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Abstract— Optical communications based on Nonlinear Fourier 

Transform (NFT) and digital coherent transceivers are proposed 

as a new theoretical framework for communications over the 

nonlinear optical fiber channel. For discrete eigenvalue 

transmissions (or soliton transmissions), one seeks to encode as 

much information as possible in each degree of freedom and 

shorten the distance between neighboring pulses to increase the 

overall bit rate. However, such attempts would result in nonlinear 

inter-symbol interference (ISI) across multiple symbols and 

significantly degrade transmission performance. In this paper, we 

investigated joint modulation of discrete eigenvalue 𝝀  and 𝒃 -

coefficents 𝒃(𝝀)  and developed a suite of multi-symbol digital 

signal processing (DSP) techniques to exploit the statistical 

correlations between the continuous and discrete eigenvalues and 

𝒃 -coefficents to mitigate nonlinear distortions and improve 

detection performance. This include 1) jointly modulating both 𝝀 

and 𝒃(𝝀)  of pairs of 1-solitons so that the mean value of 𝝀  for 

solitons with odd index is 𝜶 + 𝟏𝒊 while it is −𝜶 + 𝟏𝒊 for solitons 

with even index. This is followed by decoding superimposed 

received waveforms as 2-solitons with twice the INFT processing 

time window; 2) linear minimum mean squared error (LMMSE) 

estimation filters to mitigate noise in discrete eigenvalue 𝝀 using 

continuous eigenvalue; 3) multi-symbol (MS) LMMSE filters to 

mitigate noise in 𝒃(𝝀)  using discrete eigenvalue noise and 4) 

approximate the received signal distributions of 𝝀  and 𝒃(𝝀)  as 

Gaussians with mean and covariance matrices obtained 

empirically from experiments followed by Maximum Likelihood 

(ML) detection for each symbol or multi-symbol (MS)-joint ML

detection of 2-soliton signals.  We jointly modulate 𝝀 with 16-QAM

and 𝒃(𝝀) with 16-APSK and a record single-polarization discrete

eigenvalue transmission of 64 Gb/s (net 54 Gb/s) over 1200 km is

experimentally demonstrated with the proposed multi-symbol

DSP algorithms.1

Index Terms—optical communications, nonlinear optics 

I. INTRODUCTION

n long-haul optical fiber communications, Kerr nonlinearity 

induces complicated interactions between signal and noise and 
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become the fundamental bottleneck to transmission speeds. 

Recently, Nonlinear Fourier transform (NFT) and nonlinear 

frequency division multiplexing (NFDM) framework 

decomposes the fiber channel characterized by the Nonlinear 

Schrodinger Equation (NLSE) into parallel channels and 

decomposes the signal into nonlinear spectral components, 

which can be obtained by solving the Zakharov-Shabat problem 

from the Lax pair operators corresponding to the NLSE [1]. The 

NFT/inverse-NFT (INFT) operators essentially transform the 

signal between time-domain and nonlinear frequency domain. 

In principle, one can encode information on nonlinear spectral 

components and they can be multiplexed together without 

mutual interference along fiber propagation. The nonlinear 

spectrum consists of discrete eigenvalues (or discrete spectrum) 

and continuous spectrum. From a communications perspective, 

continuous spectrum modulation resembles orthogonal 

frequency division multiplexing (OFDM) in linear systems 

while discrete eigenvalue modulation can be regarded as 

encoding information on physical parameters of (multi-) soliton 

pulses. Discrete eigenvalue modulation has been 

experimentally demonstrated in direct detection systems in the 

1990s [2]. In recent years, coherent detection and advanced 

digital signal processing (DSP) techniques, or digital coherent 

transceivers, help revived NFT transmission research [3-6]. 

Since our first NFT transmission demonstration with 3 and 4 

eigenvalues [7], there have been many promising experimental 

demonstrations of continuous-spectrum modulation [8-11], 

discrete-eigenvalue modulation [12-15] and both [16, 17].  

In current discrete eigenvalue modulation systems, solitons 

are generated and processed in separated time windows. 

Neighboring solitons require certain guard time to prevent 

mutual interactions during propagation as small overlapping 

can result in significant distortions especially for high baud-rate 

and long-haul transmissions. However, larger guard time will 

reduce overall baud rate hence bit rate. To partially address this 

problem, we proposed [15] to encode information onto the 
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phase and amplitude of the b-coefficient 𝑏(𝜆) and design the 

eigenvalues of neighboring soliton pairs 𝜆 = ±𝛼 + 𝑖𝛽 to have 

opposite signs in their real part as shown in Fig. 1 . In this case, 

solitons will walk toward each other, collide and then walk pass 

each other during transmission. At a particular distance after 

such collision, pairs of neighboring solitons will essentially 

swap their positions with each other and one can detect them as 

a regular received soliton pulse train. Despite the soliton 

interactions, we showed theoretically and experimentally that 

such encoding and decoding scheme significantly reduces noise 

and distortions compared to traditional non-interacting soliton 

pulse trains with the same eigenvalue across all soliton pulses. 

This can be viewed as a hybrid TDM/WDM in the Nonlinear 

frequency domain. This collision-separation process can be 

repeated and pairs of solitons will swap positions again at some 

further distances.  

 
Fig. 1. For pulse train at transmitter, odd- and even-index solitons have 𝜆 =
±𝛼 + 𝛽𝑗   respectively. Arrows indicate walk-off direction of each soliton 

during propagation. 

