1	Interrelation between human factor-related accidents and work patterns
2	in the construction industry
3	Francis Kwan-Wah Wong, Ph.D. ¹ ; Yat-Hung Chiang, Ph.D. ² ; Funmilayo Adenike Abidoye ³ and Shulan Liang ⁴
4	Abstract
5	The shortage of labor in the construction industry is quickly becoming a global phenomenon. To
6	encourage more people to begin careers in construction, both work patterns that promote more leisure and
7	accident rate reduction need to be put in place. This study used logistic regression to analyze 7,497
8	accident cases that have occurred in the Hong Kong construction industry. Principally, it was found that
9	human factor-related accidents and work patterns are interrelated for both millennials and
10	non-millennials. Therefore, adjusting work patterns may reduce accident rates, which could encourage
11	more people, both young and old, to choose a career in the construction industry.

12 Introduction

13 Globally, the construction industry is facing a labor shortage. Turner and Townsend (2017) stipulated that

¹Professor, Department of Building and Real Estate, The Hong Kong Polytechnic University, Hong Kong. Email: <u>francis.wong@polyu.edu.hk</u>

²Professor, Department of Building and Real Estate, The Hong Kong Polytechnic University, Hong Kong. Email: <u>chiang.yat-hung@polyu.edu.hk</u>

³Research Assistant, Department of Building and Real Estate, The Hong Kong Polytechnic University, Hong Kong. Email: <u>funmilayoabidoye@gmail.com</u>

⁴Research Assistant, Department of Building and Real Estate, The Hong Kong Polytechnic University, Hong Kong. Email: <u>sue.liang@polyu.edu.hk</u>

14	24 out of the 43 (56%) global markets analyzed in a survey suffer from skills shortage in the construction
15	industry. This is up from 20 reported a year earlier, which indicates the persistence of the problem.
16	Essentially, the Hong Kong Construction Association (2017) reported the labor shortage over a five year
17	period from 2013 to 2017, with a current shortage rate of 5.47%. The estimated increase in total labor
18	supply in Hong Kong is also expected to be lower than the expected increase in demand for construction
19	workers. According to The Government of Hong Kong SAR (2015), total manpower requirements in the
20	construction industry should rise at an average annual rate of 1.4%, while total manpower supply in Hong
21	Kong is expected to increase by only 0.4% on average annually from 2012 to 2022. Concurrently, the
22	Hong Kong construction industry also faces an aging population problem. According to the Construction
23	Workers Registration Board (2017), as of April 2017, 66.11% of registered construction workers were
24	over 40 years of age. This phenomenon also seems to be global, as countries such as the United Kingdom
25	(McNair & Flynn, 2006), and the United States of America (The Centre for Construction Research and
26	Training, 2014) face a similar dilemma. This aging problem highlights the labor shortage problem
27	because it reveals the unwillingness of the younger generation to join the construction industry.
28	
29	Older people are more prone to accidents (Dong et al., 2012) and higher injury costs (Schwatka et al.,
30	2012). They also have a declined physical fitness, which affects their overall performance and
31	productivity (Jebens et al., 2015). Likewise, skills shortages may lead to decline in productivity and lack

32 of industrial growth (Lobo & Wilkinson, 2008). This suggests that both an aging workforce and a

33	skills/labor shortage have negative effects on the construction industry. Stunted growth and productivity
34	in the construction industry can have a devastating effect on the economy (Dang & Low, 2011), hence the
35	need to address the issue of the labor shortage and the aging workforce in the construction industry.
36	
37	Though various strategies such as increased training, increased wages and labor migration have been
38	proposed and implemented to decrease the shortage rate and the participation rate of the younger
39	workforce (Ho, 2016; MacKenzie et al., 2000), more still needs to be done due to the persistence of the
40	problems. Ho (2016) suggested that improved working conditions, including health, safety, and welfare,
41	could improve the attractiveness of Hong Kong construction industry to potential employees.
42	
43	Therefore, the objective of this study is to examine if work patterns and human factor-related accidents
44	are interrelated in order to suggest policies that would reduce accident rates and thereby encourage the
45	younger generation to choose a career in the construction industry thus reducing the construction industry
46	workforce shortage. The next section of this paper presents the literature review. This is followed by the
47	research method adopted in this study and the results and discussion section. The final section presents
48	the conclusions of the paper.

50 Literature Review

51 Human Factor-related Accidents

52 In accident causation models, multiple causation theory suggests that for every accident, there may be 53 many contributing factors, causes, and sub-causes (Raouf, 2011). These contributing factors can be 54 categorized into behavioral factors and environmental factors. The behavioral factors are human factors 55 specific to the individual workers themselves, such as poor physical and mental state, lack of knowledge, 56 inappropriate attitude and lack of skills. Environmental factors, on the other hand, are related to the 57 physical working conditions under which the workers do their jobs, such as a dangerous working 58 environment and degradation of equipment, (Raouf, 2011). In Hong Kong, Choudhry and Fang (2008) 59 found that workers were involved in unsafe acts due to lack of safety awareness and psychological factors, 60 among others. Human error accounts for 80% of incidents in complex high-risk systems in the 61 construction industry (Garrett & Teizer, 2009). Hence, there is the need to investigate if accidents in Hong 62 Kong are also more related to human factors than to environmental factors. 63 64 Work Patterns

Work pattern is the manner in which a job is performed, such as shift work, hours worked, and days of the
week (Farlex, 2018). Studies have shown that certain work patterns have effects on accidents, generally.
They are major contributing factors in human-related accidents. For instance, Wagstaff and Lie (2011)
and Dembe et al. (2005) found that working long hours and shift work could increase the risk of accidents.

