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Abstract: Demand response (DR) can effectively manage electricity use to improve the efficiency and 

reliability of power grids. Shutting down part of operating chillers directly in central air-conditioning 

systems can meet the urgent power reduction needs of grids. But during the special events of fast DR, 

how to optimally control the active cold storage considering the indoor environment of buildings and 

the needs of grids at the same time is rarely addressed. A model predictive control (MPC) approach, 

with the features of shrunk prediction horizon, self-correction and simple parameter determination of 

embedded models, is therefore developed to optimize the operation of a central air-conditioning system 

integrated with cold storage during fast DR events. The chiller power demand and cooling discharging 

rate of the storage are optimized to maximize the building power reduction and meanwhile to ensure 

the acceptable indoor environment. Case studies are conducted to test and validate the proposed 

method. Results show that the proposed MPC approach can effectively handle the optimal controls of 

cold storage during DR events for required power reduction and acceptable indoor environment. Due 

to the feedback mechanism of MPC, the control performance is not negatively influenced by the 

simplified parameter identification of models, which will be convenient for real applications. While 

achieving the expected building power reduction for the power grid, the indoor environment is 

effectively improved in the DR events using the MPC and the maximum indoor temperature is reduced 

significantly without extra energy consumed. 
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1. Introduction  

The rapid growth of power demand and the greater integration of renewable energy generations, 

which depend heavily on weather conditions, impose enormous stress on the balance of power grids 

[1]. Any power imbalance will cause severe consequences in the reliability and quality of power supply 

(e.g., voltage fluctuations and even power outrages). Facing the challenges for power balance, smart 

grid is considered as a promising solution to incorporate advanced technologies to offer better 

flexibility, reliability and security in grid operation [2]. The efforts conducted from the demand side to 

satisfy the grid requests (e.g., dynamic price and reliability information) is known as demand response 

(DR) [3]. DR programs cannot only benefit the operation of power grids but also offer economic 

benefits to end-users. Among the demand-side users of power grids, buildings consuming over 73.6% 

of overall electricity in the United States [4] and over 90% in Hong Kong [5] play an important role in 

DR programs. Moreover, with the help of advanced technologies such as building automation systems 

and smart meters, DR control strategies could be implemented conveniently in buildings to realize a 

bidirectional operation mode between buildings and power grids [6, 7].  

When pricing changes or grid requests are informed day ahead or hours ahead, demand shifting 

by rescheduling the system operation is a preferable alternative for building demand response. Demand 

shifting is the process of shifting on-peak loads to off-peak hours so as to take advantage of electricity 

rate difference in different periods. Since air-conditioning systems in commercial buildings are the 

largest energy consumer [8], particularly in cooling dominant regions, the demand shifting control of 

air-conditioning systems is preferably adopted for optimizing the building power demand. Building 

thermal mass (i.e., passive storage) and thermal storage system (i.e., active storage) are two typical 

candidates to be used for building demand shifting during DR events and many control strategies for 

optimizing their cooling charging/discharging processes have been developed as different 

requirements considered for buildings or power grids [9-13]. Global indoor temperature adjustment 

plus precooling and cooling system adjustment are commonly adopted for the demand shifting and 
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management in buildings. Xu and Haves [14] developed a simple demand-limiting strategy by 

resetting the indoor air temperature to utilize the building thermal mass for peak demand reduction in 

an office building in California. Yin et al. [15] proposed a control strategy “pre-cooling with 

exponential temperature set-up” to optimize the cooling charging/discharging processes of building 

thermal mass for DR control.  

By contrast, when facing urgent requests and incentives from the smart girds, an immediate power 

reduction cannot be achieved within a very short time interval (i.e., minutes) by rescheduling the 

system operation (e.g., resetting the indoor air temperature), resulting from the inherent and significant 

delay of charging/discharging control processes [16, 17]. In such a case, shutting down part of 

operating chillers directly in a central air-conditioning system is considered as an effective proactive 

demand response strategy to achieve immediate power reduction within a very short time. Due to the 

effectiveness of this fast demand response strategy for the urgent requests of smart grids, many studies 

have been conducted. The authors of this paper [18] pointed out that imbalanced chilled water 

distribution in a central air-conditioning system occurred after simply shutting down some of operating 

chillers. A cooling distributor based on adaptive utility function was developed to solve this problem. 

They [19] also proposed a control concept (i.e., supply-based feedback control strategy) for such fast 

DR events, instead of conventional control strategy commonly used for central air-conditioning 

systems, to effectively avoid the serious operation problems (e.g., imbalanced cooling distribution) 

and ensure the expected immediate power reduction after shutting down part of operating chillers.  

Compared with building thermal mass (i.e., passive storage), thermal storage system (i.e., active 

storage) has a larger capacity and better controllability in peak demand reduction responding to the 

requests of smart grids while has a less negative impact on building indoor environment during DR 

events. It reduces building peak demand contributed by the cooling system through the production and 

storage of cold energy during off-peak periods and the usage of the stored energy for cooling during 

peak periods. The cold energy storage in the central air-conditioning system is usually stored in the 



4 

form of ice, chilled water, phase change materials (PCMs) or eutectic solution [20, 21]. Compared with 

the studies conducted for the optimal control of cold thermal storage during DR events (i.e., day ahead 

or hours ahead), the studies for the fast DR events just started in recent years. Xue et al. [22] developed 

a building thermal model to predict the discharged cooling from the building thermal mass after 

shutting down part of operating chillers in the fast DR event. Cui et al. [23] developed a design method 

to optimize the capacity of cold storage during a fast DR event by a quantitative analysis on its life-

cycle cost-saving potential concerning the operational cost, initial investment and space cost. Cui et al. 

[24] also proposed a control strategy to optimize the cooling discharging rate of cold storage during a 

DR event to achieve an immediately stepped power demand reduction after shutting down part of 

operating chillers.  

