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Abstract

This paper introduces an approach that utilizes field measurements to

update the parameters characterizing spatial variability of soil properties

and model bias, leading to refined predictions for subsequent construction

stages. It incorporates random field simulations and surrogate modeling

technique into the Bayesian updating framework, while the spatial and

stage-dependent correlations of model bias can also be considered. The

approach is illustrated using two cases of multi-stage braced excavations,

one being a hypothetical scenario and the other from a case study in Hong

Kong. Making use of all the deflection measurements along an inclinometer,

the principal components of the random field and model bias factors can be

efficiently updated as the instrumentation data becomes available. These

various sources of uncertainty do not only cause discrepancies between prior

predictions and actual performance, but can also lead to response mechanisms

that cannot be captured by deterministic approaches, such as distortion of

the wall along the longitudinal direction of the excavation. The proposed

approach addresses these issues in an efficient manner, producing prediction

intervals that reasonably encapsulate the response uncertainty as shown in

the two cases. The capability to continuously refine the response estimates

and prediction intervals can help support the decision-making process as the

construction progresses.

Keywords: Bayesian updating, braced excavations, soil-structure interaction,
spatial variability, random field modeling
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Introduction1

In many geotechnical engineering projects, predictions of system performance at the2

design stage can deviate from actual site response during construction, due to various3

sources of geotechnical uncertainty, such as inherent spatial variations of soil properties4

or model uncertainty (e.g., Phoon and Kulhawy 1999; Baecher and Christian 2003). The5

observational method, as outlined by Peck (1969), emphasizes the needs to incorporate6

new knowledge of site conditions as construction progresses and, if necessary, revise the7

original assumptions during the process. This is particularly important for deep excava-8

tion projects in the urban areas, where geotechnical failures can lead to catastrophic9

results. Meanwhile, the multiple stages of shoring installation in these projects offer10

opportunities for fine adjustments of the support layout if such needs are revealed from11

the monitoring data. In order to achieve this, an efficient and reliable analysis technique12

is required to rationally incorporate the knowledge gained from the data, and reflect13

that onto refined predictions for subsequent stages.14

The Bayesian approach provides a quantitative framework by which initial as-15

sumptions on material property (prior probability) are updated, through subsequent16

observations, to obtain the posterior probability. Bayesian methods have been applied in17

various aspects of geotechnical engineering, including site characterization (e.g., Zhang18

et al. 2009; Ching et al. 2010; Wang et al. 2010, 2014, 2016; Huang et al. 2018) and19

soil-structure interaction problems (e.g., Ledesma et al. 1996; Najjar and Gilbert 2009;20

Zhang et al. 2012; Lo and Leung 2016). For deep excavations, stepwise updating of21

predictions for retaining wall response can be tackled by Bayesian methods (e.g., Pa-22

paioannou and Straub 2012; Juang et al. 2013; Wu et al. 2014; Qi and Zhou 2017), or23

other techniques such as the artificial neural network (ANN) approach (e.g., Jan et al.24

2002; Kung et al. 2007) and inverse analyses coupled with optimization algorithms (e.g.,25

2



Finno and Calvello 2005; Baroth and Malecot 2010). In these previous studies, however,26

soil properties are considered to be homogeneous within each soil layer, where spatial27

variability is not explicitly accounted for. This may be attributed to the computational28

demands associated with modeling of soil spatial variability, which can be exacerbated29

when incorporated into an updating framework, such as the updating of posterior prob-30

ability for random field parameters. Nonetheless, probabilistic analyses in recent studies31

(e.g., Sert et al. 2016; Yáñez-Godoy et al. 2017) have shown that spatial variability can32

have significant implications on the response of retaining structures, although there has33

been limited discussion on the integration of random field theories into the updating34

framework for improved predictions of system response.35

Lo and Leung (2016) presented a Bayesian approach to update spatial variability pa-36

rameters for soils below building foundations, but their approach required a large number37

of model simulations. Later, Yang et al. (2018) utilized surrogate modeling techniques to38

reduce the computational demands for random field analyses of slopes, where the spatial39

variability in soil permeability were back-analyzed with field observations. This study40

further extends the Bayesian framework for applications in multi-stage deep excavations,41

where the characteristics of the random field of soil properties are ‘indirectly’ conditioned42

using measurements of wall deflections. It differs from previous studies of Bayesian43

methods as the spatial variation patterns of the soils are explicitly considered using44

surrogate modeling technique, and are updated through field measurements. Moreover,45

the subsurface model is not only ‘back-calibrated’ as in Yang et al. (2018), but allows46

wall deflections to be continuously refined for subsequent excavation stages. As a key47

component in the updating process, the model uncertainty is also assumed to be spatially48

correlated, and the correlation features (e.g., mean, variance, autocorrelation distance)49

are not pre-specified, but determined directly using field measurements. The concept of50

stage-wise correlation in model uncertainty is also explored, through which the observed51
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model bias in the current construction stage can be utilized to predict that in the next52

stage. The proposed framework aims to maximize the value of instrumentation in deep53

excavation projects, by integrating the evaluation of soil spatial variability and model54

uncertainty, with continuous refinement of response prediction during the multi-stage55

construction process. The integration of these new features allows the proposed approach56

to serve as a quantitative tool for the observational method. The following sections57

introduce the formulation of the proposed approach, while the implementation and its58

validity are illustrated first through a hypothetical excavation scenario, and then by an59

instrumented case study of a deep excavation project in Hong Kong.60

Formulation of updating approach61

Probabilistic modeling of braced excavations in spatially variable soils62

Performance of retaining structure in a deep excavation involves complex soil-structure63

interaction effects, and the reliability of such systems may be evaluated using probabilistic64

methods. In this study, two major factors affecting the uncertainty of wall deflections are65

investigated, namely the spatial variations in soil strength and stiffness, and the model66

uncertainty/bias involved in the numerical simulations. Due to their influences, the67

measured wall response (represented by y) often show discrepancies from the prediction68

(g). Such discrepancies are considered holistically in the proposed approach: the spatial69

correlations in soil properties are modeled by random field theory using surrogate70

modeling technique, while the model uncertainty is represented by bias factors, and71

both the principal components of the random field and model bias factors are updated72

and refined using field measurements as the construction progresses.73

In many deep excavation projects, inclinometer measurements are either taken74

within the retaining structure (e.g., diaphragm wall) or immediately behind, so that75
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its performance during the construction are closely monitored. In this study, the76

inclinometer measurements are denoted by the vector y = {y1, y2, . . . , yn}, which77

represent the actual deflections at different depths (k = 1, 2, . . . , n) along the retaining78

wall. The corresponding predictions of wall deflections are represented by vector79

g = {g1, g2, . . . , gn}, while the predicted and actual deflections are linked by a model80

bias term ε:81

y = ε · g(ξ) (1)

and the bias at different depths (εk) may vary. In equation (1), the predicted response82

g can be represented as a function of ξ vectors, which are standard normal random83

variables that characterize the spatially variable soil properties z. In this study, variations84

of z in three dimensions are considered, and modeled as the combination of a trend85

with different values of residuals, or deviations from the trend. For residuals that are86

correlated spatially, and assuming a squared exponential autocorrelation function, the87

spatial correlation matrix (R) consists of the following components:88

Rij = exp

[
−(xi − xj)2

θ2x
− (yi − yj)2

θ2y
− (zi − zj)2

θ2z

]
(2)

where x, y and z represent the Cartesian coordinates at locations i and j; θx, θy and θz89

are the corresponding autocorrelation distances. Although this study adopts the squared90

exponential function for R, the proposed approach is not confined to this assumption,91

as it is also possible to assume the single exponential function, or even Matérn function92