69	Costa (1996) also demonstrated that night work can cause interferences with work performance and
70	efficiency, resulting in errors and accidents, among other issues. Dembe et al. (2005) reported that
71	working overtime could result in a 61% increase in injury hazard rate. Working at least 12 hours per day
72	has a 37% increased hazard rate, and working at least 60 hours per week increased hazard rates by 23%.
73	Wagstaff and Lie (2011) determined that both shift work and long working hours have a negative effect
74	on safety at work. The authors reported that work periods longer than eight hours have cumulatively
75	increased accident risk. The risk of accidents for those working 12 hours a day would be twice as high as
76	those working 8 hours a day. Hence, there is also the need to include the effects of night work in the
77	examination of human factor-related accidents.
78	
79	Additionally, previous studies have shown that accidents are more likely to occur in the early part of the
80	week (Rozenfeld et al., 2010), and accident severity increases as the week progresses (Camino López et
81	al., 2008). In Hong Kong, Tao et al. (2017) discovered that the younger generation places more
82	importance on taking Saturdays off than on money. In Australia, Lingard et al. (2008) found that a
83	compressed work week was positively received, although waged workers expressed concerns about the
84	impact on their take-home pay. Therefore, this study includes the examination of the relationship between
85	certain days of the week; Monday, Saturday, Sunday and human factor-related accidents.

87 To maximize productive time and to enhance health and safety, Yi and Chan (2013) proposed an optimal

88	work-rest schedule of 15 minute breaks after two hours of work in the morning, and 20 minute breaks
89	after 1 hour and 55 minutes of work in the afternoon for construction rebar workers during hot weather in
90	Hong Kong. Accordingly, this study also includes an investigation of the relationship between human
91	factor-related accidents and work patterns that involve working more than two hours without adequate
92	rest.
0 0	

94 Other Factors affecting Human Factor-Related Accidents

95	Soltanzadeh et al. (2016) found that unsafe acts cause accidents that are by definition more human
96	factor-related than environmental and is understandably associated with accident severity. Yau (2004) also
97	found that some specific human factors have significant effects on accident severity for private vehicle
98	owners in Hong Kong. Hence, there is a need to consider controls for accident severity in this study. In
99	addition, several studies have shown the relationship between accidents and location (Dumrak et al., 2013;
100	Huang & Hinze, 2003; López Arquillos et al., 2012); hence, there is also a need to consider the location of
101	the accident, as well. Dong et al. (2004) found that safety and health training were associated with
102	reduced work injury related compensation claims, especially for young workers. Additionally, training has
103	been identified as one of the critical factors needed to predict accident risk (Lee & Halpin, 2003). Hence,
104	there is the need to consider training. Lastly, there is a need to manage environmental factors, as previous
105	studies have identified it as an accident causation factor (see for instance Mitropoulos et al., 2005;
106	Sawacha et al., 1999).

108 Research Gap

109 Many previous studies have concentrated only on investigating work patterns and accidents generally 110 ((see Dembe et al., 2005; Wagstaff & Lie, 2011)). Cottini and Lucifora (2013) investigated workplace mental health conditions across 15 European countries. They concluded that adverse job demands, such 111 112 as shift work and intensive tasks, are strongly associated with reported mental problems, e.g., stress. In 113 construction research, Chan (2011) identified fatigue as a leading risk factor of construction accidents. 114 Therefore, work patterns would most likely influence accidents through their effects on the physical and 115 emotional well-being of the workers, hence, there is a need to investigate the relationship between human 116 factor-related accidents and work patterns in the construction industry. However, a study into the 117 relationship between work patterns and human factor-related accidents would provide insight into the 118 association between work patterns and the physical and emotional well-being of workers. Additionally, 119 human factors have been identified as the greatest contributor to danger, and they are more difficult to 120 control compared with environmental or technical factors (Reason, 1995). Thus, research on their 121 determinants would make it easier to develop effective control measures. Additionally, very little has been 122 done to investigate the generational differences among workers in relation to work patterns and human 123 factor-related accidents in the construction industry in an attempt to solve the aging population problem in 124 the industry.

126 **Research Method**

127 This study draws inferences from both reviewed literature and data analyses. The data used for this study 128 were collected from Mass Transit Railway Corporation Limited (MTRC). MTRC is a company that 129 operates and manages Hong Kong's Mass Transit Railway making an average of 5.6 million passenger 130 trips per weekday (MTR Corporation, 2016). It also engages in property development, making it one of 131 the major players in the Hong Kong construction industry. As of 31st December 2015, railway 132 construction and property development in progress for MTRC was around HK\$37billion (MTR 133 Corporation, 2015). This represents 17% of the gross value of construction projects in Hong Kong in 134 2015 (HK\$224billion) (Census and Statistics Department, 2017). In addition, MTRC has built, operated 135 and maintained mass transit railway systems and provided related services in China Mainland, the UK, 136 Sweden and Australia (MTR Corporation, 2016). Considering all the aforementioned efforts, it is safe to 137 suggest that the use of data collected from MTRC is suitable to achieve the purpose of this study. 138 139 The data consist of a total of 7,497 recorded accidents between May 2009 and October 2015. These 140

141 Island Line, Express Rail Link, South Island Line and Kwun Tong Line. These projects involved both the 142 construction of railway lines (civil work) and the construction of railway stations (building work) as part 143 of the Hong Kong Government's Railway Development Strategy. The railway stations are multi-level 144 buildings with multiple shopping complexes. Additionally, the various trades of the construction industry

accidents occurred during the construction of five new railway projects i.e., the Shatin-Central Link, West

are well represented in the data (please see Table 1). Therefore, the construction industry is wellexemplified in the data.

148	Logistic regression was adopted in estimating the relationship between human factor-related accidents
149	and work patterns. Logistic regression was used because the dependent variable (human factor-related
150	accidents) considered in this study is a binary variable. Logistic regression is especially formulated to
151	predict the probability that an event will occur using a binary dependent variable given or a combination
152	of explanatory variables which can either be categorical or continuous (Hair et al., 2006). This approach
153	has been used in previous accident studies in the construction industry (see, for instance, Chau et al., 2004;
154	Chau et al., 2002). The data were subdivided into two categories: millennials and non-millennials.
155	Subsequently, each dataset, including the dataset for all victims, were analyzed. In line with Ng et al.
156	(2010); Real et al. (2010), 1980 was used as the cut off benchmark for millennials. Out of the 7,497
157	records of this study, 1,941 have missing values. Hence, two methods, listwise deletion (LD) and multiple
158	imputation (MI), were used to address the issue and the results were subsequently compared. In listwise
159	deletion, all incomplete cases are dropped entirely from the analysis. Graham (2009) indicated that this
160	method of handling missing data might lead to biased parameter estimates and the loss of power when the
161	number of missing cases is greater than 5%. Though, when the sample size is large, the loss of power and
162	the biased parameter estimate is reduced (Acock, 2005). Multiple Imputation is used to generate possible
163	values for missing cases through the pooling of multiple simulated values. It entails three stages:

164	imputation, analysis, and pooling (Peng & Zhu, 2008). During the imputation stage, each missing value is
165	replaced by simulated values multiple times, thereby creating multiple datasets. The analysis stage fits the
166	model using the various datasets while the pooling stage combines the model from the various datasets.
167	The main limitation of MI is that each application of MI produces slightly different imputed values and
168	related statistics, so the results cannot always be replicated (Peng & Zhu, 2008). The MI method was
169	found to have superior performance to other techniques of handling missing data in logistic regression
170	(Peng & Zhu, 2008). Therefore, the method was adopted. Prior construction research using logistic
171	regression has used MI methods (see, for instance, Alexander et al., 2012; Spee et al., 2016).

173 As discussed in the literature review, human factor-related accidents refer to accidents with contributing 174 factors specific to the individual workers themselves, such as poor physical and mental state, lack of 175 knowledge, inappropriate attitude and lack of skills. Environmental factor-related accidents are due to the 176 physical working condition such as dangerous working environment and degradation of equipment. In 177 this research, the victims and their supervisors identified various contributory factors to the accidents 178 according to their opinions and they were subsequently grouped into human and environmental factors. 179 Human factor is the dependent variable. To model it, a value of 1 was assigned to any accident record 180 where a human-related factor was mentioned to have been partly/jointly responsible for the accident, 181 while a value of 0 was assigned if no such factor was indicated. The independent variables are those 182 discussed in the literature review above, under the "Work Pattern" and "Other Factors Affecting Human 10

183	Factor-Related Accidents" sections. They are "night", "2 hours after rest", "Monday", "Saturday" and
184	"Sunday". All the variables are presented in binary form (see Table 3). "Night" starts from 7pm to 7am, a
185	value of 1 was assigned if the accident occurred during the period and 0 otherwise. "2 hours after rest"
186	include the periods 10.01am to 12noon, 3.01pm to 3.15pm and 5.46pm to 6pm (Yi & Chan, 2014). A
187	value of 1 was assigned if the accident occurred during the period and 0 otherwise. Additionally, a value
188	of 1 was assigned if the accident occurred either on Sunday, Monday or Saturday, and 0 otherwise.
189	
190	Other variables were included as control variables to control the effect of non-human factors on accidents.
191	They are "accident category", "treatment given", "environmental factor", "place of the accident" and
192	"apprentice". "Accident category" and "treatment given" are measures of "accident severity" while
193	"apprentice" was used to model training received.
194	
195	Accidents that resulted in three or more sick leave days were categorized as reportable accidents and were
196	assigned a value of 1 and 0 otherwise. Regarding the place of accident, civil worksite was assigned the
197	value of 1 and 0 otherwise. If an environmental factor was reported, the value of 1 was assigned and 0
198	otherwise. A victim who was an apprentice at the time of the accident was assigned a value of 1 and 0
199	otherwise. The definitions and measurements of the categorical and binary variables as highlighted above
200	are summarized in Table 3.

202 **Results**

203 The proportion of accidents that occurred at each of the five project sites is presented in Figure 1. Most of 204 the accidents occurred during the period of January 2013 to October 2015 with 79.1% of the accidents 205 taking place at that time (see Table 2). Of the victims, 95.1% (6007) were male workers, while only 4.1% 206 (307) were female workers. The gender of 1,183 victims was not stated. Figure 2 shows the age 207 distribution of the victims; 44% of the victims were between 31 to 55 years old. Additionally, 40% of the 208 accidents occurred between June and September (see Figure 3). 84% of the accidents occurred between 209 Monday and Friday (See Figure 4) and 80% of the accidents occurred between 9 am and 6 pm (see Figure 210 5). Additionally, 60% of the victims had 3 months or less experience onsite (Figure 6).

212 The correlation analysis of both the dependent and independent variables are presented in Table 4. It 213 reveals that environmental factors and human factors have the highest correlation of 0.78. None of the 214 other variables had correlations above 0.5. The multicollinearity test conducted also confirms this (see 215 Table 5) as all the Variance Inflation Factors (VIF) are less than 2. The logistic regression results are 216 presented in Tables 6, 7, 8 and 9. For the LD dataset for all victims, the Cox & Snell R-Squared is 0.48 217 and the Nagelkerke R Square is 0.64. The Cox & Snell R-Square ranges between 0 and less than 1, while 218 Nagelkerke R-Square, on the other hand, has values that range between 0 and 1 (Hair et al., 2006). The 219 closer the values are to one, the greater the model fit (Hair et al., 2006). Thus, the dependent variables

220	explain 64% of the variation in human factor-related accidents. The MI dataset for all victims yielded
221	better model fit with a Cox & Snell R-Squared of 0.48 and Nagelkerke R Square of 0.67. Since the MI
222	datasets yielded a better model fit, it was used for the millennials versus non-millennials analysis. The
223	Cox & Snell R-Squared and the Nagelkerke R Square were 0.50 and 0.69, respectively, for millennials
224	and 0.48 and 0.67, respectively, for non-millennials.
225	

226	For the work-pattern related factors, "night", "2 hours after work" and "Monday" were found to be
227	significant in both the MI and LD datasets for all victims. The odds that the accident was caused by
228	human factors increased at night. Workers work at night due to either night shift work or overtime work.
229	Therefore, this indicates that shift work, as well as overtime work, may increase stress and fatigue level,
230	which may cause human errors and eventually lead to accidents (Cottini & Lucifora, 2013; Dembe et al.,
231	2005). Furthermore, the odds that the accident is caused by a human factor increased two hours after rest.
232	This substantiates that long working hours without adequate rest may increase stress and fatigue levels,
233	causing human errors and, consequently, more accidents (Yi & Chan, 2013). Additionally, this study
234	established that the odds that the accident was caused by a human factor increased on Mondays when all
235	victims are considered. This is consistent with the Monday-effect proponents (Campolieti & Hyatt, 2006;
236	Card & McCall, 1996). For the millennials, among the work pattern variables, only "Monday" is
237	significant, while for non-millennials, "2 hours after rest" and "night" are the significant variables. This
238	indicates that non-millennials are prone to human factor-related accidents when working at night and

