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Abstract — This paper addresses a full-wave PEEC model of 

wire structures above a lossy ground for lightning transient 

analysis.  The PEEC model is formulated with dyadic Green’s 

functions. An equivalent circuit is derived for the first time by 

including correction terms arising from the lossy ground. Circuit 

parameters are expressed using Sommerfeld integrals, which can 

be evaluated numerically and be presented with lookup tables. 

The low-frequency model of the lossy ground is derived, and is 

depicted using the the mirror image of source elements, similar to 

the case of a perfect ground. The comparison of circuit parameters 

calculated with this model and the Sommerfeld integrals is made. 

The proposed method is validated numerically with the numerical 

computation code (NEC2) in the frequency domain, and the 

FDTD method in the time domain. Good agreements are observed. 

The proposed method is then applied to analyze lightning 

transients in a wire structure over the lossy ground. It is concluded 

that the lossy ground can be substituted with the low-frequency 

model for transient analysis.  The computational burden in the 

time-domain simulation can be significantly relieved.  

Keywords — lightning, transient, PEEC, lossy ground, Green’s 

function  

1. INTRODUCTION

Lightning transients in multi-conductor systems are a long-

standing issue. Such conductors can be found in electric power 

systems, communication systems, electrified railway as well as 

buildings. They may run in an arbitrary direction, and are inter-

connected to form a three-dimensional wire structure over a 

lossy ground. When a system is struck by lightning, a lightning 

current will be generated in the structure. For effective 

protection against lightning, it would be necessary to have 

appropriate procedures for modeling and evaluation of 

lightning transients in the structure. 

Transient analysis in transmission lines has been extensively 

addressed in the literature [1]. These lines are modeled with 

distributed circuits. Line parameters of these circuits are 

determined by geometries of the transmission lines and 

parameters of the lossy ground. The effect of finite ground 

parameters has been well addressed, and various formulas were 

presented and summarized in [2]. In an indirect lightning strike, 

lightning transients in a transmission line are generated by 

electromagnetic coupling. The formulations of induced 

voltages in a horizontal line over the lossy ground have been 

addressed as well [3-8]. These approaches have been widely 

used in addressing lightning transients in the overhead lines. 

However, they are difficult to apply for a set of arbitrarily-

orientated short conductors over the lossy ground.  

The partial element equivalent circuit (PEEC) method is the 

one for modeling 3D interconnected thin-wire structures [9-10]. 

It is derived from a mixed potential integral equation, and 

transforms an electromagnetic problem into the circuit domain 

[11-13]. Recently this method has been applied to address both 

transient current and voltage in a variety of structures with 

arbitrarily-orientated lines [14-20] and others [21-24]. In many 

cases a perfectly conducting ground or the complex plane 

method was adopted to derive circuit parameters [14-15,25]. In 

[26] a full-wave PEEC formulation using Green’s functions

was presented for a layered dielectric structure with perfect

ground slabs at its two ends. These studies have made

significant contributions to the development of PEEC theory

and its applications. As the effect of the lossy ground was not

taken into account appropriately, a significant error could yield.

It is noted in [27] that a PEEC model of vertical lines over a 

lossy ground was derived using Green’s functions. This paper 

presents a full-wave PEEC formulation for arbitrary-orientated 

conductors over a lossy ground for lightning transient analysis. 

Section II describes the detail of the proposed PEEC 

formulation. The effect of a lossy ground is modeled using 

dyadic Green’s functions. An equivalent circuit is presented by 

taking into account correction terms arising from the presence 

of the lossy ground. In Section III, general expressions of 

circuit parameters are presented using Sommerfeld integrals, 

which can be evaluated numerically. Closed-formulas of circuit 

parameters for two simple ground models are derived. Circuit 

parameters of sample wires over the lossy ground are evaluated, 

and comparisons with the low-frequency model of the lossy 

ground are made in this section. Section IV presents the 

comparison of the current responses calculated with the 

proposed method and numerical computation code (NEC2) 

[28]. Comparison with the finite-difference and finite-element 

method (FDTD) in the time domain is presented as well. Finally, 

in Section V, the proposed method is applied to evaluate 

lightning transients in a wire structure over the lossy ground. 

The results calculated with simple ground models are also 

presented for comparison. 

II. FULL-WAVE PEEC FORMULATION

Auxiliary potentials are often used to simplify the 

mathematical analysis of Maxwell’s equations. Those are the 

magnetic vector potential A and the electric scalar potential . 

