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Abstract: Bidirectional interaction between power grid and buildings is a key characteristic of smart 

grids. Achieving a win-win situation for a grid and buildings with such interactions remains a 

challenge. Game theory is a powerful tool for using strategic analysis to identify the best interactions 

between multiple players. Stackelberg game can effectively reflect the core status of grid and the 

auxiliary position of buildings in this interaction (particularly in demand response programs), but no 

study used this game to establish such interactions while simultaneously considering the multiple 

requirements of grid and buildings, particularly for the commercial sector. In this study, therefore, 

basic and enhanced interaction strategies between a grid and buildings are developed using the 

Stackelberg game based on their identified Nash equilibria. The grid optimizes the price to maximize 

its net profit and reduce demand fluctuation, and individual building optimizes the hourly power 

demand to minimize electricity bill and the effects of demand alternation from the baseline. In 

addition, the effects of building demand baseline uncertainty on the interaction are investigated and 

the enhanced robust interaction is proposed to deal with such uncertainty. Real site data of buildings 

on a campus in Hong Kong are used to validate the proposed interaction strategies. The results show 

that the proposed basic interaction increased net profit by 8% and reduced demand fluctuation by 

about 40% for the grid, with a savings in electricity bills of 2.5~8.3% for the buildings. Moreover, the 

proposed robust interaction effectively relieved the negative effects caused by prediction uncertainty.   
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1. Introduction 

The rapid growth of power demand and the greater integration of renewable energy generation, 

which depend heavily on weather conditions, impose enormous stress on the balance of power grids 

[1]. Facing the challenge of power imbalance, the smart grid is considered as a state-of-the-art 

technology offering better flexibility, reliability and security in grid operations [2,3]. Demand 

response (DR) management, a key characteristic of smart grids, is characterized as the end-users 

changing their power usage in response to changes in electricity prices over time. DR programs can 

go far beyond simply reducing the electricity bills of end-users and lowering costs of power 

generation. Such programs can provide reliability and security for the real-time operation of power 

grids [4-6].  

Buildings, which consume 73.6% of overall electricity in the United States [7] and over 90% in 

Hong Kong [8], should play an important role in DR programs by actively altering their load profiles 

during peak times. Demand shifting, which aims to take advantage of electricity rate differences via 

shifting on-peak loads to off-peak hours, is a commonly used means for demand response, particularly 

for buildings with central air-conditioning systems. The elastic power demand and automation 

systems in these kinds of buildings can benefit the implementation of demand response strategies [9, 

10]. Many studies have been conducted on building demand shifting towards specific electricity 

tariffs from the viewpoint of the demand side [11-15]. In fact, demand shifting conducted by buildings 

will lead to an alternation of total power usage on the demand side, which in turn influences the 

operating conditions and the dynamic pricing of smart grids. (Dynamic pricing, or real-time pricing, 

acts as an incentive mechanism to encourage buildings conducting power demand management, 

changing each period of the day and visible to users one day ahead or at least some hours ahead [16].) 

Hence, the bidirectional interaction between buildings and a smart grid via dynamic pricing has 

attracted many attentions recently.  

Among the studies for the grid-building interaction, game thematic approaches are commonly 

adopted due to the powerful and effective ability to capture the complex and strategic interactions 

between multiple players. Game theory is the study of the mathematical models of conflict and 

cooperation between intelligent and rational decision makers. It is a formal analytical and conceptual 

framework with a set of mathematical tools enabling the study of complex interactions among 

independent rational players [17, 18].  Ibars et al. [19] applied a congestion game to control the power 

demands of residential buildings and achieve energy savings by responding to the prices given by 

smart grids. Nwulu and Xia [20] optimized the incentives paid out to users over one day by using 

game theory to reduce fuel costs and power generation emissions. Mohsenian et al. [21] proposed a 

game-theoretic energy consumption schedule for residential buildings to minimize the electricity bills 

of end-users. Overall, these interaction strategies between smart grid and buildings are based on static 
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games, that is, the decisions are made simultaneously by the grid and buildings with both sides in an 

equal position. 

By contrast, for the grid-building interaction in a DR event, the primary objective is to improve 

the flexibility of power grids and hence keep the healthy operation of power grids. The building as a 

convenient source at the demand side conducts the power demand management to benefit the grid 

operations, while the grid gives economic incentives to encourage buildings participating in such 

interactions/DR programs. This process is actually a price-based DR program. In such DR events, the 

smart grid and buildings are not in an equal position, but the grid is in a core position and the 

buildings are in an ancillary position. The Stackelberg game is a hierarchical and dynamic game and 

considered as a good candidate to provide insight into such interaction between a power grid and 

buildings in a price-based DR program, effectively reflecting the core status of the grid and the 

ancillary position of the buildings. In the Stackelberg game, the grid acts first and then the buildings 

make decisions based on certain prices [18], which means that the power grid is the leader and the 

buildings are the followers whose reactions are based on the power grid’s decisions. Maharjan et al. 

[22] proposed an interaction strategy between the grid and buildings using the Stackelberg game to 

maximize the profit of the grid. Meng et al. [23] modeled electricity trading between the retailer and 

customers with the aim of minimizing the customer’s daily payments while maximizing the retailer’s 

profit. Yang et al. [24] proposed a game thematic model to optimize the time-of-use price of power 

grid considering the response of building users. Yu and Hong [25] established the interaction between 

a utility company and users as a Stackelberg game for optimizing the power generation and the power 

demands of users. Chai et al. [26] developed an interaction strategy between power grids and 

residential buildings by using a two-level game and demonstrated the existence of the Nash 

equilibrium.   

In fact, multiple requirements and objectives need to be considered and investigated for the grid 

(e.g., profit, demand fluctuation, peak load) and buildings (e.g., electricity bill, demand constraint, 

demand alternation) when establishing the interaction in DR events. Meanwhile, above studies for the 

interaction between the power grid and buildings are mainly from the viewpoint of supply side of 

power grids without considering detailed interests and conditions of the buildings, including: power 

demand constraints of buildings when conducting demand management; quantification of the benefits 

of demand side when establishing the interaction; baseline prediction uncertainty of building power 

demand (which may negatively influence the performance of developed interactions) and how to 

handle the negative effects on the interaction caused by the load prediction uncertainty.  

To address these aforementioned problems and challenges, this study therefore develops two 

interaction strategies between the smart grid and buildings using game thematic method. The main 

importance of this work is to effectively consider the multiple requirements of both the smart grid and 

buildings when establishing the grid-building interaction in a price-based DR event, particularly for 
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the interests of demand side. The main contributions of this work include: (1) Building demand 

shifting interacting with a power grid in a DR event is built as a Stackelberg game and the Nash 

equilibrium is identified. The established interaction considers multiple aspects for both the power 

grid and buildings (the grid’s net profit and demand fluctuation are taken into account. 