In addition, although the primary objective of DR events is to satisfy the request of smart grids 

(i.e., power reduction), the indoor thermal comfort may be potentially sacrificed to unacceptable levels 

due to the power limiting control of central air-conditioning systems and hence would be taken into 

consideration. Zhang et al. [25] investigated 56 subjects’ thermal comfort during DR events and 

pointed out that subjects’ thermal comfort zone during DR events was wider than that predicted by 

Fanger’s PMV/PPD model. Tang et al. [26] developed optimal and near-optimal control strategies to 

achieve a pre-determined power demand reduction and meanwhile ensure the indoor environment 

within the acceptable range in the DR events after shutting down part of operating chillers. In fact, 

during fast DR events, using active cold storage with proper control will be effective to increase the 

immediate power reduction for the power grid and meanwhile ensure the acceptable indoor 

environment. However, no study can be found in the literature in addressing the online optimal control 

issue for central air-conditioning systems integrated with active cold storages during fast DR events, 

considering the requirements at both supply and demand sides, i.e., power demand reduction (for smart 

grids) and indoor environment control (for buildings), simultaneously.   

Model predictive control (MPC) is a simple yet effective approach for constrained control, which 
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is able to predict the future behaviors of the controlled systems and to determine proper control actions 

by optimizing an objective function depending on the predictions over a given horizon subject to some 

constraints [27]. It uses a receding horizon (i.e., at each iteration, only the first step of the control 

strategy is implemented and then the control signal is calculated again) to enhance its robustness and 

control accuracy. MPC is now popularly adopted in the areas of built environment control and building 

demand management considering its obvious advantages [28, 29]. Due to the sudden changes caused 

by shutting down part of operating chillers at the start of the DR event, the control stability will be 

challenged and the control states in the air-conditioning system will experience a rather serious 

fluctuation before reaching a new control balance. Considering the advantage of MPC on the control 

robustness, this method would be preferable to be used for the optimal control issues of central air-

conditioning systems during such fast DR events in the smart grids. Hence, it is necessary to use the 

MPC approach to address the optimal control problems of building fast DR.  

In this study, the MPC approach is therefore adopted to optimize the control of a central air-

conditioning system with active cold storage considering the expected building power reduction and 

the acceptable indoor environment during a fast DR event. The chiller power demand and the cooling 

discharging rate of cold storage are optimized online using the proposed MPC approach. The main 

contributions of this work include: (1) The online optimal control issue for the air-conditioning system 

with active cold storage during the fast DR event is effectively addressed, considering the requirements 

of power grid and building simultaneously. The power demand reduction is maximized as the expected 

profile pattern and meanwhile the indoor air temperature is maintained within a pre-determined 

acceptable range; (2) A linear state-space model together with a simple parameter identification method 

is developed for online prediction and optimization during the fast DR event, allowing the proposed 

control strategy computationally efficient; (3) The first-order exponential average method is used to 

handle the prediction errors caused by the model simplification and inaccuracy. Moreover, the MPC 

with shrunk prediction horizon, instead of a fixed width commonly used, is proposed to improve the 
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control performance considering the characteristics of optimal control issues for fast DR events.  

2. Schematic of proactive building demand response strategy for central air-conditioning 

systems with active cold storages during fast DR events 

Generally, the total power demand in a commercial building can be classified into two parts: 

sheddable power demand and controllable power demand. The sheddable power demand, such as 

lighting, electrical equipment and lift, can be conveniently obtained based on the operation schedule. 

While the controllable power demand, such as air-conditioning systems, can be altered by power 

demand controls. The chillers always account for the largest power demand in a central air-

conditioning system and therefore, in this study, the power demand reduction contributed by the 

chillers is concerned to meet the urgent requests of smart grids.  

Once an urgent DR request is received from smart grids (e.g., a sudden power reduction request), 

a fast demand response strategy by shutting down part of operating chillers directly in a central air-

conditioning system is activated. During the fast DR event, the schematic of proposed proactive 

demand response control strategy for chiller downstream PCM storage system is presented in Fig.1. 

Under the insufficient cooling supply caused by the limited number of operating chillers, the proposed 

control strategy will optimize the system operation to provide the expected power demand reduction 

for the smart grid and also to ensure the indoor environment. Three schemes are mainly involved in 

this proposed control strategy (i.e., power demand optimizer, storage load regulator and chiller load 

regulator) in order to optimize and control the cooling discharging rate of the cold storage and the 

chiller power demand. The focus of this study is to develop the scheme of power demand optimizer 

using the MPC approach. The studies on the schemes of storage load regulator and chiller load regular 

as well as the cooling distributor can be found in ref. [16, 19]. The detailed function of each scheme 

in the schematic is illustrated as follows:   

Power demand optimizer: model predictive control is used in this scheme as a supervisory control to 

optimize the set-points of chiller power demand and cooling discharging rate of cold storage during 
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the fast DR event.    

Storage load regulator: this scheme controls the actual cooling discharging rate of cold storage as the 

set-point optimized by the scheme of power demand optimizer. Compared the actual cooling 

discharging rate of the storage with its optimized set-point, the chilled water flow through the storage 

is adjusted based on the PID algorithm for the opening control of the water valve.   

Chiller load regulator: this scheme controls the actual chiller power demand as the set-point optimized 

by the scheme of power demand optimizer. Compared the actual chiller power demand with its set-

point, the chilled water flow circulated in the secondary loop of the central air-conditioning system is 

adjusted based on the PID algorithm followed by an amplification factor (i.e., K). With adjusted total 

cooling supply represented by the chilled water flow in the secondary loop, the cooling distributor 

using an adaptive utility function is responsible to properly allocate the cooling supply among 

individual AHUs [18].  

 

Fig.1 Schematic of proactive building demand response strategy for the central air-conditioning 

system with active cold storage during fast DR events 
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3. Power demand optimizer scheme using model predictive control  

3.1 Mechanism of model predictive control 

The basic mechanism of model predictive control (MPC) is to use a system model to predict the 

future evolution of the system performance using the predicted operating conditions over the prediction 

horizon. At each sampling interval, beginning at the current state, an optimization problem is 

formulated and solved over a finite horizon to achieve the expected system operation. The optimization 

result is a trajectory of future control signals into a system that satisfies the system dynamics and the 

corresponding constraints. But only the first control signal is adopted and implemented by the system 

at the next sampling time, whereas the rest of the sequence is discarded. Such a process is repeated at 

the following time step based on the updated current state over the next prediction horizon [30].  