They satisfy the following equation at point r on the conductor 

surface [29], 
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( ) ( ) ( )r j r r  E A  (1) 

where E is the electric field on the conductor surface, and  is 

the angular frequency. 

Assume there is a layered structure of air (0,0 and 0) 

and isotropic lossy ground (1,1 and 1), as shown in Fig. 1.  

For conductors situated in air, both potentials A and 𝜙 can be 

expressed using the Green’s functions [30], as follows: 
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 

   



 

A G l

l
 (2) 

where both 𝐼(𝑟′) and 𝜏(𝑟′) are the conductor current and line 

charge density at 𝑟′  on the source conductor. 𝑮̿𝐴  is a dyadic 

Green’s function for vector potential A, and has different 

components for current dipoles in three orthogonal directions. 

It is expressed as, 

ˆˆ ˆˆ ˆ ˆˆˆ ˆ ˆ

ˆ̂ ˆˆˆ ˆ= 

A xx yy zz zx zy

tt zz zt
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G tt G zz G zt

    

 

G
 (3) 

where 𝑡̂ is the unit vector of  a current dipole projected on the 

xy plane or the ground surface, and 𝐺𝑡𝑡 = 𝐺𝑥𝑥 = 𝐺𝑦𝑦 . In (2) 𝐾𝜙  

is a scalar Green’s function for electric potential. Note in [30] 

that a unique scalar Green’s function does not exist for a current 

dipole orientated in the stratified media. A correction term 𝐶𝜙 

arising from the z component of the current dipole is introduced 

so that the Lorentz’s gauge, i.e.,  ∙ 𝑨(𝑟) = −𝑗𝜔𝜇0𝜖0𝜙(𝑟), is 

satisfied. The expressions of these Green’s functions and the 

correction term are given in Appendix A.  
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Image of 

segment j

Air (0, 0,0)

Ground (1, 1,1)

r
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𝑅∗ 

𝑧 = 𝑧𝑖0 

𝑧′ = −𝑧𝑗0 
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Fig. 1 Configuration of segments in the air-ground media 

Divide the conductor into a set of short segments, and select 

two segments; field segment i and source segment j. Then 

substitute (2) into (1) and integrate (1) along the field segment. 

A set of potential equations yield, as follows:   
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where  𝐽𝑖  is the current density on the surface of segment i, 

and 𝑠𝑖 is the length of segment i. 

Let 𝑉  be the average value of potential 𝜙  over a node 

segment, electrical circuit equations can be established, as 

follows: 

si i ij j n mj

n nk k nj jk j

Z I j L I V V

V p q c I

  

 



 
 (5) 

where 𝑞𝑘 is the total charge on segment k.  𝑍𝑠𝑖  is the surface 

impedance of the conductor, and can be expressed by 

0
,
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for the circular conductor with conductivity  and permeability 

𝜇0 and radius a [32], and 𝑅𝑎 = √−𝑗𝜔𝜇𝜎𝑎. 𝐽𝑛(∗) is the Bessel 

function of the 1st kind of order n. In (5) parameters 𝐿𝑖𝑗  and 𝑝𝑛𝑘 

are the partial inductance and potential coefficient of segments, 

and 𝑐𝑛𝑗 is the correction coefficient. They are given by 
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where 𝑠𝑖 (𝑖 = 𝑛, 𝑗 𝑜𝑟 𝑘) is the length of segment i.  By taking 

the time derivative of potential in (4), the capacitive current on 

the node in the frequency domain is obtained as, 

, ,
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Fig. 2 shows the equivalent circuit diagram for the 

equations given in (5) and (8). Both node voltage 𝑉𝑛  and branch 

current 𝐼𝑖 are two sets of unknowns in the equivalent circuit, 

which can be solved by a conventional circuit analysis tool. 
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𝑗≠𝑖

 

 
𝑝𝑛𝑘
𝑝𝑛𝑛
𝐼𝑐,𝑘

𝑘≠𝑛
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𝑝𝑛𝑛
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𝑝𝑚𝑚
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+ 
𝑗𝜔𝑐𝑛𝑗

𝑝𝑚𝑚
𝐼𝑗

𝑗

 

  
Fig. 2 Equivalent circuit of a line segment 

It is noted in (3) and (7) that inductance 𝐿𝑖𝑗   contain a 

coupling element from a horizontal (source) segment to a 

vertical (field) segment, which does not exist in the traditional 

definition of inductance. This element is introduced purely due 

to the presence of the lossy ground, and is the correction term 

for mutual inductive coupling. However, vertical current 

segments do not have any inductive contribution to horizontal 

current segments, because of asymmetric matrix 𝑮̿𝐴 . This is 

one-way coupling. It is, however,  noted that the vertical current 

segments do have a contribution to the node potential, as seen 

in (2).   