(Liu et al. 2017) for R. As will be shown in a later example, the more fundamental93

issue is the estimation of relevant parameters (e.g., θ) that correspond to the adopted94

functional form, using site-specific geotechnical data.95

A spectral decomposition of the R matrix can be performed, i.e.,R = HΛHT , where96

H is a matrix of orthonormal eigenvectors, and Λ is a diagonal matrix of positive97
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descending eigenvalues. Denoting H∗ = HΛ
1
2 , realizations of z profiles can then be98

generated using the ξ vectors (Lo and Leung 2018):99

z =


µz + σzH

∗ξ for normal random field

exp (µlnz + σlnzH
∗ξ) for lognormal random field

(3)

where µ and σ represent the mean (or trend) vector and standard deviation of the100

soil properties, and the subscripts z or ln z correspond to the original space (normal101

distribution) or log space (lognormal distribution), respectively. For soil data that102

involves a clear trend (e.g., undrained shear strength increasing with depth), the103

trend can be determined by regression and is represented by µ, while the random104

field simulation involves random variables that are only associated with the residuals,105

represented by the second term in equation (3). This term also implies that each106

component of ξ (e.g., ξi) corresponds to a different variation pattern associated with the107

ith column of H∗. The first few components of ξ determine the large-scale variations,108

while the latter ones correspond to small-scale variations or rapid changes across space.109

A similar concept was presented graphically by Yang et al. (2018), who illustrated the110

various components in Karhunen-Loève expansion of the spatially variable field.111

A number of realizations are required to envelope the potential variations of subsurface112

soil properties. Conventionally, the various realizations are then evaluated using finite113

element or finite difference methods. However, these numerical methods are usually114

computationally demanding, which poses a substantial obstacle for Bayesian updating,115

as random field modeling is required at every stage of the construction process. To reduce116

the computational demands, this study adopts a response surface method known as the117

polynomial chaos expansion (PCE)(Ghanem and Spanos 1991; Al-Bittar and Soubra118

2014). At a certain depth k, the response (wall deflection) gk may be approximated119
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using a second-order PCE as follows:120

gk(ξ) = ak,0 +
M∑
j=1

ak,jξj +
M∑
j1=1

M∑
j2=j1

ak,j1,j2(ξj1ξj2 − δj1j2) (4)

where k = 1, 2, . . . , n may represent different depths along the wall; ak,0, ak,j and ak,j1,j2121

are coefficients of the PCE, to be determined by the regression approach using results122

from random field simulations. M is the number of principal components retained in123

the PCE, which will be elaborated later. The mathematical details and implementation124

of PCE are not described herein, as they have been reported extensively in several125

previous studies including Ghanem and Spanos (1991), Blatman and Sudret (2010),126

Al-Bittar and Soubra (2014) and Lo and Leung (2017), the latter of which also combined127

PCE with a stratified sampling technique known as Latin hypercube sampling with128

dependence (LHSD)(Packham and Schmidt 2010), in order to enhance the robustness129

of probabilistic analyses. In the current formulation, a separate PCE is constructed for130

each location k along the depth of the wall. For example, inclinometer readings are131

often taken at vertical interval of 0.5 m. While each reading will constitute a component132

(yk) in the y vector, the corresponding prediction is represented by gk, and the two are133

linked to each other through a multiplicative error term, εk, in equation (1).134

In general, M should be equal to the total number of random variables, i.e., the135

number of elements in the finite element mesh (d). Alternatively, this can be truncated136

by considering only the principal components that contribute to most (e.g., 95%) of the137

total variance of the random field:138

min
M

M∑
i=1

λi > 0.95d (5)

where λi are the eigenvalues from the Λ matrix. From the spectral decomposition of139

R, λi decreases monotonically (λ1 > λ2 > · · · > λM), so does the influence of the140
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corresponding ξi components to the random field. With the truncation of equation (5),141

the dimension of ξ can still be too large for direct application in the Bayesian framework.142

To further enhance the robustness of the updating algorithm, only the ξ components143

which are most influential to the wall deflection response should be updated. This144

can be assessed using a sensitivity index, and this study adopts the first-order Sobol’145

index, Sk(ξi), which quantifies the contribution of component ξi to the overall variance146

of response gk. Applying the first-order Sobol’ index evaluation to a second-order PCE147

(Al-Bittar and Soubra 2014) yields148

Sk(ξi) =
a2k,i + 2a2k,ii

Var(gk)
(6)

which does not consider the cross-terms (ak,j1j2 where j1 6= j2). Because of this, the Sk149

values do not add up to unity (
∑

i Sk(ξi) < 1), making it inconvenient when comparing150

influence of ξi components across different depths k. Therefore, a different formulation151

is adopted in this study to take into consideration the influence of cross-terms:152

Sk(ξi) =
a2k,i + 2a2k,ii + 0.5

(∑i−1
j1=1 a

2
k,j1i

+
∑M

j2=i+1 a
2
k,ij2

)
Var(gk)

(7)

which ensures the sum of Sk(ξi) values become unity. In the subsequent Bayesian153

updating process, only the ξi components with the highest Sobol’ index values are154

selected for updating. In this study, p components are included such that their sum155

encapsulates the majority of variance contribution to the deflection response along156

the wall. For example, to incorporate 90% of variance contribution to the response,157 ∑n
k=1

∑
p Sk(ξp) > 0.9n. This procedure further reduces the number of principal158

components required in the representation of the response g by PCE (equation(4)), and159

the subsequent Bayesian updating algorithm.160
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Bayesian updating with spatially-correlated soils and model uncertainty161

Following the preceding description of probabilistic approach, the main objectives of162

Bayesian analyses involve updating the ξ components and the model bias (ε) through site163

measurements y. Based on comparisons between predicted and measured displacements164

at 49 wall sections from 11 case studies, Qi and Zhou (2017) noted that, in general,165

the values of ε are similar at measurement points that are close to each other, which166

is another manifestation of spatial correlation. They also noted that ε broadly follows167

lognormal distributions and, consequently, established the correlation matrix for model168

bias factors at different separation distances between measurement points. In this study,169

the correlation structure of model bias is represented by an n × n Cln ε matrix, with170

components assumed to follow a squared exponential function:171

(Cln ε)ij = σ2
ln ε exp

[
−(∆Dv/H)2

(θspv)2

]
(8)

where ∆Dv is the vertical separation distance between two inclinometer measurement172

points i and j, and H is the final excavation depth; σln ε and θspv represent the standard173

deviation and vertical autocorrelation distance (normalized by H) of the model bias.174

Equation (8) is conceptually similar to the recommendations by Qi and Zhou (2017),175

although they normalized ∆Dv and autocorrelation distance with the excavation depth176

at the current stage, and proposed constant values for the spatial correlations. Since177

constant spatial correlations may not apply equally well to the large varieties of site178

settings or different soil constitutive relations in the numerical model, this study proposes179

a more general approach, where distributions of σε, θspv and µε (mean bias) are refined180

through site measurements within the Bayesian framework, and σε and µε can be181

converted to σln ε and µln ε through the relationships between lognormal and normal182

distribution parameters.183
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Where multiple inclinometers are installed along the lateral directions of retaining184

structure, equation (8) may be extended to consider also the correlation of ε in horizontal185

directions:186

(Cln ε)ij = σ2
ln ε exp

[
−(∆Dv/H)2

(θspv)2
− (∆Dh/H)2

(θsph)2

]
(9)

where ∆Dh is the horizontal separation distance between measurement points and θsph187

is the horizontal autocorrelation distance of model bias, normalized by H.188

In this study, the model bias is assumed to be stationary with a mean value of µε and189

standard deviation of σε. These values can also be updated by the Bayesian approach,190

which means there can be prior distributions of µε and σε. Their prior (and posterior)191

distributions are characterized by a mean (mµε and mσε) and a standard deviation (sµε192

and sσε). Similarly, mθsp and sθsp describe the distributions of autocorrelation distance193

of ε, and may represent the vertical and/or horizontal directions. Therefore, the prior194

distributions for spatial correlation parameters of model bias, represented in logarithmic195

space, are given by:196

ln f(µε) = const− (µε −mµε)
2

2s2µε
(10a)