Fig.2 presents the schematic of model predictive control approach for the controls of active cold 

storage and chiller power demand during the fast DR events. In the structure of MPC, the dynamic 

model is responsible to achieve the online prediction of building evolutions (y’) based on the required 

measurements and information (i.e., weather data and building use). According to the online prediction, 

the optimized control signals for the system (u) are determined by solving an optimization problem, 

subject to the objective function and constraints on the states. The optimized control signals in this 

study are the set-point of cooling discharging rate of cold storage and the set-point of chiller power 

demand. Considering the model prediction errors caused by the uncertainties and disturbances in the 

real system, the results predicted by the dynamic model is corrected (by ‘e’) at each sampling time 

based on the real measurements and predicted values. 



9 

 

Fig.2 Schematic of model predictive control used for fast DR events 

3.2 Description of models used in model predictive control   

In order to establish the MPC controller, two models are needed, i.e., chiller power demand model 

(section 3.2.1) and dynamic building thermal model (3.2.2).   

3.2.1 Chiller power demand model 

The power demand of chillers (𝑃𝑐ℎ𝑖𝑙𝑙𝑒𝑟
𝑘 ) in a central air-conditioning system is determined by its 

cooling supply (𝑄𝑐ℎ𝑖𝑙𝑙𝑒𝑟
𝑘 ) and COP (coefficient of performance), as shown in Eq.(1). During fast DR 

events, the chillers cooperate with the active cold storage to provide the cooling for the building. Thus, 

the cooling supply of chillers at each time step is determined by the building cooling demand (𝑄𝑑𝑒𝑚
𝑘 ) 

and the cooling discharged by the active cold storage (𝑄𝑠𝑡𝑜𝑟𝑎𝑔𝑒
𝑘 ), as shown in Eq.(2). Where subscript 

k represents the time step.   

 𝑃𝑐ℎ𝑖𝑙𝑙𝑒𝑟
𝑘 = 𝑄𝑐ℎ𝑖𝑙𝑙𝑒𝑟

𝑘 /𝑐𝑜𝑝𝑘 (1) 

 𝑄𝑐ℎ𝑖𝑙𝑙𝑒𝑟
𝑘 = 𝑄𝑑𝑒𝑚

𝑘 −𝑄𝑠𝑡𝑜𝑟𝑎𝑔𝑒
𝑘  (2) 

3.2.2 Dynamic building thermal model 

To predict the building response (i.e., indoor air temperature) under a given cooling supply 

(including two parts: cooling provided by the chillers and the active cold storage), a dynamic building 

thermal model is developed. The grey-box building thermal model used in this study integrates 
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complicated model would seriously increase the computing time particularly for the online control, the 

adopted building thermal model would be simple and generally grasp the key characteristics. The 

components in this model and the heat fluxes exchanged between them are shown in Fig.3. The model 

contains four parts, i.e., outdoor environment, building envelop, indoor air and internal thermal mass. 

Two types of heat transfer on the external wall, including convective heat transfer with the outdoor 

air and radiative heat transfer with the sky, will occur. As for the solar radiation occurred on the window, 

a portion through the window is directly transmitted into the indoor air while the rest is absorbed by 

internal thermal mass (e.g., floor, ceiling. furniture). The building internal thermal mass, which is 

represented by 2R2C (consists of two resistances and two capacitances) [31], absorbs radiant heat from 

the window and that from the lighting, occupants and equipment etc., and then releases (or absorbs) 

the heat gradually to indoor air space. The energy balances for the external and internal wall surfaces, 

the indoor air and the internal thermal mass are presented as the following equations:         

 

Fig.3 Schematic of RC grey-box building thermal model 
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 𝐶𝑖 
𝑑𝑇𝑖𝑛

𝑑𝑡
=

𝑇𝑖𝑚,2−𝑇𝑖𝑛

𝑅𝑖,2
+

𝑇𝑤,𝑖𝑛−𝑇𝑖𝑛

𝑅𝑤,𝑖
+

𝑇𝑜𝑢𝑡−𝑇𝑖𝑛

𝑅𝑤𝑖𝑛
+ 𝑄𝑖 𝑡𝑒𝑟,𝑖 − 𝑄𝑎𝑐 + 𝑄𝑠𝑜𝑙𝑎𝑟,𝑖 (7) 

where, R and C represent the heat resistance and capacitance, which are free parameters and can be 

identified based on historical data using a data-driven method (i.e., genetic algorithm used in this study) 

[22]. T is the temperature. Subscripts i, out, w, in, ex, win and im denote indoor air, outdoor air, exterior 

wall, internal wall surface, external wall surface, window and internal mass, respectively. Qsolar,w and 

Qsolar,i are solar heat gains absorbed by external wall surface and indoor air. Qinter,i is internal heat gain. 

Qim,1 and Qim,2 are the radiation heat absorbed by nodes Cim,1 and Cim,2. Qac is the total cooling supply 

by chillers and active cold storage (removed heat, i.e., Qdem).  

The corresponding parameters in the building thermal model are determined based on Eqs.(8-12) 

[32]. Where, Isolar denotes global solar radiation. 𝛽, b and µ denote the radiative/convective split for 

heat gain, which are pre-determined and set as 0.5. α denotes the absorptance of surface of solar 

radiation and set as 0.8 in this study. SHGC denotes the solar heat gain coefficient, and set as 0.7 in 

this study.   