When a current-carrying conductor penetrates into the 

ground, a medium different from the air, a second potential 

correction term [30] will arise in the expression of node 

potential given in (4). In case of thin wires, the node potential 

in (5) is revised to be, 
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where 𝐼𝑔,𝑗∗ is the ground current in segment j* connected to the 

ground. Fig. 3 shows the revised equivalent circuit containing 

the segment connected to the ground. In the figure 𝑍𝑔 

represents the equivalent circuit of the grounding grid [33-34]. 

𝑍𝑔  

𝐼𝑔,𝑗 ∗ 

𝑉𝑛  

𝑉𝑚  
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Ref.

𝐺𝑟𝑜𝑢𝑛𝑑 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 

 
(a) A line crossing over the ground surface 
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Ref.Ref.  

(b) Correction term arising from the ground connection 

Fig. 3 PEEC model of a wire structure connected to the ground  

III. EVALUATION OF CIRCUIT PARAMETERS 

A. General expressions of circuit parameters 

Fig. 1 shows two arbitrary line segments i and j with 

direction cosines (cos 𝛼𝑖 , cos 𝛽𝑖 , cos 𝛾𝑖  ) and (cos 𝛼𝑗 , cos 𝛽𝑗 ,  

cos 𝛾𝑗  ) together with the mirror image under the ground. 

Because both horizontal and vertical current dipoles have 

different Green’s functions, inductance has to be calculated 

separately for these components. Assume Green’s function of 

free space 𝐺0(𝑟, 𝑟′) = 𝑒
−𝑗𝑘0𝑅 𝑅⁄  , where free-space 

wavenumber 𝑘0 = 𝜔√𝜇0𝜖0  and 𝑅 = |𝑟 − 𝑟′| . According to 

Appendix A, both partial inductance (external or mutual 

inductance) between field segment i and source segment j and 

coefficient of potential between field segment n and source 

segment m are expressed from (7) and (9) as, 
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where functions 𝑈,𝑁,𝑊,𝑀 and 𝐶 in (10) are the Sommerfeld 

integrals given in Appendix A. They can be expressed as 

𝑋0 𝑒
−𝑗𝑘0𝑅

∗
𝑅∗⁄   , where 𝑋0  is the normalized coefficient and 

𝑅∗ = √𝜌2 + (𝑧 + 𝑧′)2 . 𝑅∗  is the distance between the field 

segment in air and the mirror image of the source segment, as 

illustrated in Fig. 1. 𝑋0 is evaluated by using the real-axis direct 

integration method [35], and is tabulated at each frequency.  

In (10) coefficients 𝑔𝑥 (𝑥 = 𝑎, 𝑏, 𝑐 and 𝑑) are given by 
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Both 𝑔𝑎 and 𝑔𝑏 in (10) project one segment onto another one 

in 3D space and on the ground surface, respectively. Both 𝑔𝑐 
and 𝑔𝑑 project respectively two segments onto the z axis, and 

one onto the z axis and another one onto the ground surface. 𝜉𝑖𝑗  

is the angle on the ground surface between the t component of 

source segment j and the z component of field segment i, as 

shown in Fig. 4. It is given by 

2 2 2
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cos
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j j

ij

j

x y

x y
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



  


    
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It is found in (10) that mutual inductance is contributed by 

coupling (i) of two segments in free space, (ii) of components 

in z direction, (iii) of components in t directions and (iv) from 

the t component to the z component in the presence of a lossy 

ground. As the coupling from the z component to t component 

is missing in (10), inductance 𝐿𝑖𝑗  may not be equal to 𝐿𝑗𝑖.  

x

ij

y

r

Segment I
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Segment j

(t component)

 (𝑥𝑖0 , 𝑦𝑖0) 

 (𝑥𝑗0, 𝑦𝑗0) 

𝐼𝑖𝑧  

 ∆𝑦 

 ∆𝑥 
𝐼𝑗 𝑡  

 
Fig. 4 Configuration of both t and z components on the xy plane 

The inductance formula can be simplified for two segments 

either in parallel with or perpendicular to the ground surface.  

