
1 
 

Edge orientations of mechanically exfoliated anisotropic 
two-dimensional materials 

Juntan Yang1, Yi Wang2, Yinfeng Li3, Yang Chai2*, Haimin Yao1*, Huajian Gao4 
1Department of Mechanical Engineering, The Hong Kong Polytechnic University, 

Hung Hom, Kowloon, Hong Kong 
2Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, 

Kowloon, Hong Kong 
3Department of Engineering Mechanics, Shanghai Jiao Tong University, Shanghai, 

China 
4School of Engineering, Brown University, Providence, RI 02912, USA 

 

Mechanical exfoliation is an approach widely utilized to prepare high-crystalline-

quality two-dimensional (2D) materials for investigating their intrinsic physical prop-

erties. During mechanical exfoliation, in-plane cleavage results in new edges, whose 

orientations plays an important role in determining the properties of the as-exfoliated 

2D materials especially for those with high anisotropy. Here, we systematically inves-

tigate the factors affecting the edge orientation of 2D materials created by mechanical 

exfoliation. Our theoretical study manifests that the preferred fractured direction during 

mechanical exfoliation is determined synergistically by tearing direction and anisotropy 

of fracture energy. This theory, in combination with the crystallographic structure of a 

specific 2D material, allows us to predict the possible edge orientation of mechanically 

exfoliated 2D materials as well as their probabilities of occurrence. The theoretical 

predication is indirectly verified by examining the inter-edge angles of the mechanically 

exfoliated 2D materials including graphene, MoS2, PtS2, and black phosphorous. This 

work not only sheds light on the mechanics of exfoliation of 2D materials, but also 

opens a new area of deriving information of edge orientations of mechanically exfoli-

ated 2D materials by data mining of their macroscopic geometric features. 
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Introduction.—Two-dimensional (2D) materials refer to crystalline materials con-

sisting of one or a few layers of atoms. Due to the ultrathin thickness and ultrahigh 

specific surface area, 2D materials exhibit distinctive properties that are absent in their 

bulk counterparts [1-4], showing great potentials for various applications [2,3,5-10]. A 

variety of physical and chemical approaches have been developed to acquire 2D mate-

rials [11-16]. Among them, mechanical exfoliation is the most facile one for producing 

2D materials with high crystalline quality [1,16-18]. The size and shape of the 2D ma-

terial flake obtained by mechanical exfoliation depend on a variety of factors, including 

the adhesion property of the tape, the crystalline structure and mechanical properties of 

the layered material. For example, preliminary experiments showed that the edges of a 

2D material flake obtained by mechanical exfoliation exhibit distinctive crystallo-

graphic orientations [18-20]. The regular distribution patterns of the inter-edge angles 

imply that the fracture of the material during exfoliation process has some preferred 

directions even by random peeling processing.  

It is of great value to understand the factors determining the crystal orientations of 

the exfoliated flakes for the prediction and manipulation of the anisotropy of 2D mate-

rials in their electrical [4,21-23], mechanical [24-26] and optical properties [20,27,28]. 

For example, it has been shown that the stretching along the armchair direction of mon-

olayer MoS2 can generate piezoelectric polarization charge on the zig-zag edges [22]. 

Prevalent methods to identify the crystallographic structure of 2D materials include 

transmission electron microscopy (TEM) [29,30] and second harmonic genera-

tion(SHG) [20,31,32], both of which involve costly facilities and time-consuming pro-

cesses of sample preparation. A fast and non-destructive approach to identify the crys-

tallographic orientations is still in great demand. 

In this work, we develop a universal theoretical model based on fracture mechanics 
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to predict preferred fracture directions of 2D materials and their probabilities of occur-

rence. We collect a number of inter-edge angles of 2D flakes and perform statistical 

analysis, which is in good agreement with our theoretical predictions. More importantly, 

we reveal that the fracture direction of 2D materials is dependent on not only the tearing 

angle but also the edge energies of 2D materials, especially for those with high aniso-

tropic properties. Although we validate this theoretical model with only 4 typical 2D 

materials, including graphene, MoS2(2H), PtS2(1T) and black phosphorous (BP), it can 

be also extended to the predication of other 2D materials and provide us fundamental 

understanding of the fracture process of 2D materials. 

 
FIG. 1. (a) Schematics of mechanical exfoliation of 2D materials. (b) Schematic illustration of 
a cracking model describing the tearing process of 2D materials during exfoliation. (c-d) 
Closeup of the configuration near the crack tips of hexagonal and orthorhombic 2D materials 
under tearing. PD: Principal direction, TD: Tearing direction; AD: Armchair direction; ZD: Zig-
zag direction; DD: Diagonal direction. 