 𝑄𝑠𝑜𝑙𝑎𝑟,𝑤 = 𝑎𝐼𝑠𝑜𝑙𝑎𝑟 (8) 

 𝑄𝑠𝑜𝑙𝑎𝑟,𝑖 = 𝛽𝑖 ∙ 𝑆𝐻𝐺𝐶 ∙ 𝐼𝑠𝑜𝑙𝑎𝑟 (9) 

 𝑄𝑖𝑚,1 = 𝑄𝑖𝑚,2 = 𝑏 ∙ (𝑄𝑠𝑜𝑙𝑎𝑟,𝑖𝑚 + 𝑄𝑖 𝑡𝑒𝑟,𝑖𝑚) (10) 

 𝑄𝑠𝑜𝑙𝑎𝑟,𝑖𝑚 = 𝛽𝑖𝑚 ∙ 𝑆𝐻𝐺𝐶 ∙ 𝐼𝑠𝑜𝑙𝑎𝑟 (11) 

 𝑄𝑖 𝑡𝑒𝑟,𝑖𝑚 = µ ∙ 𝑄𝑖 𝑡𝑒𝑟 (12) 

It is worthy of note that the determination for corresponding parameters in the above two models 

(i.e., chiller power demand model (section 3.2.1) and dynamic building thermal model (3.2.2)) is 

simplified as follows: the outdoor temperature, solar radiation and internal gain can use the same values 

as those just before the DR event, while the coefficients including the radiative/convective split, 

absorptance of surface of solar radiation, solar heat gain coefficient and cop of chillers are set as 

constants. Such simplifications for the parameter identification of models are based on the special 
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situation/characteristic of fast DR events. Normally, the dynamic building thermal model and chiller 

power demand model are used to make one or more day(s) ahead prediction and hence the parameters 

of the models will be changed over the prediction time. But the fast DR events usually last for a short 

duration within about one or two hours. The parameters of the models are likely to be without obvious 

changes in such a short time period and therefore are set as constants. Meanwhile, the MPC approach 

proposed in this study can be self-corrected at every time step to modify the prediction results so as to 

improve the control accuracy. Overall, with ensuring the prediction accuracy, such simplifications can 

be beneficial to make the online optimal control problem transforming into a linear problem (i.e., the 

establishment of the linear state-space model), which is convex and hence solved with an efficient 

computational speed in real applications compared with non-linear problems.   

3.3 Establishment of state-space model for online MPC  

3.3.1 Model Linearization 

The system dynamic model for MPC is usually represented in the form of an impulse response 

model, a step response model, a transfer function model, or a state-space model. Considering the 

control problem of this study is multiple input multiple output (MIMO), the state-space model is 

selected to describe the system dynamics. Moreover, the state-space model can formulate a convex 

optimization problem that is easy to be solved. Therefore, the linearization of the model for MPC is 

conducted and then rewritten as a continuous-time state-space model to explicitly express the 

relationship between the inputs and outputs of the control system. The model linearization is to convert 

the dynamic building thermal model (i.e., Eqs.(3-7)) into a continuous-time state-space model, as 

shown in Eq.(13).  

 𝑑𝑥 𝑑𝑡⁄ = 𝑎 ∙ 𝑥 + 𝑏 ∙ 𝑢 + 𝑒 ∙ 𝑑 (13) 

where, the system state vector x = [ 𝑤,𝑒   𝑤,𝑖   𝑖𝑚,1  𝑖𝑚,2  𝑖 ]T. Note that not all the system state 

variables are measureable in the real application. Only the indoor air temperature can be measured 
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directly for the close-loop online control, while the other unmeasurable variables are optimally 

estimated by the Kalman filter [33, 34]. The control input vector 𝑢  = [𝑄𝑐ℎ𝑖𝑙𝑙𝑒𝑟  𝑄𝑠𝑡𝑜𝑟𝑎𝑔𝑒 ]T. The 

disturbance vector 𝑑  = [ 𝐼𝑠𝑜𝑙𝑎𝑟   𝑜 𝑡  𝑄𝑖 𝑡𝑒𝑟 ]T. The system matrix 𝑎 =

(
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𝐶𝑖𝑚,2𝑅𝑖,1

−1

𝐶𝑖𝑚,2𝑅𝑖,1
+

−1

𝐶𝑖𝑚,2𝑅𝑖,2

1

𝐶𝑖𝑚,2𝑅𝑖,2

0
1

𝐶𝑖𝑛𝑅𝑤,𝑖
0

1

𝐶𝑖𝑛𝑅𝑖,2

−1

𝐶𝑖𝑛𝑅𝑖,2
+

−1

𝐶𝑖𝑛𝑅𝑤,𝑖
+

−1

𝐶𝑖𝑛𝑅𝑤𝑖𝑛      )

 
 
 
 
 
 

5×5

 . The input matrix 𝑏 =

(

  
 

0 0
0 0
0 0
0 0
−1

𝐶𝑖𝑛

−1

𝐶𝑖𝑛)

  
 

5×2

. The disturbance matrix 𝑒 =

(

 
 
 
 
 

𝑎

𝐶𝑤,1

1

𝐶𝑤,1𝑅𝑤,𝑜
0

0 0 0
𝑏𝛽𝑖𝑚𝑆𝐻𝐺𝐶

𝐶𝑖𝑚,1
0

𝑏µ

𝐶𝑖𝑚,1

𝑏𝛽𝑖𝑚𝑆𝐻𝐺𝐶

𝐶𝑖𝑚,2
0

𝑏µ

𝐶𝑖𝑚,2

𝛽𝑖𝑆𝐻𝐺𝐶

𝐶𝑖𝑛

1

𝐶𝑖𝑛𝑅𝑤𝑖𝑛

1−µ

𝐶𝑖𝑛 )

 
 
 
 
 

5×3

.  

3.3.2 Model discretization 

Model discretization is to convert the above continuous-time state-space building thermal model 

into the discrete-time state-space model based on the sampling time, prior to being applied for the 

online MPC controller. Combining the continuous-time state-space building thermal model shown in 

Eq.(13) with the chiller power demand model, the discrete-time state-space model can be given as the 

form of Eqs.(14-15), which is used for the online MPC optimal control strategy to predict the system 

evolutions.  

 𝑋𝑘+1 = 𝐴𝑑 ∙ 𝑋𝑘 + 𝐵𝑑 ∙ 𝑢𝑘 + 𝐸𝑑 ∙ 𝑑𝑘 (14) 

 𝑦𝑘 = 𝐶𝑑 ∙ 𝑋𝑘 + 𝑒�̂� (15) 

where, the system state vector X = [𝑥𝑇 𝑃𝑐ℎ𝑖𝑙𝑙𝑒𝑟]T. The system matrix 𝐴𝑑 = [
𝑎𝑑 05×1
01×5 0

]. The input 

matrix 𝐵𝑑 = [
𝑏𝑑
𝑏’

], where b’ = [cop 0]. The disturbance matrix 𝐸𝑑 = [
𝑒𝑑
01×3

]. ad, bd, cd, and ed are the 

corresponding matrixes of the discrete-time state-space building thermal model. 𝑦𝑘 is the vector of 

prediction result including indoor air temperature and chiller power demand, i.e., [Tin Pchiller]
T. 𝑒�̂� is 
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the self-correction factor to modify the prediction result at every sampling time. Ad, Bd, Cd, and Ed are 

the corresponding state-space matrixes of the discrete-time state-space model that includes the building 

thermal model and chiller power demand model.  