197

ln f(σε) = const− (σε −mσε)
2

2s2σε
(10b)

198

ln f(θsp) = const− (θsp −mθsp)2

2s2θsp
(10c)

where ‘const’ denotes the normalizing constant for the probability density function. The199

prior distribution for soil profiles, represented by the ξ vectors, is given as follows:200

ln f(ξ) = const− 1

2
ln |Cξ| −

1

2
(ξ − µξ)TC−1ξ (ξ − µξ) (11)

where µξ and Cξ represent the mean vector and covariance matrix of the ξ components,201
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respectively. In the first stage, µξ is a zero vector and Cξ is an identity matrix as ξ202

are independent standard normal vectors. During the updating process, µξ and Cξ will203

be evaluated with the Markov Chain Monte Carlo (MCMC) procedure, which will be204

elaborated later.205

At a certain construction stage, inclinometer measurements y become available.206

Considering the logarithm of equation (1): ln ε = lny − ln g(ξ), the log-likelihood207

function for soil profile ξ, given data y, is related to the distribution of model uncertainty,208

ln ε, which is multivariate normal. The log-likelihood function then becomes:209

L(ξ|y) = const− 1

2
ln |Cln ε| −

1

2
(ln ε− µln ε)

TC−1ln ε(ln ε− µln ε) (12)

and µln ε is a constant vector since ε is stationary. According to the Bayes’ theorem, the210

posterior distribution of soil profile and model bias is the product of likelihood function211

and prior distributions (Ledesma et al. 1996). Represented in logarithmic space, this212

becomes:213

ln f(ξ, µε, σε, θsp|y) = const + L(ξ|y) + ln f(ξ) + ln f(µε) + ln f(σε) + ln f(θsp) (13)

Sampling of the posterior distribution is performed by the MCMC method, which has214

been described in detail by Juang et al. (2013). In short, the Markov chain sample at the215

current chain length is denoted as xt, with a length of (p+ 3) or (p+ 4), which includes216

p selected ξ components with 3 or 4 model bias parameters. A proposed Markov Chain217

sample is then generated based on the current sample xt and the proposal distribution,218

which is multivariate normal with covariance matrix Ct. The proposed Markov Chain219

sample is evaluated by equation (13) to obtain the posterior density, which is compared220

with that of the current sample to decide if the proposed sample would be accepted. In221

this study, the posterior distribution is high-dimensional (p+ 3 or p+ 4), the acceptance222
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rate tends to be low if the proposal covariance is not modified during MCMC sampling.223

To this end, a specific type of MCMC known as adaptive metropolis (AM) algorithm224

(Haario et al. 2001) is adopted: if the current chain length t is larger than the initial225

chain length t0, the proposal covariance Ct is built from the empirical covariance of226

previous MCMC samples x0, . . . ,xt:227

Ct =


C0 for t ≤ t0

sd Cov(x0, . . . ,xt) + 0.001sdI for t > t0

where C0 = sd


Cξ 0 0 0

0 s2µε 0 0

0 0 s2σε 0

0 0 0 s2θsp

 (14)

where sd = 2.42/(p+ 3) or 2.42/(p+ 4), and is a scaling parameter suggested by Gelman228

et al. (1996); I is the identity matrix and a small number is added to the diagonal229

through the second term, to ensure Ct will not become singular. The initial proposal230

distribution C0 is a scaled prior covariance matrix. As the Markov Chain grows longer,231

calculating Ct using equation (14) at each chain length will cost enormous computational232

time. To avoid this, Haario et al. (2001) proposed a recursive relationship to calculate233

Ct directly from C(t−1), which is also adopted herein. Once the MCMC sampling is234

complete, the mean and covariance of the posterior distribution is estimated as the235

empirical mean and covariance of the Markov chain.236

As will be shown in the later case studies, the number of variables to be updated237

is around 10. For this medium number of variables, the AM algorithm can converge238

satisfactorily to the posterior distribution with acceptance rate of around 50% to239

60%. With larger number of variables to be updated (e.g., around 30), the use of240

advanced MCMC algorithms such as Metropolis within Gibbs (Juang and Zhang 2017)241

12



is recommended to improve convergence of the algorithm.242

The posterior distribution of ξ (i.e., ξ|y) can be converted back to the posterior243

distribution of the actual soil profile z (i.e., z|y), by considering the transformation244

shown in equation (3). For a normal random field of z:245

E(z|y) = µz + σzH
∗E(ξ|y) (15a)

246

Var(z|y) = σ2
z Diag

[
H∗Cov(ξ|y)H∗T

]
(15b)

In equation (15)(b), the variance of z, given y, is obtained from H∗ and covariance247

of ξ|y (Anderson 1984). If the random field of z is lognormal, E(ln z|y) and Var(ln z|y)248

can be first calculated using similar equation forms as in equation (15), replacing µz and249

σlnz by µlnz and σlnz. The mean and variance can then be converted back to original250

space by:251

E(z|y) = exp[E(ln z|y) + 0.5Var(ln z|y)] (16a)
252

Var(z|y) = E(z|y)2{exp[Var(ln z|y)]− 1} (16b)

Based on the posterior estimates of soil properties and model uncertainty, predictions253

of wall deflections can be made for future construction stages. The variable to be254

predicted is denoted as y∗|y, which means the deflection of a future construction stage,255

conditional on the deflection of current stage. The prediction interval of y∗|y is defined256

herein as conditional mean plus and minus one conditional standard deviation, i.e.257

E(y∗|y)±SD(y∗|y). Meanwhile, y∗|y should incorporate both model uncertainty ε|y258

and soil variability ξ|y, the latter of which is reflected in the model prediction g∗|y.259

Assuming these two components to be independent of each other, E(y∗|y) and SD(y∗|y)260

are evaluated from the product of two independent variables ε|y and g∗|y:261
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E(y∗|y) = E(µε|y)E(g∗|y) (17a)
262

SD(y∗|y) =
√

E(σε|y)2Var(g∗|y) + E(σε|y)2E(g∗|y)2 + Var(g∗|y)E(µε|y)2 (17b)

where E(µε|y) and E(σε|y) are the posterior mean of the parameters µε and σε, estimated263

from the Markov Chain.264

Instead of conducting a large number of random field simulations to determine265

E(g∗|y) and Var(g∗|y) at each of the updating stages, this study proposes to evaluate266

them using the PCE surrogate model, which is computationally more efficient. A large267

number of ξ|y are simulated through the mean and covariance of posterior distribution,268

obtained from MCMC. These are evaluated by the surrogate model (equation (4)) to269

obtain the posterior model prediction g∗|y. Through the use of surrogate model, it270

is not necessary to perform random field simulations during each construction stage.271