 

Fracture direction of 2D materials during mechanical exfoliation.—Mechanical 

exfoliation of 2D materials is often carried out by the aid of sticky tapes such as scotch 

tape. A typical exfoliation process of graphene, for example, often starts from attaching 

a piece of pristine scotch tape onto a graphite wafer. Then, the tape is slowly peeled off 

from the graphite, bringing along with a few-layer graphene flake stuck to the tape. The 

tape with graphene flake is then stuck to another piece of pristine tape. After being 
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compressed for better contact, these two pieces of tape are then detached from each 

other slowly [see Fig. 1(a)]. By doing so, the graphene flake is split into two thinner 

parts. This process can be repeated until a monolayer graphene flake is acquired. Sim-

ilar exfoliation procedure also applies to the other 2D materials such as MoS2, PtS2, and 

BP. 

The flakes obtained by mechanical exfoliation exhibit polygonal shape with aver-

age size around a few microns. The straight-line segments along the polygonal edge 

imply their specific crystallographic orientations [18,33,34]. To predict the orientation 

of these edges that result from the tearing-induced cleavage, a theoretical model is pro-

posed, in which a piece of cracked 2D material is torn by out-of-plane loadings, as 

schematically depicted in Fig. 1(b). For such tearing loading, classical linear elastic 

fracture mechanics (LEFM) indicates that the driving force for crack propagation can 

be quantified by the energy release rate (ERR) near the crack tip and exhibits directional 

dependence [35] 

 ( ) ( )φφ cos1
2

0 +=
GG  (1) 

where φ  represents the direction angle relative to the line of the pre-existing crack 

[see Fig. 1(c)] and 0G  stands for the ERR at 0=φ . Clearly, 0G  is the maximum 

of ( )φG . The direction along the line of the pre-existing crack is designated as tearing 

direction (TD). But it does not mean that the crack will necessarily propagate along the 

tearing direction, because the resistance of 2D materials against fracture, which is char-

acterized by the fracture energy, may have directional dependence as well. Taking gra-

phene as an example, it has been shown that its edge energy, which can be deemed as 

half of its fracture energy, exhibits strong directional dependence given by [36] 

 ( ) )/6sin(
/6sin

sin
/6sin

21 θπ
π

γθ
π

γθγ −+=   ( /60 πθ ≤≤ ) (2) 

where 1γ  and 2γ  represent the edge energies along two principal directions (PDs), 
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and θ  denotes the angular deviation from the most adjacent PD2, as shown in Fig. 

1(c). Without loss of generality, we assume 21 γγ < . For graphene, PD1 is armchair 

direction and PD2 is zig-zag direction. Although Eq. (2) only gives the edge energy for 

θ  ranging from 0 to 6/π , its extension to the whole spectrum of θ  can be easily 

made based on the symmetry and periodicity of γ . In addition to graphene, transition 

metal dichalcogenides (TMDs) such as MoS2 and PtS2 are assumed to have fracture 

energy with similar direction dependence given by Eq. (2) because of their similar hex-

agonal lattice structure. 

Griffith criterion in fracture mechanics [35,37] states that crack propagation hap-

pens when the energy release rate reaches the fracture energy. Therefore, the direction 

of crack propagation for a 2D material under tearing depends on the competition be-

tween G  and γ2 , both of which are direction-dependent. With the increase of tear-

ing load, crack propagation eventually takes place along the direction that the energy 

release rate reaches the corresponding fracture energy first. By comparing G  and γ2  

given by Eqs. (1) and (2), we find that the cracking direction of the graphene under 

tearing actually depends on φθα −≡ , which represents the misalignment between 

the tearing direction and the most adjacent PD2, as shown in Fig. 1(c). Specifically 

speaking, if 6/0 c παα <<< , fracture tends to happen along PD1 ( 6/πθ = ); other-

wise, if 6/0 c παα <<< , fracture happens along PD2 ( 0=θ ). Here, cα  is the crit-

ical tearing angle α given by [38] 

 



 +−+= − )32(/)32(2tan2 21

1
c γγα . (3) 