For cases of (a) two segments in parallel with the ground, (b) 

two segments perpendicular to the ground, and (c) one segment  

in parallel with and one perpendicular to the ground,  

inductances are expressed as 
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where the 1st term in (12) for case a or b is the free-space 

inductance between two segments. Coefficient of potential 

exists in any two arbitrary segments including two 

perpendicular segments. It is expressed with the coefficient of 

potential in free space and the ground contribution, as follows: 
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These double-fold line integrals can be evaluated numerically, 

as values of the Sommerfeld integrals are obtained from the 

lookup tables.  

B. Circuit parameters for specific grounds 

As seen in Appendix A, kernels of the Sommerfeld integrals 

are explicit functions of TE/TM-mode reflection coefficients 

𝛤𝑒   and 𝛤ℎ  according to (A5). They are determined by 

wavenumbers 𝑘0 in air and 𝑘1 = 𝜔√𝜇1𝜖1 in ground. In case of 

perfectly conducting ground (PCG), 𝑘1
2 → −𝑗∞,  both 

reflection coefficients 𝛤𝑒   and 𝛤ℎ   approach -1. Sommerfeld 

integrals in (A4) can be then simplified, i.e., normalized 

coefficients 𝑊0 = 𝐶0 = 0  and 𝑈0 = 𝑁0 = 𝑀0 = −1 , as seen 

in Appendix A. 

At extreme low frequency (LFG), i.e., 𝜔 → 0 , reflection 

coefficients 𝛤𝑒   and 𝛤ℎ   respectively approach -1 and 0 

according to (A5). Then coefficients of the Sommerfeld 

integrals can be simplified as well , as seen in Appendix A, i.e., 

𝑈0 = 𝐶0 = 0 , 𝑁0 = 𝑀0 = −1  and 𝑊0 = (𝑠𝑖𝑛𝜃 − 1)/𝑐𝑜𝑠𝜃 
where 𝜃  is defined in Fig.1. Table 1 summaries normalized 

coefficients of the Sommerfeld integrals for these two ground 

models. In these ground models the ground is substituted with 

the source images. Fig. 5(a)  shows the images of current and 

charge as well as coupling for a perfectly conducting ground 

(PCG), and Fig. 5(b) shows those for the low-frequency ground 

(LFG), which is the approximation of a lossy ground. Appendix 

B shows the closed-form expressions of inductance and 

coefficient of potential for segments when 𝑘0𝑅 ≪ 1. 

Table 1. Normalized coefficient of the Sommerfeld integrals in two models 

Ground Model 𝑼𝟎 𝑵𝟎 𝑾𝟎 𝑴𝟎 𝑪𝟎 

PCG -1 -1 0 -1 0 

LFG 0 -1 (𝑠𝑖𝑛𝜃 − 1)/𝑐𝑜𝑠𝜃 -1 0 

Air 

Ground 

+q

-q

I1

I1

I2

I2

x

 
(a) Perfectly conducting ground (PCG model) 

Air 

Ground 

+q

-q

I1

I1

I2

I2

x

 
(b) Low-frequency ground (LFG model) 

Fig. 5 Source current and charge and their images for two ground models:  

“---->” represents the coupling from one element to another one 

“-x->” means that the coupling in the model does not exist in another model 

C. Numerical evaluation of circuit parameters  

Inductance and coefficient of potential for four segments 

situated above a lossy ground have been calculated using the 

proposed method. Fig. 6 shows the configuration of four short 

segments. All the segments are 1 m in length with ℎ1 = ℎ3 =
1 𝑚 and ℎ2 = ℎ4 = 10 𝑚. Other parameters are listed in Table 

2. 

Table 2. Wire and Soil parameters used in the simulation 

Wire parameters Soil parameters 

Diameter 

(m) 

Conductivity 

(S/m) 

Conductivity 

(S/m) 

Relative 

permittivity 

0.005 5.8e8 1e-3 10 

Air (0, 0,0)

Ground (1, 1,1)

h
1

h
3

L1

L2

L3

h
2

L4

h4

 
Fig. 6 Configuration of three segments for circuit parameter evaluation 

 
Fig. 7 Self and mutual Inductance among three segments  (L*: calculated 
with the Sommerfeld integrals (LSG), L#: calculated with LFA formulas)  

 
Fig 8. Coefficients of the potential of three segments (L*: calculated with the 

Sommerfeld integrals (LSG), L#: calculated with LFA formulas) 
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Fig. 7 shows the self and mutual inductance of these 

segments in the frequency range from 10 Hz to 25 MHz, 

calculated using the Sommerfeld integrals (LSG model). The 

inductance of segments calculated with LFG formulas is 

presented in the figure as well for comparison. Note that the 

self-inductance of a segment includes both internal and 

external components. Internal inductance is affected by its skin 

effect at 700 Hz or above, and is negligible at 100 kHz or above. 

