜌)2
 

𝜌2 + 2𝜌 − 1

2(1 + 𝜌)2
 

𝜌

(1 + 𝜌)2
 

𝜌2 + 2𝜌 − 1

2(1 + 𝜌)2
 

β 
1

(1 + 𝜌)2
 

1

(1 + 𝜌)2
 

1

(1 + 𝜌)2
 

1

(1 + 𝜌)2
 

1

(1 + 𝜌)2
 

1

(1 + 𝜌)2
 

μ 
𝜌

1 + 𝜌
 

3𝜌 − 1

2(1 + 𝜌)
 

𝜌

1 + 𝜌
 

3 − 𝜌

2(1 + 𝜌)
 

𝜌

1 + 𝜌
 

3𝜌 − 1

2(1 + 𝜌)
 

γ 
1

1 + 𝜌
 

3 − 𝜌

2(1 + 𝜌)
 

1

1 + 𝜌
 

3 − 𝜌

2(1 + 𝜌)
 

1

1 + 𝜌
 

3 − 𝜌

2(1 + 𝜌)
 

Note that ρ is spectral radius and NO- refers to an algorithm without overshoot 393 

5.1 Calculation of velocity increment 394 

The expressions of displacement and velocity and corresponding dynamic equation without 395 

damping for NG are, respectively: 396 

( )( ) ( )( )

( ) ( )( )
1 1

1 1

1 1

1 1

n n n n

T

n n n n

   

   

+ +

+ +

− + + − +

= − + − − + 

M a a K u u

F F L
              (52) 397 

( )2

1 1n n n n nh h  + += + + +u u v a a                    (53a) 398 

( )1 1n n n nh  + += + +v v a a                         (53b) 399 
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Incremental form of NG is written as: 400 

( )( ) ( )( )

( ) ( )( )
1 1

1

1 1

1 1

n n n n

T

n n n

 

 

+ +

+

−  + + −  +

= −  + − −  + 

M a a K u u

F F L
                (54) 401 

2

1 1n n n nh
h

h
 


 

+ +

 
− =  

 
 + +u v v a                 (55a) 402 

1 1

1
1n n n

h



 
+ + = +

 
 + 

 
a v a                         (55b) 403 

where α, δ, η, ε, β, μ, and γ are algorithmic parameters, which are used to adjust accuracy, 404 

dissipation, and overshoot. To calculate velocity increment within the system time step for an 405 

individual subdomain with m sub-steps, substituting Eq. (55) into Eq. (54), one gets: 406 

( )( )*

11 1 nn

T

n + +=  − −  +  K v L                   (56) 407 

where the dynamic operator matrices 
*

K   and 
*

R   and the generalized load vector 1n+  408 

are defined as follows: 409 

( ) ( )( )*

1 11 1n n n nn n h + + − + − + = − +F F Ku K v R a       (57a) 410 

( ) ( )*
1 1h

h

  

 

− − 
= + 
 

K M K                        (57b) 411 

( )
( ) ( )( )2* 1 h

    


 

 + −−
= − + 
 
 

R K M            (57c) 412 

The first velocity increment is solved as: 413 

( ) ( )( )

( )( )
1 1 0 0*

*1

0 00 1

1 1T

h

 



−
 −  + − −  +
 =
 
 


− + − +

 F F L
v K

Ku K v R a
             (58) 414 

Using Eq. (55a), displacement recursive function is obtained, which is solved by using initial 415 

information of dynamic system as: 416 
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1

2

0 0

1
1

2
1

1

n

i
n

n i n

i

n

h h

h
h

  

 

   

  

−

−
−

−

=

  − −
 + +  
  
 

  − − 
 +   +       

 =



a v

u

v v

               (59) 417 

Using Eq. (55b), acceleration recursive function is derived as follows: 418 

1

0

1

1

1

11
i n

n

n i

i

n n
h

     

    

−
−

+

−

−

=

 
 =  

 

   + − + −
 −  −   

   
a v v a       (60) 419 

Substituting displacement (Eq. (59)) and acceleration (Eq. (60)) into velocity expression (Eq. 420 

(56)), velocity recursive function is derived as: 421 

( ) ( )

( )( )

1

11

*

1 0

1

2
1

0

1

1

1

1

2 1

1

n

n

n

n n

T

n

n

n

i

i

n

i

h

h
h

 





 







−

−

−

+

−

=

−

−

+− + − 
 
− −  + 
 
 

 
 
  
  +  

−

 −
 = − −

  

+ 
 

 −
−  
   


 

F F F

L

v K Ku RR a QQ v

K RR  v

                  (61) 422 

where coefficients matrices involved in Eq. (61) are designed as: 423 

1 2a a= +RR K M                                  (62) 424 

( ) ( )( )2

2
1

1
ha

    



− − −
=                     (63a) 425 

( ) ( )( )
2

2a
     



+ − +
=                        (63b) 426 

3 4a a= +QQ M K                                  (64) 427 

( )
2

11 2
3a

h h

 

 

−−
= +                           (65a) 428 
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( ) ( )
2