When cαα = , Griffith condition for crack propagation ( γ2=G ) is meet along PD1 

and PD2 simultaneously. The comparison between G and γ2  in this critical scenario 

is shown in Fig. 2(a) for the case with 21 / γγ = 0.95. Such bifurcate proclivity of the 

cracking direction always exists if the ratio 21 / γγ  is greater than ( ) 933.04/23 ≈+  
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as implied by Eq. (3). If 933.0/ 21 <γγ , Griffith condition for crack propagation is met 

only along PD1 irrespective of tearing angle α , as shown in Fig. 2(b) for the case 

with 21 / γγ = 0.92. Under this circumstance, cracking occurs along PD1 only irrespec-

tive of the tearing direction. Such dependence of cracking direction on 21 / γγ  and α  

can be summarized by a map as shown in Fig. 2(c). In addition to graphene, above 

analysis and Fig. 2(c) may also apply to other 2D materials, such as MoS2 and PtS2, 

provided that their directional dependence of fracture energy obeys Eq. (2) with PD1 

being the armchair or zig-zag direction, whichever is weaker in terms of edge energy. 

In real exfoliation experiments, however, the tearing angle α  is uncontrollable and 

can be viewed as a random value ranging from 0 to 6/π . Therefore, the probability of 

attaining cracking edges along PD2 is equal to the ratio of cα   over 6/π  , namely 

πα /6 c . Similarly, the probability of attaining cracking edges along PD1 is πα /61 c− . 

For graphene, the edge energies along armchair (PD1) and zig-zag (PD2) are 1.03 eV/Å 

and 1.08 eV/Å, respectively [19], giving that γ1/γ2 = 0.954 and =cα 0.083 rad. There-

fore, among all the fracture edges created by exfoliation, we can estimate that 15.9 % 

are zig-zag (PD2) and 84.1% are armchair (PD1). For MoS2 and PtS2, the ratios of 

21 / γγ  are 0.843 and 0.717, respectively[25,38], both of which are less than 0.933. Fig. 

2(c) implies that all the fracture edges are along PD 1, which is the zig-zag direction 

for both of them. 
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FIG. 2. Comparison of normalized ERR(Gnorm) and fracture energy (2γnorm) of hexagonal 2D 
material at the cracking moment for (a) γ1/γ2 = 0.95 and (b) γ1/γ2 = 0.92. Dependence of crack-
ing direction on the tearing angle α and ratio of fracture energies along different principal di-
rections for (c)hexagonal 2D materials and (d) orthorhombic 2D material. 

 

For other 2D materials with crystallographic structures different from hexagonal 

one, above theoretical model is still applicable. But the principal directions and the 

directional dependence of edge energy might be different. Specifically, for BP, which 

is a typical orthorhombic 2D material, there are three types of principal direction: ZD 

(zig-zag direction <100>), AD (armchair direction <010>) and DD (diagonal direction 

<110>) [3,39-42], as shown in Fig. 1(d). Define tearing angle α  as the misalignment 

between TD and the most adjacent ZD. Due to the 2/π  periodicity of the BP lattice 

in the circumferential direction, α  ranging from 0 to 2/π  is considered. By com-

paring the ERR and the fracture energy[38], we find that if 1c0 αα << , fracture hap-

pens along ZD; if 2c1c ααα << , fracture happens along DD; if 2/c2 παα << , fracture 

happens along AD. Here, c1α   and c2α   are two critical tearing angles[38]. The de-

pendence of c1α  and c2α  on the edge energies of three principal directions is shown 

by Fig. 2(d). Assuming the tearing direction is random, for BP with 96.0/ ZA =γγ  , 

99.0/ ZD =γγ , we can estimate that among the fracture edges created by mechanical 
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exfoliation 29.3% are along ZD, 26.5% are along AD, and 44.2% are along DD. 

Inter-edge angles of exfoliated flakes.—Although we have predicted the possible 

edge orientations of exfoliated 2D materials, verification by direct measurement is still 

hard because of the difficulty in determining the crystal orientation of 2D material edges 

in experiment. Therefore, a practical approach to verify the theoretical prediction is 

needed. Following our earlier work [18], inter-edge angles between any two straight 

edges on a flake [see Figs. 3(a)-3(b)] are measured and counted. For a flake with n  

straight edges, 2/)1( −nn  inter-edge angles can be obtained. Since an inter-edge an-

gle describes the relative orientation between two edges, its measurement can be easily 

made with an optical microscope. Meanwhile, the inter-edge angles obtained from dif-

ferent flakes can be integrated together for statistical analysis. Since the edges of the 

exfoliated flakes have preferred orientation, inter-edge angles must possess some regu-

larity in statistics. In the following, we will first carry out a theoretical prediction of the 

statistic distribution of the inter-edge angles, followed by experimental verification. 