  A limitation of our previous scheme is that for a given 𝛼, 

there is only a few specific distances ℓ that solitons interacted 

during propagation but well-separated at receiver for 1-soliton 

pulse detection. Furthermore, the soliton interactions induce 

considerable noise correlations between different spectral 

components and across neighboring solitons. In this connection, 

we hereby propose a few multi-symbol DSP algorithms to 

exploit these statistical correlation structures to further improve 

detection performance. In particular, we propose to: 

1. jointly modulate 𝜆 and 𝑏(𝜆) of pairs of 1-solitons with 

the average eigenvalue 𝐄[𝜆] = ±𝛼 + 1𝑖 for odd- and 

even-indexed solitons across the transmitted pulse 

train. Here, 𝐄[⋅] denotes the mean operator;  

2. generate 1-solitons with symbol period (INFT 

processing time window) T but decode superimposed 

received waveforms as 2-solitons over a 2T time 

interval (NFT processing time window); 

3. develop a linear minimum mean-squared estimation 

(LMMSE) filter to estimate and compensate the 

discrete eigenvalue noise Δ𝜆  using the a-coefficient 

𝑎(𝜆) of the continuous spectrum (CS);  

4. develop a multi-symbol (MS)-LMMSE filter to 

estimate and compensate the noise of 𝑏(𝜆)  using 

discrete eigenvalue noise Δ𝜆  across neighboring 

solitons;  

5. approximate the received signal distributions of 𝜆 and 

𝑏(𝜆)  as Gaussians with joint mean and covariance 

matrices of each signal point obtained empirically 

from experiments. This is followed by Maximum 

Likelihood (ML) detection of 𝜆  and 𝑏(𝜆)  for each 

symbol or multi-symbol (MS)-ML detection of 𝜆 and 

𝑏(𝜆) for 2-soliton signals.  

  By incorporating all the DSP techniques, we experimentally 

demonstrated 64 Gb/s (net 54 Gb/s) transmission over 1200 km 

using 8 GBaud solitons with joint 16-Quadrature Amplitude 

Modulation (QAM) modulation on 𝜆 and 16-Amplitude Phase 

Shift Keying (APSK) modulation on 𝑏(𝜆). To the best of our 

knowledge, this is a new bit-rate-distance record for single-

polarization discrete eigenvalue transmissions and the multi-

symbol DSP framework provides a new direction for DSP 

research to further improve NFT transmission performance. 

  The rest of the paper is organized as follows. Section II 

provides the background of NFT and describes the various 

proposed noise reduction filters and detection methods. Section 

III describes the experimental setup and details the transmission 

results. Section IV concludes the paper.    

II. NONLINEAR FOURIER TRANSFORM AND MULTIPLE-SYMBOL 

DSP 

A. Nonlinear Fourier Transform and Nonlinear Frequency 

Division Multiplexing (NFDM) 

Without fiber loss and high order nonlinearity, optical signals 

propagating in optical fiber is governed by nonlinear 

Schrodinger Equation (NLSE): 

     𝑗
𝜕

𝜕𝑧
𝐴(𝑡, 𝑧) −

𝛽2

2

𝜕2

𝜕𝑡2
𝐴(𝑡, 𝑧) + 𝛾|𝐴(𝑡, 𝑧)|2𝐴(𝑡, 𝑧) = 0                                                           

                                                                                            (1) 

where  𝛽2, 𝛾  denotes group-velocity dispersion (GVD) 

coefficent and fiber nonlinearity coefficient. The variables 

𝑡, 𝑧, 𝐴 are physical time, distance and signal waveform. Those 

variables can be normalized as 

             ℓ =
𝑧

𝐿𝐷
, 𝜏 =

𝑡

𝑇0
, 𝐿𝐷 =

2𝑇0
2

|𝛽2|
, 𝑢 = √𝛾𝐿𝐷𝐴                         (2)            

where 𝜏, ℓ, 𝑢 are normalized time, distance and signal envelope 

( 𝑇0  is a free normalization parameter). The NFT of a 

normalized signal  𝑢(𝜏) (𝜏 ∈ [𝑇1, 𝑇2 ]) is defined by solving the 

differential system (Zakharov-Shabat system) 

                         
𝜕𝑣

𝜕𝜏
= (

−𝑗𝜆 𝑢(𝜏)

−𝑢∗(𝜏) 𝑗𝜆
)                                (3)                                

            𝑣(𝑇1, 𝜆) = (
𝑣1(𝑇1, 𝜆)

𝑣2(𝑇1, 𝜆)
) = (

1
0
) 𝑒𝑥𝑝 (−𝑗𝜆𝑇1)            (4)                            

where 𝜆  and 𝑣(𝜏, 𝜆)  are eigenvalue and eigenvector. The 

nonlinear spectral coefficients are defined as 

                          𝑎(𝜆) = 𝑣1(𝑇2, 𝜆) 𝑒𝑥𝑝(𝑗𝜆𝑇2)  
                          𝑏(𝜆) = 𝑣2(𝑇2, 𝜆) 𝑒𝑥𝑝(−𝑗𝜆𝑇2)                   (5) 

The nonlinear spectrum of 𝑢(𝜏, ℓ) is made of 1) continuous 

spectrum 𝑞(𝜆) = 𝑏(𝜆)/𝑎(𝜆)  for 𝜆 ∈ ℝ . And 2) discrete 

spectrum 𝑞(𝜆) = 𝑏(𝜆) 𝑎′(𝜆)⁄  where 𝑎(𝜆) = 0  for 𝜆 ∈ ℂ+ . 

(The case when 𝑎(𝜆)  have multiple zeros at a particular 

eigenvalue are not considered in this paper and more details can 

be found in [18]). 