Only a single set of simulation is necessary to construct the PCE that represent the272

response in all stages, through which the predictions can be obtained directly. The273

implementation will be illustrated by two examples in later sections.274

Stage correlation of model uncertainty275

While the preceding formulation describes spatial features of soil variability and model276

bias, ‘stage-dependent’ correlations may also exist between model bias: if a prediction277

model overestimates the actual response in construction stage 1, it is also likely to278

overestimate the response in stage 2, and so on. This aspect of model uncertainty had279

been investigated by Wu et al. (2014), who developed a regression model for maximum280

wall deflections for excavations in soft clay, based on 35 sets of inclinometer readings281

from 22 case histories. They found that the bias in the regression model are positively-282

correlated between construction stages, and they defined a ‘correlation length’ which283

14



was estimated to be 23 m. This correlation length is conceptually similar to the idea284

of autocorrelation distance that is associated with differences in excavation depths at285

various stages. This term will be denoted as ‘stage autocorrelation distance’ in this286

study, represented by θst.287

The updating approach in this study can be extended to incorporate this stage288

correlation in model bias, which further refines the prediction interval of wall deflections.289

While the model bias for the current stage is represented by ε, the predicted bias for the290

next stage may be denoted as ε∗. Wu et al. (2014) adopted an exponential function to291

represent the stage correlation for maximum wall deflection. Assuming this is also valid292

for stage correlation between εk and ε∗k (at the same location), the n×n cross-covariance293

matrix between model bias in two construction stages can be constructed by modifying294

equation (8):295

Cln ε,ln ε∗ = ρCln ε = Cln ε exp

[
−∆Dst

θst

]
(18)

where ρ is the stage correlation coefficient; ∆Dst is the difference in excavation depth296

between the two stages. While Wu et al. (2014) proposed a constant value of θst, this297

will be refined under the current framework. Based on multivariate normal theory, the298

posterior distribution of ln ε∗ is multivariate normal. The mean and covariance of ε∗ in299

log-space and original space can be evaluated using ρ:300

E(ln ε∗| ln ε) = (1− ρ)µln ε + ρ ln ε (19a)

301

Cov(ln ε∗| ln ε) = (1− ρ2)Cln ε (19b)
302

E(ε∗|ε) = exp[E(ln ε∗| ln ε) + 0.5Var(ln ε∗| ln ε)] (19c)
303

Var(ε∗|ε) = E(ε∗|ε)2{exp[Var(ln ε∗| ln ε)]− 1} (19d)

Based on similar derivation as in equations (16) and (17), the best estimates and304
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prediction intervals of wall deflections considering stage correlation of bias become:305

E(y∗|ε,y) = E(ε∗|ε)E(g∗|y) (20a)

306

SD(y∗|ε,y) =
√

Var(ε∗|ε)Var(g∗|y) + Var(ε∗|ε)E(g∗|y)2 + Var(g∗|y)E(ε∗|ε)2 (20b)

The key parameter in determining the stage correlation effects is θst. This value may307

be affected by site-specific conditions such as the spatial variability of soil properties or308

existence of different soil layers, as will be shown in the later examples. The determination309

of θst requires a ‘back-calibration’ procedure, and the details will be illustrated through310

the following cases.311

Illustration by hypothetical scenario312

Various components of the proposed approach will be illustrated through two examples313

of deep excavations, with the first being a hypothetical case. The main advantage314

of a hypothetical scenario is that all modeling conditions, including soil stress-strain315

response and spatial distribution of material properties, are assigned and known, so316

that the capabilities and potential limitations of the proposed updating procedures will317

not be masked by additional unknowns or assumptions in a real project setting. A318

three-dimensional (3D) finite difference model of multi-stage excavation in spatially319

variable soil is first created, using the software FLAC3D, as a benchmark model (Fig. 1a).320

The deflections obtained at two separate locations of the retaining wall in this benchmark321

model are considered to be ‘virtual inclinometer measurements’ (y) (Fig. 1b). The322

Bayesian updating analyses are then performed using two-dimensional (2D) finite323

difference models by FLAC, with the 2D simulation results corresponding to g in324

the proposed framework. Therefore, model bias arises from differences in 2D and 3D325
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Figure 1: Three-dimensional benchmark model: (a) Spatial distribution of su profile
before excavation; (b) Horizontal displacement after excavation

simulations, and also from the representation of soil variability in these different models.326

This is intended to imitate the typical scenario encountered by practitioners, where327

two-dimensional numerical models are often utilized to predict the response of retaining328

structures or conduct back-analyses from inclinometer measurements.329

Geometrical settings of hypothetical excavation case330

In the 3D benchmark model, the excavation is 16 m deep and 20 m wide in the transverse331

direction (representing a half-model). The retaining structure consists of reinforced332

concrete diaphragm wall, which is 0.9 m thick with a total wall height of 33 m and333

Young’s modulus of 18 GPa. Steel struts are installed at 4 different levels as the334

excavation progresses (Table 1), at a lateral spacing of 6 m along the longitudinal335

direction. The struts have cross-sectional area of 0.02 m2, Young’s modulus of 200 GPa336

and second moment of area of 1.4× 10−3 m4. Both the wall and struts are modeled as337
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Table 1: Construction sequence for hypothetical excavation case

Stage Depth of strut installation (m) Excavation depth (m)

1 Nil 3

2 2 5

3 4 10

4 9 13

5 12 16

linear-elastic materials.338

The subsurface profile consists of 30 m of ‘clayey’ material overlying a stiff stratum.339

The clayey soil has a unit weight of 19 kN/m3, and its behaviour is modeled by total340

stress analysis. The undrained shear strength (su) of the clay is modeled as a lognormal341

random field, with mean value of 45 kPa and coefficient of variation of 0.4. The horizontal342

autocorrelation distance (θx = θy) is 30 m while the vertical autocorrelation distance343

(θz) is 5 m. The stress-strain response is assumed to be linear-elastic perfectly-plastic in344

this hypothetical case, and the undrained Young’s modulus (Eu) is perfectly correlated345

with the undrained shear strength, with Eu = 1000su. The Poisson’s ratio is assigned to346

be 0.49 for total stress analysis, and the adhesion factor between the wall and the soil is347

taken as 0.9. The bottom 3 m of the diaphragm wall is socketed into the stiff stratum,348

which is assumed to be linear-elastic with Young’s modulus of 200 MPa and Poisson’s349

ratio of 0.2.350

It is not necessary to generate multiple 3D realizations for this hypothetical scenario,351

since one 3D model is sufficient to serve as the benchmark. Based on the autocorrelation352

distances mentioned earlier, the spatial profile shown in Fig. 1a is generated in FLAC3D.353

The mesh size is 1 m×1 m×1 m in the model, with the lateral boundary set at 60 m354

behind the retaining wall. Roller boundaries are assigned to the four lateral boundaries,355

while the bottom of the model (35 m below surface) is fixed. The two ‘virtual inclinometer’356

locations are denoted as ID-A and ID-B, where the corresponding deflections will be357
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treated as ‘measurements’ for Bayesian analyses of 2D models. As shown in Fig. 1b, the358

wall distortion in the longitudinal direction is significant, due to spatial variability of359

soil properties in that direction.360

Two separate 2D FLAC models are constructed for the Bayesian updating analyses,361

at the cross-sections corresponding to inclinometers ID-A and ID-B. The same parameters362

that characterize random fields of su and Eu are adopted in the 2D models, but they363

involve different spatial variation patterns, due to the different values of H∗ components364

at the two locations. Based on the soil spatial correlation structure and spectral365

decomposition of the R matrix (equation (5)), 39 ξ components are required to capture366