 

FIG. 3. Measurement of inter-edge angles from the optical microscope images of exfoliated 
flakes of (a) PtS2(1T) (b) BP. Here, inter-edge angle is defined as the angle between any two 
straight edges that are not necessarily adjacent. If such measurement gives an angle exceeding 
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π/2, its supplementary angle will be adopted as the inter-edge angle. For two parallel edges, 
the inter-edge angle is 0. Schematics for inter-edge angle prediction of (c) hexagonal 2D ma-
terial and (d) orthorhombic 2D material.  

 

To quantitatively predict the inter-edge angles of 2D material flakes, all the prin-

cipal directions in the plane should be distinguished, as shown in Figs. 3(c)-3(d). Taking 

graphene as an example, there are 6 armchair and 6 zig-zag directions labelled by iA  

and iZ (i =1, …, 6) [see Fig. 3(c)]. Based on above analysis, we can find out that if 

TD falls in the vicinity of any zig-zag direction as denoted by blue [see Fig. 3(c)], frac-

ture will happen along that zig-zag direction. Similarly, if TD falls in the vicinity of any 

armchair diction as denoted by red [see Fig. 3(c)], fracture will happen along that arm-

chair direction. Assuming that the TD is randomly distributed in the plane, the proba-

bilities of cracking along a specific armchair or zig-zag direction can be expressed as 

 ( ) ( ) ( )
( ) ( )6,...,1,22Z

6,...,1,262A
==

=−=
iP

iP

ci

ci

πα
παπ  (4) 

Eq. (4) is different from the probabilities of cracking along PD1 and PD2 as discussed 

in previous section because here different armchair (or zig-zag) directions are distin-

guishable. 

For 2D materials with hexagonal lattice, our preceding analysis indicates that 

cracking happens along either PD1 or PD2. Considering the π /3 periodicity of PD1 and 

PD2 along circumferential direction, it is easy to deduce that there are four possible 

inter-edge angles for hexagonal 2D material flake: 0° (formed by two parallel edges), 

30° (formed by PD1 and PD2), 60° (formed by two non-collinear PD1 or PD2) and 90° 

(formed by PD1 and PD2). The probability of acquiring inter-edge angle β is denoted 

as )(βP and can be given as function of P(Ai) and P(Zi)[38]. For hexagonal 2D mate-

rials, )(βP can be further expressed as a function of the ratio between two principal 

edge energies 21 /γγ   as shown in Fig. 4(a). According to their respective ratios of 
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21 /γγ , one can easily find the positions of graphene, MoS2 and PtS2 in Fig. 4(a). For 

MoS2 and PtS2, 0)90()30( oo == PP , 3/1)0( o =P , 3/2)60( o =P . Therefore, only 

two possible inter-edge angles (0o and 60o) can be observed from the flakes of MoS2 

and PtS2, and the probability of 60o is about twice of that of 0o. For graphene, on the 

other hand, there are four possible inter-edge angles and the probabilities of having 

them are %5.18)0( o =P , %7.29)30( o =P , %0.37)60( o =P  and %8.14)90( o =P . 

Such difference in the statistic distribution of the inter-edge angles essentially can be 

attributed to the weaker anisotropy of fracture energy in graphene than those in MoS2 

and PtS2. Therefore, the statistic distributions of inter-edge angles of exfoliated 2D ma-

terials are informative and can be used to predict the possible edge orientations. 

 
FIG. 4. (a)Probabilities of different inter-edge angles with respect to 21 /γγ  for hexagonal 
2D materials. Probabilities of different inter-edge angles for black phosphorous with inter-
edge angle being (b)0°, (c)35.5°, (d)54.5°, (e)71° and (f)90°. 
 

For BP which has different crystallographic structure from hexagonal 2D materials 

[see Fig. 3(d)], similar analysis can also be carried out. Three PDs in BP give rise to 5 

possible inter-edge angles: 0° (formed by two parallel edges), 35.5° (formed by AD and 
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DD), 54.5° (formed by ZD and DD), 71° (formed by two non-collinear DD) and 90° 

(formed by AD and ZD). The probabilities with these inter-edge angles can be ex-

pressed as functions of two ratios ZA / γγ   and ZD / γγ   (see Supplementary Mate-

rial[38] for derivation), as shown in Figs. 4(b)-4(f). Taking 0.96/ ZA =γγ   and 

0.99/ ZD =γγ  for BP[38], the probabilities of having these inter-edge angles can be 

determined from Figs. 4(b)-4(f). Specifically, %4.25)0( o =P  , %4.23)5.53( o =P  , 

%9.25)5.54( o =P ， %7.9)71( o =P  and %6.15)90( o =P . 