A key property of NFT signals is that nonlinear spectrum 

propagates without mutual interference and they evolve with 

distance as   

                      𝑞(𝜆, ℓ) = 𝑞(𝜆, 0)𝑒𝑥𝑝(4𝑗𝜆2ℓ)                (6) 

with ℓ  being the normalized distance. Similar to OFDM in 

linear systems, NFDM suggests that independent information 

be encoded on different parts of the nonlinear spectra so that 

they will not mutually interfere along propagation and at the 

receiver. Improving efficiency and accuracy of NFT [19-22] 

… …
−𝜶+  𝒊 −𝜶 +  𝒊𝜶 +  𝒊 𝜶 +  𝒊

1 2 3 4
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and INFT [23-25] algorithms are important topics in current 

NFDM research. Meanwhile, encoding information in 𝑏(𝜆) for 

discrete and continuous spectra is proposed to reduce noise and 

control signal time-duration [26, 27]. LMMSE algorithm is 

proposed to reduce noise on 𝑏(𝜆) and 𝜆 [26, 28, 29]. Nonlinear 

Volterra filters are also studied [30]. Periodic NFT/INFT is 

proposed to mitigate inter symbol interference [31, 32]. New 

encoding and decoding schemes in nonlinear spectrum have 

been studied [26, 33, 34]. Some receivers are also proposed to 

detect NFDM signals instead of NFT. Detecting signals by 

similarity between received and transmitted waveform is 

studied [35, 36]. Several neural networks receivers are also 

exploited in NFDM signal detection [37-40] and end-to-end 

learning demo based on discrete spectrum modulation is also 

studied [41]. In our previous paper [26], we showed that 

amplitude and phase noise of 𝑏 -coefficient  𝛥|𝑏(𝜆)| and 

𝛥∠𝑏(𝜆)   is correlated to eigenvalue noise 𝛥𝜆 and an LMMSE 

estimator was proposed to estimate and compensate noise on 

𝑏(𝜆) based on 𝚫𝜆 = [𝕽{𝛥𝜆} 𝕴{𝛥𝜆}] . Here, ℜ[⋅]  and ℑ[⋅] 
denote the real and imaginary part. Specifically, we show that 

the LMMSE estimator  

𝒄𝒂 = 𝐄(𝛥|𝑏(𝜆)|𝚫𝜆)𝑐𝑜𝑣
−1(𝚫𝜆

T𝚫𝜆)        

𝒄𝒑 = 𝐄(𝛥∠𝑏(𝜆)𝚫𝜆)𝑐𝑜𝑣
−1(𝚫𝜆

T𝚫𝜆)      (7) 

minimizes the mean squared error 𝐄[(𝛥|𝑏(𝜆)| − 𝒄𝒂𝚫𝜆)
2]  and 

𝐄[(𝛥∠𝑏(𝜆) − 𝒄𝒑𝚫𝜆)
2
] where 𝐄[⋅]  and 𝑐𝑜𝑣−1(⋅)  denotes 

expectation and inverse of covariance matrix respectively. In 

the following, we will detail a few new DSP techniques that 

further leverage the statistical properties across neighboring 

solitonic pulses in discrete eigenvalue transmissions. 

B. 1-soliton generation and 2-soliton detection 

Consider a soliton pulse train where the 𝑖𝑡ℎ  information 

symbol is drawn from an alphabet 𝑚𝑖,𝜆 ∈ {1,2, … ,𝑀𝜆}  and 

𝑚𝑖,𝑏 ∈ {1,2, … ,𝑀𝑏} are encoded 𝜆 and 𝑏(𝜆) respectively. Each 

symbol carries 𝑙𝑜𝑔2(𝑀𝜆 ⋅ 𝑀𝑏) bits and 𝑚𝑖,𝜆  and 𝑚𝑖,𝑏  uniquely 

maps to a point in a signal constellation through mapping 

functions 𝜆𝑖 = 𝜓𝜆(𝑚𝑖,𝜆) and 𝑏𝑖(𝜆𝑖) = 𝜓𝑏(𝑚𝑖,𝑏). It should be 

noted that in our paper, the modulation, detection and DSP for 

𝑏(𝜆) is performed in log scale. We have chosen the modulation 

format to be QAM and APSK for 𝜆  and 𝑏(𝜆)  respectively. 

Furthermore, we will design the mean of ℜ{𝜆𝑖} and ℜ{𝜆𝑖+1} to 

be 𝛼 or −𝛼 so that pairs of neighboring pulses will walk past 

each other along propagation. The 𝑖𝑡ℎ soliton waveform is then 

calculated through the INFT operation. Typical soliton 

transmission systems generate and process individual 

waveform for a given {𝜆𝑖 , 𝑏𝑖(𝜆𝑖)}  with separated non-

overlapping time intervals [(𝑖 − 1)𝑇, 𝑖𝑇] where 𝑇 is the symbol 

period in normalized time. At the receiver, we denote 

{�̃�𝑖, �̃�𝑖(�̃�𝑖)} , {𝜆̅𝑖 , �̅�𝑖(�̂�𝑖)}  and {�̂�𝑖 , �̂�𝑖(�̂�𝑖)} to be the eigenvalue 

and 𝑏-coefficient of the received waveform before and after 

additional DSP and the final detected eigenvalue and 𝑏 -

coefficient respectively. For the rest of the paper, we will denote 

the corresponding eigenvalue noise as Δ�̃�𝑖 = �̃�𝑖 − 𝜆𝑖  and Δ𝜆̅𝑖 =

𝜆̅𝑖 − 𝜆𝑖. 
In our previous scheme, 1-solitons are generated with 

eigenvalues 𝜆 = ±𝛼 + 1𝑖  for odd and even indexed solitons 

respectively (Fig. 2 (a)) and they periodically collided during 

transmission. For a given distance ℓ, 𝛼  need to be carefully 

chosen so that solitons will be well-separated at receiver even 

though they have interacted during propagation. To relax this 

constraint between ℓ and 𝛼, we note that when solitons collide 

with each other, the super-imposed waveforms are still well-

contained in a time window with duration 2T and well-

separated from neighboring superimposed waveforms for any ℓ 

and 𝛼. Examples for ℓ = 3,4 and 𝛼 = 0.52 are shown in Fig. 2 

(b) and (c). Therefore, one can always divide the received signal 

into blocks of duration 2T and calculate the NFT to obtain pairs 

of eigenvalues and b-coefficients 

{�̃�𝑖, �̃�𝑖(�̃�𝑖), {�̃�𝑖+1, �̃�𝑖+1(�̃�𝑖+1)} together. Consequently, the 

transmitter generates 1-soliton signals while the receiver detects 

and processes 2-soliton signals. 