1 1
4 1a h

     


 

− + − 
= − − + 

 
           (65b) 429 

Substituting the solved velocity increment at the previous steps into Eq. (61) and simplifying 430 

them, by using the first velocity increment Δv1 and initial acceleration a0, the velocity 431 

increment at arbitrary time step tn+1 can be solved as follows: 432 

( ) ( )1

*

1 1

1 0 0

1

1
1

21 1 n

n
n

n n
n

n

i

i T h

 





 −

−
+

+

+

=

− + −−

 =  −
− −



 
 


 

+ 
−  
 




F F F

v A K A v
L Ku RR a

            (66) 433 

where coefficients matrices 
iA  are defined as: 434 

( )
1

1
1

1 2
1

* 1... 1

n i
n

i i i

i

ih m
h



 

−

− −
−

+

=

  −
= −  + 

 
  = −
    


 


RR

A K QQA K A   (67a) 435 

1

1

*−=A K                                (67b) 436 

By adding up each velocity increment and substituting Δv1 into the solved sum, the total 437 

velocity increment within the system time step can be solved as: 438 

1 2 3 =  + + V V V V                             (68) 439 

where velocity increment is divided into three parts as follows: 440 

( ) ( )1 0

1
1

1 1

1

0

1

21 1
j

n

m

i n

j

n

i

n

h


 




−

−+

−

= =

 −
 = − − −

   
  − + −  


      
V A F F F Kv RR a  (69) 441 

( ) ( )( )( )*

2 0 1 0 0 0 0

1

1 1
m

i

i

Th 
=

 − − −
 

= + + − − 
 
 V A F F K u v R a L      (70) 442 

( )3

1 1

1
m m

T

i i

i im i 
= =

 
= + − −  
 
  V A A L                            (71) 443 

 444 

5.2 Calculation of link forces 445 

For a domain split into two subdomains, the interface continuity condition built at tm is given 446 



24 

in Eq. (34). The velocity increment of each subdomain is divided into free vibration and link 447 

vibration, which is rewritten in Eq. (35). Note that the linear interpolation of the link forces 448 

(Eq. (19)) is still assumed in the computational processing. The velocity increments under 449 

external forces and link forces for subdomain A are, respectively: 450 

1

A

m A n+ = *-1
v K                                 (72) 451 

( )( )01A T

m A A m  = − −  + *-1
w K L                  (73) 452 

Velocity increment for the subdomain B can be computed as follows: 453 

1 2 3

B B B B =  + +V V V V                           (74) 454 

1

BV  2

BV , and 3

BV  can be solved by using Eq. 69, Eq. 70, and Eq. 71, respectively. 455 

Substituting Eqs. (72) - (74) into the velocity continuity condition, i.e., Eq. (35), one has: 456 

( )( )( )

( )

1 0

1 2

1 1

1

1 0

T

A A n A

m m
B B B B T

B i i B

i i

m

m i





+

= =

 − −  + +

  
+ + + − −  =  

  
   

 



*-1
L K L

L V V A A L
       (75) 457 

The link force at each micro time step is derived as: 458 

2\ = 2 2H DV                                  (76) 459 

where H2 is the condense factor and 
2DV   is the velocity quantity related to the two 460 

subdomains, which can be written, respectively, as follows. 461 

( ) ( )2

1 1

1 1
m m

T B B T

A A A B i i B

i i

m m i 
= =

 
= − − + − − 

 
 *-1

H L K L L A A L           (77a) 462 

( ) ( )2 1 0 1 2

T B B

A A n A B+=  − +  +*-1
DV L K L L V V                     (77b) 463 

So far, link forces of each subdomain are solved by using NG, the coupling system can be 464 

decoupled two independent subdomains, and it is easy to extend to the case with multi-465 

subdomains (≥ 3). 466 
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5.3 Implementation for the decoupling method 467 

The entire domain is decoupled into several dependent subdomains by using solved link forces. 468 

Substituting the solved link forces (Eq. (76)) into the coupling equations, the decoupling system 469 

with different time steps can be solved successively. Using dynamic equation (56), two 470 

decoupling equations are written as: 471 

( )( )

( )( )  

01

1 1,

A A T A

A m m A

B B T B

B j j B j

m

j m





  = − −  +



 = − −  +  


 

 

*

*

K v L

K v L
                (78) 472 

where the intermediated link forces j  , which can be determined by Eq. (19). Desirable 473 

algorithmic damping can be employed to filter the high-frequency spurious vibration contents 474 

by using NG schemes. Simultaneously, the second-order accuracy is ensured in computed 475 

results. It has to highlight that for all dynamic methods with a single time step, the energy form 476 

is verified strictly [1][11][59] only for Newmark method. Therefore, for NG schemes, 477 

numerical demonstration of energy property is conducted in the following sections. 478 

 479 

6 Numerical Examples 480 

In this section, three numerical examples are studied to demonstrate decoupling property, 481 

energy property, accuracy, and efficiency for the developed seven schemes, including NM 482 