Experimental verification.—To verify the above predictions, Inter-edge angles 

within the same 2D material flake are measured and counted. Data from different flakes 

are integrated, giving rise to sufficient counts for statistical analysis. Figs. 5(a)-5(d) 

show the histograms of the measured counts of inter-edge angles for graphene, MoS2 

(2H), PtS2 (1T) and BP, respectively. For graphene, Fig. 5(a) shows four apparent peaks 

at o0 , o30 , o60  and o90 . For MoS2 and PtS2, peaks can be only observed at o0  

and o60 , as shown in Fig. 5(b) and Fig. 5(c). We can thus deduce that fracture occurs 

either along PD1 or PD2 in graphene while always occurs along PD1(zig-zag direction) 

in MoS2 and PtS2. This finding agrees well with our theoretical prediction above. For 

BP, the peaks in Fig. 5(d) seem not as clear as those in Figs. 5(a)-5(c) except at o0  

and o90 . A broad bump spanning from o30  to o75  is observed, which may be at-

tributed to the interferences between the peaks at o5.35 , o5.54  and o71  as theoreti-

cally predicted above. 
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FIG. 5. Experimental statistics and corresponding theoretical regression for inter-edge angle 
distributions of (a)graphene (b) MoS2 (2H) (c) PtS2 (1T) and (d)black phosphorous. 

 

Clearly, the distributions of the measured inter-edge angles are not as discrete as 

our theoretical prediction. This can be attributed to the unavoidable uncertainties in 

measurement including image distortion, sample defects, etc. To quantify these effects, 

statistical uncertainties of the measured inter-edge angles should be considered. Taking 

hexagonal 2D materials as an example, we assume that the measured inter-edge angles 

obey normal distributions with expectations of o0 , o30 , o60  and o90 , respectively. The 

count of getting any inter-edge angles ω is given by 

 
( ) ( )
( ) ( )],,)(2,,)(

,,)(,,)(2[)C(

43

21

4433

2211

ωσββωσββ

ωσββωσββω

ββ

ββ

NPNP

NPNPT

++

+×=
 (5) 

where T  is total count of the measurements, iβ  (i=1, …, 4) stands for the expectation 

of inter-edge angle  (i.e., o0  , o30  , o60   or o90  ), ( )ωσβ β ,,
iiN   is the normal distribu-

tion function with iβ and 
iβσ  being the expectation and standard deviation, respec-

tively. For BP, the same method can be used with expectations of the inter-edge angle 

iβ (i=1, …, 5) being o0 , o5.35 , o5.54 , o71  and o90 , respectively. The count of any 
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inter-edge angles ω is given by: 

 
( ) ( ) ( )

( ) ( ) ( )],,)(2,,)(,,)(

,,)(,,)(2[C

543

21

554433

2211

ωσββωσββωσββ

ωσββωσββω

βββ

ββ

NPNPNP

NPNPT

+++

+×=
 (6) 

In Eqs. (5) and (6), all the standard deviations 
iβσ  are to be determined by re-

gression from the experimental count distributions based on the least squares 

method[38]. After regression, the inter-edge angle distributions of Eqs. (5) and (6) are 

plotted using continuous solid curves in Fig. 5. It can be seen that Eq. (5) gives quite 

good theoretical predictions to the experimental histograms for all the hexagonal 2D 

materials under consideration. For BP, Fig. 5(d) shows that Eq. (6) describes the distri-

bution of the measured inter-edge angles very well. 

Conclusion.—In summary, we systematically investigate the fracture of 2D mate-

rials by mechanical exfoliation through theoretical modelling and experimental verifi-

cation. We study a few representative 2D materials with different structures (hexagonal 

and orthorhombic) and anisotropic properties (graphene and TMDs). Our studies un-

ambiguously reveal that the orientations of the fracture edges of exfoliated 2D materials 

exhibit a certain level of regularity, which is dependent on the tearing angle and anisot-

ropy of fracture energy. Furthermore, the probabilities of the fracture occurring along 

these orientations are quantitatively predicted. We experimentally examine the inter-

edge angles by optical microscopy and perform a statistical analysis. The experimental 

data show good agreement with our theoretical prediction and validate a general ap-

proach for interpreting the fracture behavior and the characteristics of flake edge of 2D 

materials. Our findings also provide useful guidance for the design and fabrication of 

2D material based devices, especially for those with high anisotropy. 
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