95% of the total variance of the random field. 500 realizations of the random field are367

then simulated using LHSD approach which, as mentioned earlier, is a stratified sampling368

scheme that preserves the autocorrelation structure of the soil profile (Packham and369

Schmidt 2010; Lo and Leung 2017). The excavation sequence with the 500 z subsurface370

profiles are then analyzed by FLAC, to obtain 500 deflection estimates for each stage, at371

each of the two cross-sections. Since deflection ‘measurements’ from the 3D model are372

separated by 1 m intervals, there are a total of 68 (n = 68) deflection values considering373

the two inclinometers. Therefore, 68 PCE are constructed for each construction stage,374

with the coefficients obtained through the sparse PCE approach (Blatman and Sudret375

2010). Among these measurement points, only those between the depths of 6 to 26 m376

are used for subsequent Bayesian updating. This is because at the top and bottom of377

the wall, the deflection values are close to zero, in which case the multiplicative model378

bias may become unreasonably large, even though the difference in magnitudes between379

the predicted and measured response is very small. For the selected measurement depths380

from 6 to 26 m, the cross-validated regression coefficient Q2 of all the PCE are above381

0.93.382
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Bayesian updating analyses for hypothetical case383

While the total variance of the random field may be represented by 39 ξ components,384

it is beneficial to further reduce the number of components in the Bayesian updating385

process, since the MCMC algorithm may fail to converge when the number of dimensions386

is too high. The contributions of individual ξ components are assessed by the Sobol’387

index, calculated by equation (6), and are summed up across the selected wall points388

for construction stages 2 to 5. For example, Fig. 2 shows the percentage contribution by389

the first ten ξ components, where the pattern of Sobol’ index variations is similar for all390

construction stages, with the wall response dominated by the first ξ component. The391

remaining components are not shown in Fig. 2, but their contributions are generally392

insignificant, except components 21, 22 and 29, each of which contributing to 1-5% of393

the response variance. In general, the index does not decrease monotonically, which394

illustrates that a small-scale spatial variability can still have noticeable effect to the395

wall deflection response. Based on the Sobol’ index analysis, the 9 most influential396

components (ξi) are considered for the updating process, which include components397

i = 1, 4, 2, 21, 6, 3, 7, 29 and 22. Together, these contribute to 86.4%, 92.2%, 94.8%398

and 95.7% of the deflection response variances at Stages 2, 3, 4 and 5. Subsequently,399

the number of ξ components to be updated by the Bayesian procedure reduces from 39400

to 9, which enhances the robustness of the MCMC algorithm.401

As discussed earlier, each measurement location k is associated with a model bias402

factor εk. The ε vector is assumed to be stationary, and its mean value (µε), stan-403

dard deviation (σε), and spatial correlation parameters (θspv, θsph) will each involve404

a prior distribution (defined by the mean: mµε,mσε,mθspv,mθsph and standard devi-405

ation: sµε, sσε, sθspv, sθsph), to be updated through the Bayesian procedure using the406

measurement data (equation (13)). The prior distributions of these model bias factors407
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Figure 3: Prior estimates of prediction intervals for hypothetical case

parameters are listed in Table 2, with mµε = 1;mσε = 0.3 and mθspv = 0.7, similar to408

the recommendations by Qi and Zhou (2017). There has been limited discussions in409

the literature on the value of θsph. In this analysis, it is assumed that the prior mean410

mθsph = 1.87, which corresponds to the horizontal autocorrelation distance of the su411

random field. The standard deviations of the prior distributions for these parameters are412

also shown in Table 2. Based on the prior distributions of the 9 ξ components (N(0,1))413
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Table 2: Spatial correlation of model bias factor: hypothetical case

Model bias Prior Stage 2 Stage 3 Stage 4

parameters mean SD mean SD mean SD mean SD

µε 1 0.05 1.02 0.039 1.02 0.035 1 0.032

σε 0.3 0.15 0.1 0.015 0.14 0.01 0.16 0.009

θspv 0.7 0.3 0.6 0.06 0.58 0.061 0.67 0.055

θsph 1.87 0.5 1.41 0.355 1.05 0.304 1.23 0.25

and 4 model bias factors, the prior prediction intervals for all stages (without subsequent414

updating) can be evaluated, as shown in Fig. 3. Due to the substantial model and soil415

spatial uncertainty, the resulting prediction intervals are fairly wide, especially for the416

later stages of construction, and may not provide much useful information for practical417

purposes. In addition, this prior prediction does not differentiate between the response418

in the two cross-sections arising from the soil variability along the longitudinal direction.419

Table 3: Bayesian updating of ξ components: hypothetical case

Components of Prior Stage 2 Stage 3 Stage 4

soil variability mean SD mean SD mean SD mean SD

ξ1 0 1 -0.59 0.17 -0.95 0.1 -1.01 0.08

ξ2 0 1 -0.07 0.15 -0.22 0.08 -0.21 0.06

ξ3 0 1 -0.41 0.17 -0.61 0.11 -0.57 0.08

ξ4 0 1 1.03 0.2 0.57 0.16 0.15 0.12

ξ6 0 1 -0.22 0.11 -0.21 0.07 -0.15 0.06

ξ7 0 1 -0.14 0.17 -0.06 0.09 -0.11 0.06

ξ21 0 1 0.67 0.26 0.49 0.15 0.67 0.12

ξ22 0 1 0.13 0.19 -0.08 0.1 -0.11 0.08

ξ29 0 1 -0.23 0.22 0.11 0.12 0.03 0.1

The Bayesian updating is performed through the AM algorithm for MCMC, described420

in equation (14). The Markov chain has a total chain length of 40000, with an initial421

burn-in period of 5000. The adaptation starts at chain length (t0) of 10000, before which422

the acceptance rate of the Markov chain ranges from 5-10%. After the commencement423

of adaptation (t > t0), the acceptance rate gradually increases to about 50%.424
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Figure 4: Prior and posterior distributions for three ξ components and three model bias
parameters

In the Bayesian process, the posterior distribution obtained at a certain construction425

stage is used as the prior for the next stage. Tables 2 and 3 show the posterior426

distribution of the ξ components and model bias parameters after each updating stage,427

while Fig. 4 also shows the distributions for some of the parameters. The results428

show that the standard deviations of both ξ components and ε parameters decrease429

monotonically through repeated updating and refining of parameters, with the most430

significant reduction occurring at Stage 2. The normalized vertical and horizontal431

autocorrelation distances of ε are about 0.67 and 1.23, which correspond to 10.7 m and432

19.7 m by multiplying with H, showing that the model bias can be spatially anisotropic.433

Meanwhile, based on the sequentially updated ε and ξ parameters, the prediction434

intervals are evaluated by equation (17) and shown in Fig. 5. As mentioned earlier, the435

prediction intervals for a certain stage are based on the updated parameters obtained436

at the immediate previous stage. For example, the prediction intervals for stage 3 are437
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evaluated using the posterior distribution of parameters obtained at the end of stage 2.438

In general, the prediction intervals (mean estimate plus/minus one standard deviation)439

from the 2D models can envelope the actual deflection from 3D benchmark simulation at440

a reasonable width. The approach also allows the longitudinal distortion of the retaining441

wall to be encapsulated, with different response predicted for the two cross-sections442

ID-A and ID-B.443
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Figure 5: Measured wall deflection (black) and prediction range (grey) for hypothetical
case