3.3.3 Self-correction of models 

Exponential smoothing method is used to modify the prediction result in order to deal with the 

prediction error of the discrete-time state-space model. The first-order exponential smoothing method 

is selected in this study to modify the prediction results. The self-correction factor at (k+1)th time step 

(i.e., 𝑒𝑘+1̂ in Eq.(15)) is determined based on the prediction error at current time step (𝑒𝑘+1) and the 

self-correction factor at last time step (𝑒�̂�), as shown in Eq.(16). Where, 𝜃 is the weighting factor 

(0 < 𝜃 < 1). ek is the difference between the measured value and the predicted value at kth time step. 

𝑒�̂� is the self-correction factor at kth time step. The initial value of 𝑒�̂� (𝑘 = 1) is set to be zero at the 

start of the DR event.  

 𝑒𝑘+1̂ = 𝜃 ∗ 𝑒𝑘+1 + (1 − 𝜃) ∗ 𝑒�̂� (16) 

3.4 Formulation of the control problem  

The formulation of MPC always includes four parts: an objective function, constraints, system 

dynamics, and current states. The system dynamics and current states are illustrated in section 3.3. The 

objective of the MPC controller is to achieve a maximum and stable power reduction during a fast DR 

event. There are many studies conducted for chiller power demand baseline prediction and this is not 

the focus of this study. Hence, the baseline of chiller power demand in this study is simplified and 

assumed to be the same as that just before the DR event. At each time step, the objective of MPC 

controller is therefore to achieve a stable and minimum chiller power demand over the prediction 

horizon Np, as presented in the first and second parts of Eq.(17) respectively. Note that the prediction 

horizon of traditional MPC is usually a receding window with the fixed width. But, considering the 

fast DR event is a certain time period with a relatively short duration, the prediction horizon at each 
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sampling time (Np) in this study is shrunk over the entire DR event, as shown in Eq.(19). At each 

sampling time step, the prediction horizon (Np) refers to the time duration from the next time step (i.e., 

k+1) to the end of the DR event. This can effectively grasp the changes of states to be controlled during 

the rest of DR period. Therefore, the vector of prediction result at kth time step is 𝒚𝒌= [
𝑻𝒊𝒏
𝒌

𝑷𝒄𝒉𝒊𝒍𝒍𝒆𝒓
𝒌 ]= 

[
 𝑖 (𝑘 + 1|𝑘) ⋯  𝑖 (𝑘 + 𝑁𝑝|𝑘)

𝑃𝑐ℎ𝑖𝑙𝑙𝑒𝑟(𝑘 + 1|𝑘) … 𝑃𝑐ℎ𝑖𝑙𝑙𝑒𝑟(𝑘 + 𝑁𝑝|𝑘)
]. Here, the argument (𝑘 + 𝑁𝑝)|𝑘 indicates the prediction of 

the variables at (k+Np)th time step based on the measurements up to kth time step. Where, N is the 

maximum prediction horizon (i.e., that at the start of the DR event), which is determined by the time 

step (step) and time duration (D) of the fast DR event, as shown in Eq.(20). 𝑃𝑐ℎ𝑖𝑙𝑙𝑒𝑟̅̅ ̅̅ ̅̅ ̅̅  is the average 

value of optimized chiller power demand over the prediction horizon (Np) at kth time step. 𝜆 is a pre-

determined weighting factor.     

 min    𝐽 =
1

𝑁𝑝
[(𝑷𝒄𝒉𝒊𝒍𝒍𝒆𝒓

𝒌 − 𝑃𝑐ℎ𝑖𝑙𝑙𝑒𝑟̅̅ ̅̅ ̅̅ ̅̅ ) ∙ (𝑷𝒄𝒉𝒊𝒍𝒍𝒆𝒓
𝒌 − 𝑃𝑐ℎ𝑖𝑙𝑙𝑒𝑟̅̅ ̅̅ ̅̅ ̅̅ )𝑇 + 𝜆 ∙ 𝑷𝒄𝒉𝒊𝒍𝒍𝒆𝒓

𝒌 ∙ 𝑷𝒄𝒉𝒊𝒍𝒍𝒆𝒓
𝒌 𝑇

] (17) 

 𝑃𝑐ℎ𝑖𝑙𝑙𝑒𝑟̅̅ ̅̅ ̅̅ ̅̅ =
1

𝑁𝑝
∑ 𝑃𝑐ℎ𝑖𝑙𝑙𝑒𝑟(𝑡|𝑘)
𝑘+𝑁𝑝

𝑡=𝑘+1  (18) 

 𝑁𝑝 = 𝑁 − 𝑘 + 1 (19) 

 𝑁 = 𝐷/𝑠𝑡𝑒𝑝 (20) 

The constraints for the MPC controller are shown in Eqs.(21-23), including the constraints for 

indoor air temperature, active cold storage and chiller power demand. The indoor air temperature 

should be kept within a pre-determined acceptable range during the entire DR period, as shown in 

Eq.(21). Where, Tmin and Tmax are the lower and upper limits of acceptable indoor air temperature. The 

control variables of chiller cooling supply and cooling discharging rate of cold storage should be 

maintained within their corresponding capacities, as shown in Eq.(22). Where, Qchiller,min and Qchiller,max 

are minimum and maximum cooling supply of retained chillers. Qstorage,min and Qstorage,max are the 

minimum and maximum cooling discharging rate of cold storage. The vector of control variables at 

kth time step 𝒖𝒌= [
𝑸𝒄𝒉𝒊𝒍𝒍𝒆𝒓
𝒌

𝑸𝒔𝒕𝒐𝒓𝒂𝒈𝒆
𝒌 ]= [

𝑄𝑐ℎ𝑖𝑙𝑙𝑒𝑟(𝑘 + 1|𝑘) ⋯ 𝑄𝑐ℎ𝑖𝑙𝑙𝑒𝑟(𝑘 + 𝑁𝑝|𝑘)