Simultaneously, the electricity bill, user dissatisfaction and mismatching cost caused by the power 

demand alternation are considered for the buildings, along with the daily constraints of building 

power demand); (2) The influence of baseline prediction uncertainty of building power demand on the 

Nash equilibrium is investigated. And an enhanced interaction strategy is developed for the 

identification of Nash equilibrium to address the negative effects caused by the uncertainty of baseline 

prediction of demand side; (3) Real site data of buildings on a university campus in Hong Kong are 

used to validate the win-win situation of the grid and buildings, and also to quantify the corresponding 

benefits in the two proposed interaction strategies. The potential benefits for the power grid and 

buildings in Hong Kong, if the proposed interactions are adopted, are also assessed.         

2. Structure and objective of proposed grid-building interaction 

2.1 Structure of grid-building interaction 

As increasing amount of renewable energy systems are being absorbed into smart grids, and their 

future mode of operation would be bidirectional to cope with the challenge of imbalance caused by 

the intermittent and uncontrollable characteristics of renewable energy systems. Meanwhile, future 

buildings, as a major power consumer on the demand side of a power grid [27], are expected to have 

‘grid-responsive features’; that is, they are expected to have features that help the power grid to 

relieve the pressure of operational problems. Fig. 1 presents the architecture of communication and 

interaction between the smart grid and grid-responsive buildings. The power grid collects power 

usage information from buildings and then optimizes electricity prices one day ahead or at least some 

hours ahead to achieve the expected level of power management, thus maximizing profit. Here, the 

buildings equipped with intelligent devices (i.e., smart meters), which can inform users as to when 

and how to consume power, change their usage behavior to obtain economic profits by responding to 

the price information given by the power grid. For commercial and industrial building sectors, the 

smart meter can be directly connected with building automation systems to realize their optimized 

usage of power. As the developments of intelligent devices, Internet communication technologies and 

renewable energy systems, to create the aforementioned win-win interactions for smart grids and 

buildings, and make the buildings grid-responsive will be the inevitable developing direction in the 

future.   
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Fig. 1 Structure of interaction strategy between the smart grid and grid-responsive buildings 

2.2 Interests of smart grid and buildings in the interaction 

Multiple requests and objectives for both the power grid and buildings are considered in the 

proposed interaction. The power grid aims at maximizing its net profit and simultaneously minimizing 

demand fluctuation by setting electricity prices (i.e., price-based demand response programs). 

Simultaneously, individual buildings engage in demand shifting in response to price information to 

minimize their electricity bills, while also lowering the level of sacrifices and the mismatching cost 

caused by their deviations from the original power usage profiles. The detailed requests and objectives 

considered for the power grid and buildings for the proposed interaction are as follows. 

Interests of power grid 

Profit refers to the net profit of the power grid obtained by selling the electricity to the buildings 

after removing the corresponding cost of power generation. At time slot k, the net profit of the power 

grid is determined by the electricity sold and its corresponding generation cost, as calculated by Eq. 

(1). 

 𝑃𝑟𝑜𝑓𝑖𝑡𝑘 = 𝑃𝑟𝑘 ∙ 𝑋𝑑
𝑘 − 𝑓(𝑋𝑑

𝑘) (1) 

 𝑓(𝑋𝑑
𝑘) = 𝑎 ∙ (𝑋𝑑

𝑘)2 + 𝑏 ∙ (𝑋𝑑
𝑘) + 𝑐     𝑎 > 0    𝑏, 𝑐 ≥ 0 (2) 

where Profitk is the net profit of the power grid at time slot k; Prk is the dynamic electricity price at 

time slot k; 𝑋𝑑
𝑘 is the total electricity purchased by buildings at time slot k;  𝑓(𝑋𝑑

𝑘) is the function to 

calculate the generation cost of 𝑋𝑑
𝑘  without considering the loss, as shown in Eq. (2) [28]; and a, b, c 

are the constant coefficients.   

Electricity demand fluctuation (Df) is defined to describe the deviation between the periodic 
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electricity demand (𝑋𝑑
𝑘) and the average (Xd,average) of the entire considered horizon, as shown in Eq. 

(3). This item indicates a cost that is borne by the power grid and is best maintained as low as possible 

to achieve a relatively flat pattern of electricity demand. Also, this can reduce the pressure of peak 

demand on power grid operations. Here, N is the total number of equal size time slots in a day and is 

set to be 24, that is, a day is divided into 24 time slots and the interaction strategy is conducted every 

1 hour accordingly in this study,         

 𝐷𝑓 =
1

𝑁
∑ √(𝑋𝑑

𝑘 − 𝑋𝑑,𝑎𝑣𝑒𝑟𝑎𝑔𝑒)2𝑁
𝑘=1   (3) 

 𝑋𝑑,𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =
1

𝑁
∑ 𝑋𝑑

𝑘𝑁
𝑘=1  (4) 

Interests of buildings 

User dissatisfaction is an index that represents the user’s dissatisfaction, or lack thereof, when 

the power demand is limited to a level deviating from the normal demand, using the mathematical 

expression when buying xk power at time slot k. A quadratic function is selected in this study, as 

shown in Eq. (5) [21, 29]. The value will increase as the power use deviating from the baseline. When 

the power demand is equal to the baseline, the dissatisfaction will reach to the minimum.      

 𝑆𝑖
𝑘(𝑥𝑖

𝑘) = −𝛼𝑖 ∙ 𝑤𝑖
𝑘 ∙ 𝑥𝑖

𝑘 +
𝛼𝑖

2
∙ (𝑥𝑖

𝑘)2 (5) 

where 𝑤𝑖
𝑘 is the original power demand (i.e., baseline) of building i at time slot k. 𝛼𝑖 is a positive pre-

determined constant representing the preference of building i to shift the power demand. The user’s 

dissatisfaction decreases as power demand approaches to the baseline.    

Mismatching cost is an index to represent the losses or costs (such as losses of energy storage) 

associated with demand shifting when facing the economic incentives given by the smart grid. 

Generally, this index ( 𝑀𝑖
𝑘 ) of building i is related to the deviation between the actual power 

consumption (𝑥𝑖
𝑘) and the original power demand (𝑤𝑖

𝑘) at k time slot, as shown in Eq. (6). Where ρ𝑖 is 

a pre-determined positive factor describing the cost level of building i to conduct the demand shifting. 

Generally, the increasing power demand alternation results in more mismatching costs for the 

building. 

 𝑀𝑖
𝑘 = ρ𝑖 ∙ (𝑥𝑖

𝑘−𝑤𝑖
𝑘)2 (6) 

Electricity bill is the payment when the building buys a certain amount of electricity, as 

illustrated by Eq. (7), where 𝐵𝑖
𝑘 is the payment of building i for consuming 𝑥𝑖

𝑘 amount of power at 

time slot k when the electricity price is Prk: 

 𝐵𝑖
𝑘 = 𝑃𝑟𝑘 ∙ 𝑥𝑖

𝑘 (7) 

3. Game theory based interaction for smart grid and buildings  
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In this section, the Stackelberg game, which belongs to the field of game theory, is adopted to 

develop a win-win interaction strategy between the smart grid and grid-responsive buildings.  

3.1 Establishment of grid-building interaction using Stackelberg game 

In this study, 1 power grid and n buildings are included in the proposed interaction strategy. In a 

game, each player (i.e., 1 power grid and n users) may partially or totally conflict with one another. 