(Newmark), CH, HHT, WBZ, NOCH, NOHHT, and NOWBZ. The first example, a single DOF 483 

oscillator split into two subdomains, is employed to investigate energy conservative property 484 

and accuracy by comparing with existing multi-time-step coupling methods, e.g., PH [9], GC 485 

[54], BGC_Macro [11], and BGC_Micro [11]. 486 

It is not easy to expand the application to multiple subdomains (≥ 3) for other multi-time-487 
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step methods. Thus, to demonstrate the adaptability for multi-subdomains, responses of the 488 

oscillator, split into three subdomains, are solved by using the developed method and 489 

theoretical solution. 490 

The second example, a wellbore structure decomposed into two independent subdomains, is 491 

adopted to investigate the accuracy and computational efficiency of the proposed methods 492 

within the application to a system with multi-DOFs. 493 

 494 

6.1 An oscillator split into two subdomains 495 

The mass and stiffness of the oscillator, as depicted in Fig 3 (a), are m  = 2 × 10-6 and k = 2 × 496 

104, respectively. The equilibrium equation and the initial conditions are: 497 

         498 

(a) entire oscillator            (b) split oscillator 499 

Fig. 3. A split single DOF problem 500 

( ) ( )

( ) ( )

2 0

0 1, 0 0

a t u t

u v

+ =

= =
                             (79) 501 

where /k m =  is the angular frequency. The oscillator is split into two single DOF, as 502 

shown in Fig. 3 (b), i.e., subdomain A (Sub_A) and subdomain (Sub_B), and mass and stiffness 503 

are Ma = Mb = 1 × 10-6 and Ka = Kb = 1 × 104, respectively. The period and simulation time are 504 

T = 2π × 10-5 s and ΔT = 0.01 s, respectively. Considering stability (i.e., Eq. (16)) and accuracy 505 

of the integration scheme [5][9], the critical time step hcrit is limited to 2 × 10-5 s. 506 

To analyze the energy property, accumulative interface pseudo-energy, and interface 507 

mechanical energy [59] are discussed below. Furthermore, to evaluate the accuracy property 508 

Ka+Kb

u

ma

f
mb

mb

ab1

Ka

Kb

ba

ma

1

f a, ua

f b, ub



27 

under different parameters [5], different cases, e.g., different time step sizes of the two 509 

subdomains, various time step ratios m, and different algorithmic parameters β, are investigated. 510 

 511 

1) Discussion of interface energy 512 

The interface pseudo-energy given in Eq. (49) and the following classical mechanical energy 513 

derived in [59] are assessed for the oscillator. 514 
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  
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    

 +  
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u

u K u + a Ma

             (80) 515 

Each part of the mechanical energy is designated as: 516 

, , , , , + + = +kin n int n comp n ext n diss nW W W W W              (81a) 517 

, 1 1

1 1

2 2

T T

kin n n n n nW + + = −v Mv v Mv                       (81b) 518 

, 1 1

1 1

2 2

T T

int n n n n nW + + = −u Ku u Ku                       (81c) 519 

( )2

, 1 1

1 1

2 2

T T

comp n n n n nW h  + +

 
 = − − 

 
a Ma a Ma           (81d) 520 

( ), 1

1 1

2 2

T

ext n A n nW +

  
 =  + −   

  
 +  u              (81e) 521 

2

,

1 1 1

2 2 2

T T

ext nW h  
    

 = − −   −    
    

u K u+ a Ma      (81f) 522 

More details can be found in [59]. Link forces are served as external excitations for a single 523 

subdomain without external excitations. Therefore, the classical interface mechanical energy 524 

for a two-subdomain system can be calculated as: 525 
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              (82) 526 

According to Eq. (81a), the interface mechanical energy is equivalent to: 527 

( )interface, , , ,

AB

n kin n int n initial nW W W W =  + −                     (83) 528 

where ΔWinitial,n = 1 × 104 is the initial mechanical energy of the oscillator. Furthermore, under 529 

the assumption of the linear interpolation of link forces (i.e., Eq. (19)) and the velocity 530 

continuity condition (i.e., Eq. (18)), the pseudo-energy (Eq. (51)) is zero for a dynamic system, 531 

and algorithmic parameters have no influence on pseudo-energy. The total pseudo-energy at 532 

Eq. (51) can be solved as: 533 

( ) ( )link, , int, , j int, j

1

0
m

AB A A B B

n kin m m kin

j

E E E E E
=

 =  + +  + =            (84) 534 

To investigate energy dissipation at interfaces, the accumulative interface mechanical energy 535 

and pseudo-energy over a whole calculated time are, respectively: 536 

interface interface,i

1

T
AB

i

W W
=

 =                           (85) 537 

interface interface,i

1

T
AB

i

E E
=

 =                            (86) 538 

To eliminate the influence of algorithmic dissipation (i.e., Eq. (46d) and Eq. (81d)) on the 539 

interface energy, the accumulative interface mechanical energies without algorithmic 540 

dissipation, from 0.0098 s to 0.01 s, are compared in Fig. 4. Fig. 4 (a) shows that compared 541 

with the import initial energy ΔWinitial,n, accumulative interface mechanical energies are 542 

extremely small and non-attenuated for the coupling methods, e.g. PH, BGC_Macro, and the 543 

presented method. Furthermore, according to the parity of time steps, the accumulative 544 
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interface mechanical energies are divided into two continuous periodic vibrations without 545 

attenuation, as depicted in Fig. 4 (b) and Fig. 4 (c). Therefore, the mechanical energy of the 546 

methods above is conservative. It has to highlight that the interface mechanical energy at Eq. 547 