 

 
Fig. 2 (a) At the transmitter, individual 1-solitons are generated in separate non-
overlapping time windows with duration T. The eigenvalue of the odd- and 

even-index solitons are 𝛼 + 1𝑖 and −𝛼 + 1𝑖 respectively so that neighboring 

solitons have opposite group velocity and will walk towards each other. At 

distance of (b) ℓ = 3 and (c) ℓ = 4, pairs of solitons interact with each other 

but the superimposed waveforms are always well-contained in time windows 

with duration 2T. The received waveform is therefore divided into 2T intervals 
for NFT processing in our study. 

C. LMMSE estimation of discrete eigenvalue from continuous 

spectrum (CS) 

It has been shown that the noise in continuous spectrum (CS) 

of a signal is statistically correlated to the discrete eigenvalue 

noise Δ�̃�𝑖 = �̃�𝑖 − 𝜆𝑖  in the discrete spectrum [28]. Since we are 

studying discrete eigenvalue transmission where no 

… …

…
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information is encoded in the CS, we therefore propose to use 

another set of LMMSE filters 𝒄𝒄 to estimate and compensate 

ℜ{Δ�̃�𝑖} and ℑ{Δ�̃�𝑖} based on CS. Using our experimental data, 

we calculated and showed in Fig. 5 that correlations between 

Δ�̃�𝑖 and CS is mainly between a-coefficient  𝑎𝑖(𝜆) rather than 

𝑏-coefficient 𝑏𝑖(𝜆) or q-coefficient  𝑞𝑖(𝜆) (Note: we dropped 

the subscript 𝑖  in 𝜆  for CS to reflect that no information is 

encoded in the CS in our study). Hence, we only use 𝑎𝑖(𝜆) to 

form an LMMSE estimate of Δ�̃�𝑖. In our experiments, training 

symbols are used to calculate the corresponding means and 

covariance matrices to determine the LMMSE filter analogous 

to Eqn. (7). We also separate signals into two groups with 

𝐄[ℜ{𝜆𝑖}] = 𝛼 or −𝛼 and train a separate LMMSE estimator for 

each group. More detailed results and discussions are described 

in section IV and Fig. 5. 

D. Multi-Symbol (MS)-LMMSE estimation of b-coefficient 

In our proposed setup of 1-solition transmission and 2-soliton 

detection, neighboring solitons will interact along propagation 

and after eigenvalue detection, the noise and distortions in b-

coefficients will exhibit correlations across multiple 2T time 

windows. To take advantage of these correlations, we propose 

a multi-symbol (MS) version of LMMSE estimators of the b-

coefficient amplitude noise Δ|�̃�𝑖(�̂�𝑖)|  and phase noise 

Δ∠�̃�𝑖(�̂�𝑖)  in which the inputs are a sliding window of 

eigenvalue noise Δ�̃�𝑖−3, Δ�̃�𝑖−2, ⋯Δ�̃�𝑖+3, Δ�̃�𝑖+4 . Training 

symbols will be used to calculate the means and covariance 

matrices and derive the LMMSE estimator analogous to Eqn. 

(7). Note that as we also modulate 𝜆𝑖 in our study, we will train 

separate LMMSE estimators for each possible 𝜆𝑖, resulting in 

2 × 𝑀𝜆  filters for Δ|�̃�𝑖(�̂�𝑖)|  and another 2 × 𝑀𝜆  filters for 

Δ∠�̃�𝑖(�̂�𝑖).  

E. Approximate Maximum Likelihood (ML) and MS-ML 

discrete eigenvalue and b-coefficient detection 

Practical NFT transmissions suffer from fiber loss, amplified 

spontaneous emission (ASE) noise from optical amplifiers 

among other non-idealities. Fiber loss and lumped 

amplification are simple scalar effect in linear systems, but they 

become complicated and signal-depended distortions in the 

nonlinear spectrum. Also, ASE noise are no longer additive 

white Gaussian in nonlinear spectrum. The effects collectively 

result in complicated signal-dependent noise with memory that 

are correlated across the nonlinear spectrum [15]. Therefore, 

symbol detection based on simple Euclidian distance metric is 

clearly suboptimal. In principle, the optimal symbol detection 

strategy is maximum likelihood (ML) detection which require 

conditional probability density functions (pdf) of received 

signals given each transmitted symbol 𝑃(𝜆̅𝑖|𝜆𝑖)  and 

𝑃(�̅�𝑖(�̂�𝑖)|𝑏𝑖(𝜆𝑖)) . As these pdfs are not available in full 

analytical forms at present, we will approximate ML detection 

by 1) separating 𝜆  and 𝑏(𝜆)  detection and 2) approximate 

𝑃(𝜆̅𝑖|𝜆𝑖) and 𝑃(�̅�𝑖(�̂�𝑖)|𝑏𝑖(𝜆𝑖)) by a Gaussian distribution with 

the same mean and covariance matrix so that the ML estimates 

of {𝜆𝑖 , 𝑏𝑖(𝜆𝑖)} are given by  

         �̂�𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑘∈{1,⋯𝑀𝜆}

    −(𝜆̅𝑖 − 𝜇𝜆,𝑘)
𝐻
𝛴𝜆,𝑘
−1(𝜆̅𝑖 − 𝜇𝜆,𝑘)         (8) 