They all want to maximize their own welfare by setting their strategies, that is, the grid changes its 

price while the buildings adjust their individual power demands. A game G consists of three 

components, that is, 𝐺 = {𝜎, 𝑆, 𝑈} . Each player 𝑖 ∈ 𝜎  selects its strategy 𝑠𝑖 ∈ 𝑆  to maximize its 

utility/welfare 𝑢𝑖 ∈ 𝑈. The solution of this game is Nash equilibrium, as defined in Eq. (8) [30]. The 

Nash equilibrium is a strategy profile s∗ such that no player i can gain more profit by unilaterally 

deviating from their strategy 𝑠𝑖
∗, assuming every other player 𝑗 ∈ 𝜎 follows their strategy 𝑠−𝑖

∗ . When 

the Nash equilibrium is reached, the power grid and individual buildings will not change their 

decisions because their individual benefits are the maximum.  

Definition: A strategy vector 𝑠∗ = {𝑠𝑖
∗, 𝑠−𝑖

∗ } is a Nash equilibrium if and only if ∀𝑖 ∈ 𝜎 and ∀𝑠𝑖 ∈ 𝑆𝑖, 

 𝑈(𝑠∗) ≥ 𝑈(𝑠𝑖 , 𝑠−𝑖
∗ ) (8) 

where si is the player i’s strategy and s-i represents all of the other players’ strategies.  

The three components of the proposed game for the grid-building interaction are presented as 

follows: the players are the power grid and the concerned buildings; the strategies conducted by the 

power grid and buildings are the dynamic electricity pricing and the building demand management 

respectively; the utility values of power grid and buildings are related to their corresponding 

concerned interests (as shown in Eq.(11-a) and Eq.(17-a) respectively). In the DR events, the grid sets 

the electricity price per unit and announces the price information to the buildings. Then the buildings 

respond to the given price information by changing their power demands (i.e., conducting demand 

management) to maximize their benefits. As the grid acts first and then the buildings make decisions 

based on the given prices, the nature of such an interaction in DR events fits into the Stackelberg 

game, which provides a paradigm for modeling such a scenario. In the Stackelberg game, the power 

grid is the leader and the buildings are the followers because their reactions are based on the decision 

of the power grid. The Nash equilibrium of the proposed game is the best selection set for the power 

grid and buildings (Pr*, X*); this satisfies Eqs. (9-a) and (9-b), where Ugrid and Ubuilding are the 

objective functions of the power grid and buildings, described in the next sections; Pr* is the optimal 

dynamic price of the day, that is, {𝑃𝑟𝑘}𝑘=1
𝑁 ; X* is the optimal power demand of buildings, that is, 

{𝑥1
𝑘, … , 𝑥𝑖

𝑘 , … , 𝑥𝑛
𝑘}𝑘=1

𝑁 ; and P, ∅  are the feasible zones of the dynamic price and power demand, 

respectively. 

 ∀𝑃𝑟 ∈ P, 𝑃𝑟 ≠ 𝑃𝑟∗   ∶    𝑈𝑔𝑟𝑖𝑑(𝑃𝑟∗, 𝑋) ≥ 𝑈𝑔𝑟𝑖𝑑(𝑃𝑟, 𝑋∗)   (9-a) 
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 ∀𝑋 ∈ ∅, 𝑋 ≠ 𝑋∗   ∶    𝑈𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔(𝑃𝑟, 𝑋∗) ≥ 𝑈𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔(𝑃𝑟∗, 𝑋) (9-b) 

The principle of backward induction is adopted to solve the proposed Stackelberg game in order 

to identify the optimal price of power grid and the optimal power demand of each building in a day, as 

illustrated in Eqs. (10-a) and (10-b). First, Ubuilding is maximized and X* is obtained responding to the 

price given by the power grid. Second, the determined optimal building power demand is plugged 

back into the Ugrid to obtain the optimal dynamic price, that is, Pr*. 

 (𝑃𝑟∗, 𝑋∗) = 𝑎𝑟𝑔 𝑚𝑎𝑥(𝑃𝑟)  𝑈𝑔𝑟𝑖𝑑 (10-a) 

 𝑋∗ = 𝑎𝑟𝑔 𝑚𝑎𝑥(𝑋)  𝑈𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 (10-b) 

3.2 Basic scheme for identification of Nash equilibrium   

Nash equilibrium of followers – Optimization of building demand management  

Each building, facing the given dynamic price, expects to reduce the utility sacrifice by adjusting 

the power demand at each time slot in a day. Three parts determine the utility sacrifice of a building, 

including the electricity bill, mismatching cost and user dissatisfaction. Note that the utility sacrifices 

of buildings are considered in the proposed interactions and hence the optimization problem of 

buildings are converted into minimization problems. Therefore, the utility sacrifice of a building i, 

which is minimized by optimizing the power demand {𝑥𝑖
𝑘}𝑘=1

𝑁 , is the sum of the electricity bill, 

mismatching cost and dissatisfaction, as shown in Eqs. (11-a) and (11-b). Where 𝛽𝑖
𝑘 is a weighting 

factor representing the sensitivity of building i to the electricity bill at k time slot. In this study, it is 

assumed that buildings can change the patterns of power demands in a day in response to the dynamic 

price, yet their total daily power demands are kept unchanged and equal to their original values, that is, 

Eq. (11-c), where 𝜗  is the set including n buildings. Note that the daily building power demand 

constraint is solved by introducing a Lagrange’s multiplier to illustrate the process how to cope with 

the constraints of buildings when establishing the interaction between the power grid and buildings.  

 𝑈𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔,𝑖 = ∑ (𝑀𝑖
𝑘𝑁

𝑘=1 + 𝑆𝑖
𝑘) + 𝛽𝑖

𝑘 ∙ 𝐵𝑖
𝑘 (11-a) 

 {𝑥𝑖
𝑘}𝑘=1

𝑁 = arg 𝑚𝑖𝑛 𝑈𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔,𝑖 (11-b) 

 s.t.  ∑ 𝑥𝑖
𝑘𝑁

𝑘=1 = ∑ 𝑤𝑖
𝑘𝑁

𝑘=1        ∀ 𝑖 ∈ 𝜗 (11-c) 

Lagrange’s multiplier λi is used for dealing with the constraint of building i, and the optimization 

problem of building i with constraint is converted into Eq. (12) by substituting the related indices of 

the building into the objective function (11-a). 

 𝐿𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔,𝑖 = ∑ (ρ𝑖 ∙ (𝑥𝑖
𝑘−𝑤𝑖

𝑘)2𝑁
𝑘=1 − (𝛼𝑖 ∙ 𝑤𝑖

𝑘 ∙ 𝑥𝑖
𝑘 −

𝛼𝑖

2
∙ (𝑥𝑖

𝑘)2))  

                                               +𝛽𝑖
𝑘 ∙ 𝑃𝑟𝑘 ∙ 𝑥𝑖

𝑘 + 𝜆𝑖 ∙ (∑ 𝑥𝑖
𝑘𝑁

𝑘=1 − ∑ 𝑤𝑖
𝑘𝑁

𝑘=1 )  (12) 

To obtain the optimal power demand of building i for demand shifting, the electricity price 
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({𝑃𝑟𝑘}𝑘=1
𝑁 ) is assumed to be known first based on the principle of backward induction for solving the 

Stackelberg game. Hence, the first-order optimality condition for the above minimization problem of 

the building in the proposed interaction strategy is ∇𝐿𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 = 0 , where 𝐿𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 =

{𝐿𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔,𝑖, ∀𝑖 ∈ 𝜗}, as calculated as Eq. (13). Here, 𝜏 represents the set including all of the time slots 

concerned in a day.  