The stage correlation of model bias is determined through a ‘back-calibration proce-444

dure. For example, at the end of stage 4, the deflections of stages 3 and 4 can be back445
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analyzed using the mean of updated parameters in stage 4. If the realized model bias of446

the stage 4 is denoted as ln ε4, and that of stage 3 as ln ε3, the correlations between447

ln ε3 and ln ε4 can be assessed by fitting a 1:1 line (Fig. 6), and the goodness of fit is448

evaluated by R2:449

R2 = 1−
∑

n(ln ε4 − ln ε3)
2

nσ2
ln ε

(21)

If R2 > 0, the stage correlation coefficient is estimated as ρ =
√
R2, and the stage450

autocorrelation distance is evaluated by θst = −∆Dst/ ln ρ (equation (18)).451
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Figure 6: Example of correlation between model bias in different stages of hypothetical
case

For this hypothetical case, at the end of stage 4, the ρ values between stages 2-3,452

stages 2-4 and stages 3-4 are 0.86, 0.92 and 0.97, which corresponds to θst of 33.2 m,453

91.8 m and 96.9 m, respectively. The smallest value of 33.2 m is adopted, which may be454

considered to be conservative, as the width of prediction interval increases with reducing455

ρ (equation (19)). Based on θst computed at the end of stage 3 (not shown) and stage 4,456

the refined prediction intervals of stage 4 and stage 5 are computed by equation (20)457

and are shown in Fig. 5. Compared to the estimates without stage correlation, the458

refined intervals are narrower, and the actual deflection lies in the center of the refined459
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intervals.460
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Figure 7: Comparisons between su profiles in 3D benchmark model and posterior
estimates by 2D models

Fig. 7 shows the posterior estimates (mean plus and minus standard deviation) of461

su profiles at the ID-A and ID-B locations, updated based on equation (16) after stage462

4. Considering the intrinsic differences between 2D and 3D simulations, the variation463

patterns of the benchmark model are reasonably well captured by the 2D models, with464

higher shear strength close to the wall, and weaker soils towards the center of the model.465

Also, the posterior su estimates are generally higher at the ID-B model, which are466

reflected in the smaller wall deflections. Although the very strong soils (su > 80 kPa)467
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near the boundaries of the 3D benchmark model cannot be captured by the updating468

process, they are deemed to be too far behind the retaining wall with insignificant469

influence to the wall deflections.470

Application to excavation project in Hong Kong471

Description of site conditions472

The second case involves the Bayesian analyses of a deep excavation project during473

construction of the West Rail Line of the Mass Transit Railway (MTR) in Hong Kong.474

The project background, details of site conditions and data of displacement measurements475

have been reported by Pickles et al. (2006), with the project layout shown in Fig. 8.476

The project site is located in the Tsuen Wan area in Hong Kong, where a 400-m long477

underground station and 600 m of cut-and-cover tunnels, separated into the Northern478

Approach Tunnel (NAT) and Southern Approach Tunnel (SAT), were constructed in479

the early 2000s. Extensive geotechnical investigation and site instrumentation were480

implemented prior to and during construction of the station and tunnels. In this481

study, a section of the deep excavation at NAT is investigated, where the inclinometer482

measurements of diaphragm wall deflections are used to update the subsurface soil483

variability and model bias, and to sequentially refine the predictions for later stages.484

The construction site is located at an area that had undergone multiple phases of485

previous reclamation. At the NAT section, the reclamation was completed more than486

10 years before construction of the tunnel. The subsurface profile consists of 12.5 m of487

fill, overlying a 2.5-m layer of marine deposits. Below the marine deposit is a thin layer488

(around 0.5 m thick) of alluvium, followed by completely decomposed granite (CDG)489

which is 9 m thick. Both the marine deposit and alluvium layers composed of silty and490

clayey sand materials, with variable amounts of gravel. The rock (granite) stratum491
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Figure 8: Layout of the Tsuen Wan excavation project and locations of boreholes
(adapted from Pickles et al. (2006))

is approximately 24.5 m below the ground surface, or at reduced level of -19.8 mPD492

(Principal Datum of Hong Kong is 1.230 m below mean sea level). The water table was493

at +2 mPD, which was about 2.7 m below the ground surface.494

The lateral support system at the NAT excavation consisted of reinforced concrete495

diaphragm wall which was 0.8 m thick, with a total wall height of 30.5 m, and the bottom496

6 m of the wall was embedded in rock. The total excavation depth was 19.5 m, with four497

levels of temporary steel struts. The steel struts were double UB 610×324×174 sections498

modeled as linear-elastic material, with Young’s modulus of 200 GPa, cross-sectional499

area of 0.0456 m2 and second moment of area of 1.53×10−3 m4. The lateral spacing500

of the struts was 7 m. The diaphragm wall was constructed with tremie concrete.501

Considering the concreting process which was performed under water, the concrete is502

assumed to have a Young’s modulus of 18 GPa in the subsequent analyses. Also, in503

the following simulations of the excavation process (Table 4), the groundwater level is504
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Table 4: Construction sequence for Tsuen Wan excavation case

Stage Depth of strut Excavation depth Depth of water level

installation (m) (m) inside cofferdam (m)

1 Nil 1.5 2.5

2 1 5.5 6.5

3 5 9.5 10.5

4 9 12.5 13.5

5 Nil 15 16

6 14.5 19.5 20.5

lowered to 1 m below the excavated level inside the cofferdam. Behind the diaphragm505

wall, the groundwater level is maintained at a constant level of +2 mPD. Monitoring506

data of the diaphragm wall deflections is available through inclinometer readings as the507

construction progresses. It should be noted that at stage 1 where excavation depth was508

around 1.5 m, the ‘measured’ maximum deflection was already 25 mm according to509

the original records. This unexpectedly large value was likely due to the installation510

of the inclinometer casing or other processes that had occured before the excavation.511

The deflection values at this stage is therefore taken as a constant baseline value, and512

deducted from the measurements at subsequent stages.513

Modeling of soil variability514

Since the marine deposit and alluvium layers are relatively thin, with combined thickness515

of only 3 m, their properties are modeled as constants. The number of soil samples516

retrieved for laboratory testing was very limited. In fact, for the fill and CDG materials517

which compose of silty and sandy soils, laboratory test results for shear strength and518

stiffness may be affected by disturbance during retrieval and handling of the specimens.519

Therefore, in this study, the prior distributions for spatial variability of soil strength and520

stiffness are derived through results of in situ standard penetration tests (SPT). The521

records of 21 boreholes around the station and NAT areas (Fig. 8) are utilized, which522
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provide 94 data points of SPT blow counts (N values) in the fill layer, and 40 data523

points in the CDG layer. Based on the field data, Fig. 9 shows the spatial correlation524

features of fill and CDG layers in both horizontal and vertical directions, established525

using the Restricted Maximum Likelihood (REML) method (e.g., Cressie and Lahiri526

1996; Lark and Cullis 2004; Minasny and McBratney 2005; Liu et al. 2017), which allow527

the derivation of autocorrelation distances (equation (2)). These are also compared528

with discrete estimates by the method of moments (MoM) for reference. Although529

the two methods agree less well in some cases, Liu et al. (2017) showed that REML530

is statistically more robust with a small dataset. Therefore, the θx, θy and θz values531

are adopted based on REML estimates. As mentioned earlier, it is also possible to532

adopt other functional forms of R, such as the single exponential function. In that case,533

the corresponding θ values obtained by REML will be larger than those in Table 5,534

in order to match the spatial variability features displayed by the site data. This will535

also lead to similar results in the updating analyses. Meanwhile, it should be noted536

that the estimation of spatial correlation parameters using sparse measurements may537

be affected by statistical uncertainty, an issue which has been discussed in length by538