  �̂�𝑖(�̂�𝑖) = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑟∈{1,⋯𝑀𝑏}

    −(�̅�𝑖 − 𝜇𝑏,𝑟)
𝐻
𝛴𝑏,𝑟
−1(�̅�𝑖 − 𝜇𝑏,𝑟)        (9) 

where 𝜇𝜆,𝑘, 𝛴𝜆,𝑘 , 𝜇𝑏,𝑟 , 𝛴𝑏,𝑟  are the means and covariance 

matrices of 𝜆̅𝑖|𝜆𝑖 = 𝜓𝜆(𝑘)  and �̅�𝑖(�̂�𝑖)|𝑏𝑖(𝜆𝑖) = 𝜓𝑏(𝑟) 

respectively. In our experiments, they are empirically 

calculated from training symbols which can simultaneously be 

used to train the preceding LMMSE estimators as well.  

 Furthermore, in view of the proposed 2-soliton detection 

scheme, it is expected that noise in {𝜆̅𝑖 , �̅�𝑖(�̂�𝑖), 𝜆̅𝑖+1, �̅�𝑖+1(�̂�𝑖+1)} 

are highly correlated because they are grouped together at the 

receiver and affected by the same ASE noise and other 

distortions in the same 2T time window. Therefore, we also 

study multi-symbol (MS)-ML detection between pairs of 

overlapping soliton pulses. In this case, the ML estimates are 

given by 
 

{�̂�𝑖, �̂�𝑖+1} 

= 𝑎𝑟𝑔𝑚𝑎𝑥
𝑘,𝑛∈{1,⋯𝑀𝜆}

2
  𝑃 (𝜆̅𝑖, 𝜆̅𝑖+1|𝜆𝑖 = 𝜓𝜆(𝑘), 𝜆𝑖+1 = 𝜓𝜆(𝑛))   (10) 

 

{�̂�𝑖(�̂�𝑖), �̂�𝑖+1(�̂�𝑖+1)} 

    = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑟,𝑠∈{1,⋯𝑀𝑏}

2
  𝑃 (�̅�𝑖 , �̅�𝑖+1|𝑏𝑖 = 𝜓𝑏(𝑟), 𝑏𝑖+1 = 𝜓𝑏(𝑠))    (11)                      

and the 𝑀𝜆
2 +𝑀𝑏

2  possible pdfs will be approximated by 

multi-variate Gaussians with the same mean and covariance 

matrices. In principle, we can extend this approach to joint 

detection of 3 or more symbols in neighboring NFT time 

windows but to enumerate all possible combinations of the 

symbol values and  ensure accurate estimates of mean and 

covariance matrices for each combination, the amount of 

training symbols increase exponentially. Therefore, we only 

study approximate MS-ML detection of {𝜆̅𝑖 , 𝜆̅𝑖+1}  and 

{�̅�𝑖(�̂�𝑖), �̅�𝑖+1(�̂�𝑖+1)}  within the same 2T NFT time window. 

Fig. 3 summarize the overall DSP flow proposed in our study.  

 

 
Fig. 3. Proposed multi-symbol DSP flow for discrete-eigenvalue transmissions. 

Firstly, the 𝑎 -coefficient of the continuous spectrum is used to reduce the 

eigenvalue noise Δ𝜆�̃� = 𝜆�̃� − 𝜆𝑖  through an LMMSE estimator followed by 

eigenvalue detection. The detected eigenvalue �̂�𝑖 and noise Δ�̃�𝑖 are then used in 

LMMSE estimators to reduce the noise in b-coefficient followed by detection. 

The detection method can be simple Euclidean-based detection, approximated 

ML or MS-ML detection.  

III. EXPERIMENTAL SETUP 

We conducted experiment with offline signal processing to 

investigate the practical performance of various DSP 

algorithms proposed in our study. Fig. 4 (a) shows the 

experimental setup and offline DSP structure. We jointly 

modulate 𝜆  and 𝑏(𝜆)  with 16-QAM and 16-APSK format 

NFT on 2T 
time-window

LMMSE estimate of 
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and obtain 𝚫�̃�
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waveform

�̃�, 𝒂 𝝀 �̅�, �̃�

�̃� �̃� 𝒃 �̂�

�̂�

𝒃 �̂�

�̂�, 𝚫�̃�
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respectively and the constellation shapes are shown in Fig. 4 

(b). Gray coding is separately applied to the constellation points 

in 𝜆 and 𝑏(𝜆). As shown in Fig. 2 (a), odd- and even-indexed 

solitons are generated with center of ℜ(𝜆) = 𝛼  and −𝛼 

respectively. Because the normalization parameter 𝑇0  and 

eigenvalue imaginary part is similar to our previous study [15], 

we chose the optimal value of 𝛼 in that work (𝛼 = 0.8) in our 

current study. In 𝑏 -coefficient constellation, the magnitude 

corresponds to time position of soliton pulses and hence 𝑑 

determine the timing difference between solitons. For 1-soliton 

pulse, setting |𝑏(𝜆)| = 1 locates the soliton at the center of the 

NFT time window and scaling |𝑏(𝜆)|  with exp(2ℑ(𝜆)𝛥𝑇) 
leads to a time drift of Δ𝑇 [6, 42]. In our modulation scheme, 