         {

∂𝐿𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔,𝑖

∂𝑥𝑖
𝑘 = 0

∂𝐿𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔,𝑖

∂𝜆𝑖
= 0

         ∀ 𝑘 ∈ 𝜏, 𝑖 ∈ 𝜗                                          (13)    

  {

∂𝐿𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔,𝑖

∂𝑥𝑖
𝑘 = (2ρ𝑖 + 𝛼𝑖) ∙ 𝑥𝑖

𝑘 − (2ρ𝑖 + 𝛼𝑖) ∙ 𝑤𝑖
𝑘 + 𝛽𝑖

𝑘 ∙ 𝑃𝑟𝑘 + 𝜆𝑖 = 0

∂𝐿𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔,𝑖

∂𝜆𝑖
= ∑ 𝑥𝑖

𝑘𝑁
𝑘=1 − ∑ 𝑤𝑖

𝑘𝑁
𝑘=1 = 0              

     ∀ 𝑘 ∈ 𝜏, 𝑖 ∈ 𝜗     (14) 

The problem of Eq. (13) can be solved by Eq. (14), and the solutions of Eq. (14) are the values of 

{𝑥𝑖
𝑘}𝑘=1

𝑁  and 𝜆𝑖, as expressed by Eqs. (15-a) and (15-b).   

 ∀ 𝑘 ∈ 𝜏 ,   𝑖 ∈ 𝜗 

                                  𝑥𝑖
𝑘 = 𝑤𝑖

𝑘 −
1

2ρ𝑖+𝛼𝑖
∙ 𝛽𝑖

𝑘 ∙ 𝑃𝑟𝑘 +
1

𝑁∙(2ρ𝑖+𝛼𝑖)
∑ 𝛽𝑖

𝑘 ∙ 𝑃𝑟𝑘𝑁
𝑘=1                          (15-a)  

 𝜆𝑖 = −
1

𝑁
∑ 𝛽𝑖

𝑘 ∙ 𝑃𝑟𝑘𝑁
𝑘=1  (15-b) 

The secondary-order derivative of Ubuilding,i is calculated to obtain the Hessian matrix to 

demonstrate the existence of Nash equilibrium for the proposed game. In Eq. (16), the diagonal 

elements of the Hessian matrix are all positive (ρ𝑖 , 𝛼𝑖 are two positive factors) and the off-diagonal 

elements are all zero. As such, the Hessian matrix is positive definite, meaning that the optimal power 

demand ({𝑥𝑖
𝑘}𝑘=1

𝑁 , ∀𝑖 ∈ 𝜗) is the Nash equilibrium (X*) and can minimize the utility sacrifice of 

buildings effectively in the proposed interaction strategy. It means that the existence and uniqueness 

of Nash equilibrium of followers (i.e., buildings) are validated. 

 
∂2𝑈𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔,𝑖

∂𝑥𝑖
𝑘 ∂𝑥𝑖

𝑗 = {   
2ρ𝑖 + 𝛼𝑖        𝑤ℎ𝑒𝑛 𝑘 = 𝑗
        0             𝑤ℎ𝑒𝑛 𝑘 ≠ 𝑗

    ∀𝑘, 𝑗 ∈ 𝜏,   𝑖 ∈ 𝜗 (16) 

Nash equilibrium of leader – Optimization of grid dynamic pricing  

The power grid aims to maximize its net profit while simultaneously minimizing electricity 

demand fluctuation by using the proposed interaction strategy through optimizing the dynamic price 

{𝑃𝑟𝑘}𝑘=1
𝑁 . Therefore, the total utility of the power grid is described as Eq. (17-a), and Eq. (17-b) is 

then attained after substituting the related indices of the power grid into its objective function. Here, 𝛿 

is a weighting factor. 𝑋𝑑,𝑚𝑖𝑛
𝑘  and 𝑋𝑑,𝑚𝑎𝑥

𝑘  are the minimum and maximum capacities of power 

generation at k time slot, respectively. These two values are set to be ±30% compared with the 

corresponding original total power demands. 
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 𝑈𝑔𝑟𝑖𝑑 = ∑ 𝑃𝑟𝑜𝑓𝑖𝑡𝑘𝑁
𝑘=1 − 𝛿 ∙ 𝐷𝑓 (17-a) 

𝑈𝑔𝑟𝑖𝑑 = ∑ {𝑃𝑟𝑘 ∙ 𝑋𝑑
𝑘 − [𝑎 ∙ (𝑋𝑑

𝑘)2 + 𝑏 ∙ (𝑋𝑑
𝑘) + 𝑐]}𝑁

𝑘=1 − 𝛿 ∙
1

𝑁
∑ √(𝑋𝑑

𝑘 − 𝑋𝑑,𝑎𝑣𝑒𝑟𝑎𝑔𝑒)2𝑁
𝑘=1     (17-b) 

 𝑋𝑑
𝑘 = ∑ 𝑥𝑖

𝑘
𝑖∈𝜗  (17-c) 

 {𝑃𝑟𝑘}𝑘=1
𝑁 = arg 𝑚𝑎𝑥 𝑈𝑔𝑟𝑖𝑑     𝑃𝑟 ∈ P       (17-d) 

 s.t.   𝑋𝑑,𝑚𝑖𝑛
𝑘 ≤ 𝑋𝑑

𝑘 ≤ 𝑋𝑑,𝑚𝑎𝑥
𝑘  (17-e) 

According to the principle of backward induction, the dynamic price ({𝑃𝑟𝑘}𝑘=1
𝑁 ) of a day 

optimized for the power grid is based on the optimal power demands of all of the buildings (i.e., 𝑋∗ =

{{𝑥𝑖
𝑘}𝑘=1

𝑁 , ∀𝑖 ∈ 𝜗}). Therefore, substituting the 𝑋∗ into Eq. (17-c) can obtain the total power demand 

of all of the buildings at every time slot (i.e., {𝑋𝑑
𝑘}𝑘=1

𝑁 ). After substituting the set of these values into 

the utility function of the power grid, it can be found that the value of Pr is the only variable to be 

optimized, instead of the two variables (Pr and X), as shown in Eq. (18-a). Furthermore, the constraint 

(Eq. (17-e)) can be rewritten as Eq. (18-b). Eventually, such an optimization problem is converted into 

a single-objective optimization, subject to its constraint (closed interval), and the solution of Pr is the 

best decision for the power grid (i.e., Pr*). Hence, the existence of Nash equilibrium of the leader (i.e., 

power grid) is validated. The uniqueness of Nash equilibrium is not the key point for the power grid 

because the power grid can adopt one alternative set of optimized result (i.e., electricity price) in the 

interaction, which can maximize the benefit of power grid and meanwhile satisfy the corresponding 

constraints.     