It is found that the inductance calculated with the Sommerfield 

integrals (LSG) and LFG formulas match very well for the 

frequency up to 1 MHz.  This indicates that LFG is a good 

approximation of the lossy ground (LSG) at low frequency. It 

is found that there is a discrepancy of mutual inductance 𝐿12 
between two models at some frequencies less than 1 MHz. As 

mutual inductance is much less than self inductance, such 

difference would not cause significant errors in the transient 

analysis, as shown in the following sections. The mutual 

coupling between horizontal and vertical segments does exist, 

but the contribution is relatively small, compared with the 

coupling coefficient between parallel segments. 

Fig. 8 shows self and mutual potential coefficients among 

three segments in the frequency range from 10 Hz to 25 MHz. 

These coefficient curves are calculated again with both the 

Sommerfeld integrals (LSG) and LFG formulas.  It is noted that 

good agreements are observed for the frequency below 1 MHz. 

The lossy ground can be considered as the perfectly conducting 

ground no matter what orientation the segment has. When the 

frequency is greatest than 1 MHz, the effect of a lossy medium 

becomes significant and varies with increasing frequency.  

IV. COMPARISON WITH NEC2 CODES 

A comparison between the proposed PEEC model and 

numerical electromagnetic code NEC2 [28] was made in this 

section. Fig. 9 shows the configuration of an L-shape wire 

structure for comparison. The structure consists of two 

connected wires with a length of 18.3m for each, and is situated 

over a lossy ground at the height of ℎ = 1 m. Other parameters 

are listed in Table 2. This wire structure is excited by a voltage 

source (1V with an internal resistance of 50 ohms) placed in 

the middle point of the horizontal wire, and currents on the 

wires are analyzed.  

Air (0, 0,0)

Ground (1, 1,1)

h

L

Vs P1 P2

 

Fig. 9. Configuration of a wire structure for validation 

In the PEEC simulation, each of these wires was divided into 

61 elementary segments. Electrical circuit parameters, such as 

partial inductance and coefficient of potential among these 

segments were calculated using (10). Both segment current and 

node potential were analyzed using the procedure based on the 

modified loop analysis.  Fig. 10 shows the frequency response 

of the currents at two points from 0.1 MHz to 25 MHz. Point 

P1 is located at the feeding point of the horizontal wire, and P2 

is at the corner of the structure. The segment current at the 

corner would be affected significantly by the mutual inductance 

between two orthogonal wires.  

Simulation of the currents in the wire structure was 

conducted again using NEC2. For the purpose of comparison, 

each of the wires in the structure was divided into 61 segments 

as well in the NEC2 model. The results are presented in Fig. 10 

together with the PEEC results. It is found in the figure that 

both NEC2 and PEEC results match very well. The root mean 

square of the difference in percentage over the frequency range 

is less than 0.7%. The maximum difference is less than 1.4%. 

The simulation with 41 segments in each wire was performed 

again. It is found that the maximum difference is now increased 

to 3%. 

 

Fig. 10 Comparison of NEC2 and PEEC results  

V. COMPUTER SIMULATION OF TRANSIENTS IN A WIRE 

STRUCTURE 

The computer simulation was also performed to analyze 

time-domain transient currents in wire structures situated above 

the same lossy ground. Fig. 11 shows the configuration of two 

1 m x 1 m loops separated by a distance of 3 m. Other 

parameters are listed in Table 2. Loop A is excited by an 

impulse current source. Induced transient current is then 

generated in Loop B. In the simulation, the frequency-domain 

source current was first obtained by using the fast Fourier 

transform (FFT) technique. The induced current was then 

simulated with the proposed method in the frequency domain. 

Finally, the time-domain induced current was calculated by 

using the inverse FFT technique.  