239	when adequate rest periods are not provided. This is likely because they are older and are more prone to
240	accidents (Dong et al., 2012). Millennials, on the other hand, are more prone to human factor-related
241	accidents on Mondays as depicted by the logistic regression results. This may be attributed to the fact that
242	the safety measures that need to be put in place before starting work after the weekend break might not
243	have been adhered to. To prevent accidents among the younger generation, policies should be put in place
244	to ensure that safety measures are observed. Constant reminders of safety measures especially after the
245	weekend and vacation breaks should be provided. Other policies to prevent accidents, especially for
246	non-millennials may include reorganization of rest periods so there are multiple rest periods rather than
247	single long ones. Additionally, training on health and sleep management may be provided regularly to
248	workers who work at night to help them stay alert at night.

250 All the control variables were statistically significant for both the LD and MI datasets for all victims. 251 They are accident category, place of the accident, environmental factors, apprentice, and treatment given. 252 They were all significant at above 97% confidence levels. The likelihood that the accident was caused by 253 human factors increased when the accident was reportable (requires more than three days' sick leave). 254 This confirms that there exists a relationship between accident severity and human factor-related 255 accidents. On the other hand, there seems to exist a negative relationship between treatment given and 256 human factor-related accidents. This may be due to the increased safety initiatives being implemented by 257 MTRC which has led to fewer cases of lost time accidents (MTR Corporation, 2016). In this study, only

258	22% of the accidents required hospital treatment. It was also established from this study that the
259	likelihood that the accident is caused by human factors increased when working on a civil engineering
260	worksite compared to other work sites such as a building worksite. The plausible reason for this is
261	unknown at the moment. A reasonable suggestion would be that a typical civil engineering worksite
262	seems to be technologically more complex and requires more attention to details than other worksites. A
263	detailed look at the data suggests that 50% of the human factor-related accidents were due to "lack of
264	concentration". In addition, the results show that the possibility that an accident is caused by human
265	factors increased when an environmental factor is also responsible for the accident. Since workers are
266	responsible for taking care of their personal equipment, those who are more prone to behavioral issues (a
267	human factor-related accident) may also be more likely to be negligent with their equipment, thereby
268	triggering an accident that is also environmental factor-related. The result similarly signifies that the
269	probability that the accident is caused by a human factor decreased when the victim is an apprentice. This
270	suggests that apprentices tend to be a lot more focused and less stressed on the job. Additionally,
271	apprentices tend to take on less responsibility and less risky assignments. Hence, they are less likely to be
272	involved in accidents. For the millennials, environmental factors, apprentice status and place of accidents
273	were significant, while environmental factors and apprentice status were the only significant factors for
274	non-millennials.

276 Limitation

277 The major limitation of this study is that the data do not include variables such as number of work hours

278 per week, overtime work done per week and work shift practice of each victim that can be used to

- 279 measure work patterns directly. This necessitates the need to explore more time factors as work pattern
- variables. Such variables should be taken into consideration when collecting accident data in the future.
- 281 Additionally, further research can be done to ascertain the direct effect of accidents on the career choices
- of millennials.
- 283

284 Conclusion

285 The Hong Kong construction industry faces labor shortages and aging population problems. The aging 286 labor force and labor shortage problems can be addressed only by attracting more people to join the 287 construction industry. To encourage more people, both young and old, to begin a career in construction, 288 work patterns that promote site safety need to be implemented. The dismal records of site safety have 289 discouraged not only the younger generation from joining the construction industry but also their parents 290 from allowing them to do so (Tao et al., 2017). This study, therefore, has aimed to investigate the 291 relationship between work-pattern and human factor-related accidents to offer suggestions that might help 292 minimize accident rates. A total of 7,497 recorded accidents between May 2009 and October 2015 were 293 collected from MTRC. Logistic regression was performed, and it was found that eight variables, "accident 294 category", "place of accident", "Monday", "night", "2 hours after rest", "environmental factor", 295 "apprentice", and "treatment given", were found to be significantly associated with human factor-related

296	accidents when all victims were considered. For millennials, "Monday", environmental factor",
297	"apprentice" and "place of accident" were found to be significant, while "night", "2 hours after rest",
298	"environmental factor" and "apprentice" were found to be significant for non-millennials. Most
299	importantly, human factor-related accidents and work patterns were found to be significantly interrelated
300	among all age groups. To reduce accident rates among millennials, it is proposed that constant training
301	and safety reminders be provided, especially after weekend breaks or other vacation breaks. For
302	non-millennials, it is proposed that rest periods should be restructured and training on health and sleep
303	management should be provided regularly to reduce human factor-related accidents. In all, the devastating
304	effects of accidents may actually discourage people from working in the construction industry. Therefore,
305	reduced accident rates in both millennials and non-millennials should encourage both the younger and the
306	older generation to join the construction industry.

Data Availability Statement 308

309 The data used for this study were provided by a third party. Requests for data should be directed to

310 MTRC as indicated in the acknowledgements.

311

312 Acknowledgments

313 This publication was made possible by research funding from the Research Grants Council, Hong Kong 314 (Project Number PolyU 152176/15E). Its contents are solely the responsibility of the authors and do not 17

- 315 necessarily represent the official views of the Research Grants Council. We also acknowledge MTRC for
- providing the data used for this research.

