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Abstract
Quantum properties, such as entanglement and coherence, are indispensable resources in various
quantum information processing tasks. However, there still lacks an efficient and scalable way to
detecting these useful features especially for high-dimensional and multipartite quantum systems.
In this work, we exploit the convexity of samples without the desired quantum features and
design an unsupervised machine learning method to detect the presence of such features as
anomalies. Particularly, in the context of entanglement detection, we propose a complex-valued
neural network composed of pseudo-siamese network and generative adversarial net, and then
train it with only separable states to construct non-linear witnesses for entanglement. It is shown
via numerical examples, ranging from two-qubit to ten-qubit systems, that our network is able to
achieve high detection accuracy which is above 97.5% on average. Moreover, it is capable of
revealing rich structures of entanglement, such as partial entanglement among subsystems. Our
results are readily applicable to the detection of other quantum resources such as Bell nonlocality
and steerability, and thus our work could provide a powerful tool to extract quantum features
hidden in multipartite quantum data.

1. Introduction

Peculiar quantum features, signalled by quantum entanglement [1] and coherence [2], enable us to
accomplish tasks impossible for classical systems [3], such as ensuring the security of communications and
speeding up certain hard computational tasks [4, 5]. Hence, an important question naturally arises: how
can the presence of these features be efficiently detected for any given quantum system? Indeed, this is a
challenging task for high-dimensional and multipartite systems because quantum features usually imply
correlated patterns hidden within subsystems. Taking entanglement for example, except for
low-dimensional systems, e.g. 2 ⊗ 2 and 2 ⊗ 3, of which entanglement could be detected faithfully via the
positive partial transpose (PPT) criterion [6], generically, it is an NP-hard problem [7]. Besides, even
though at least one linear entanglement witness could be found to witness any entangled state [1, 8–10] as
displayed in figure 1, there still lacks a universal and scalable way to construct such an appropriate witness
for an arbitrary state in practice.

In this work, we turn to the machine learning technique which is powerful in extracting features or
patterns hidden in large multipartite datasets to tackle the quantum detection problem. Recently, much
progress has been achieved in this inter-disciplinary field of quantum machine learning [11]. For example,
on one hand, many quantum or quantum-inspired algorithms have been developed to speed up some
well-known machine learning algorithms [12–14]. On the other hand, machine learning is also a natural
candidate to extract correlated features of high-dimensional quantum systems, which has found wide
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Figure 1. The geometrical interpretation of entanglement detection via entanglement witnesses. (a) Standard linear
entanglement witnesses. The witness W2 is finer than W1. (b) A proper set of linear entanglement witnesses is able to form a
closed area which encloses all separable states. Here W1, . . . ,W4 are used as examples. (c) An imperfect nonlinear entanglement
witness could be generated via supervised learning method if we cannot label enough samples to cover the space of entangled
states. (d) A near-perfect nonlinear witness W can be approximately constructed by the unsupervised neural network if the
generated training data span the space of separable states.

applications in quantum control [15], state tomography [16], measurement [17, 18], and many-body
problems [19–21]. Especially, the task of quantum entanglement detection can be formulated as a binary
classification problem. As a consequence, various classical neural nets, trained with both entangled and
separable samples, have been constructed to solve this problem via supervised learning [22–24]. However,
the supervised training method requires a large pre-labelled dataset. In practice, it is time-consuming or
even impossible to faithfully label a large number of entangled states in a high-dimensional space [7], thus
leading these supervised methods into a dilemma.

Here, we instead build up an unsupervised model to accomplish the task of entanglement detection
beyond the above issues. Following from the fact that separable states form a convex set, it becomes an
anomaly detection problem of which all separable samples are labelled as normal and entangled ones are
abnormal. Particularly, as shown in figure 3, a class of complex-valued neural networks composed of a
pseudo-siamese network and a generative adversarial net (GAN), is constructed and then trained with very
few normal samples to detect entanglement for multipartite systems, ranging from two-qubit to ten-qubit
states. It is noted that our model is much more feasible than anomaly detection methods proposed
in [25, 26] which require quantum hardware.