we set |𝑏(𝜆)|  in the two rings of 16-APSK so that their 

corresponding time-waveform are shifted by ±Δ𝑇/2 from the 

center of the time window. Therefore, |𝑏(𝜆)| of two rings is set 

as exp(±ℑ(𝜆)𝛥𝑇)  which depends on 𝜆 . Increasing Δ𝑇  will 

better distinguish the two types of soliton pulses in the time-

domain but causes more overlapping with neighboring solitons 

and produce more distortions on the phase of 𝑏(𝜆). In our study, 

we experimentally optimize Δ𝑇 to be 0.4 where the empirical 

symbol error ratios resulting from amplitude and phase noise of 

𝑏(𝜆)  are similar. For 𝜆  constellation, we showed in our 

previous work [26] that noise variance on real and imaginary 

part of 𝜆  are different for 1-soliton. Consequently, we also 

optimized the horizontal and vertical distances 𝐿1 and 𝐿2 of the 

𝜆 constellation to be 0.03 and 0.052, taking into account the 

trade-offs between separation of signal points in the 𝜆-plane 

and inducing signal bandwidth expansion and nonlinear 

distortions to neighboring symbols i.e. nonlinear inter-symbol 

interference (ISI).  

Pre-adaptation as [43] was applied to pre-compensate the 

transmitter component imperfections. For each jointly 

modulated symbol, we performed the INFT to calculate the 

corresponding time-domain waveform which are then loaded 

onto the arbitrary waveform generator (Keysight M8194A, 

120GSa/s, 45 GHz) for electrical waveform generation. The 

waveform then goes into the I/Q modulator (Fujitsu 7962EP, 

28GHz) to modulate the optical carrier, which are then 

amplified and launched into fiber. The loop consists of 1 span 

50-km NZDSF (Dispersion: ~4e-6 s/m, loss: ~0.2 dB/km) and 

lumped amplified by an EDFA. A flat-top optical filter with a 

3-dB bandwidth of 1 nm was used after the loop EDFA to 

suppress out-of-band amplified spontaneous emission (ASE) 

noise. Both the transmitter laser and local oscillator were from 

the same fiber laser source with very low laser phase noise 

(NKT Koheras ADJUSTIK Fiber laser with linewidth < 

100Hz). After alignment by a polarization controller, the 

received signal was then coherently detected and sampled by a 

digital storage scope (Keysight, DSA-X-96204Q, 80 GSa/s, 33 

GHz) and processed offline. The sampled signal passes through 

a series of digital signal processing (DSP) structure shown in 

Fig. 4 (a). After timing synchronization and frequency offset 

compensation, the received signal are separated into blocks of 

2T described in Fig. 2. NFT processing is then applied to 

recover the nonlinear spectrum followed by the series of multi-

symbol DSP discussed above. For detection, we first equalize 

the channel response through multiplying �̃�(�̂�)  by 

exp(−4𝑗�̂�2ℓ) . Since fiber loss and other unaccounted 

experimental factors breaks the integrability of the NLSE and 

effectively distorts the nonlinear channel response, additional 

training symbols are used to adjust the equalization term so that 

the distributions of �̃�(�̂�) after equalization for different �̂� are as 

consistent as possible before MS-LMMSE estimation of 

Δ�̃�𝑖(�̂�𝑖) and (MS)-ML detection. 

Fig. 4 (a) Experiment setup for discrete-eigenvalue transmission using multi-symbol DSP. (b) The 16-QAM constellation for 𝜆 modulation and 16-APSK 

𝑏(𝜆) modulation. Δ𝑇 is optimized to be 0.4 in experiment while 𝐿1 and 𝐿2 are 0.03 and 0.052.  
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Fig. 5 (a, b) Empirical correlation coefficients between {ℜ(Δ�̃�𝑖), ℑ(Δ�̃�𝑖)} and 

CS coefficients {𝑞𝑖(𝜆), 𝑎𝑖(𝜆), 𝑏𝑖(𝜆)} for 6.31 GBaud transmission over 1000 

km, showing large correlation between Δ�̃�𝑖 and 𝑎𝑖(𝜆) compared to 𝑞𝑖(𝜆) and 

𝑏𝑖(𝜆). (c, d) Empirical correlation coefficients between {ℜ(Δ�̃�𝑖), ℑ(Δ�̃�𝑖)} and 

{𝑞𝑖±1(𝜆), 𝑎𝑖±1(𝜆), 𝑏𝑖±1(𝜆)} of signals in neighboring time windows. 

IV. RESULTS AND DISCUSSIONS 

A. Characterization of correlations between different 

parameters and across neighboring symbols 

We investigated the proposed multi-symbol DSP scheme 

over 1000 km NFT transmission and the empirical correlation 

coefficients between received discrete eigenvalue noise Δ�̃�𝑖 
and CS coefficients are shown in Fig. 5 for 𝜆 ∈ [−10,10] for 

6.31 GBaud transmission over 1000 km. 4096 pairs of solitons 

are used to calculate the correlation coefficients. It can be seen 

from Fig. 5 (a, b) that 𝑎𝑖(𝜆) is much more correlated to Δ�̃�𝑖 
compared with 𝑞𝑖(𝜆) and 𝑏𝑖(𝜆). Moreover, Fig. 5 (c, d) show 

that such a large correlation does not extend across neighboring 

signals where the correlation between  Δ�̃�𝑖  and any CS 

coefficients of neighboring signals is quite low. This suggests 

that a multi-symbol version of LMMSE filter on 𝑎𝑖(𝜆) is not 

necessary. Consequently, we only developed an LMMSE 

estimate of Δ�̃�𝑖  using 𝑎𝑖(𝜆)  with 256 points uniformly 

distributed in 𝜆 ∈ [−10,10]. 