𝑄𝑠𝑡𝑜𝑟𝑎𝑔𝑒(𝑘 + 1|𝑘) … 𝑄𝑠𝑡𝑜𝑟𝑎𝑔𝑒(𝑘 + 𝑁𝑝|𝑘)
]. Note that the control of 

active cold storage during the fast DR events is different with that of normal conditions. During the 
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fast DR events, it is assumed that no charging process is conducted and the cooling stored in the storage 

should be discharged completely due to this special period with very limited cooling supply, as shown 

in Eq.(23). Where, Qtotal is the total stored cooling in the cold storage just before the DR event. Qdis,k 

is the total cooling discharged up to kth time step. With the above objective function, inequality 

constraints and discrete-time state-space model, the MPC controller is built as a linear optimization 

problem, which is easy to be solved and hence convenient for online optimal control in real 

applications because of its high computational efficiency.  

  𝑚𝑖 ≤ 𝑻𝒊𝒏
𝒌 ≤  𝑚𝑎  (21) 

 [𝑄𝑐ℎ𝑖𝑙𝑙𝑒𝑟,𝑚𝑖 𝑄𝑠𝑡𝑜𝑟𝑎𝑔𝑒,𝑚𝑖 ]𝑇 ≤ 𝒖𝒌 ≤ [𝑄𝑐ℎ𝑖𝑙𝑙𝑒𝑟,𝑚𝑎 𝑄𝑠𝑡𝑜𝑟𝑎𝑔𝑒,𝑚𝑎 ]𝑇 (22) 

 95% ∙ (𝑄𝑡𝑜𝑡𝑎𝑙 − 𝑄𝑑𝑖𝑠,𝑘) ≤ ∑ 𝑄𝑠𝑡𝑜𝑟𝑎𝑔𝑒(𝑡|𝑘) ∙
𝑘+𝑁𝑝

𝑡=𝑘+1 𝑠𝑡𝑒𝑝 ≤ 𝑄𝑡𝑜𝑡𝑎𝑙 − 𝑄𝑑𝑖𝑠,𝑘 (23) 

4. Test platform 

In this study, a virtual test platform is built to test the proposed MPC for optimizing the operation 

of a central air-conditioning system integrated with an active cold storage during a fast DR event. The 

dynamic models are developed on TRNSYS [35]. The models used are validated by real data [36]. The 

TRNSYS multi-zone building model (type 56) is used to simulate the building thermal behavior. The 

detailed physical models, building envelop and major components (e.g. chillers [36], pumps [26], 

hydraulic network [37], air handling units [26], cold storage [23]) of a central air-conditioning system, 

are included in this dynamic platform. The central chiller plant simulated is a typical primary constant-

secondary variable chilled water system, which is modified based on the air-conditioning system of a 

super-high-rise building in Hong Kong, and its schematic is presented in Fig.1. The central chiller 

plant consists of six identical chillers with a rated capacity of 4080 kW. Each chiller is associated with 

a primary chilled water pump of constant speed (172.5 L/s). The parameters of R and C in the dynamic 

building thermal model are trained using genetic algorithm (GA) based on the historical data. (The 

average return temperature is used as the uniform indoor air temperature of the building. The time 
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interval of data for identification is 1min. The weather condition is determined by the data of typical 

meteorological year. The internal heat gain is determined by the on-site data [31].) The results are 

presented in Table 1. The PCM cold storage is equipped in the central air-conditioning system and the 

model used in this study is developed in ref. [23]. The PCM material E8 is selected due to its proper 

thermal dynamic properties. Its density, latent heat and unit storage capacity are 1469kg/m3, 140kJ/kg 

and 57kWh/m3, respectively. The cold capacity of the PCM storage is assigned with the value of 

5300kWh just before the DR event.  

Table 1 Parameters of dynamic building thermal model 

Parameter 
 𝑤,𝑜 

(m2K/W) 

 𝑤  

(m2K/W) 

 𝑤,𝑖  

(m2K/W) 

 𝑖,1 

(m2K/W) 

 𝑖,2 

(m2K/W) 

Value 0.0942 0.0892 0.0039 0.0024 0.0107 

Parameter 
 𝑤𝑖  

(m2K/W) 

𝐶𝑤,1 

(J/(m2K)) 

𝐶𝑤,2 

(J/(m2K)) 

𝐶𝑖𝑚,1 

(J/(m2K)) 

𝐶𝑖𝑚,2 

(J/(m2K)) 

Value 0.0105 9.229*108 9.997*108 8.811*107 9.725*107 

 The DR period is set as 2 hours between 14:00pm and 16:00pm. At the start of the DR event, 

two of four operating chillers are shut down and two chillers remain to operate accordingly. The 

outdoor weather data for the test is a typical summer day in Hong Kong, as shown in Fig.4. The original 

indoor air temperature set-point before the DR event is 24°C and the maximum acceptable indoor air 

temperature is 27°C. The optimization problem formulated in MPC controller is solved by the 

YALMIP optimization toolbox [38] with the Gurobi solver [39]. The proposed MPC optimizes and 

updates the set-points of chiller power demand and cooling discharging rate of the storage every 15min. 