It is further illustrated in figure 1 that our unsupervised neural nets are essentially trained to search for
proper nonlinear entanglement witnesses which near-perfectly construct the boundary between separable
and entangled samples. Numerical results show that it is able to achieve extremely high accuracy of
entanglement detection with above 97.5% on average, and even capable to detect partial entanglement
within subsystems, e.g. bi-separable states in three-qubit system with accuracy above 97.7%.

Our work is organised as follows. In section 2, we give a brief introduction to the task of entanglement
detection and unsupervised learning method. Then we propose an unsupervised learning neural network
targeted for the detection of generic quantum features. In section 3, multipartite entanglement detection is
taken as examples to illustrate the performance of our model, with only separable samples used for training.
Finally, we conclude this work with a summary in section 4.

2. Unsupervised entanglement detection

2.1. The task of detecting entanglement
Entanglement is not only of significant importance to understand quantum theory at the fundamental level
[1], but also has found applications in information protocols, such as quantum teleportation [27]. For a
given n-partite quantum system, entanglement associated with the state is defined in a passive way in which
a state ρ is entangled if and only if it cannot be described in a fully-separable form of [28]

ρsep =

m∑
i=1

λiρ
1
i ⊗ · · · ⊗ ρ

j
i ⊗ · · · ⊗ ρn

i (1)

with non-negative coefficients satisfying
∑m

i=1λi = 1. Here ρ j
i denotes the state density matrix of the jth

subsystem. Obviously, all of the separable states as per equation (1) form a convex set in the sense that any
convex combination of these states in this set also belong to the same state set. It is noted that the above
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definition of entanglement does not fully capture the entangled structure in the state, e.g. the partial
entanglement [29], which will be discussed later.

In practice, whether a given state ρ is entangled or not, can be experimental-friendly determined via an
entanglement witness [1, 10]. Indeed, as shown in figure 1(a), an entanglement witness essentially defines a
hyperplane which separates the entangled state from the convex set of separable states. Furthermore, it has
been shown in [1] that it is impossible for one linear witness to detect all entangled states, implying that a
large set of linear witnesses illustrated in figure 1(b) (could be impractical) or certain nonlinear witness
shown in figure 1(d) may be required. Besides, it becomes extremely inefficient and impractical to construct
a proper witness for an arbitrary state, especially in multipartite systems. The entanglement witnesses as
neural networks are experimentally accessible and has been demonstrated in [24]. In fact, since neural
networks are learning the linear and nonlinear correlations on the quantum states to form a classifier, a
properly parameterized neural network layer is equivalent to a set of generalized Bell’s inequalities for the
experimental detection of entanglement. In the following, we propose a complex-valued neural network
trained in unsupervised manner to search for the nonlinear entanglement witnesses as desired.

2.2. Unsupervised learning
The unsupervised model refers to the process of learning a probability distribution over the data that has
not been classified or categorized. In this situation, automated methods or algorithms must explore the
underlying features from the available data and group them with similar characteristics. Specifically, the
unsupervised model only receives a training set S that contains

S = {x1, x2, x3, . . .} (2)

without supervised target outputs {y1, y2, y3, . . .}. In contrast to supervised learning where tagging data
requires a large amount of time, unsupervised learning exhibits high efficiency and self-organization in
capturing patterns from untagged data.

Autoencoder [30] is a widely used unsupervised learning method that aims to learn efficient
representations for a set of data. Typically, an autoencoder consists of two modules, namely encoder E and
decoder D, where the former learns the latent representation (encoding) for input data, and the latter is
trained to generate an output as close as possible to its original input from the latent representation.
Another well-known unsupervised learning method is GAN [31, 32]. Specifically, two neural networks,
namely generator G and discriminator D, contest with each other in the form of a zero-sum game in GAN,
where the gain of one module is the loss of the other. This technique learns to generate new data with the
same statistics as the training set. The siamese network [33, 34], as shown in figure 2, contains a pair of
neural networks built by the same parameters, which receives two inputs and detects their difference by
comparing the output vectors of the networks. The siamese network is capable of learning generic features
for making predictions about an unknown distribution even when few examples from the distribution are
available, which provides a competitive approach for pattern recognition without the domain-specific
knowledge. In particular, the siamese network can be trained in an unsupervised manner, as the labels of
the input data are not needed.