(82) and the pseudo-energy at Eq. (49) are derived from Newmark scheme and are not suitable 548 

for NG schemes. However, six schemes of NG in Table 1 have the same displacement and 549 

velocity integration schemes with Newmark [64] when ρ = 1. Therefore, curves of 550 

accumulative interface mechanical energy are overlapped for all energy conservation schemes. 551 

Fig. 4 (d) shows that even the non-dissipative Newmark scheme ((γ, β) = (1/2, 1/4)) is employed 552 

in the coupling methods, the accumulative interface mechanical energy still gradually increases 553 

with time for both GC and BGC_Micro, and approaches the initial import mechanical energy 554 

at the end time (0.01 s). Therefore, the two methods are energy dissipative in terms of classical 555 

mechanical energy. 556 

  557 

(a) Energy conservative coupling methods                (b) Odd time steps 558 
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  559 

(c) Even time steps                     (d) Energy dissipative coupling methods 560 

Fig. 4. Accumulative interface mechanical energy of various coupling methods (ρ = 1 and m 561 

= 10) 562 

Note that Pre_() denotes the developed method with specified schemes as Pre_NM represents 563 

the proposed method with Newmark scheme. The time steps for Sub_A and Sub_B are 1 × 564 

10-6 and 1 × 10-7, respectively, and the time step ratio is m = 10. 565 

 566 

Curves of accumulative interface pseudo-energy are plotted in Fig. 5 for different coupling 567 

methods. It shows that for the dissipative coupling methods, e.g. GC and BGC_Micro, the 568 

accumulative pseudo-energy gradually dissipates with time and approaches the initial import 569 

pseudo-energy ΔEinitial,n = 1 × 1014 at the end time (0.01 s). On the contrary, for the energy 570 

conservative coupling methods, pseudo-energy is zero, and the results can also be directly 571 

derived from Eq. (51). It is worth noting that the initial pseudo-energy is a large number for the 572 

oscillator and the amplitude of pseudo-energy is close to 8.3 × 1010 for both subdomains. To 573 

avoid the floating-point operation errors and accurately calculate pseudo-energy, rational 574 

number operation should be chosen. Therefore, the proposed methods are featured with the 575 

energy conservative property in terms of the interface pseudo-energy. 576 
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 577 

Fig. 5. Pseudo-energy of various coupling methods (m = 10) 578 

Note that the number in brackets following the presented method refers to ρ. NG schemes 579 

(ρ = 0.5) are also analogously calculated by using Eq. (86). 580 

 581 

2) Investigation of accuracy 582 

The absolute error (YP) derived in literature [5] is introduced to investigate accuracy and 583 

consistency of the proposed method. The expressions of the YP for Sub_A and Sub_B are, 584 

respectively: 585 

=Err _a Ea / E                              (87) 586 

=Err _b Eb / E                               (88) 587 
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where 
i

simuWa , 
1 1m*(i )

simuWb − +
, and 

i

theoW  are two numerical solutions of Sub_A and Sub_B, and 591 
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the theoretical solutions, respectively, at the time step ti. The theoretical solutions are: 592 

( )0 cosi

theo iW u t=                       (90) 593 

To evaluate accuracy under different parameters [5], different time step sizes, various time 594 

step ratios m, and different algorithmic parameters β, are investigated below. 595 

Various time step sizes 596 

To analyze accuracy under different time step sizes, error curves, varying with time step 597 

sizes, of responses are shown in Fig. 6. Newmark method with (1/2, 1/4) and the macro time 598 

step is used to calculate the entire oscillator for the purpose of accuracy comparison. Some 599 

findings are observed that absolute errors of computed quantities (including displacements, 600 

velocities, and accelerations) increase with the reduced angular frequency (ΦA [11]) for all 601 

coupling integration methods. For energy conservative methods, all quantities of two 602 

subdomains have smaller YP than that of Newmark, as marked in Fig. 6. On the contrary, due 603 

to energy dissipation at interfaces, the energy dissipative methods, e.g., GC and BGC_Micro, 604 

have a larger error than that of Newmark. Moreover, the numerical results of YP show that 605 

Sub_B with micro time step (hA/m) is more accurate than that of Sub_A with macro time step. 606 

Thus, the proposed coupling method maintains the second-order accuracy. It is worth noting 607 

that all integration schemes have the same displacement and velocity interpolation schemes 608 

with Newmark [64] when ρ = 1, thus, the same absolute errors are observed in energy 609 

conservative methods and energy dissipative methods. To further investigate the spectral radius 610 

influence on accuracy, ρ = 0.5 is studied below. 611 
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  612 