 
Fig. 6 Empirical correlation coefficients between the real and imaginary part of 

Δ�̃�𝑖+𝑘  and the amplitude and phase noise of b-coefficient Δ�̃�𝑖(�̂�𝑖)  for 6.31 

GBaud transmission over 1000 km.  

After 𝜆 detection with the help of LMMSE filter using 𝑎𝑖(𝜆), 
Fig. 6 shows the correlation coefficients between the real and 

imaginary part of Δ�̃�𝑖+𝑘 and the amplitude and phase noise of 

b-coefficient Δ�̃�𝑖(�̂�𝑖)  for 6.31GBaud transmission over 1000 

km. 4096 pairs of solitons are used to calculate the correlation 

coefficients. For this transmission distance, the solitons have 

collided once with their neighbors and therefore a strong 

correlation between Δ�̃�𝑖(�̂�𝑖) and Δ�̃�𝑖±1 is observed. In addition, 

the empirical correlations extend towards three neighboring 

time windows (Δ�̃�𝑖−3  to Δ�̃�𝑖+4 ) before it become negligible. 

Therefore, we study a MS-LMMSE filter incorporating 

Δ�̃�𝑖−3, Δ�̃�𝑖−2, ⋯Δ�̃�𝑖+3, Δ�̃�𝑖+4  to minimize the phase and 

amplitude noise of Δ�̃�𝑖(�̂�𝑖).   

 
Fig. 7. Empirical received signal distributions (contour plots) of (a) �̅�𝑖 and (b) 

�̅�𝑖(�̂�𝑖) for 6.31 GBaud transmission over 1000 km, showing the non-uniformity 

across different constellation points; Empirically received signal distributions 

(contour plots) of (c) �̅�𝑖|𝜆𝑖+1 = −0.845+ 1.078𝑖  (blue) and �̅�𝑖|𝜆𝑖+1 =

−0.815 + 1.078𝑖  (red) and (d) �̅�𝑖(�̂�𝑖)|𝑏𝑖+1(𝜆𝑖+1) = 𝜓𝑏(1) (blue) and 

�̅�𝑖(�̂�𝑖)|𝑏𝑖+1(𝜆𝑖+1) = 𝜓𝑏(2) (red). The means and covariance matrices of �̅�𝑖 and 

�̅�𝑖(�̂�𝑖) depends on 𝜆𝑖+1and 𝑏𝑖+1(𝜆𝑖+1), thus illustrating the potential benefits of 

MS-ML detection. The amplitude of �̅�𝑖(�̂�𝑖) are shown in log scale. 

     

The empirical received signal distributions (contour plots) of  

𝜆̅𝑖  and �̅�𝑖(�̂�𝑖)  is shown in Fig. 7 (a, b) for 6.31 GBaud 

transmissions over 1000 km. 4096 pairs of solitons are used to 

calculate the conditional pdfs. It can be seen that the 

distributions are generally different for each constellation 

points with different degree of correlations between ℜ(Δ𝜆̅𝑖) 

and ℑ(Δ𝜆̅𝑖) . Also, eigenvalue noise is generally larger for 

imaginary part than real part. This is because solitons with 

larger ℑ(𝜆) induce more noise for the same ASE noise power 

[44]. On the other hand, the outer ring of �̅�𝑖(�̂�𝑖) generally have 

larger noise variances. As the conditional pdfs are different and 

non-uniform across different constellation points of  𝜆̅𝑖  and 

�̅�𝑖(�̂�𝑖) , approximating them as jointly Gaussian using their 

respective empirical means and covariance matrices will 

certainly outperform simple Euclidean distance-based detection. 

This class-labelled approach of estimating means and 

covariance matrices will also be superior to unsupervised 
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clustering techniques such as EM algorithm [45] commonly 

used in machine learning literature. Fig. 7 (c) and (d) further 

show the empirical conditional pdf of 𝜆̅𝑖|𝜆𝑖+1 = −0.845 +

1.078𝑖  and �̅�𝑖|𝜆𝑖+1 = −0.815 + 1.078𝑖  , �̅�𝑖(�̂�𝑖)|𝑏𝑖+1(𝜆𝑖+1) =

𝜓𝑏(1) and �̅�𝑖(�̂�𝑖)|𝑏𝑖+1(𝜆𝑖+1) = 𝜓𝑏(2)  . As expected, the pdfs 

show clear dependence on 𝜆𝑖+1 and 𝑏𝑖+1(𝜆𝑖+1) ,  which 

motivates the study of MS-ML detection by approximating the 

joint distributions of {𝜆̅𝑖 , 𝜆̅𝑖+1}  and {�̅�𝑖(�̂�𝑖), �̅�𝑖+1(�̂�𝑖+1)}  as 

jointly Gaussian variables with the empirical means and 

covariance matrices of each possible combination of {𝜆̅𝑖, 𝜆̅𝑖+1} 

and {�̅�𝑖(�̂�𝑖), �̅�𝑖+1(�̂�𝑖+1)}.  