For these reasons, the method proposed in this paper has been built upon the siamese network, which is
suitable for one-class unsupervised learning. The basic idea is similar to one-class support vector machine
for anomaly detection [35]. That is, given a set of training samples, we aim to model the underlying
distribution of the data and detect the soft boundary of this set, in order to classify new inputs as belonging
to this set or not. In this case, the model will only take a training dataset without class labels as input, which
means the model is a type of unsupervised learning methods.

2.3. Constructing the complex-valued neural networks
As shown in figure 3, our networks could be decomposed into two parts: one is the pseudo-siamese neural
network (in the red dashed box) and the other is the GAN (in the purple dashed box). The complex-valued
neural network receives the density state matrix as the input. The building modules for these networks are
detailed in appendix A.

The pseudo-siamese neural network consists of two encoders sharing the same network structure,
labelled as Er and Eg, respectively. In contrast to the original siamese network [34] which requires quadratic
pairs as input, the pseudo-siamese network only requires a single input ρreal be fed to the first encoder Er.
The second input ρgen to the second encoder Eg is automatically generated by the decoder G whose aim is to
reconstruct ρreal. Therefore, the pseudo-siamese network trains much faster than the original siamese
network while inherits its few-shot learning ability. In principle, these two encoders competes with each
other to produce a pair of indistinguishable feature vectors v1 and v2. The performance is evaluated by the

3
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Figure 2. Pipeline of the siamese network. Two inputs are encoded into latent vectors whose difference is detected by a similarity
measure.

Figure 3. Structure of the complex-valued neural network. The complex-valued network is composed of two parts: one is the
pseudo-siamese network in the red dashed box and the other is a GAN in the purple dashed box. The pseudo-siamese neural
network consists of two encoders Er and Eg that share the same network structure. ρgen is generated by G. The discriminator
network D is a binary classifier which outputs either 0 or 1. The generator G and discriminator D form the GAN, which aims to
produce a ρgen that is as close as possible to ρreal .

cost function
L1 = Eρreal

‖Er(ρreal) − Eg(G(Er(ρreal)))‖ = Eρreal
‖v1 − v2‖, (3)

where the norm ‖x‖ could be the Lp-norm of any complex vector x with ‖x‖p ≡ (|R(x)|p + |I(x)|p)1/p.
Here two-norm is chosen for equation (3). As the two inputs to the encoders Er and Eg are slightly different,
the two encoders would not share the same weight parameters after training [36].

Combining the encoder Er with G yields an encoder–decoder structure which aims to produce fake
samples that are close to real ones. Thus we introduce the loss function

L2 = Eρreal
‖ρreal − G(Er(ρreal))‖ = Eρreal

‖ρreal − ρgen‖ (4)

to quantify its performance. In analogy to classical autoencoders [37], it is found that L1-norm achieves
better performance than that of p = 2 for this loss term.

An optional discriminator network could be introduced for additional adversarial training. The
discriminator D and generator G form the GAN (figure 3) which could enhance the ability of G to produce
more realistic quantum samples. Indeed, D is a binary classifier trained to discriminate fake samples from

4



Quantum Sci. Technol. 7 (2022) 015005 Y Chen et al

real ones. The two cost functions for this adversarial net are given by

Ladv1 = Eρreal
(−D(ρreal) +D (G(Er(ρreal)))), (5)

Ladv2 = Eρreal
(−D (G(Er(ρreal)))), (6)

which are alternatively minimized via gradient descent method. Specifically, the gradients are clipped
between −1 and 1, turning the network into a Wasserstein GAN which is easy to train [32]. In each round,
the parameters of D are updated by minimizing Ladv1, while the parameters of G and Er are updated by
minimizing Ladv2.

Finally, by combining (3)–(6), the complex-valued neural network is trained by alternatively minimizing
Ladv1 and

L3 = w1 · L1 + w2 · L2 + wa · Ladv2, (7)

with the weight parameters w1, w2, and wa being chosen adaptively.

2.4. Training the networks via unsupervised learning
Suppose the complex-valued network is trained with separable states only, an entangled state would result
in a feature vector vent distinct from that of the generated one in the latent space. Indeed, the entire training
and prediction process can be divided into three steps as follows.