(a) Displacement errors of Sub_A         (b) Velocity errors of Sub_A 613 

  614 

(c) Acceleration errors of Sub_A     (d) Displacement errors of Sub_B 615 

  616 

(e) Velocity errors of Sub_B         (f) Acceleration errors of Sub_B 617 

Fig. 6. Accuracy property varying with time step size for various integration schemes (ρ = 1, 618 
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and m = 10) 619 

Note that the reduced angular frequency [11] ΦA = 2π Ah

T
 is introduced to simplify the 620 

abscissa, the time step size of Sub_A varies from hA = 10-6 s to hA = 10-7 s, corresponding ΦA 621 

ranges from 10-1 to 10-2. 622 

 623 

To further investigate spectral radius influence on accuracy, absolute error curves of different 624 

coupling methods with ρ = 0.5 are shown in Fig. 7. It shows that absolute errors of all quantities 625 

increase with ΦA for all coupling methods. All quantities solved by coupling methods have 626 

smaller YP than that of errors solved by CH, HHT, and WBZ, as indicated in Fig. 7. Moreover, 627 

Sub_B with micro time step (hA/m) is much more accurate than that of Sub_A with macro time 628 

step. Thus, the seven schemes incorporated the proposed method, i.e., NM scheme and NG 629 

schemes, could ensure the second-order accuracy. 630 

  631 

(a) Displacement errors of Sub_A             (b) Velocity errors of Sub_A 632 
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  633 

(c) Acceleration errors of Sub_A          (d) Displacement errors of Sub_B 634 

  635 

(e) Velocity errors of Sub_B         (f) Acceleration errors of Sub_B 636 

Fig. 7. Accuracy property varying with the time step size, (ρ = 0.5, and m = 10) 637 

Note that CH, HHT, and WBZ with ρ = 0.5 and the macro time step are used to calculate 638 

the entire oscillator for the purpose of accuracy comparison. CH and HHT have same 639 

integration schemes for ρ = 0.5. 640 

 641 

Various time step ratios 642 

To study accuracy varying with the time step ratio m, the range of m from 1 to 500 is 643 

investigated, and error curves are plotted in Fig. 8. It indicates that for the energy conservative 644 

coupling methods, due to more accurate link forces solved by Sub_B with micro time step, 645 
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accuracy gradually increases with m for all quantities, and YP is less than that of Newmark. 646 

Therefore, the energy conservative coupling methods retain the second-order accuracy. On the 647 

contrary, due to energy dissipation at interfaces, absolute errors gradually increase with m for 648 

BGC_Micro and GC, and both methods cannot guarantee the second-order accuracy. 649 

Furthermore, when m≥10, YP of all computed quantities have small fluctuations with m for 650 

the energy conservative methods. Hence, for the energy conservative methods, accuracy of the 651 

subdomain with macro time steps can be determined by adjusting m, and high-frequency 652 

vibrations or nonlinear behaviors can be easily captured in the subdomain with micro time steps 653 

by adjusting m. 654 

  655 

(a) Displacement errors of Sub_A    (b) Velocity errors of Sub_A 656 
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 657 

(c) Acceleration errors of Sub_A 658 

Fig. 8. Accuracy property varying with the time step ratio m for various schemes (ρ = 1) 659 

Note that the time step size of Sub_A and Sub_B are set as hA =1 × 10-6 s and hB = hA /m, 660 

respectively. The constant time step hA is employed in Newmark, hence, its absolute errors 661 

are constant. Sub_B with the micro time step has more accurate results, thus, only error 662 

curves for Sub_A with large YP is presented in the figure. 663 

 664 

To further investigate the spectral radius influence on accuracy, absolute error curves of the 665 

integration schemes with ρ = 0.5 are shown in Fig. 9. Similar trends are shown in the figure. 666 

More specifically, accuracy gradually increases with m for all computed quantities, the 667 

presented coupling method with schemes have smaller YP than that of CH, HHT, and WBZ, as 668 

marked in Fig. 9. Thus, the proposed method maintains the second-order accuracy. Furthermore, 669 

absolute errors of all computed quantities have small fluctuations when m≥10. Hence, the 670 

accuracy of the subdomain with the macro time step can be adjusted by m, and high-frequency 671 

vibrations or nonlinear behaviors can be easily captured in the subdomain with micro time step 672 

by adjusting m. Note that the second-order accuracy is retained in NG schemes and desirable 673 
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algorithmic damping is presented in NG schemes, which can be used to filter spurious vibration 674 

contents. 675 

  676 

(a) Displacement errors of Sub_A       (b) Velocity errors of Sub_A 677 

 678 

(c) Acceleration errors of Sub_A 679 

Fig. 9. Accuracy property varying with m for various integration schemes (ρ = 0.5) 680 

Note that the time step size of Sub_A and Sub_B are set as hA =1 × 10-6 s and hB = hA /m, 681 

respectively. CH, HHT, and WBZ with ρ = 0.5 and constant macro time step hA are used to 682 

calculate the entire oscillator for the purpose of accuracy comparison. 683 

 684 

Various algorithmic parameters 685 
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To investigate accuracy property under different algorithmic parameters β, error curves with 686 

algorithmic parameters β (γ = 1/2) are indicated in Fig. 10. Note that Newmark with parameter 687 