B. Transmission Performance 

We compare the transmission performance of the various 

DSP proposed in our study. Fig. 8 (a, b) compare the BER of 𝜆 

and 𝑏(𝜆)  detection with various LMMSE estimators and 

detection methods. Corresponding received signal distributions 

are also shown as insets. For 𝜆 detection, using approximate 

ML detection over simple Euclidean detection does not bring 

significant benefits. This might be because the conditional pdfs 

of 𝜆̅𝑖 is largely uniform for each dimension as can be seen in 

Fig. 7 (a). For 𝑏(𝜆)  detection, MS-LMMSE outperform 

LMMSE by exploiting correlations of Δ�̃�𝑖 across neighboring 

symbols. ML detection on top of MS-LMMSE further 

improved the BER slightly as the shapes of the distributions are 

non-uniform across signal points (inset of Fig. 8 (a)). Finally, 

by capturing the correlations between the two 𝜆 and 𝑏(𝜆) in a 

2T NFT time window, MS-ML detection significantly improve 

BER performance for both  𝜆  and 𝑏(𝜆)  detection. This is 

expected since the two neighboring solitons interact with each 

other along propagation and the nonlinear distortions will be 

signal-dependent. This is evident by the difference in empirical 

pdf of 𝜆̅𝑖 and �̅�𝑖(𝜆̅𝑖) for different values of 𝜆̅𝑖+1 and �̅�𝑖+1(𝜆̅𝑖+1)  

as shown in Fig. 6. It should be noted that the best launch power 

for 𝜆  detection is around 1 dB higher than that for 𝑏(𝜆) 
detection. 

To investigate the reach extension and bit rate improvements 

of the proposed suite of DSP algorithms, Fig. 8 (c-e) depict the 

BER of 𝜆, 𝑏(𝜆) and joint 𝜆 and 𝑏(𝜆) detection for 1000 to 1400 

km transmissions where neighboring solitons varied from fully 

separated to substantial collisions and overlapping at the 

receiver. The launch power is chosen to minimize the overall 

BER of 𝜆 and 𝑏(𝜆) detection. Comparing the BER of 𝑏(𝜆) in 

Fig. 8 (a, c) with BER of 𝜆 in Fig. 8 (b, d), it can be seen that 

the overall BER is mainly attributed by errors of 𝑏(𝜆) 
detection. Note that In Fig. 8 (e), the MS-LMMSE results are 

the average BERs of 𝜆  detection after LMMSE and 𝑏(𝜆) 
detection after MS-LMMSE. Improvement of MS-LMMSE on 

𝑏(𝜆) detection is also obvious in overall BER because errors in 

𝑏(𝜆)  detection is the dominant factor. MS-ML detection 

provides substantial improvements for all distances, reflecting 

that strong correlations among 𝜆 and 𝑏(𝜆) within the 2T NFT 

time window exists regardless of soliton collision status. We 

also studied the performance when the baud rate (hence bit-rate) 

is increased by shortening the time interval T between and the 

results are shown in Fig. 8 (f). For a SD-FEC threshold of 2.4e-

2 (assuming an inner LDPC code with rate 9/10 and an outer 

HD-FEC staircase code with 6.25% overhead [46]), a total of 

64 Gb/s (net 54 Gb/s) transmitted over 1200 km can be 

achieved. The BER further deteriorates with increasing baud 

rates as putting the solitons closer together induce more pulse 

Fig. 8 BER of (a) 𝑏(𝜆) and (b) 𝜆 detection vs. launch power using various LMMSE filters and detection methods. Received �̅� distribution after LMMSE 

and �̅�(�̂�) distribution after MS-LMMSE are shown in insets. BER of (c) 𝜆, (d) 𝑏(𝜆) and (e) joint 𝜆 and 𝑏(𝜆) detection vs. distance using different LMMSE 

and detection methods for 6.31 GBaud transmission are shown. The launched powers are optimized for each distance; (f) BER vs. distance with LMMSE on 

�̅�, MS-LMMSE on �̅�(�̂�) and MS-ML detection for different baud rates. The launched powers are optimized for each distance and baud rate. The signal 

physical spectra of all 4 baud rates are shown in inset and they are nearly the same. 
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overlapping and nonlinear distortions. The physical spectra of 

the transmitted signals with various baud rates are shown as 

insets of Fig. 8 (f) with a 99% optical bandwidth of 35.7 GHz. 

It can be seen that signal bandwidth for 4 different baud rates 

are nearly the same. Therefore, increasing baud rate by putting 

solitons closer will not broaden the signal bandwidth. To the 

best of our knowledge, this is a new bit-rate-distance record for 

single-polarization discrete eigenvalue transmissions. 

V. CONCLUSIONS 

In this paper, we studied discrete-eigenvalue transmissions 

based on NFT and proposed various multi-symbol receiver DSP 

techniques that exploits the statistical correlations between 

eigenvalues 𝜆 and other nonlinear spectral components across 

neighboring symbols to improve detection performance. The 

DSP techniques include jointly modulate 𝜆  and 𝑏(𝜆) of a 1-

soliton pulse with the average eigenvalue 𝐄[𝜆] = ±𝛼 + 1𝑖 for 

odd and even indexed solitons across the transmitted pulse 

train, decode superimposed received waveforms as 2-solitons, 

a linear minimum mean-squared error (LMMSE) estimator of 

discrete eigenvalue noise using the a-coefficient 𝑎(𝜆) of the 

continuous spectrum (CS), a multi-symbol (MS)-LMMSE 

estimator of 𝑏(𝜆) noise using discrete eigenvalue noise across 

neighboring solitons, and approximate ML and MS-ML 

detection of 𝜆 and 𝑏(𝜆) by Gaussian distributions with means 

and covariance matrices obtained empirically from 

experiments. We experimentally demonstrated a record 64 Gb/s 

(net 54 Gb/s) transmission over 1200 km using 16-QAM 

modulation on 𝜆 and 16-APSK modulation on 𝑏(𝜆) with the 

aid of the DSP algorithms described above. The proposed 

multi-symbol DSP framework opens up a new dimension of 

algorithm research for NFT systems and more advanced 

nonlinear filters as well as maximum likelihood sequence 

detection (MSLD) techniques will be investigated in the future. 
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