1 
m

3 m

Ground (1, 1, 1)

Air (0, 0, 0) 

Loop B Loop A

1 
m

Is

 

Fig. 11 Configuration of a wire structure for lighting transient simulation 

In the simulation the impulse current was set to have the 

magnitude of 50 kA and the waveform of 0.25/100 µs. Three 
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different ground models were tested, i.e., perfectly conducting 

ground (PCG), lossy ground (LSG), low-frequency ground 

(LFG) — an approximation of the lossy ground. All the wires 

were divided into segments with a length of 0.1 m. Fig. 11 

shows the induced current simulated with the proposed method 

for three ground models. It is found that the low-frequency 

ground model matches with the lossy ground model very well. 

The difference is generally less than 1.5%. However, there is a 

large difference between the lossy ground model and the 

perfectly conducting ground model. For comparison, the 

induced current calculated with the FDTD method [34] is 

presented in the figure as well. A good agreement is observed 

with the difference being less than 1.5%. In the FDTD model, 

the working volume is divided into  360 × 200 × 250 cells. A 

non-uniform mesh technique is adopted. The cell size is 1 mm 

on the conductor, and increases to 100 mm gradually. The 

perfectly matched layer (PML) absorbing boundary conditions 

are applied to absorb unwanted wave reflections in six 

boundaries. The time step is defined as 1.92583e-13 s.  

 
Fig. 12 Induced current in Loop B calculated by PEEC and FDTD methods 

15
 m

10 m

10
 m

1 
m10 m

𝐿𝑋1 

𝐿𝑋2 

𝐿𝑌2 

𝐿𝑌1 

𝑃0  

x

z
y

 
Fig. 13 Configuration of a wire structure for lighting transient simulation  

The computer simulation was performed as well in a 

grounded structure, as shown in Fig. 13. Fig. 13 shows the 

configuration of a wire structure struck by lightning. Wire and 

ground parameters are listed in Table 2. The return stroke 

current is represented by a current source at Point P0 on a 

vertical wire. The return stroke current has a magnitude of 50 

kA and the waveform of 0.25/100 µs. A similar wire 

representing the lightning channel is extended upwards from 

Point P0. In the simulation, the wires were divided into 

segments with a length of 1 m. Induced transient currents were 

simulated in the wire structure 10 m away from the vertical 

wire, i.e., the induced currents in the lines close to the ground 

(Lx1 and Ly1) and the lines away from the ground (Lx2 and 

Ly2).  

Fig. 14(a) shows the simulated lightning transient currents 

in two y-dir. branches of the wire structure under a lightning 

stroke. It is found that the results obtained from both LSG and 

LFG match very well at the wave tail. The error of the 

wavefront is relatively large. This is because the low-frequency 

ground is an approximation of the lossy ground at the low 

frequency. The model of perfectly conducting ground, however, 

creates a much large error for the current in the branch close to 

the ground surface. It is noted again that PCG does not produce 

a bipolar waveform in the early time period. Fortunately, the 

difference is significantly reduced if the wire is far away from 

the ground surface, i.e., 11 m above the ground, as shown in 

Fig. 14(a). Fig. 14(b) shows the simulated lightning transient 

currents in two x-dir. branches of the structure. Similar results 

can be observed. The induced currents obtained with LFG 

match with those with LSG, no matter where the wire is located. 

There is a slight distortion in the wavefront in the LFG results. 

The induced current calculated with PCG is not as good as that 

with LFG.  

  
(a) Induced currents in two y-dir. branches 

  
(b) Induced currents in two x-dir. branches 

Fig. 14 Lightning transient currents in a wire structure under the lightning 
stroke  current of 0.25/100 µs 

The simulation was performed again when the lightning 

return stroke current has a waveform of 10/350 µs. Fig. 15 
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shows simulated lightning transient currents at the same 

locations as those shown in Fig. 14. It is found that both LFG 

model and LSG model match very well for the entire curves. In 

this case, the 10/350 µs waveform contains low-frequency 

components only, and the LFG model is a perfect 

approximation of the lossy ground. Similar to the previous case, 

a large deviation of the transient current calculated using the 

PCG model is found in the branch close to the ground. The 

computation time for the simulation case shown in Fig. 13 was 

also recorded. It is (1) 3 hr 30 min 46 s using the LSG model 

(Sommerfeld integrals), (2) 42 s using the LFG model, or (3) 

37 s using the PCG model using a PC with i7-4749 CPU 

@3.6GHz and 16GB RAM.  