β = 1/12 has the third-order accuracy [5]. It shows that Newmark with (β = 1/12.8 to 1/11.2) 688 

has higher accuracy than that of the energy conservative coupling methods. Therefore, more 689 

accurate link forces are provided by Sub_B with a micro time step, while the third-order 690 

accuracy cannot be obtained for the energy conservative coupling methods. Moreover, YP of 691 

two subdomains gradually increases from β = 1/12 to the two sides for the energy conservative 692 

coupling methods. The absolute errors of each subdomain can be adjusted by using its own 693 

integration parameters. 694 

  695 

(a) Displacement errors of Sub_A   (b) Velocity errors of Sub_A 696 
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 697 

(c) Acceleration errors of Sub_A 698 

Fig. 10. Accuracy property varying with algorithmic parameter (ρ = 1, and m = 20) 699 

Note that the time steps of Sub_A and Sub_B are set as hA = 10-6 s and h = hA/20. Newmark 700 

with γ = 1/2 and the macro time step is used to calculate the entire oscillator for the purpose 701 

of comparison. 702 

To further investigate accuracy property under various spectral radius ρ, error curves with 703 

various ρ are plotted in Fig. 11. It shows that the developed coupling schemes have more 704 

accuracy than that of CH, HHT, and WBZ for all computed quantities. Accuracy increases with 705 

ρ for the developed schemes. In other words, the small spectral radius can be used to filter high-706 

frequency spurious vibration contents by using large algorithmic damping (ρ). 707 
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  708 

(a) Displacement errors of Sub_A      (b) Velocity errors of Sub_A 709 

 710 

(c) Acceleration errors of Sub_A 711 

Fig. 11. Accuracy property varying with ρ for various integration schemes (m = 20) 712 

Note that step sizes of Sub_A and Sub_B are set as hA = 10-6 s and h = hA/20, respectively. 713 

CH, HHT, and WBZ with various ρ and constant macro time step hA are used to calculate the 714 

entire oscillator for the purpose of accuracy comparison. 715 

 716 

6.2 An oscillator divided into three subdomains 717 
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(a) entire oscillator (b) split oscillator 

Fig. 12. An oscillator split into three subdomains 718 

Note that mass and stiffness of Sub_A, Sub_B, and Sub_C are (Ma = Mb = Mc = 1 × 10-6) 719 

and (Ka = 4 × 104 , Kb = 1 × 102, and Kc = 2.5 × 105), respectively. The time steps for three 720 

subdomains are hA =5 × 10-8 s, hB = 1 × 10-7 s, and hC = 5 × 10-7 s. Corresponding ratios are hB 721 

/hA = 2 and hC /hB = 5. Simulation time is 0.01 s. 722 

To demonstrate the application of multiple subdomains (≥3), the oscillator split into three 723 

subdomains is investigated and corresponding calculation information is given in Fig. 12. Only 724 

the presented method can be employed to calculate multiple subdomains (≥3) easily, thus, the 725 

developed method, Newmark, and theory solutions are employed to solve the coupling system. 726 

The solving method of link forces is given in Appendix I for the proposed method with 727 

Newmark scheme. Structural responses from 0.00998 s to 0.01 s are compared in Fig. 13. As 728 

observed, structural responses of three subdomains are overlapped with each other for each 729 

integration scheme. Responses solved by Pre_NW (ρ = 1) are most close to results solved by 730 

Newmark and theorical solutions. Compared with Pre_CH and Pre_HHT with ρ = 0.5, 731 

algorithmic dissipation is dominated for Pre_WBZ with ρ = 0.5. Therefore, accurate results 732 

can be obtained by using the developed method with ρ = 1, and it is easier to filter the high-733 

frequency spurious vibrations by using Pre_WBZ with ρ = 0.5. 734 
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 735 

(a) Displacement 736 

 737 

(b) Velocity 738 



44 

 739 

(c) Acceleration 740 

Fig. 13. Structural responses of the oscillator split into three subdomains 741 

Note that theory results are solved by using Eq. (88). Newmark with (1/2, 1/4) is used to 742 

calculate the entire oscillator for the purpose of comparison. The time step h = 5 × 10-7 s is 743 

employed in theory results and Newmark. 744 

 745 

6.3 A wellbore structure 746 

To investigate the accuracy and computational efficiency for a multi-DOF system, a wellbore 747 

structure, as depicted in Fig. 14 (a), is calculated by using FEM under the plane strain 748 

assumption. To simplify the modeling process, only Pi/36 rad of the wellbore structure is 749 

modeled and the relevant parameters are given in Table 2. The radial force defined in the 750 

following Eq. (91) is applied on the inner wall and the outer wall is fixed, as shown in Fig. 14 751 