                       𝑈𝑔𝑟𝑖𝑑 = ∑ {𝑃𝑟𝑘 ∙ 𝑋𝑑
𝑘(𝑃𝑟𝑘) − {𝑎 ∙ [𝑋𝑑

𝑘(𝑃𝑟𝑘)]2 + 𝑏 ∙ [𝑋𝑑
𝑘(𝑃𝑟𝑘)] + 𝑐]}𝑁

𝑘=1   

 −𝛿 ∙
1

𝑁
∑ √(𝑋𝑑

𝑘(𝑃𝑟𝑘) − 𝑋𝑑,𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑃𝑟𝑘))2𝑁
𝑘=1  (18-a) 

 s.t.   𝑋𝑑,𝑚𝑖𝑛
𝑘 (𝑃𝑟𝑘) ≤ 𝑋𝑑

𝑘 ≤ 𝑋𝑑,𝑚𝑎𝑥
𝑘 (𝑃𝑟𝑘) (18-b) 

3.3 Enhanced scheme for identification of Nash equilibrium considering demand baseline 

prediction uncertainty 

In the proposed interaction strategy illustrated in Section 3.1, the original power demands of 

buildings (i.e., baselines) affect the optimized dynamic electricity price and the optimized building 

power demands. In real cases, however, such baselines are predicted one day ahead, and this 

prediction cannot be truly accurate due to the various uncertainties or unexpected factors. The 

prediction errors result in the solutions of the proposed game deviating from the Nash equilibrium, 

leading to poor performance of the proposed interaction strategy. Therefore, an enhanced scheme, that 

is, a robust interaction strategy, is proposed that considers the uncertainty in the baseline prediction of 

building demand. Many advanced technologies and methods are available for the baseline prediction 



11 

of building power demand and for the quantification of uncertainty (error). In this study, the baseline 

prediction uncertainty of building power demand is assumed to follow a normal distribution to test the 

modification of the enhanced interaction strategy. The prediction uncertainty is represented by Eq. 

(19-a). The expectation of the baseline prediction uncertainty is used as the modification term to 

improve the robustness of the proposed interaction strategy, as shown in Eq. (19-b). It is worthy of 

note that such modification only changes the parameter values in the identification of Nash 

equilibrium without influencing the existence characteristic of Nash equilibrium. After revising the 

solutions of the Stackelberg game, the optimized power demands of buildings and dynamic price 

determined by the enhanced interaction strategy are shown in Eqs. (19-c) and (19-d), respectively, 

where subscribe rev denotes the cases after revision: 

 ∆𝑤𝑖
𝑘 =

𝑤𝑖,𝑎𝑐𝑡
𝑘 −𝑤𝑖,𝑝𝑟𝑒

𝑘

𝑤𝑖,𝑝𝑟𝑒
𝑘         ∆𝑤𝑖

𝑘~𝑁(𝜇, 𝜎2). (19-a) 

 𝑤𝑖,𝑟𝑒𝑣
𝑘 = 𝐸 ((1 + ∆𝑤𝑖

𝑘) ∙ 𝑤𝑖,𝑝𝑟𝑒
𝑘 ) = 𝑤𝑖,𝑝𝑟𝑒

𝑘 ∙ (1 + 𝐸(∆𝑤𝑖
𝑘)) (19-b) 

∀ 𝑘 ∈ 𝜏 ,   𝑖 ∈ 𝜗 

                                 𝑥𝑖,𝑟𝑒𝑣
𝑘 = 𝑤𝑖,𝑟𝑒𝑣

𝑘 −
1

2ρ𝑖+𝛼𝑖
∙ 𝛽𝑖

𝑘 ∙ 𝑃𝑟𝑘 +
1

𝑁∙(2ρ𝑖+𝛼𝑖)
∑ 𝛽𝑖

𝑘 ∙ 𝑃𝑟𝑘𝑁
𝑘=1    (19-c)  

 {𝑃𝑟𝑟𝑒𝑣
𝑘 }𝑘=1

𝑁 = arg 𝑚𝑎𝑥 𝑈𝑔𝑟𝑖𝑑(𝑋𝑑,𝑟𝑒𝑣
𝑘 , 𝑃𝑟) (19-d) 

 𝑋𝑑,𝑟𝑒𝑣
𝑘 = ∑ 𝑥𝑖,𝑟𝑒𝑣

𝑘
𝑖∈𝜗  (19-e) 

4. Validation test arrangement   

The proposed basic and enhanced interaction strategies are tested and validated by using the on-

site data of buildings on a university campus in Hong Kong, and the benefits for the power grid and 

buildings are estimated. Hong Kong is a modern city with high power demand density and a heavy 

use of air-conditioning systems. The main campus of The Hong Kong Polytechnic University, located 

in the center area of Kowloon with a total site area of 94,600 m2, is the district used in this study to 

interact with the power grid. The buildings on the campus are equipped with central air-conditioning 

systems as typical non-residential buildings. The layout of this campus is shown in Fig. 2. Twelve 

buildings, named ‘Phase 1’, ‘Phase 2’, etc., with different functions, such as classrooms, laboratories, 

offices and a library, are involved. Table 1 presents the floor areas and main functions of all of the 

buildings in this district. To support the routine university activities, the power demand is 

considerably high all year long due to the cooling requirements. The electricity bill of the university, 

as charged by the power grid, is divided into four accounts, and the buildings in each account are also 

presented in Table 1. These four accounts are regarded as four ‘followers’ interacting with the power 

grid in the Stackelberg game for this study. The data of July 3, 2017 (Monday) are selected to validate 

the basic interaction strategy and assess the resulting benefits of the grid and buildings. The data of 10 
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weekdays in two weeks (i.e., July 3~7, 2017 and July 10~14, 2017) are used to validate the enhanced 

interaction strategy and assess the corresponding benefits.   

 

Fig. 2 Campus map of The Hong Kong Polytechnic University 

Table 1 Floor areas and functions of buildings on the campus 

 Building Area (m2) Functions 

Account 1 

Phase 1 55,251 Classroom, office, library, laboratory, canteen, stadium 

Phase 2 24,419 Classroom, office, dental clinic 

Phase 3A 16,782 Clinic, lecture hall, office 

Phase 3B 23,400 Classroom, office, canteen, stadium 

Phase 4 19,330 Classroom, office, lecture hall, laboratory 

Phase 5 10,078 Classroom, office, laboratory 

Account 2 

Phase 6 12,307 Meeting room, classroom, office 

JCA 4,800 Auditorium 

PCD 10,196 Classroom, office 

Account 3 Phase 7 25,000 Classroom, office, laboratory, lecture hall 

Account 4 
Phase 8 44,000 Classroom, office, laboratory, lecture hall, canteen 

JCIT 15,318 Classroom, office, activity room, lecture hall 

 

In this study, dynamic price is determined one day ahead based on the proposed game theory-

based interactions. One day is divided into 24 equal size time slots, that is, one hour per time slot. The 

coefficients a, b, c for power generation cost are set to be 50, 10, and 0 yuan/MWh, respectively. The 

mean value and standard deviation of the baseline prediction uncertainty of building power demand 

are set to be 0.0019 and 0.1234, respectively [31]. To avoid the monopoly phenomenon caused by a 

Scale: 25 m

Phase 8

JCIT

Phase 7

Phase 4

Phase 3B

JCA

Phase 5

PCD

Phase 6

Phase 2

Phase 3A

Phase 1
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single power grid selling the electricity to the buildings, the time-of-use (TOU) electricity price 

implemented in Guandong province, China, which is the nearest province to Hong Kong, is 

referenced as the constraints of the optimized dynamic electricity price. The detailed information of 

the TOU price in Guandong province is presented in Table 2. At each time slot, +50% and -30% of 

the corresponding values in the TOU price (in Guandong province) are used as the upper and lower 

boundaries of the optimized dynamic price.  