 

(a) Induced currents in two y-dir. Branches 

 
(b) Induced currents in two x-dir. branches 

Fig. 15 Lightning transient currents in a wire structure under the lightning 
stroke current of 10/350 µs 

VI. CONCLUSIONS 

This paper presented a full-wave PEEC formulation for 

arbitrary-orientated conductors over a lossy ground. The 

equivalent circuit model of wires situated in air was derived for 

lightning transient analysis. Because of the presence of the 

lossy ground, correction terms were introduced in the circuit as 

current-controlled current sources. Circuit parameters are 

expressed with the Sommerfeld integrals, which are evaluated 

numerically by a direct axis integration method. The proposed 

model has been validated numerically using NEC2 and FDTD. 

The low-frequency model of a lossy ground was derived 

directly from the Sommerfeld integrals, in which the ground is 

replaced the mirror image of source elements, similar to the 

perfectly conducting ground.  All circuit parameters are 

frequency independent, and can be evaluated directly with 

analytical formulas.  Simulation results show that the low-

frequency model can represent the lossy ground very well as 

long as the frequency is lower than 1MHz. The hurdle in the 

time-domain simulation arising from the presence of a lossy 

ground is overcome.  

Appendix A 

Fig. 1 shows a layered structure of air (0,0 and 0) and 

isotropic lossy ground (1,1  and 1 ). According to [37-39], 

components of the Dyadic Green’s function for magnetic 

vector potential 𝑨(𝑟) are expressed by  

 
 

0 0

0 0

0

( , ') 4 ( , ') ( , ')

( , ') 4 ( , ') ( , ')

( , ') 4 ( , ')

xx

zz
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G r r G r r U r r

G r r G r r N r r

G r r W r r

 

 

 
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 

 

 (A1) 

the Green’s function for electric scalar potential is given by 

 0 0( , ') 1 4 ( , ') ( , ')K r r G r r M r r    (A2) 

and the correction term  is given by 

0( , ') 4 ( , ')C r r C r r     (A3) 

In (A1-A3) 𝑈,𝑁,𝑊,𝑀 and 𝐶 are the Sommerfeld integrals and 

are expressed by 

( )
( )
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(A4) 

Sommerfeld integrals with kernel 𝑓(𝜆) for field point (𝑥, 𝑦, 𝑧) 
and source point (𝑥′, 𝑦′, 𝑧′) in air are defined as [37] 

( ) 0 ( ') 1

0
( ) ( )j z z n

n nS f f e J d r  


     (A5) 

where  𝛽𝑖
2 = 𝑘𝑖

2 − 𝜆2 , imag (𝛽𝑖) ≤ 0 , and 𝑘𝑖
2 = 𝜔2𝜖𝑖𝜇𝑖 −

𝑗𝜔𝜎𝑖𝜇𝑖  ( 𝑖 = 0, 1 ). Horizontal distance 𝜌 = √∆𝑥2 + ∆𝑦2.   In 

the Sommerfeld integrals shown in (A4), both 𝛤𝑒  and 𝛤ℎ are 

the reflection coefficients of TE and TM mode waves, and are 

given by 

2 2
0 1 1 0 0 1 1 0
2 2
0 1 1 0 0 1 1 0

0 1

0 1

e

h

k k

k k

     

     

 

 

 
  

 


 



 (A6) 

Sommerfeld integrals 𝑈,𝑁,𝑊,𝑀 and 𝐶 are calculated with 

the direct real-axis integration [35]. Lookup tables of 

normalized coefficients of the Sommerfeld integrals were 

generated, and were used in the computer simulation. The 

computation time for generating five lookup tables with 123 x 

34 entries in each table is 7.3 sec using a PC with i7-4749 CPU 

@3.6GHz and 16GB RAM. 
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These Sommerfeld integrals can be simplified under extreme 

cases. In case of perfectly conducting ground (𝜎 → ∞), 𝑘1
2 is 

approximated by – 𝑗𝜔𝜎 and approaches −𝑗∞. Both reflection 

coefficients 𝛤𝑒   and 𝛤ℎ   approach -1 according to (A6). With 

the identity of ( )
*

0 0( ') *
0 00

( )j z z jk Re j J d e R  r  


   [40], 

they are approximated by 
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 (A7) 

where 𝑅∗ = √𝜌2 + (𝑧 + 𝑧′)2 . At extreme low frequency 

(LFG), i.e., 𝜔 → 0 , 𝜖1  approaches −𝑗∞  and both 𝛽
0
  and 𝛽

1
 

are approximated by  −𝑗𝜆.  Then reflection coefficients 𝛤𝑒 and 

𝛤ℎ  respectively approach -1 and 0, as illustrated below, 
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The Sommerfeld integrals can be then approximated by 
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where 𝜃  is defined in Fig.1. The following identity [40] is 

applied in deriving the formula of W, 

( )( ') *
10

(1 )z ze J d z R r  r


    . 