(a). The wellbore structure, as given in Fig. 14 (b), is only decomposed into two subdomains 752 

for comparison with other existing integration methods. The time steps of Sub_A and Sub_B 753 

are set as 5e-7 s and 5e-8 s, respectively, corresponding ratio m = 10. The lump mass matrix is 754 
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used in the calculation. The simulation time is T = 0.01 s. Compared with existing methods, 755 

the accuracy and computational efficiency are successively discussed in the following sections. 756 
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                         (91) 757 

Table 2 Calculation parameters 758 

Item Value (Unit) 

Modulus of elasticity (EX) 2.0×1011 N/m2 

Poisson’s ratio (PRXY) 0.3 

Density 7850 kg/m3 

Outer diameter (R) 5 m 

Inside diameter (r) 0.5 m 

Angle Pi/36 rad 

 759 

  760 

(a) The entire wellbore structure          (b) The partitioned wellbore structure. 761 

Fig. 14. Wellbore structure (Pi/36 rad) 762 

1) Evaluation of accuracy 763 

To assess the accuracy of various coupling methods, acceleration responses of the 764 

interconnected point G, as shown in Fig. 14 (b), are presented in Fig. 15. The entire model is 765 

calculated by using Newmark with the unique time step 1e-9 s, and responses of G are 766 

considered as reference. As observed, structural responses of two subdomains are overlapped 767 

with each other for all schemes. Since Pre_NW and BGC_Macro have the same displacement 768 

and velocity integration schemes, as marked in Fig. 15 (b), response curves are overlapped. 769 

R=5m

r=0.5m
G

F(t)

R=2m

r=0.5m Sub_A
G

F(t)

R=3m

Sub_B
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Same observation is captured in GC and BGC_Micro. Due to different amplitude decay and 770 

period elongation [3][4][5], structural responses solved by using the presented different 771 

schemes have a slight difference. Furthermore, different algorithmic dissipations for high-772 

frequency spurious vibration generated by special discretization are presented in the developed 773 

schemes. 774 

 775 

(a) Acceleration responses 776 
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 777 

(b) An enlarged view of the acceleration responses within (0.00825 s ~ 0.0083 s) 778 

Fig. 15. Acceleration responses of the point G using different coupling methods (m = 10) 779 

Note that the time step sizes of Sub_A and Sub_B are set as hA =5 × 10-7 s and hB = hA /10, 780 

respectively. The algorithmic parameter (1/2, 1/4) (i.e., ρ = 1) is employed in BGC_Macro, 781 

PH, GC, and BGC_Micro. ρ = 0.5 is used in NG schemes, i.e., Pre_CH, Pre_HHT, 782 

Pre_WBZ, Pre_NOCH, Pre_NOHHT, Pre_NOWBZ. 783 

 784 

2) Evaluation of efficiency 785 

The computational time of various coupling methods is indicated in Fig. 12. Except for the 786 

developed decoupling method, each subdomain is split into the free vibration and link vibration 787 

for other coupling methods [50][52]. Due to repeated factorizations of “effective stiffness/mass 788 

matrix” [4] for two subdomains, especially, the subdomain with micro time steps (i.e., multi-789 

sub-step calculations), these methods are not superior in computational time. However, using 790 

the proposed method, once computation is required at each time step for all subdomains. 791 



48 

Therefore, the developed method can improve computational efficiency significantly. 792 

 793 

Fig. 16. Computational time of various coupling methods (0.01 s). 794 

Note: A computer equipped with Intel(R) Core (TM) i5 processor and 64 G RAM is 795 

employed in the calculation. The parameter setup is consistent with Fig. 15. Computational 796 

time is 853 s for the entire model solved by Newmark with unique time step 5e-8 s. 797 

7 Conclusions 798 

In this paper, a decoupling method with energy conservative property is proposed to solve a 799 

coupling dynamic system with multiple subdomains and time steps efficiently. The method 800 

incorporates New General-α integration schemes with desirable algorithmic damping to filter 801 

spurious high-frequency vibration contents and retain the second-order accuracy 802 

simultaneously. Three representative examples are studied in terms of accuracy, energy 803 

conservation, computational efficiency, and adaptability for multi-subdomains (≥3). 804 

The proposed method can decompose the coupling multi-subdomain system into several 805 

independent subdomains with different time steps. Different integration schemes are employed 806 

to solve each subdomain independently. Accuracy and stability for each decoupling subdomain 807 

can be ensured in solved results by adjusting its own integration parameters. It is convenient to 808 
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extend to multi-subdomain systems, and an example with three subdomains is calculated for 809 

the first time by using the proposed method. 810 

Furthermore, due to the independence of each subdomain, different time steps and 811 

integration schemes (explicit or implicit) of different subdomains are determined by 812 

considering frequency contents, applied loads, and possible nonlinear behaviors of each 813 

subdomain. Therefore, the unconditional stability of the implicit scheme and high efficiency of 814 

the explicit scheme are retained in the solving process simultaneously. Compared with other 815 

existing multi-time-step methods, vibrations are not split into link vibrations and free vibrations 816 

for all subdomains. In other words, each subdomain under link forces and external forces is 817 

calculated only once for each time step. Therefore, computational efficiency is improved 818 

significantly. 819 

General-α schemes are covered to the proposed method, thus, desirable algorithmic damping 820 

can be employed to filter high-frequency spurious vibration contents, which generate by spatial 821 

discretization. Simultaneously, the second-order accuracy is ensured in numerical results, while 822 

the third-order accuracy cannot be obtained. Moreover, accuracy of each subdomain can be 823 

determined by adjusting the time step ratio m and it has small fluctuations when m ≥ 10. 824 