(a) Preparing separable states as training samples. Following equation (1), each ρ
j
i is generated via

HH†/(tr HH†), where H is a complex-valued matrix whose real and imaginary parts of each entry are
sampled from independent Gaussian distributions. It is noted that this sampling method could cover
the whole space of separable states [38].

(b) Training the neural network on the generated set of separable states by alternatively minimizing Ladv1

as per equation (5) and L3 as per equation (7) via the gradient descent method.

(c) Determining the decision threshold value b on the test set after training. We choose b to satisfy

FN

TP + FN
=

FP

FP + TN
, (8)

where TP, FP, TN, and FN refer to the number counts of true positive, false positive, true negative, and
false negative samples. Here, being positive or negative stands for a separable or entangled sample.
Choosing b to satisfy equation (8) implies that the probabilities of misclassifying entangled and
separable states are the same on the test set. Hence, if the score of a quantum state is larger than this b,
then it will be detected as entangled.

For each ρ in the test set, its score for entanglement detection can be defined as

A(ρ) =
∥∥Er(ρ) − Eg(G(Er(ρ)))

∥∥
2
. (9)

It could be further expressed in a witness-like form of

A(ρ) = ‖(WEgWG − I)WEr · vec(ρ)‖2 = ‖W · vec(ρ)‖2, (10)

where WEf(G) denotes the weight tensor which generates the corresponding linear and nonlinear network
transformations. For this reason, the neural network model can be regarded as trying to determine the
nonlinear witness W which approximately characterizes the boundary between separable and entangled
states, without relying on samples of entangled states during training.

Alternately, there is another way to implement the model for prediction without the test dataset, making
both training and prediction independent of any information of entangled states. This is achieved by
determining b as

b = max
ρsep

A(ρ). (11)

Obviously, this approach leads to a higher detection accuracy than using equation (8). Since both the
training and implementation do not rely on entangled samples, this approach is computationally efficient.
More importantly, the major advantage of our unsupervised learning framework lies in its scalability, as
generating sufficient entangled states for training becomes impractical for high-dimensional quantum
systems.
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Figure 4. Detection of two-qubit states. (a) Four-layer neural network structure of the encoder, including two convolutional
layers followed by two FC layers. The structures of the encoder and decoder are symmetric. The structure of the discriminator is
the same as the encoder, with an additional normalization layer to produce a scalar output. (b) The performance of the neural
networks with the first two layers being convolutional or FC. The convolutional kernel size combinations that have been tested
are 1 × 1 and 3 × 3, 2 × 2 and 2 × 2, 3 × 3 and 1 × 1, with the number of output channels being 10 and 30, respectively. If the
first two layers are FC, the number of output channels is set to 32 and 128, respectively. (e) and (f) AUCs and EERs with different
number of output channels for convolutional layers. The convolutional kernel sizes are 2 × 2 and 2 × 2.

3. Numerical results

3.1. Evaluation metrics
We use two evaluation metrics of binary classification in our experiments. The first metric is the area under
curve (AUC) of the receiver operating characteristic curve, which is created by plotting the true positive rate
(TPR = TP/(TP + FN)) against the false positive rate (FPR = FP/(FP + TN)) using the similarity score
defined in (9) for various values of b [39]. The second metric is equal error rate (EER), which is defined as
FN/(TP + FN) when equation (8) holds [40].

3.2. Detecting two-qubit entangled states
The number of training samples for two-qubit case is 160 000, all composed of separable states. The
number of testing samples is 80 000, including 40 000 separable states and 40 000 entangled states.
Two-qubit separable states are generated by

ρsep =

m∑
i=1

λiρ
1
i ⊗ ρ2

i , (12)

where
∑m

i=1λi = 1 and 0 � λi � 1, with m iterating from 1 to 20. Entangled states are selected from
randomly generated states of the entire system using PPT criterion.