319 **References**

- Acock, A. C. (2005). Working With Missing Values. *Journal of Marriage and Family*,
 67(4), 1012-1028. doi: 10.1111/j.1741-3737.2005.00191.x
- Alexander, B. H., Raleigh, K. K., Johnson, J., Mandel, J. H., Adgate, J. L., Ramachandran,
 G., . . Williams, A. (2012). Radiographic evidence of nonoccupational asbestos
 exposure from processing Libby vermiculite in Minneapolis, Minnesota.
 Environmental Health Perspectives, 120(1), 44-49. doi: 10.1289/ehp.1103529
- Camino López, M. A., Ritzel, D. O., Fontaneda, I., & González Alcantara, O. J. (2008).
 Construction industry accidents in Spain. *Journal of Safety Research, 39*(5),
 497-507. doi: <u>https://doi.org/10.1016/j.jsr.2008.07.006</u>
- Campolieti, M., & Hyatt, D. E. (2006). Further Evidence on the "Monday Effect" in
 Workers' Compensation. *ILR Review*, 59(3), 438-450. doi:
 10.1177/001979390605900306
- Card, D., & McCall, B. P. (1996). Is Workers' Compensation Covering Uninsured Medical
 Costs? Evidence from the "Monday Effect". *ILR Review, 49*(4), 690-706. doi:
 10.1177/001979399604900407
- Chau, N., Gauchard, G. C., Siegfried, C., Benamghar, L., Dangelzer, J.-L., Français, M., . . .
 Mur, J.-M. (2004). Relationships of job, age, and life conditions with the causes
 and severity of occupational injuries in construction workers. *International Archives of Occupational and Environmental Health*, 77(1), 60-66. doi:
 10.1007/s00420-003-0460-7
- Chau, N., Mur, J.-M., Benamghar, L., Siegfried, C., Dangelzer, J.-L., Francais, M., . . .
 Sourdot, A. (2002). Relationships between Some Individual Characteristics and
 Occupational Accidents in the Construction Industry. *Journal of Occupational Health*, 44(3), 131-139. doi: 10.1539/joh.44.131
- Choudhry, R. M., & Fang, D. (2008). Why operatives engage in unsafe work behavior:
 Investigating factors on construction sites. *Safety Science*, *46*(4), 566-584. doi:
 <u>https://doi.org/10.1016/j.ssci.2007.06.027</u>
- 347 Construction Workers Registration Board (Producer). (2017, Oct. 12, 2017). Data
 348 Analysis on Registered Workers. Retrieved from
 349 <u>http://www.cic.hk/cic data/files/4 %20Manpower%20May%2016%20-%20Apr</u>
 350 <u>%2017%20(Feb%20-%20May%2017%20survey%20data) eng.pdf</u>
- Costa, G. (1996). The impact of shift and night work on health. *Applied Ergonomics*,
 27(1), 9-16. doi: <u>https://doi.org/10.1016/0003-6870(95)00047-X</u>
- Cottini, E., & Lucifora, C. (2013). Mental Health and Working Conditions in Europe. *ILR Review, 66*(4), 958-988. doi: 10.1177/001979391306600409
- 355 Dang, T. H. G., & Low, S. P. (2011). Role of construction in economic development:

- Review of key concepts in the past 40 years. *Habitat International, 35*(1),
 118-125. doi: 10.1016/j.habitatint.2010.06.003
- Dembe, A. E., Erickson, J. B., Delbos, R. G., & Banks, S. M. (2005). The impact of
 overtime and long work hours on occupational injuries and illnesses: new
 evidence from the United States. *Occupational and Environmental Medicine*,
 62(9), 588-597. doi: 10.1136/oem.2004.016667
- Dong, X., Entzel, P., Men, Y., Chowdhury, R., & Schneider, S. (2004). Effects of Safety and
 Health Training on Work-Related Injury Among Construction Laborers. *Journal of Occupational and Environmental Medicine*, 46(12), 1222-1228. doi:
 10.1097/01.jom.0000147268.42094.de
- 366 Dong, X. S., Wang, X., & Daw, C. (2012). Fatal falls among older construction workers.
 367 *Human Factors, 54*(3), 303-315. doi: 10.1177/0018720811410057

Dumrak, J., Mostafa, A., Kamardeen, I., & Rameezdeen, R. (2013). Factors associated
 with the severity of construction accidents: the case of South Australia.
 Australasian journal of construction economics and building, 13(4), 32-49.

- 371 Farlex. (Ed.) (2018) Medical Dictionary.
- Garrett, J. W., & Teizer, J. (2009). Human Factors Analysis Classification System Relating
 to Human Error Awareness Taxonomy in Construction Safety. *Journal of Construction Engineering and Management,* 135(8), 754-763. doi:
 doi:10.1061/(ASCE)CO.1943-7862.0000034
- Graham, J. W. (2009). Missing data analysis: making it work in the real world. Annual *Review of Psychology, 60,* 549-576. doi:
 10.1146/annurev.psych.58.110405.085530
- Hair, J. F., Black, W. C., Babin, B. J., & Tatham, R. L. (2006). *Multivariant Data Analysis*.
 U.S.: Pearson Prentice Hall.
- Ho, P. H. K. (2016). Labour and skill shortages in Hong Kong's construction industry.
 Engineering, Construction and Architectural Management, 23(4), 533-550. doi:
 10.1108/ECAM-12-2014-0165
- Hong Kong Construction Association (Producer). (2017, Oct. 12, 2017). Press Release
 on the Survey Report of Labour Shortage in Construction Industry. Retrieved
 from

387 http://www.hkca.com.hk/uploads/vpr_doc/a870f010d49d97f6375b511fa8cd5d 388 8e.pdf

- Huang, X., & Hinze, J. (2003). Analysis of Construction Worker Fall Accidents. *Journal of Construction Engineering and Management, 129*(3), 262-271. doi:
 doi:10.1061/(ASCE)0733-9364(2003)129:3(262)
- Jebens, E., Mamen, A., Medbo, J. I., Knudsen, O., & Veiersted, K. B. (2015). Are elderly
 construction workers sufficiently fit for heavy manual labour? *Ergonomics, 58*(3),