Table 2 Time-of-use price implemented in Guandong province, China 

 On-peak Mid-peak Off-peak 

Time 
14:00~17:00 

19:00~22:00 

8:00~14:00 

17:00~19:00 

22:00~24:00  

0:00~8:00 

Price (yuan/kWh) 1.518 0.92 0.46 

5. Results and discussion 

5.1 Basic grid-building interaction 

This section presents the validation and test results of the proposed basic grid-building 

interaction strategy using the real data of a day, including the corresponding benefits of the power grid 

and buildings. The baseline prediction of building power demand in the basic grid-building interaction 

are assumed to be known and without uncertainties. The Nash equilibrium is identified by the basic 

scheme (the optimized power demand of buildings is determined by Eq.(15-a) and the optimized 

dynamic pricing of power grid is determined by Eq.(17-d)).   

Optimized pricing of power grid 

Fig. 3 shows the optimized dynamic electricity price on the test day using the basic grid-building 

interaction strategy. Here, the price at each time slot is at the Nash equilibrium of the proposed game 

theory-based strategy. The power grid stimulated the buildings to shift their power demand from on-

peak periods to mid-/off-peak periods by setting the price every hour. Compared with the TOU price 

in Guangdong province, the optimized price fluctuated within the reasonable range (i.e., pre-

determined upper/lower limit) fully considering the situations of both power grid and buildings. It is 

worthy of notice that in the proposed interaction, the power grid improves its net profit by optimizing 

the electricity price, not by blindly trying to increase the electricity price. Fig. 4 presents the 

optimized grid power generation for the campus on the test day using the basic interaction strategy, 

which is equal to the total power demand of the four campus buildings. Compared with the baseline of 

aggregated power demand of the campus, the peak power demand in the daytime was effectively 

reduced from 19.53 MW to 16.26 MW, resulting from the higher electricity prices in the on-peak 

period. A part of the power demand was shifted to the periods of the early morning and evening when 
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the price was only about half that of the peak time (i.e., around 0.65 yuan/kWh).   

Table 3 summarizes the benefits of the power grid on the test day using the basic grid-building 

interaction strategy. For the perspective of the power grid, six aspects of improvements (i.e., 

electricity bill, generation cost, net profit, demand fluctuation, peak load and total utility) were 

considered and presented after using the proposed interaction strategy. Using the basic grid-building 

interaction strategy, the net profit of the power grid increased from 78,565 to 85,325 yuan, a nearly 8% 

increase. The net profit increase of the grid was benefited by the reduction of generation cost. But the 

electricity bills collected from the buildings were reduced and hence used as economic incentives to 

stimulate the buildings to establish the proposed interaction to achieve a win-win situation to benefit 

both the power grid and buildings. Meanwhile, the demand fluctuation index improved (i.e., 

decreased) by approximately 40% and the peak load was also reduced by 16.7%. Overall, the utility of 

the power grid achieved an obvious improvement of 10.6%. Here, the reference price was the TOU 

price used in Guangdong province, and the baseline power demands were the actual measurements of 

building power demands on the campus without any TOU price adopted [32].          

 

Fig. 3 Optimized dynamic electricity price on the test day using the basic interaction strategy 

 

Fig. 4 Baseline and optimized grid power generation for the campus on the test day using the basic 
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interaction strategy 

Table 3 Benefits of the power grid on the test day using the basic interaction strategy 

  

Electricity 

bill    
Reduction 

Generation 

cost 
Reduction Net 

Profit 
Improvement 

(Yuan) (Yuan) (%) (Yuan) (Yuan) (%) (Yuan) (Yuan) (%) 

Grid 

 

Baseline 332,058   253,493  78,565   

Basic GT 319,578 12,480 3.8% 234,253 19,240 7.6% 85,325 6,760 7.9% 

 

Demand 

fluctuation 
Reduction Peak Load  Reduction  

Total 

utility 
Improvement  

-- (%) (MW) (MW) (%) -- (%) 

Baseline 5.02  19.53   73,545  

Basic GT 3.03 39.6% 16.26 3.27 16.7% 82,295 10.6% 

*Basic GT refers to the game theory based interaction strategy with the basic scheme for identification of Nash 

equilibrium.  

Optimized demand management of buildings 

Fig. 5 shows the optimized power demands of four campus accounts on the test day using the 

basic interaction strategy. The power demand of each building at each hour was at the Nash 

equilibrium in the proposed game theory-based approach. In general, the building power demand was 

inversely proportional to the dynamic price given by the power grid. The buildings shifted their 

demands from the higher to lower price periods to reduce their electricity bills. Fig. 6 presents the 

electricity bills of the four campus accounts with and without the use of the basic interaction strategy. 

When the basic interaction strategy was used, the bills during the higher price periods were clearly 

reduced, while there were slight increases during the lower price periods as more power was 

consumed. As a result, the daily bills of the test day were reduced when demand shifting was 

conducted in the buildings.   

Table 4 presents the benefits of four campus accounts on the test day when the basic interaction 

strategy was used. After optimizing the power demands of buildings responding to the given dynamic 

price, the daily electricity bills of the four accounts were reduced by 2.5%, 8.3%, 3.4% and 5.4%, 

respectively. Moreover, the overall utility sacrifices of the four accounts, including user 

dissatisfaction, mismatching cost and electricity cost, were reduced by 1.2%, 5.7%, 1.8% and 2.5%, 

respectively.  

According to the comprehensive results of the power grid and the buildings, it is worthy of notice 

that the proposed interaction strategy benefits to both the supply and demand sides of a power grid. 

Adopting this interaction, the more benefit achieved at one player is not built at the expense of the 
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losses of the other players. Therefore, the proposed grid-building interaction strategy is a win-win 

strategy benefiting every player involved (i.e., grid and buildings).  