The structure of the four-layer encoder is illustrated in figure 4(a). The last two layers of the encoder are
fully-connected (FC) layers, with output channels being 64 and 10, respectively. The first two layers can be
convolutional with different kernels and different number of output channels, or fully connected as tested
in figure 4(b). The best performance of the model has been achieved with the convolutional kernel size of
the first two layers being 2 × 2 and 2 × 2. The best AUC is 0.99 and EER is 2.99%, attained at a small wa

which is the weight of adversarial cost for training. As shown in figure 4(c), convolutional layer performs
much better than FC layer, with AUC being consistently higher than 0.975 and EER lower than 5%.
Figures 4(e) and (f) shows the performance of convolutional neural networks when the number of output
channels varies, indicating that a small number of output channels is enough to extract the features of
entanglement for two-qubit states.
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Figure 5. Detection of three-qubit states. (a) Distribution of three-qubit states. ρA|BC is a bi-separable state with qubit B and C
entangled. (b) EERs and AUCs with different combinations of convolutional kernels, where i–j–k stands for the kernel sizes of
the three convolutional layers.

3.3. Detecting three-qubit entangled states
An entangled three-qubit state can be classified into several types, e.g. bi-separable states and bound
entangled states [24]. The three-qubit state is fully-separable if

ρsep =

m∑
i=1

λiρ
A
i ⊗ ρB

i ⊗ ρC
i . (13)

The distribution of three-qubit states is illustrated in figure 5(a). In this case, successful supervised learning
requires that one can generate enough and balanced samples for all types of entanglement, which cannot be
guaranteed by the current random sampling techniques. In contrast, a universal entanglement detector
could be built using only the fully-separable samples if unsupervised learning method is employed.

The numerical results in figure 5(b) are based on a dataset consisting of 160 000 training samples and
200 000 test samples. The training samples are fully-separable states, and the test samples include 40 000
fully-separable states, 40 000 bound entangled states and 120 000 bi-separable states (40 000 for each
subtype). To accommodate the 8 × 8 density matrix input, a third convolutional layer is added. The
number of the output channels for the three convolution layers is 10, 30, 50, respectively. Since the
unsupervised model focuses on detecting the feature of separability instead of the features of different types
of entanglement, it has achieved similar detection accuracy on four types of entangled samples.

The proposed unsupervised learning method is applicable to the detection of partial entanglement and
genuine entanglement. Here we take the detection of bi-separable states of a three-qubit system as an
example [41]. Suppose the task is to discriminate the bi-separable states ρA|BC (B and C are entangled) from
the other states. By generating the entangled states for subsystem BC using the PPT criterion, the samples of
bi-separable states are given by

ρA|BC =

m∑
i=1

λiρ
A
i ⊗ ρBC

i . (14)

A classifier for A|BC separability can be obtained by training on these samples in an unsupervised manner.
Particularly, if we replace ρBC

i in (14) by a generic two-qubit state, the anomalies detected would be the
quantum states that are entangled between A and BC (page 10). Furthermore, if we generate the samples as

ρABC =
∑
i=1

λ1
i ρ

A
i ⊗ ρBC

i +
∑
j=1

λ2
j ρ

B
j ⊗ ρAC

j +
∑
k=1

λ3
kρ

C
k ⊗ ρAB

k , (15)

the abnormal samples detected by the unsupervised model would be quantum states which are not
bi-separable. In other words, the genuine entanglement of the three-qubit state can be detected as an
anomaly.

3.4. Scalability up to ten-qubit states
The unsupervised learning method is applied on four- to ten-qubit states to study its scalability. We have
found that the generation of separable states for training is very efficient even for tens of qubits, because the
generation of separable pure states is very efficient, which is done by generating single qubit states and
calculating their Kronecker products. Consequently, mixed (fully and partial) separable states can be
constructed as linear combinations of pure states, which does not take much time. In this work, it takes less

7
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Figure 6. Scalability of unsupervised learning. (a) The neural network structure of the encoder for five-qubit pure states. The
convolutional block is composed of two convolutional layers and a 2 × 2 max pooling layer. (b) AUCs and EERs achieved by the
unsupervised learning method as the number of qubits increases. (c) The comparison of inference time between the up-to-date
numerical method for computing the GME and the neural network method. (d) The evolution of feature vectors and detection
scores for 1000 separable and 1000 entangled samples of five-qubit states during training.