Appendix B 

Inductance and coefficient of potential between two 

segments 𝑙  and 𝑙′  in air can be expressed with a double line 

integral, as seen in (12) and (13). In both LFG and PCG models, 

the double line integral can be expressed explicitly with a 

closed-form formula when 𝑘0𝑅 ≪ 1 [41-42], as follows: 

0
, 1,2

1
( 1)i j

ijl l
i j

T dldl T
R






     (B1) 

where, for parallel segments shown in Fig. B1(a) 

ln( )ij ij ij ij ijT R u u R     

for perpendicular segments shown in Fig. B1(b) 

1ln( ) ln( ) tan ( )
ij ij

ij ij ij ij ij ij ij ij

ij ij

v u
T u u R v v R w

w R


 
       



In (B1)
2 2 2

ij ij ij ijR u v w    ,  ∆𝑢𝑖𝑗 = 𝑢𝑖 − 𝑢𝑗
′ ,  𝑣∆𝑖𝑗= 𝑣𝑖 − 𝑣𝑗

′ 

and ∆𝑤𝑖𝑗 = 𝑤𝑖 −𝑤𝑗
′  where 𝑢 (𝑢′) , 𝑣  (𝑣′)  and 𝑤  (𝑤′)  are the 

coordinates of the end of field (source) segment 𝑙  (𝑙′ ) in the 

Cartisian coordinate system. For two arbitrarily-orientated 

segments other than in Fig. B1, the double-line integral can be 

evaluated by a closed formula given in [41-42]. 

𝑢2 𝑢1
′  𝑢2

′  𝑢1 

𝑢 
Field segment l

Source segment l’ 
𝑣 

𝑤 

𝑣1 = 𝑣2 

𝑣1
′ = 𝑣2

′  

 

 
(a) Two parallel segments 

𝑣2 

𝑢1
′  𝑢1=𝑢2 𝑢 

Field segment l

Source segment l’ 

𝑣 

𝑣1
′ = 𝑣2

′  

 𝑢2
′  

𝑣1 

𝑤 

 
(b) Two perpendicular segments 

Fig. B1 wire configuration for parameter calculation in air 

Air (0, 0,0)

Ground (1, 1,1)

h
h

𝑠 𝑠 

 
Fig. B2 Wire configuration for parameter calculation in two ground models 

(𝑠 ≫ ℎ and ≫ 𝑎 ) 

Table B Self inductances and self potential coefficients of short wires above 

the ground (𝑠 ≫ ℎ, 𝑠 ≫ 𝑎 )  

Ground Model Inductance Coefficient of potential 

Horizontal 

wire 

PEC 
𝜇0𝑠

2𝜋
[ln (
2ℎ

𝑎
)] 

1

2𝜋𝜖0𝑠
[ln (
2ℎ

𝑎
)] 

LFG 
𝜇0𝑠

2𝜋
[ln (
2ℎ

𝑎
)] 

1

2𝜋𝜖0𝑠
[ln (
2ℎ

𝑎
)] 

Ground Model Inductance Coefficient of potential 

Vertical 

wire 

PEC 
𝜇0𝑠

2𝜋
[ln (
4𝑠

𝑎
) − 1] 

1

2𝜋𝜖0𝑠
[ln (
𝑠

𝑎
) − 1] 

LFG 
𝜇0𝑠

2𝜋
[ln (
4𝑠

𝑎
) − 1] 

1

2𝜋𝜖0𝑠
[ln (
𝑠

𝑎
) − 1] 

For short wires arranged in parallel with or perpendicular to 

the ground plane, the effect of the ground can be taken into 

consideration using the mirror image of the wire, as shown in 
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Fig. B2. Assume that segment length s is much greater than 

height h, and height h is much greater than segment radius a.  

Explicit formulas of inductance and coefficient of potential for 

these segments in two ground models can be obtained by using 

(B1). These formulas are presented in Table B. 
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