394	450-462. doi: 10.1080/00140139.2014.977828
395	Lee, S., & Halpin, D. W. (2003). Predictive Tool for Estimating Accident Risk. Journal of
396	Construction Engineering and Management, 129(4), 431-436. doi:
397	doi:10.1061/(ASCE)0733-9364(2003)129:4(431)
398	Lingard, H. C., Townsend, K., Bradley, L., & Brown, K. (2008). Alternative work schedule
399	interventions in the Australian construction industry: a comparative case study
400	analysis. Construction Management and Economics, 26(10), 1101-1112. doi:
401	10.1080/01446190802389402
402	Lobo, Y. B., & Wilkinson, S. (2008). New approaches to solving the skills shortages in the
403	New Zealand construction industry. Engineering, Construction and Architectural
404	Management, 15(1), 42-53. doi: doi:10.1108/09699980810842052
405	López Arquillos, A., Rubio Romero, J. C., & Gibb, A. (2012). Analysis of construction
406	accidents in Spain, 2003-2008. Journal of Safety Research, 43(5), 381-388. doi:
407	https://doi.org/10.1016/j.jsr.2012.07.005
408	MacKenzie, S., Kilpatrick, A. R., & Akintoye, A. (2000). UK construction skills shortage
409	response strategies and an analysis of industry perceptions. Construction
410	Management and Economics, 18(7), 853-862. doi: 10.1080/014461900433131
411	McNair, S., & Flynn, M. (Producer). (2006, Nov. 9, 2017). Managing an ageing workforce
412	in construction. Retrieved from
413	http://webarchive.nationalarchives.gov.uk/±/http:/www.dwp.gov.uk/asd/asd5/
413 414	http://webarchive.nationalarchives.gov.uk/±/http:/www.dwp.gov.uk/asd/asd5/ rports2005-2006/agepos1.pdf
413 414 415	http://webarchive.nationalarchives.gov.uk/±/http:/www.dwp.gov.uk/asd/asd5/ rports2005-2006/agepos1.pdf Mitropoulos, P., Abdelhamid, T. S., & Howell, G. A. (2005). Systems Model of
413 414 415 416	http://webarchive.nationalarchives.gov.uk/±/http://www.dwp.gov.uk/asd/asd5/ rports2005-2006/agepos1.pdf Mitropoulos, P., Abdelhamid, T. S., & Howell, G. A. (2005). Systems Model of Construction Accident Causation. <i>Journal of Construction Engineering and</i>
413 414 415 416 417	http://webarchive.nationalarchives.gov.uk/±/http://www.dwp.gov.uk/asd/asd5/rports2005-2006/agepos1.pdfMitropoulos, P., Abdelhamid, T. S., & Howell, G. A. (2005). Systems Model of Construction Accident Causation. Journal of Construction Engineering and Management, 131(7), 816-825. doi:
413 414 415 416 417 418	http://webarchive.nationalarchives.gov.uk/±/http://www.dwp.gov.uk/asd/asd5/rports2005-2006/agepos1.pdfMitropoulos, P., Abdelhamid, T. S., & Howell, G. A. (2005). Systems Model of Construction Accident Causation. Journal of Construction Engineering and Management, 131(7), 816-825. doi: doi:10.1061/(ASCE)0733-9364(2005)131:7(816)
413 414 415 416 417 418 419	http://webarchive.nationalarchives.gov.uk/±/http://www.dwp.gov.uk/asd/asd5/rports2005-2006/agepos1.pdfMitropoulos, P., Abdelhamid, T. S., & Howell, G. A. (2005). Systems Model of Construction Accident Causation. Journal of Construction Engineering and Management, 131(7), 816-825. doi: doi:10.1061/(ASCE)0733-9364(2005)131:7(816)MTR Corporation (Producer). (2015, Dec. 6, 2017). MTR CORPORATION LIMITED 2015
413 414 415 416 417 418 419 420	http://webarchive.nationalarchives.gov.uk/±/http://www.dwp.gov.uk/asd/asd5/rports2005-2006/agepos1.pdfMitropoulos, P., Abdelhamid, T. S., & Howell, G. A. (2005). Systems Model of Construction Accident Causation. Journal of Construction Engineering and Management, 131(7), 816-825. doi: doi:10.1061/(ASCE)0733-9364(2005)131:7(816)MTR Corporation (Producer). (2015, Dec. 6, 2017). MTR CORPORATION LIMITED 2015 ANNUAL REPORT. Retrieved from
413 414 415 416 417 418 419 420 421	http://webarchive.nationalarchives.gov.uk/±/http://www.dwp.gov.uk/asd/asd5/rports2005-2006/agepos1.pdfMitropoulos, P., Abdelhamid, T. S., & Howell, G. A. (2005). Systems Model of Construction Accident Causation. Journal of Construction Engineering and Management, 131(7), 816-825. doi: doi:10.1061/(ASCE)0733-9364(2005)131:7(816)MTR Corporation (Producer). (2015, Dec. 6, 2017). MTR CORPORATION LIMITED 2015 ANNUAL REPORT. Retrieved from http://www.mtr.com.hk/en/corporate/investor/2015frpt.html
413 414 415 416 417 418 419 420 421 422	http://webarchive.nationalarchives.gov.uk/±/http://www.dwp.gov.uk/asd/asd5/rports2005-2006/agepos1.pdfMitropoulos, P., Abdelhamid, T. S., & Howell, G. A. (2005). Systems Model of Construction Accident Causation. Journal of Construction Engineering and Management, 131(7), 816-825. doi: doi:10.1061/(ASCE)0733-9364(2005)131:7(816)MTR Corporation (Producer). (2015, Dec. 6, 2017). MTR CORPORATION LIMITED 2015 ANNUAL REPORT. Retrieved from http://www.mtr.com.hk/en/corporate/investor/2015frpt.htmlMTR Corporation (Producer). (2016, Nov. 27, 2017). MTRC Sustainability Report.
413 414 415 416 417 418 419 420 421 422 423	http://webarchive.nationalarchives.gov.uk/±/http://www.dwp.gov.uk/asd/asd5/rports2005-2006/agepos1.pdfMitropoulos, P., Abdelhamid, T. S., & Howell, G. A. (2005). Systems Model of Construction Accident Causation. Journal of Construction Engineering and Management, 131(7), 816-825. doi: doi:10.1061/(ASCE)0733-9364(2005)131:7(816)MTR Corporation (Producer). (2015, Dec. 6, 2017). MTR CORPORATION LIMITED 2015 ANNUAL REPORT. Retrieved from http://www.mtr.com.hk/en/corporate/investor/2015frpt.htmlMTR Corporation (Producer). (2016, Nov. 27, 2017). MTRC Sustainability Report. Retrieved from
413 414 415 416 417 418 419 420 421 422 423 424	http://webarchive.nationalarchives.gov.uk/±/http:/www.dwp.gov.uk/asd/asd5/rports2005-2006/agepos1.pdfMitropoulos, P., Abdelhamid, T. S., & Howell, G. A. (2005). Systems Model of Construction Accident Causation. Journal of Construction Engineering and Management, 131(7), 816-825. doi: doi:10.1061/(ASCE)0733-9364(2005)131:7(816)MTR Corporation (Producer). (2015, Dec. 6, 2017). MTR CORPORATION LIMITED 2015 ANNUAL REPORT. Retrieved from http://www.mtr.com.hk/en/corporate/investor/2015frpt.htmlMTR Corporation (Producer). (2016, Nov. 27, 2017). MTRC Sustainability Report. Retrieved from http://www.mtr.com.hk/en/corporate/sustainability/2015rpt/pdf/mtrfull2015.p