Therefore, high-frequency vibrations or nonlinear behaviors can be easily captured in the 825 

subdomain with a micro time step by adjusting m. 826 

 827 

Appendix I. Calculation of Link forces for a system with three subdomains  828 

In this section, two-two interconnected three-subdomain (A, B, C) coupling system with 829 

different time steps, as shown in Fig. A1, are selected to illustrate the computational process of 830 
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link forces by using Pre_NW. Dynamic equations of the coupling system are written as: 831 

 1*A

1 1,
T

abB

a a a

AA A

i i i a ai m +  =  L             (I-1a) 832 

 1 2*B

1 2 1,
TT

ba C bcA

b b b b

BBB B

i i i i b bi m +  +  =   L L            (I-1b) 833 

 2*C

2 1,
T

cbB

c c c

CC C

i i i c ci m +  =  L            (I-1c) 834 

where ma, mb, and mc refer to the number of time steps for subdomains A, B, and C, respectively. 835 

The system time step is set as ΔT. Two continuity velocity conditions built at tm are acted on 836 

the interfaces AB and BC, which can be written as follows: 837 

1 1 0B A

m m

A BA B

t t+ =L v L v                       (I-2a) 838 

2 2 0C B

m m

B CB C

t t+ =L v L v                       (I-2b) 839 

 840 

Fig. A1. Two-two interconnected three subdomain coupling system 841 

Note that 
t  is boundary conditions; and 

1

AB  denotes the 1st interface interconnected 842 

subdomain A and subdomain B. 843 

 844 

The above velocity continuity conditions are: 845 

( ) ( )1 1
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( ) ( )2 2

1 1
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b c
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b b c c

b c

m m
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i i i i

i i= =

 +  +  +  = L v w L v w         (I-3b) 847 

The interface link force increments are identical for interconnected subdomains within the 848 

system time step, and the linear interpolation of link forces is assumed in time sub-steps. 849 

Therefore, for the 1st interface 
1

AB   interconnected subdomains A and B, by using the 850 

B

F tc

A

C

F tb

BC

ΩB

Г2
Г1

AB

ΩA

Гt

ΩC

F ta
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interface link forces at the system time step tm, link forces at micro time sub-steps can be 851 

calculated as: 852 

11
/ab

m

AB

t am =                                (I-4a) 853 

11
/ba

m

AB

t bm =                                (I-4b) 854 

Note that the right item of Eq. (I-4) at all time sub-steps is constant, hence, its subscript is 855 

ignored. Similar treatment is performed for the 2nd interface 
2

BC  interconnected subdomains 856 

B and C, link forces at micro time steps are: 857 

22
/bc

m

BC

t bm =                                (I-5a) 858 

22
/cb

m

BC

t cm =                                (I-5b) 859 

For three subdomains under link forces, using Eq. (32c), the velocity increments at each time 860 

step can be calculated as follows: 861 

1

1

T
abB

a

AA -1

i A = − *
w K L                           (I-6a) 862 

( )1 2

1 2
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b
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w K L L               (I-6b) 863 

2

2

T
cbB

c

CC -1

i C = − *
w K L                          (I-6c) 864 

Substituting Eq. (I-6) into Eq. (I-3), two velocity continuity conditions can be written as: 865 
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Substituting link forces and velocity generated by external excitations (i.e., Eqs. (I-4), (I-5), 868 

and (46)) into Eq. (I-7), one has: 869 
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For simplification, Eq. (I-8) is rewritten as follows: 872 

1 2

1 2 1n n

AB BC
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=  +  V H H                  (I-9a) 873 

1 2
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=  +  V H H                  (I-9b) 874 

where the coefficients are designed as follows: 875 
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It is worth noting that for a linear system, except for Eqs. (I-10a) and (I-11a), other 882 

coefficients are constant, which can be given before calculation. According to the principle of 883 

the calculus of algebraic equations, two link forces can be calculated as follow: 884 

( ) ( )1

1 2 2 2
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( )2 1

1 2 1
\

n n

BC AB

t BC BC CA t+ +
 =  H V - H                         (I-12b) 886 

 887 

Appendix II Procedure of the proposed decoupling method 888 

The integration procedure of Pre_NM is indicated in Table 3: 889 

Table 3 Calculation flowchart of Pre_NM 890 

(1) Calculate matrices and parameters 
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(2) Given initial conditions and condensed matrix 
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(3) Calculate link forces  
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(4) Calculate the responses of A and B 
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 
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A m m A

B B B
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  = −

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(5) Return to (3) for the next step or stop 
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