The dynamic simulation time step is 1s. According to the sampling time, the determined values of 

matrix Ad, Bd, Ed, and Cd in the discrete-time state-space model for MPC are presented as follows:  

𝐴𝑑 =

(

 
 
 

9.998 × 10−1 1.093 × 10−5 0 0 0 0
1.009 × 10−5 9.989 × 10−1 0 0 6.948 × 10−7 0

0 0 9.958 × 10−1 4.191 × 10−3 0 0
0 0 3.796 × 10−3 9.955 × 10−1 2.571 × 10−6 0
0 5.789 × 10−1 0 2.084 × 10−1 9.403 × 10−7 0
0 0 0 0 0 0)

 
 
 

6×6
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𝐵𝑑 =

(

  
 

0 0
0 0
0 0
0 0

−2.230 × 10−3 −2.230 × 10−3

2.222 × 10−1 0 )

  
 

6×2

 

𝐸𝑑 =

(

 
 
 

7.800 × 10−7 1.034 × 10−5 0
0 0 0

1.788 × 10−6 0 2.555 × 10−6

2.293 × 10−6 0 3.276 × 10−6

7.808 × 10−4 2.119 × 10−1 1.115 × 10−3

0 0 0 )

 
 
 

6×3

 

𝐶𝑑 = (
0 0 0 0 1 0
0 0 0 0 0 1

) 

 

Fig.4 Outdoor temperature and solar radiation on the test day 

Three cases are conducted in order to test the control performance of the proposed MPC approach 

and also to validate the need/importance of the optimal control of active cold storage on the expected 

power reduction and the acceptable indoor temperature during a fast DR event. In the two reference 

cases, the storage discharges all the stored cooling with a given discharging rate instead of optimized 

values in the DR event. The detailed information of the three cases are as follows: 

o Reference case 1: the expected (i.e., the stable and minimum) chiller power demand control with 

constant cooling discharging rate of the active cold storage.  

o Reference case 2: the acceptable indoor air temperature control (i.e., maintain the indoor air 

temperature at the upper limit of acceptable values) with constant cooling discharging rate of the 
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active cold storage.      

o Optimized case using MPC: the MPC approach for the chiller power demand control and the cooling 

discharging rate control of the active cold storage.  

5. Results and discussion 

5.1 Validation of the dynamic building thermal model  

The dynamic building thermal model was validated based on the simulation data, and the 

comparison between the predicted and actual indoor air temperatures is shown in Fig.5. In order to 

quantify the deviation of the predicted data from the actual data, three indices, i.e., mean absolute error 

(MAE), mean absolute percentage error (MAPE) and root mean square error (RMSE), were used to 

evaluate the prediction performance and the results are listed in Table 2. Undoubtedly, the accuracy of 

dynamic building thermal model was important for the online control performance. But the proposed 

MPC with the characteristics of self-correction and rolling optimization could effectively benefit the 

prediction accuracy and improve the control performance.   

 

Fig.5 Comparison between the predicted and actual indoor air temperatures  

Table 2 Accuracy indices of the dynamic building thermal model 

 MAE (oC) MAPE (%) RMSE (oC) 

Indoor air temperature 0.24 0.96 0.27 
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5.2 Control performance using different control strategies during fast DR events  

The control performance of the central air-conditioning system during the fast DR event 

considered two aspects: the chiller power demand and indoor air temperature. A stable and minimum 

chiller power demand would be achieved and meanwhile the indoor air temperature would be 

maintained at its maximum acceptable value.   

Reference case 1 

Fig.6 presents the indoor air temperature and chiller power demand during the fast DR event in 

the reference case 1. In this case, the chiller power demand was controlled at a pre-determined set-

point and the cooling discharging rate of active cold storage was set to be constant during the fast DR 

event. In order to achieve a comparison with the optimized case using MPC, the set-point of chiller 

power demand was set as the average value of set-points optimized by the MPC during the DR event. 

Although the control objective of chiller power demand could be satisfied (minimum and stable), the 

indoor air temperature kept increasing during the entire DR period and the maximum value 

significantly exceeded the acceptable range (27oC). It would be better that less cooling was provided 

for the first hour of the DR event, while more cooling for the second hour. This could optimize the 

indoor environment control by flatting the indoor air temperature profile of the DR event and hence to 

reduce its maximum value.       

 

Fig.6 Indoor air temperature and chiller power demand during the fast DR event – reference case 1 
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Reference case 2 

Fig.7 presents the indoor air temperature and chiller power demand during the fast DR event in 

the reference case 2. In this case, the indoor air temperature was reset as 27oC, i.e., the maximum 

acceptable value, with the constant cooling discharging rate of the active cold storage during the fast 

DR event. The indoor air temperature was controlled at its maximum acceptable values in order to 

maximize the power demand reduction and hence minimize the chiller power demand. But the 

minimum and stable chiller power demand could not be obtained in this case to satisfy the requirements 

that the power grids expected. At the early stage of the DR event, the cooling discharging of building 

thermal mass caused by the indoor air temperature rise notably reduced the chiller power demand. As 

the cooling discharging of building thermal mass reduced, the chiller power demand increased and 

then almost followed the variation of building cooling demand. Meanwhile, due to the sudden change 

of central air-conditioning system (shutting down part of operating chillers directly), the indoor air 

temperature experienced a significant fluctuation (resulting in the indoor temperature beyond the 

acceptable range obviously) before reaching a new balance by PID control.  

According to the above two reference cases, it was worthy of note that the chiller power demand 

and indoor environment controls could not be achieved as the expected profiles simultaneously without 

an optimal control strategy during the fast DR event.       

 

Fig.7 Indoor air temperature and chiller power demand during the fast DR event – reference case 2 

0

1000

2000

3000

4000

5000

6000

20

22

24

26

28

30

C
h

il
le

r 
P

o
w

e
r 

D
e
m

a
n

d
 (

k
W

)

In
d

o
o

r 
A

ir
 T

e
m

p
e

ra
tu

re
(o

C
)

Time

Actual indoor air temperature Upper limit (temperature)

Lower limit (temperature) Actual chiller power demand

DR period



22 

Optimized case using MPC 

Fig.8 presents the optimized cooling discharging rate of active cold storage during the fast DR 

event. Just after shutting down part of operating chillers, the indoor air temperature would increase 

and therefore the cooling would be discharged by the building thermal mass. At the beginning of the 

fast DR event, the discharged cooling of cold storage was low, particularly for the first 15min, so as to 

take full advantage of the cooling discharged by the building thermal mass. This could save the cooling 

in the storage, and then was used for the later stage of the DR event when the indoor air temperature 

was likely to exceed the acceptable range. As the discharged cooling of building thermal mass was 

reduced, the cold storage would discharge more cooling to ensure the indoor air temperature within 

the acceptable range. After the cooling stored in the building thermal mass was completely discharged, 

the cooling demand was the main factor considered for optimizing the cooling discharging of active 

cold storage. During the DR event, the cooling stored in the storage was almost discharged at the end 

of the event (i.e., nearly 5300kWh) in order to minimize the chiller power demand.     