413 414 415 416 417 418 419 420 421 422 423 424 425	http://webarchive.nationalarchives.gov.uk/±/http:/www.dwp.gov.uk/asd/asd5/rports2005-2006/agepos1.pdfMitropoulos, P., Abdelhamid, T. S., & Howell, G. A. (2005). Systems Model of Construction Accident Causation. Journal of Construction Engineering and Management, 131(7), 816-825. doi: doi:10.1061/(ASCE)0733-9364(2005)131:7(816)MTR Corporation (Producer). (2015, Dec. 6, 2017). MTR CORPORATION LIMITED 2015 ANNUAL REPORT. Retrieved from http://www.mtr.com.hk/en/corporate/investor/2015frpt.htmlMTR Corporation (Producer). (2016, Nov. 27, 2017). MTRC Sustainability Report. Retrieved from http://www.mtr.com.hk/en/corporate/sustainability/2015rpt/pdf/mtrfull2015.p df
413 414 415 416 417 418 419 420 421 422 423 424 425 426	http://webarchive.nationalarchives.gov.uk/±/http:/www.dwp.gov.uk/asd/asd5/rports2005-2006/agepos1.pdfMitropoulos, P., Abdelhamid, T. S., & Howell, G. A. (2005). Systems Model of Construction Accident Causation. Journal of Construction Engineering and Management, 131(7), 816-825. doi: doi:10.1061/(ASCE)0733-9364(2005)131:7(816)MTR Corporation (Producer). (2015, Dec. 6, 2017). MTR CORPORATION LIMITED 2015 ANNUAL REPORT. Retrieved from http://www.mtr.com.hk/en/corporate/investor/2015frpt.htmlMTR Corporation (Producer). (2016, Nov. 27, 2017). MTRC Sustainability Report. Retrieved from http://www.mtr.com.hk/en/corporate/sustainability/2015rpt/pdf/mtrfull2015.p dfNg, E. S. W., Schweitzer, L., & Lyons, S. T. (2010). New Generation, Great Expectations: A
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427	http://webarchive.nationalarchives.gov.uk/±/http://www.dwp.gov.uk/asd/asd5/rports2005-2006/agepos1.pdfMitropoulos, P., Abdelhamid, T. S., & Howell, G. A. (2005). Systems Model of Construction Accident Causation. Journal of Construction Engineering and Management, 131(7), 816-825. doi: doi:10.1061/(ASCE)0733-9364(2005)131:7(816)MTR Corporation (Producer). (2015, Dec. 6, 2017). MTR CORPORATION LIMITED 2015 ANNUAL REPORT. Retrieved from http://www.mtr.com.hk/en/corporate/investor/2015frpt.htmlMTR Corporation (Producer). (2016, Nov. 27, 2017). MTRC Sustainability Report. Retrieved from http://www.mtr.com.hk/en/corporate/sustainability/2015rpt/pdf/mtrfull2015.p dfNg, E. S. W., Schweitzer, L., & Lyons, S. T. (2010). New Generation, Great Expectations: A Field Study of the Millennial Generation. Journal of Business and Psychology,
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428	http://webarchive.nationalarchives.gov.uk/±/http://www.dwp.gov.uk/asd/asd5/rports2005-2006/agepos1.pdfMitropoulos, P., Abdelhamid, T. S., & Howell, G. A. (2005). Systems Model of Construction Accident Causation. Journal of Construction Engineering and Management, 131(7), 816-825. doi: doi:10.1061/(ASCE)0733-9364(2005)131:7(816)MTR Corporation (Producer). (2015, Dec. 6, 2017). MTR CORPORATION LIMITED 2015 ANNUAL REPORT. Retrieved from http://www.mtr.com.hk/en/corporate/investor/2015frpt.htmlMTR Corporation (Producer). (2016, Nov. 27, 2017). MTRC Sustainability Report. Retrieved from http://www.mtr.com.hk/en/corporate/sustainability/2015rpt/pdf/mtrfull2015.p dfMg, E. S. W., Schweitzer, L., & Lyons, S. T. (2010). New Generation, Great Expectations: A Field Study of the Millennial Generation. Journal of Business and Psychology, 25(2), 281-292. doi: 10.1007/s10869-010-9159-4
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429	http://webarchive.nationalarchives.gov.uk/±/http://www.dwp.gov.uk/asd/asd5/rports2005-2006/agepos1.pdfMitropoulos, P., Abdelhamid, T. S., & Howell, G. A. (2005). Systems Model of Construction Accident Causation. Journal of Construction Engineering and Management, 131(7), 816-825. doi: doi:10.1061/(ASCE)0733-9364(2005)131:7(816)MTR Corporation (Producer). (2015, Dec. 6, 2017). MTR CORPORATION LIMITED 2015 ANNUAL REPORT. Retrieved from http://www.mtr.com.hk/en/corporate/investor/2015frpt.htmlMTR Corporation (Producer). (2016, Nov. 27, 2017). MTRC Sustainability Report. Retrieved from http://www.mtr.com.hk/en/corporate/sustainability/2015rpt/pdf/mtrfull2015.p dfMg, E. S. W., Schweitzer, L., & Lyons, S. T. (2010). New Generation, Great Expectations: A Field Study of the Millennial Generation. Journal of Business and Psychology, 25(2), 281-292. doi: 10.1007/s10869-010-9159-4Peng, CY. J., & Zhu, J. (2008). Comparison of Two Approaches for Handling Missing
 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 	http://webarchive.nationalarchives.gov.uk/±/http://www.dwp.gov.uk/asd/asd5/rports2005-2006/agepos1.pdfMitropoulos, P., Abdelhamid, T. S., & Howell, G. A. (2005). Systems Model of Construction Accident Causation. Journal of Construction Engineering and Management, 131(7), 816-825. doi: doi:10.1061/(ASCE)0733-9364(2005)131:7(816)MTR Corporation (Producer). (2015, Dec. 6, 2017). MTR CORPORATION LIMITED 2015 ANNUAL REPORT. Retrieved from http://www.mtr.com.hk/en/corporate/investor/2015frpt.htmlMTR Corporation (Producer). (2016, Nov. 27, 2017). MTRC Sustainability Report. Retrieved from http://www.mtr.com.hk/en/corporate/sustainability/2015rpt/pdf/mtrfull2015.p dfNg, E. S. W., Schweitzer, L., & Lyons, S. T. (2010). New Generation, Great Expectations: A Field Study of the Millennial Generation. Journal of Business and Psychology, 25(2), 281-292. doi: 10.1007/s10869-010-9159-4Peng, CY. J., & Zhu, J. (2008). Comparison of Two Approaches for Handling Missing Covariates in Logistic Regression. Educational and Psychological Measurement,