than 10 min to generate enough pure separable samples for ten-qubit states on a desktop computer, and
mixing the samples takes less than 3 min. Moreover, we have observed a linear increase on the generation
time with the dimension. Here we used pure four- to ten-qubit states for training because the test samples
of mixed states (mixed entangled states) are hard to label for high-dimensional system, while we have
developed an efficient algorithm [42] that can tell whether a randomly generated ten-qubit pure state is
entangled or not within 5 s. However, test samples are just used to measure the accuracy of the model. The
model is trained using the separable samples only, which can be generated efficiently. The trained model
can be implemented without using test samples as shown in (11). Therefore, the model can also be trained
and implemented with mixed state samples for high-dimensional cases. Note that the geometrical measure
is only used to label the entangled states for the test dataset. The separable pure states are generated by

|ψsep〉 = |ψ1
i 〉 ⊗ · · · |ψj

i〉 · · · ⊗ |ψn
i 〉, (16)

where |ψj
i〉 is a randomly generated pure state vector of the jth qubit. The real and imaginary parts of the

complex-valued vector are sampled from an independent Gaussian distribution. The density matrix
ρsep = |ψsep〉〈ψsep| is used as the input to the neural network. Figure 6(a) depicts the network structure of
the encoder for entanglement detection in five-qubit states, where a max pooling layer has been added to

8
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handle the increased dimension of the input. For ten-qubit states, we adopt three convolutional layers and
increase the max pooling size to 4 × 4. The training dataset is composed of 160 000 separable states, and the
test dataset is composed of 40 000 separable and 40 000 entangled states. The entangled states are found by
randomly generating four- to ten-qubit pure states and computing their entanglement measures using the
numerical method from [42]. See appendix B for the details of the algorithm.

As shown in figure 6(b), the unsupervised model achieves an AUC of 0.9952 and an EER of 2.02% for
entanglement detection in ten-qubit states. The EER is 0.54% for entanglement detection in five-qubit
states, which means only 54 in 10 000 states are misclassified. The short inference time is another advantage
of the neural network model. The inference time of the neural network model on GPU is about tens of
microseconds to hundreds of microseconds for up to 10 qubits (figure 6(c)), which is significantly faster
than the up-to-date numerical method which takes the state vector instead of density matrix as the input
for computing the geometrical entanglement measure (GME). The time needed for generating training
dataset is greatly reduced as compared to supervised learning methods, since there is no need to label the
entangled states. For example, suppose the ten-qubit training dataset of the supervised method consists of
100 000 samples, which must be labelled by numerically computing the GME. The total time needed for
generating the dataset is about 138 h (labelling each sample takes 5 s in average). In contrast, generating
separable training samples of the ten-qubit system is much more simple, which only takes several minutes.

The upper half of figure 6(d) shows the evolution of feature vectors of 1000 separable and 1000
entangled states in the training process for five-qubit states. We visualize the evolution by t-SNE method
[43] which maps the feature vectors to two-dimensional space. In the first 10 epochs, the entangled and
separable states are mixed up in the latent space and difficult to distinguish. After 20 epochs, the feature
vectors start to split into two set. In the last 20 epochs, the feature vectors of separable states are separated
completely from the feature vectors of entangled states, with very few exceptions. A similar evolution can be
seen in the distribution of detection scores of the input states. After training, the detection scores of
separable states are more closed to zero, while the scores of entangled states are concentrated around 0.001.

4. Conclusions and discussions

We have proposed an efficient and scalable method with unsupervised learning to detect quantum
entanglement. Specifically, we build up a class of complex-valued pseudo-siamese neural networks which is
easy to implement as it is trained without entangled samples. Moreover, it is scalable to detect entanglement
of multipartite systems where sufficient labelled entangled samples become difficult to obtain, and our
numerical analysis finds that we could still obtain a rather high accuracy with above 97.5% on average for
multipartite systems from two-qubit to ten-qubit. For this reason, we believe that our work provides a
promising tool to detect quantum features of high-dimensional quantum data.