 

Fig. 5 Optimized demand profiles of four campus accounts on the test day using the basic interaction 

strategy 

 

Fig. 6 Optimized electricity bills of four campus accounts on the test day using the basic interaction 

strategy 

Table 4 Benefits of four campus accounts on the test day using the basic interaction strategy 
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Utility 

sacrifice  

Saving 

percentage 

Electricity bill 

(Yuan) 

Saving 

(Yuan) 

Saving 

percentage 

Account 1 

Baseline 97,184  192,928   

Basic GT 96,024 1.2% 188,217 4,711 2.5% 

Account 2 

Baseline 9,325  38,012   

Basic GT 9,096 5.7% 34,842 3,170 8.3% 

Account 3 

Baseline 4,366  41,482   

Basic GT 4,286 1.8% 40,089 1,393 3.4% 

Account 4 

Baseline 15,203  59,636   

Basic GT 14,822 2.5% 56,430 3,206 5.4% 

 

5.2 Enhanced grid-building interaction 

In this section, the data of 10 workdays in two weeks were selected to analyze the enhanced 

interaction strategy when the building power demand baseline prediction was not completely accurate 

due to the uncertainty. The effect of building power demand baseline uncertainty on the proposed 

basic interaction strategy was investigated and the robust interaction strategy was tested and validated. 

The Nash equilibrium is identified by the enhanced scheme (the optimized power demand of 

buildings is determined by Eq.(19-c) and the optimized dynamic pricing of power grid is determined 

by Eq.(19-d)).    

Optimized pricing of power grid 

Fig. 7 presents the dynamic electricity prices on the 10 workdays using the basic and enhanced 

interaction strategies under uncertainty. The dynamic price at each time slot in different interaction 

strategies were at the individual Nash equilibrium of the proposed game theory-based approaches. 

The prediction uncertainty of building demand baseline led to the optimized dynamic electricity price 

deviating from the Nash equilibrium. Undoubtedly, this may be seen as having diminished the 

effectiveness of the proposed basic interaction strategy and hence having significantly reduced the 

benefits of the power grid and buildings, if such uncertainty had not been properly considered and 

addressed. Fig. 8 shows the optimized total power demand of the campus responding to the dynamic 

price using different interaction strategies. Although the aggregated power demand could still be 

shifted from on-peak periods to mid-/off-peak periods using the two proposed interaction strategies, in 

comparison with the baseline, the enhanced interaction strategy could achieve a notably higher 

performance for both the power grid and buildings (as shown in Table 5 and Table 6).  
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Fig. 7 Optimized dynamic electricity price under uncertainty using different interaction strategies 

 

Fig. 8 Baseline and optimized grid power generation for the campus under uncertainty using different 

interaction strategies 

Table 5 presents the averaged benefits per day of the power grid on the ten test days using 

different interaction strategies. Six aspects of the benefits of the power grid (i.e., electricity bill, 

generation cost, net profit, demand fluctuation, peak load and total utility) were presented and 

compared using different interaction strategies. Overall, the benefits of the power grid increased if the 

interaction was established and dynamic price was implemented, although the uncertainty and 

inaccuracy were not addressed. The baseline uncertainty of building power demand led to a reduction 

in the net profit improvement of the power grid from 7,091 yuan to 4,503 yuan, more than a 3% 

decrease, when the interaction was established. Moreover, the uncertainty resulted in a significant 

fluctuation of aggregated power demand and hence the peak load increased obviously. Under the 

enhanced robust interaction strategy, all the six aspects of the benefits considered for the power grid 

were improved notably (e.g., net profit was further improved by about 2%) under the uncertainty 

condition, compared with the results using the basic interaction scheme. But the benefits were still 

reduced compared with the case without any uncertainty (i.e., basic GT (no uncertainty) shown in 

Table 5 and Table 6) because the uncertainty existed on the demand side of the power grid would lead 

to the optimized results deviating from the real Nash equilibrium.   

Table 5 Averaged benefits of the grid on the ten test days using different interaction strategies 
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bill    cost Profit 

(Yuan) (Yuan) (%) (Yuan) (Yuan) (%) (Yuan) (Yuan) (%) 

Grid 

 

Baseline 336,495   256,170  80,325   

Basic GT                

(no uncertainty) 
323,156 13,339 4.0% 235,740 20,430 8.0% 87,416 7,091 8.8% 

Basic GT 

(uncertainty) 
328,051 8,444 2.5% 243,223 12,947 5.1% 84,828 4,503 5.6% 

Enhanced GT 325,380 11,115 3.3% 238,790 17,380 6.8% 86,590 6,265 7.8% 

 
Demand 

fluctuation 
Reduction Peak Load Reduction 

Total 

utility 
Improvement 

 -- (%) (MW) (MW)  (%) -- (%) 

Baseline 4.97  19.09   75,355  

Basic GT                

(no uncertainty) 
3.09 37.8% 16.01 3.08 16.1% 84,326 11.9% 

Basic GT 

(uncertainty) 
3.47 30.2% 17.51 1.58 8.3% 81,358 7.9% 

Enhanced GT 3.23 35.1% 16.61 2.48 13.0% 83,360 10.6% 

*Enhanced GT refers to the game theory based interaction strategy with the enhanced scheme for identification 

of Nash equilibrium; no uncertainty refers to the condition with completely accurate baseline prediction of 

building demand; uncertainty refers to the condition that baseline prediction of building demand is not 

completely accurate and with uncertainty. 

Optimized demand management of buildings 

Fig. 9 shows the optimized power demand profiles associated with the four campus accounts on 

the 10 test days with and without using the enhanced robust interaction strategy. The power demand 

of each building at every hour corresponded to the Nash equilibrium of the proposed strategy, which 

was based on game theory. In general, demand shifting could be conducted when the dynamic price 

was given by the power grid, but the prediction uncertainty of the baseline would lead to the building 

optimal power demand deviating from the real Nash equilibrium. The enhanced robust interaction 

strategy could revise/modify the building optimal power demand to effectively cope with the 

uncertainty, and a notable difference was observed compared with the results which did not properly 

address such uncertainty. As a result, the power demands of the four accounts, optimized by different 

interaction strategies, resulted in different electricity bills, as shown in Fig. 10.  

A detailed comparison of the averaged benefits per day of the four campus accounts on the ten 

test days using different interaction strategies is shown in Table 6. Undoubtedly, the best results were 

achieved when the baseline was accurate and no uncertainty existed. When the building power 

demand baseline was uncertain, the savings of the electricity bill and the improvement of utility 

sacrifice were both obviously reduced but still better than those in the baseline case of no interaction 

established between the power grid and buildings. To some extent, the robust interaction strategy 

compensated for the losses resulting from uncertainty because of the adjustments and modifications 
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considered in the enhanced interaction strategy.   