Ching et al. (2016). While this study advocates enhanced utilization of available soil539

data with the spatial information, such potential limitation should be noted especially540

when the amount of site-specific information is very limited.541

To convert the SPT-N values into soil stiffness distributions, the maximum shear542

modulus (G0) is estimated by:543

G0 = ρsV
2
s = ρs

[
27(N60 σ

′
v)0.23

]2
(22)

where ρs is the soil density and σ′v represents the vertical effective stress at the sampling544

depth; the relationship between shear wave velocity (Vs) and N60 was proposed by Wair545
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et al. (2012) for sandy materials. SPT are conducted by mechanized hammers with546

energy efficiency of around 80% in the local practice. This is considered in the conversion547

from N into N60.548

A two-dimensional FLAC model is used to simulate a cross-section in the NAT549

section of the project. In theory, it is possible to simulate multiple cross-sections as in550

the hypothetical case. This is, however, not performed because the next inclinometer551

is located more than 50 m away from this cross-section, and the spatial correlations552

between the two locations, in both the soil properties and model bias, are deemed553

to be insignificant. Table 5 summarizes the soil properties adopted in the numerical554

model, with the mean values similar to those adopted in deterministic analyses by555

Pickles et al. (2006). In this study, a shear hardening soil constitutive model is adopted556

(‘Chsoil’ model) in FLAC, which features a hyperbolic function representing the shear557

stress-strain relationship:558

Gp = G0

[
1− sinφm

sinφp

Rf

]2
(23)

where φp is the peak friction angle, φm is the mobilized friction angle, and Rf is the559

failure ratio taken as 0.9. G0 is the initial (elastic) shear modulus, which is also the560

unloading-reloading shear modulus; Gp represents the plastic shear modulus according561

to the mobilized φm.562

Table 5: Soil properties adopted in Tsuen Wan excavation case

γ Mean Gref CV: Gref Mean φp CV: φp θx, θy θz
(kN/m3) (MPa) (m) (m)

Fill 19 44.2 0.15 34° 0.15 80 1

Marine deposit 19 67 – 34° – – –

Alluvium 19 67 – 34° – – –

CDG 19.5 90 0.25 37° 0.15 222 11

*γ: unit weight; CV: coefficient of variation

During the excavation process, the stress field in the soil will be altered and its shear563
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Figure 9: Spatial correlation of Gref for fill and CDG layers, estimated by restricted
maximum likelihood method and the method of moments

stiffness will be affected correspondingly. Therefore, instead of a random field of G0, this564

study utilizes random field of the ‘reference’ modulus Gref , which is related to G0 by:565

G0 = Gref

(
p′

pa

)m
(24)

where p′ is the mean effective stress in the soil, pa is the atmospheric pressure (100 kPa)566

and m is a modulus exponent taken as 0.5 in this study. Equation (24) is conceptually567

similar to the stress-dependent model proposed by Duncan and Chang (1970). The568

mean values of φp are taken to be 34° and 37° for fill and CDG (Pickles et al. 2006),569

while the coefficient of variation of φp for both layers are assumed to be 0.15, which570

is consistent with the range reported in Phoon and Kulhawy (1999). Meanwhile, φp571
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is assumed to be perfectly correlated with Gref . While soil strength and stiffness are572

expected to be positively correlated, the precise degree of cross-correlation is rarely573

reported. This study assumes the cross-correlation coefficient to be unity, and it is574

possible to incorporate other values of the coefficient, although this would lead to a575

more sophisticated mathematical formulation. In addition, the peak dilatancy angle is576

assumed to be equal to φp − 30° (with minimum value of 0), which is an approximation577

also adopted by Sert et al. (2016). The soil-wall interface is assumed to have a constant578

friction angle of 24.5°, which roughly corresponds to interface reduction factor of 0.65579

and is in line with the recommendations of local design guidelines.580

Without extensive and high-quality sampling and laboratory testing for soils at581

the site, the adopted equations (22) to (24) will inevitably introduce transformation582

uncertainty. In this case, this component of geotechnical uncertainty is treated together583

with model uncertainty, through sequential updating of the model bias factors in the584

Bayesian process. In cases where large amounts of site-specific triaxial test data is585

available, the corresponding soil stress-strain relationships can be established with better586

confidence, and the associated transformation uncertainty can be substantially reduced.587

Bayesian updating analyses for excavation case study588

Based on the random field characteristics in Fig. 9 and Table 5, 500 realizations are589

generated by the LHSD method. The realizations are simulated by FLAC to obtain590

500 deflection profiles. The number of measurement points is 61, as the interval of591

inclinometer readings, and the mesh size for the retaining wall in the numerical model592

are 0.5 m. Therefore, 61 PCE are fitted for each construction stage, using the SPCE593

approach. Similar to the hypothetical case, only the middle section of the inclinometer594

(elevation of 0.2 mPD to -14.8mPD) is used for updating, as the multiplicative model595

bias may become unreasonably large at the end regions. Within the selected section, the596
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Figure 10: Sensitivity of the first 10 ξ components in fill layer, and 3 ξ components in
CDG layer

cross-validation coefficients Q2 of the fitted PCE all exceed 0.93. 23 ξ components are597

required to capture 95% of the random field variance, with components 1-20 representing598

fill, and components 21-23 representing CDG. Before the Bayesian updating process,599

Sobol’ index analysis is conducted to select the influential ξ components for updating,600

and the results are shown in Fig. 10. At the early stage of the excavation, when the601

excavation depth is shallow, fill and CDG have similar influences towards the wall602

response. As the excavation depth becomes deeper, CDG becomes more influential.603

Also, the Sobol’ index does not decrease monotonically with ξ components. As shown in604

Fig. 10, the six most influential components are numbers 21, 1, 2, 22, 3, 23. Together,605

these account for the majority of variance in wall response, representing 95.8%, 91.3%,606

96.9%, 97.5% and 97.3% at stages 2, 3, 4, 5 and 6, respectively.607

The prior mean and SD of the model bias parameters are the same as the hypothetical608

case. The Bayesian updating is performed with the AM algorithm, and the Markov609

chain has a total chain length of 40000, with an initial burn-in period of 5000. The610

adaptation starts at chain length of 10000, before which the acceptance rate of the611

Markov chain ranges about 5-15%. After the adaptation, the acceptance rate gradually612
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rises to about 60%. The posterior distribution obtained at a certain construction stage613

is used as the prior distribution for the next stage.614

Table 6: Spatial correlation of model bias factor: Tsuen Wan case

Model bias Prior Stage 2 Stage 3 Stage 4 Stage 5

parameters mean SD mean SD mean SD mean SD mean SD

µε 1 0.05 0.99 0.046 1.03 0.044 1.04 0.040 1.04 0.036

σε 0.3 0.15 0.28 0.045 0.21 0.043 0.23 0.025 0.22 0.021

θspv 0.7 0.3 0.37 0.078 0.23 0.048 0.42 0.06 0.36 0.064

Table 7: Bayesian updating of ξ components: Tsuen Wan case

Components of Prior Stage 2 Stage 3 Stage 4 Stage 5

soil variability mean SD mean SD mean SD mean SD mean SD

ξ1 0 1 -0.08 0.87 0.09 0.49 0.25 0.38 -0.13 0.33

ξ2 0 1 0.01 0.98 0.32 0.79 0.68 0.66 1.02 0.57

ξ3 0 1 -0.47 0.72 0.02 0.42 -0.33 0.32 -0.1 0.28

ξ21 0 1 -0.02 0.67 1.53 0.39 1.80 0.26 1.51 0.22

ξ22 0 1 0.18 0.94 -0.3 0.57 -0.29 0.45 -0.39 0.38

ξ23 0 1 0.01 0.72 0.19 0.52 0.50 0.44 0.28 0.38

Tables 6 and 7 shows the posterior mean and SD of the ξ components and model bias615