Fig.9 shows the optimized indoor air temperature profile when using the MPC approach to 

optimize the chiller power demand and the cooling discharging rate of active cold storage during the 

fast DR event. The indoor air temperature was not only maintained within the acceptable range (i.e., 

below 27oC) but also almost kept at a stable level, which could effectively minimize the maximum 

indoor air temperature during the fast DR event. Meanwhile, although the simplifications were 

conducted when establishing the models for MPC and also the prediction error existed in the real 

system operation, the indoor air temperature was nearly controlled as the expected profile. This was 

because of the feedback self-correction ability and receding optimization of proposed MPC approach, 

and also the feature of the fast DR event that the building use would not have a significant change 

within two hours.   

Fig.10 presents the optimized chiller power demand during the fast DR event using the MPC 

approach. The optimized set-points of chiller power demand during the DR event were almost kept at 
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a constant level and a slight adjustment occurred to cooperate with the control of cold storage to 

maintain the indoor air temperature stable and within the acceptable range. Fig.11 presents the chilled 

water flows through the by-pass line and the cold storage during the fast DR event using the MPC 

approach. By adjusting the chilled water flow through the cold storage, the actual cooling discharging 

rate of the storage could well follow its optimized set-point using the MPC approach (in Fig.8), which 

demonstrated the effectiveness of the storage load regulator. Moreover, by adjusting the chilled water 

flow through the by-pass line and therefore the flow in the secondary loop of the system, the actual 

chiller power demand could well follow its optimized set-point (in Fig.9), which demonstrated the 

effectiveness of the chiller load regulator.   

 

Fig.8 Optimized cooling discharging rate of active cold storage during the fast DR event – optimized 

case using MPC 
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Fig.9 Optimized indoor air temperature during the fast DR event – optimized case using MPC 

 

Fig.10 Optimized chiller power demand during the fast DR event – optimized case using MPC 

 

Fig.11 Chilled water flows through the storage and by-pass line during the fast DR event – optimized 

case using MPC 
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5.3 Control performance comparison of cases using different control strategies  

Table 3 presents the control performance on the indoor air temperature and the chiller power 

demand using different control strategies during the fast DR event. Generally, in the two reference 

cases, the indoor air temperature and chiller power demand could not be controlled simultaneously as 

expected. In the reference case 1, the chiller power demand was stable but the maximum indoor air 

temperature during the DR event (i.e., 27.6oC) significantly exceeded its acceptable limit. While in the 

reference case 2, the indoor air temperature was almost kept at the upper limit and the unsatisfied 

duration that the indoor air temperature exceeded the upper limit was reduced from 62min to 12min 

compared with the reference case 1. But the maximum value was not reduced in this case because a 

significant fluctuation occurred caused by the sudden change of system control (i.e., shutting down 

part of operating chillers directly). Moreover, the chiller power demand could not be kept at a stable 

level and the difference between the maximum and minimum chiller power demands during this DR 

event was nearly 1700kW. In contrast, using the proposed MPC approach, the maximum indoor air 

temperature was only 27.1oC and the chiller power demand was stable and fluctuated slightly within 

the range of 342kW. In addition, the unsatisfied duration that the indoor air temperature exceeded the 

upper limit was almost diminished because of the better control performance of MPC approach to deal 

with the sudden change of the system [40].    

Table 3 Comparison of the control performance among three cases during the fast DR event. 

 Indoor air temperature Chiller power demand 

 
Max  

(oC) 

Unsatisfied 

duration 

(min) 

Standard 

deviation  

(K) 

Max-min  

(kW) 

Standard  

deviation  

(kW) 

Reference case 1 27.6 62 0.67 656.8 103.8 

Reference case 2 27.6 12 0.33 1675.5 268.75 

MPC case 27.1 0.2 0.30 342.6 50.2 

*Max-min refers to the difference between the maximum and minimum chiller power demands during the fast DR event 
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6. Conclusions   

Shutting down part of operating chillers in a commercial building is an effective means to achieve 

an immediate power demand reduction responding to urgent requests of smart grids. The active thermal 

storage is necessary to be used for a further power reduction and meanwhile for ensuring an acceptable 

indoor environment when this proactive demand response (DR) method is adopted. In this study, an 

optimal control strategy using model predictive control (MPC) is developed to optimize the operation 

of active cold storages during fast DR events. The chiller power demand and the cooling discharging 

rate of storage are optimized at the same time to achieve a maximum and stable power demand 

reduction as well as to maintain the indoor air temperature within a pre-determined acceptable range. 

In addition, simplifications are made for the parameter identification of models used in the MPC 

considering the characteristics of fast DR events. A linear discrete-time state-space model is developed 

to make the proposed online optimal control strategy computationally efficient in practical applications.  

Test results show that the proposed optimal control strategy can effectively optimize the operation 

of the central air-conditioning system integrated with active cold storage, to achieve an expected power 

reduction for power grids and satisfy the indoor environment during the fast DR event. In the two 

reference cases without using the proposed optimal control strategy, the indoor air temperature and 

chiller power demand profiles could not be controlled as expected simultaneously during the fast DR 

event. Compared with the two reference cases, the MPC strategy significantly reduced the maximum 

indoor air temperature during the DR event, i.e., from 27.6oC to 27.1oC. The unsatisfied duration of 

indoor air temperature was almost diminished, only 0.2 minutes. Moreover, a stable and much more 

chiller power reduction was achieved. Furthermore, the model simplifications did not adversely affect 

the control performance due to the feedback self-correction and receding optimization of proposed 

MPC approach, which allows the applications simple and convenient.  

This study effectively addresses the online control issue of cold thermal storage during a fast DR 

event considering the requests of both the power grids and the indoor thermal comfort. The proposed 
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method can achieve online self-correction and hence present strong robustness facing the uncertainties 

of real conditions and the prediction errors of models. In this study, the indoor thermal comfort of 

buildings considers the uniform average return temperature. The different requirements of indoor 

thermal comfort among different zones/rooms in the building can be considered in the future studies.  
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