 

Fig. 9 Optimized demand profiles of four campus accounts under uncertainty using different 

interaction strategies 

 

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

3/7/2017 4/7/2017 5/7/2017 6/7/2017 7/7/2017 10/7/2017 11/7/2017 12/7/2017 13/7/2017 14/7/2017

P
o

w
e
r 

D
e
m

a
n

d
 (

k
W

)

Date

Baseline Basic scheme under uncertainty Enhanced scheme under uncertainty

0

500

1,000

1,500

2,000

2,500

3,000

3,500

3/7/2017 4/7/2017 5/7/2017 6/7/2017 7/7/2017 10/7/2017 11/7/2017 12/7/2017 13/7/2017 14/7/2017

P
o

w
e
r 

D
e
m

a
n

d
 (

k
W

)

Date

Baseline Basic scheme under uncertainty Enhanced scheme under uncertainty

800

1,200

1,600

2,000

2,400

2,800

3/7/2017 4/7/2017 5/7/2017 6/7/2017 7/7/2017 10/7/2017 11/7/2017 12/7/2017 13/7/2017 14/7/2017

P
o

w
e
r 

D
e
m

a
n

d
 (

k
W

)

Date

Baseline Basic scheme under uncertainty Enhanced scheme under uncertainty

0

1,000

2,000

3,000

4,000

5,000

3/7/2017 4/7/2017 5/7/2017 6/7/2017 7/7/2017 10/7/2017 11/7/2017 12/7/2017 13/7/2017 14/7/2017

P
o

w
e
r 

D
e
m

a
n

d
 (

k
W

)

Date

Baseline Basic scheme under uncertainty Enhanced scheme under uncertainty

Account 1

Account 2

Account 3

Account 4

2

4

6

8

10

12

14

16

3/7/2017 4/7/2017 5/7/2017 6/7/2017 7/7/2017 10/7/2017 11/7/2017 12/7/2017 13/7/2017 14/7/2017

P
o
w

e
r 

D
e
m

a
n

d
 (

M
W

)

Date

Baseline Basic scheme under uncertainty Enhanced scheme under uncertainty

2

4

6

8

10

12

14

16

3/7/2017 4/7/2017 5/7/2017 6/7/2017 7/7/2017 10/7/2017 11/7/2017 12/7/2017 13/7/2017 14/7/2017

P
o
w

e
r 

D
e
m

a
n

d
 (

M
W

)

Date

Baseline Basic scheme under uncertainty Enhanced scheme under uncertainty

2

4

6

8

10

12

14

16

3/7/2017 4/7/2017 5/7/2017 6/7/2017 7/7/2017 10/7/2017 11/7/2017 12/7/2017 13/7/2017 14/7/2017

P
o
w

e
r 

D
e
m

a
n

d
 (

M
W

)

Date

Baseline Basic scheme under uncertainty Enhanced scheme under uncertainty

2

4

6

8

10

12

14

16

3/7/2017 4/7/2017 5/7/2017 6/7/2017 7/7/2017 10/7/2017 11/7/2017 12/7/2017 13/7/2017 14/7/2017

P
o
w

e
r 

D
e
m

a
n

d
 (

M
W

)

Date

Baseline Basic scheme under uncertainty Enhanced scheme under uncertainty



21 

 

Fig. 10 Optimized electricity bills of four campus accounts under uncertainty using different 

interaction strategies 
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Table 6 Averaged benefits of four campus accounts on the ten test days using different interaction 

strategies 

  

Utility 

sacrifice 

(Unit) 

Saving 

percentage 

Electricity bill 

(Yuan) 

Saving 

(Yuan) 

Saving 

percentage 

Account 1 

Baseline 98,347  195,750   

Basic GT                 

(no uncertainty)  97,023 1.3% 190,493 5,257 2.7% 

Basic GT 

(uncertainty) 97,843 0.5% 192,587 3,163 1.6% 

Enhanced GT 97,409 1.0% 191,631 4,119 2.1% 

Account 2 

Baseline 9,518  38,900   

Basic GT                 

(no uncertainty) 9,078 4.6% 35,548 3,352 8.6% 

Basic GT 

(uncertainty) 9,342 1.8% 36,841 2,059 5.3% 

Enhanced GT 9,156 3.8% 36,117 2,783 7.1% 

Account 3 

Baseline 4,381  41,782   

Basic GT                 

(no uncertainty) 
4,288 2.1% 40,136 1,646 3.9% 

Basic GT 

(uncertainty) 4,338 1.0% 40,545 1,237 3.0% 

Enhanced GT 4,319 1.4% 40,343 1,439 3.4% 

Account 4 

Baseline 15,268  60,063   

Basic GT                

 (no uncertainty) 
14,778 3.2% 56,979 3,084 5.1% 

Basic GT 

(uncertainty) 15,129 0.9% 58,078 1,985 3.3% 

Enhanced GT 14,980 1.9% 57,289 2,774 4.6% 

6. Conclusions 

This paper presents two game theory based interaction strategies to build a win-win interaction 

between the power grid and buildings. The interaction is built as a Stackelberg game, which reflects 

the core position of the power grid and the auxiliary position of buildings in the demand response (DR) 

programs, considering the multiple requirements of both smart grid and buildings. The experience and 

results of this study show that the proposed basic game theory based interaction strategy can 

effectively improve six aspects on the supply side (i.e., power grid), such as net profit, demand 

fluctuation, peak load, etc., by optimizing the dynamic price. Simultaneously, the utility sacrifice of 
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individual buildings (including dissatisfaction, the cost of demand mismatching and electricity bills) 

can be reduced by conducting demand shifting in response to the optimized dynamic price. Moreover, 

the enhanced game theory based interaction strategy can further effectively relieve the negative 

effects of the demand baseline prediction uncertainty in the operation of the interaction strategy. The 

performances of the proposed basic and enhanced interaction strategies were tested and validated 

based on the real site data of buildings on a university campus in Hong Kong. More detailed 

conclusions on the performance of the strategies can be drawn as follows. 

o According to the results of case study, for the supply side (i.e., power grid), the basic game 

theory-based strategy achieved an 8% net profit increase (i.e., from 78,565 to 85,325 yuan). The 

power demand fluctuation was also effectively reduced by nearly 40% and the peak demand was 

also decreased by 16%.  

o For the demand side, the basic game theory-based strategy achieved 2.5%, 8.3%, 3.4% and 5.4% 

of savings for the electricity bills of the four campus accounts, respectively, while it achieved 

utility sacrifice reductions of 1.2%, 5.7%, 1.8% and 2.5% for the buildings associated with those 

four accounts, respectively.  

o The uncertainty in the baseline prediction of building demand would significantly reduce the 

benefits of both the power grid and buildings given by the proposed basic interaction strategy. 

The total utility of the power grid was reduced from 11.9% to 7.9%, while the improvements of 

building utility sacrifices were reduced from 1.3%, 4.6%, 2.1% and 3.2% to 0.5%, 1.8%, 1.0% 

and 0.9% for the buildings associated with the four accounts, respectively. 

o The proposed enhanced interaction strategy could effectively reduce the negative effects of the 

uncertainty existing in the demand baseline prediction and therefore improve the benefits of the 

power grid and buildings. The total utility of the power grid was increased from 7.9% to 10.6%, 

while the improvements of building utility sacrifices were increased from 0.5%, 1.8%, 1.0% and 

0.9%, to 1.0%, 3.8%, 1.4% and 1.9% for buildings associated to the four accounts, respectively. 

This work establishes the grid-building interaction using the game theoretic method. In the future 

work, the adaptive control strategy (e.g., model predictive control) can cooperate with the proposed 

interaction strategy to achieve the real-time optimization of dynamic pricing and building power 

demand management rather than a day-ahead optimization to improve the interaction strategy 

flexibility and robustness. Meanwhile, for the interests of demand side, on-site survey (e.g., 

questionnaire) would be conducted to investigate the interests of users at the demand side and also to 

determine the accurate utility profiles of power use.        
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