Finally, it is noted that we exploit the convexity of separable samples and thus reformulate entanglement
detection as an anomaly detection problem, for which the unsupervised neural networks are suitable. Since
other useful quantum features, such as Bell nonlocality and Einstein–Podolsky–Rosen steerability, also
share the same property that it is defined as a distinguishable sample from a convex set, it is evident that our
work can be readily generalized to solve the similar detection problem.
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Appendix A. Complex-valued neural network

We build the complex-valued neural network based on the work of [44]. The codes are available at
https://github.com/ewellchen/Entanglement_detection. The two-dimensional convolutional (denoted as ∗)
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and FC (denoted as ·) operations of the weight w and input z in the complex domain are defined by

w ∗ z = R{w} ∗R{z} − I{w} ∗ I{z} (A.1)

+ i(I{w} ∗R{z}+R{w} ∗ I{z}), (A.2)

w · z = R{w}R{z} − I{w} I{z} (A.3)

+ i(R{w}I{z}+ I{w} R{z}), (A.4)

where R and I represent the real and imaginary part of the vector or matrix, respectively. The formulation
of the complex-valued rectified linear unit (CReLU) is given by

CReLU(z) = ReLU(R (z)) + iReLU(I (z)), (A.5)

which introduces nonlinearity into the network transformation. The batch normalization (BN) layer is
implemented by multiplying the 0-centered data (z − E[z]) with the inverse square root of the covariance as

V =

(
Cov(R{z},R{z}) Cov(R{z}, I{z})
Cov(I{z},R{z}) Cov(I{z}, I{z})

)
,

z̃ = (V)−
1
2 (z − E[z]),

BN(z̃) =

(
γrr γri

γri γii

)
z̃ + β. (A.6)

The parameters γr(i)r(i) and β are trainable. Each convolutional layer is composed of a convolutional
operation, a CReLU and a BN layer. The first FC layer is composed of a FC operation and a CReLU. The last
FC layer generates the final output directly via a FC operation. The operations defined above are
differentiable, which means the neural network could be trained efficiently with back-propagation. The
gradient is calculated with respect to the real-valued cost function L as

∇L(z) =
∂L
∂z

=
∂L
∂zr

+ i
∂L
∂zi

= R (∇L(z)) + iI (∇L(z)) . (A.7)

The back-propagation updates the complex-valued parameter t = tr + iti of the neural network by

∇L(t) =
∂L
∂t

=
∂L
∂tr

+ i
∂L
∂ti

(A.8)

=
∂L
∂zr

∂zr

∂tr
+

∂L
∂zi

∂zi

∂tr
+ i

(
∂L
∂zr

∂zr

∂ti
+

∂L
∂zi

∂zi

∂ti

)
(A.9)

=
∂L
∂zr

(
∂zr

∂tr
+ i

∂zr

∂ti

)
+

∂L
∂zi

(
∂zi

∂tr
+ i

∂zi

∂ti

)
(A.10)

= R (∇L(z))

(
∂zr

∂tr
+ i

∂zr

∂ti

)
(A.11)

+ I (∇L(z))

(
∂zi

∂tr
+ i

∂zi

∂ti

)
, (A.12)

which could be implemented using Pytorch [45].

Appendix B. Computing the GME of quantum pure states

We employ the algorithm proposed in [42] to compute the GME for an arbitrary quantum pure state. The
algorithm is based on a tensor version of the Gauss–Seidel method for computing unitary eigenpairs
(U-eigenpairs) of a non-symmetric complex tensor A which corresponds to the given quantum pure state.

Algorithm 1 [42]. Computing the U-eigenpairs of an n1 × · · · × nm non-symmetric complex tensor A.
Step 1 (initial step): let S = sym(A) be the symmetric embedding of A, and n = n1 + · · ·+ nm.

Choose a starting point x0 ∈ Cn with ‖x0‖ = 1, and 0 < αS ∈ R. Let λ0 = S∗xm
0 .

Step 2 (iterating step):
for k = 1, 2, . . . , do
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x̂k = λk−1Sx∗m−1
k−1 + αSxk−1, (B.1)

xk = x̂k/‖x̂k‖, (B.2)

λk = S∗xm
k . (B.3)

end for.
return:
Unitary symmetric eigenpair (US-pair): λS = |λk|, and x = ( λS

λk
)1/mxk.

Let x = (x(1)
, . . . , x(m)
)
, x(i) ∈ Cni , for all i = 1 : m.
U-eigenvalue λA = (

√
m)m

m! λS .
U-eigenvector {√mx(1), . . . ,

√
mx(m)}.
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