- 432Raouf, A. (Producer). (2011, Dec. 12, 2017). Theory of Accident Causes. Encyclopedia of433OccupationalHealthandSafety.Retrievedfrom434http://www.iloencyclopaedia.org/part-viii-12633/accident-prevention/92-56-ac435cident-prevention/92-56-ac
- Real, K., Mitnick, A. D., & Maloney, W. F. (2010). More Similar than Different:
 Millennials in the U. S. Building Trades. *Journal of Business and Psychology*,
 25(2), 303-313. doi: 10.1007/s10869-010-9163-8
- 439 Reason, J. (1995). Understanding adverse events: human factors. *Quality in Health Care*,
 440 4(2), 80.
- 441
 Rozenfeld, O., Sacks, R., Rosenfeld, Y., & Baum, H. (2010). Construction Job Safety

 442
 Analysis.
 Safety
 Science,
 48(4),
 491-498.
 doi:

 443
 https://doi.org/10.1016/j.ssci.2009.12.017
- Sawacha, E., Naoum, S., & Fong, D. (1999). Factors affecting safety performance on
 construction sites. *International Journal of Project Management*, *17*(5), 309-315.
 doi: <u>https://doi.org/10.1016/S0263-7863(98)00042-8</u>
- Schwatka, N. V., Butler, L. M., & Rosecrance, J. R. (2012). An aging workforce and injury
 in the construction industry. *Epidemiologic Reviews, 34*, 156-167. doi:
 10.1093/epirev/mxr020
- Soltanzadeh, A., Mohammadfam, I., Moghimbeigi, A., & Akbarzadeh, M. (2016).
 Analysis of occupational accidents induced human injuries: A case study in
 construction industries and sites. *Journal of Civil Engineering and Construction*

453 *Technology*, 7(1), 1-7. doi: 10.5897/JCECT2015.0379

- 454 Spee, T., Timmerman, J. G., Rühl, R., Kersting, K., Heederik, D. J. J., & Smit, L. A. M.
 455 (2016). Determinants of epoxy allergy in the construction industry: a case–
 456 control study. *Contact Dermatitis*, 74(5), 259-266. doi: 10.1111/cod.12529
- Tao, L., Wu, C., Chiang, Y.-H., Wong, F. K.-W., & Liang, S. (2017). Generational
 Perceptions of Freedom-Related Work Values: Hong Kong's Implementation of a
 No-Saturday-Site-Work Policy in Construction. *Journal of Construction Engineering and Management, 143*(7), 06017002. doi:
 doi:10.1061/(ASCE)CO.1943-7862.0001319
- The Centre for Construction Research and Training (Producer). (2014, Nov. 9, 2017).
 Worker Age in Construction and Other Industries. Retrieved from
 https://www.cpwr.com/sites/default/files/publications/CB%20page%2014.pdf
- 465The Government of Hong Kong SAR (Producer). (2015, Oct. 12, 2017). Report on466manpowerprojectionto2018.Retrievedfrom467http://www.lwb.gov.hk/report/mp2022_en.pdf
- 468Turner and Townsend (Producer). (2017, Nov. 9, 2017). International construction469marketsurvey.Retrievedfrom

- 470 <u>http://www.turnerandtownsend.com/media/2412/international-construction-</u>
 471 market-survey-2017-final.pdf
- Wagstaff, A. S., & Lie, J.-A. S. (2011). Shift and night work and long working hours a
 systematic review of safety implications. *Scandinavian Journal of Work*, *Environment & Health*, 37(3), 173-185.
- Yau, K. K. (2004). Risk factors affecting the severity of single vehicle traffic accidents in
 Hong Kong. Accident Analysis and Prevention, 36(3), 333-340. doi:
 10.1016/s0001-4575(03)00012-5
- Yi, W., & Chan, A. P. C. (2013). Optimizing work–rest schedule for construction rebar
 workers in hot and humid environment. *Building and Environment, 61*(Supplement C), 104-113. doi:
 <u>https://doi.org/10.1016/j.buildenv.2012.12.012</u>
- Yi, W., & Chan, A. P. C. (2014). Optimal Work Pattern for Construction Workers in Hot
 Weather: A Case Study in Hong Kong. *Journal of Computing in Civil Engineering*,
 29(5).