parameters. In general, the SD keep decreasing through repeated updating, with the616

effects more notable for soil variability parameters (ξ components), and less significant617

for the model bias parameters. At the final stage, the normalized vertical autocorrelation618

distances (θspv) of ε is 0.36, which corresponds to approximately 7 m. Based on the619

updated ξ and model bias, the prediction intervals at each stage can be evaluated, and620

are shown in Fig. 11. The predictions of stages 4 and 6 show considerable improvement621

over the prior estimates (with no updating), with the prediction intervals being closer to622

the actual deflection curves. For stage 5, the improvement is not obvious, which may be623

due to the excavation into different soil layers at this stage. It is also worth noting that,624

compared to the prior estimates, the width of prediction intervals only reduces slightly625
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after the Bayesian updating analyses. This is mainly attributable to two reasons: (1)626

the variance of model bias (σε) is not significantly reduced by the updating process;627

and (2) the wall deflection estimates g∗ is increased by updating, and together with628

the multiplicative model bias, the prediction interval due to model bias would expand,629

which counterbalances the reduced soil variability and model uncertainty.630
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Figure 11: Measured wall deflection and prediction range (mean plus/minus one standard
deviation) at Tsuen Wan case

Unlike the hypothetical scenario, the stage correlation in this case is found to be631

insignificant. For example, Fig. 12 compares the model bias of stages 2 and 5, which632
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Figure 12: Example of correlation between model bias in different stages of Tsuen Wan
case

does not show any clear pattern of correlations. Therefore, further refinements of the633

prediction intervals are not performed. This may be attributed to the fact that the634

excavation is performed in four different soil layers, each having different mean values635

and variation features in the properties, causing the stage correlation effects to be less636

significant than the hypothetical excavation in a statistically homogeneous material.637

Discussions638

Fuentes et al. (2018) recently reported the lessons learned from a deep excavation639

project where the observational method was adopted. The relevant key requirements640

from Eurocode 7 (British Standards Institute 2004) are also summarized in Spross641

and Johansson (2017), which include: (1) definition of acceptable limits of the system642

behavior; (2) assessment on the range of possible behavior, with an acceptable probability643

that the actual behavior will be within acceptable limits; (3) monitoring plan with644

frequent measurements so that contingency measures can be implemented if and when645

necessary; (4) rapid response time for instruments and analyses of monitoring results; and646
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(5) plans of contingency actions if the monitoring reveals behaviour outside acceptable647

limits.648

With the analytical components presented in this paper, the proposed approach649

may serve as a quantitative tool under the framework of the observational method. In650

a braced excavation project, the acceptable wall deflection criteria would be assigned651

according to site conditions such as proximity to sensitive structures. While probabilistic652

analyses provide a means to establish the possible system response (e.g., wall deflection),653

the proposed Bayesian approach allows the probabilistic estimates to be progressively654

refined and updated through monitoring results such as inclinometer readings. For655

example, based on inclinometer reading y at a certain stage, the prediction intervals of656

wall deflection at subsequent stages (i.e., y∗|y) can be updated by equation (17). In the657

preceding hypothetical scenario and case study, the prediction intervals are presented658

as mean estimate plus/minus one standard deviation, which corresponds to confidence659

interval of roughly 68%. It is also possible to present the confidence interval of 95%,660

using mean plus/minus two standard deviations. These intervals provide quantitative661

indicators on the probability of system behavior exceeding certain limits. It would be a662

cause for concern if field measurements exceed the prediction intervals, as this implies663

that some elements of uncertainty may not have been properly accounted for.664

The confidence levels should be assessed and interpreted together with the tolerable665

risk level of the project, which should be agreed upon by all the stakeholders and666

decision-makers. For example, remedial actions may be initiated if the estimated mean667

and standard deviations of wall deflections point to a high probability for future response668

to exceed acceptable limits, as outlined in criteria (1) and (2) above. During the course669

of construction, it is also essential that these decisions are made considering all available670

information, to avoid a false sense of security (or false alarm). In the current context,671

this refers to the consideration of site-specific soil sampling data when establishing the672
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spatial correlation structure, which is then explicitly modeled and progressively refined673

as inclinometer readings are obtained. The approach involves data-driven procedures674

that are representative of the specific project conditions. The importance of this675

refinement process can be recognized by comparing the analyses with and without676

Bayesian updating, in Figs. 5 and 11.677

The observational method requires rapid response time regarding analyses of mon-678

itoring data and their implications to the subsequent response. While the proposed679

approach involves probabilistic analyses with about 500 FLAC simulations, which can680

take days to complete, it is important to note that these random field simulations681

would be performed during the planning stage, prior to commencement of construction.682

Once the excavation starts with incoming monitoring data, the updating algorithm only683

involves evaluations that can be completed quickly (e.g., less than an hour even for the684

real construction case), so that necessary remedial measures can be implemented without685

delay. This updating operation is, arguably, not slower than inverse analyses of the data686

using finite element or finite difference analyses based on deterministic approach.687

While this study focuses on incorporating spatial variability of soil properties into the688

Bayesian framework, it is also possible to include variability in the geological profiles and689

soil layer thickness. This is, however, not considered in the presented case study, where690

information on soil strata was obtained from a nearby borehole about 10 m away from691

the cross-section. Due to the close proximity between this borehole and the inclinometer,692

the uncertainty on layer thickness is deemed to have insignificant contributions to the693

modeling results. Moreover, including uncertainty in soil layering will lead to more694

complications in the formulation, as each numerical realization will entail a different695

number of elements for each soil layer. The implementation of such modeling scheme696

may be explored in a future study.697
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Conclusion698

This paper incorporates the Bayesian approach with surrogate modeling technique,699

to update the principal components that characterize the spatial variability of soil700

properties using field measurements of system response. The approach also allows the701

model bias factors, their spatial and stage-dependent correlations to be considered, so702

that response predictions for the subsequent stages can be continuously refined as the703

construction progresses.704

Two deep excavation cases are presented to illustrate the capabilities of the proposed705

approach. The hypothetical case shows that using separate 2D analysis models, the706

approach can capture the distortion phenomenon along the longitudinal direction of the707

retaining wall, which arises due to spatial variability of the soils in lateral directions. The708

second illustration involved an excavation case study in Hong Kong, where the updating709

approach is able to envelope the measured deflection response, considering site-specific710

data that reveals the variability features in soil properties. The two cases also revealed711

the merits and limitations of the stage correlation model for bias factor: while stage712

correlation improves the prediction accuracy when the excavation is conducted within713

a statistically homogeneous material, it is less effective when the excavation involves714

multiple soil layers with abruptly changing properties.715

In addition, it should be noted that the two presented cases are not ‘back-analysis’716

exercises where the model parameters are calibrated to produce numerical results that717

match the measurements. Instead, the soil properties are derived using in situ test718

data, together with well-established strength and stiffness relationships. Predictions719

for later stages are sequentially updated and refined using wall response measurements720

obtained as the construction progresses, meanwhile incorporating various sources of721

uncertainty. The role of this proposed approach within the framework of observational722
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method is elucidated, as the refined estimates and prediction intervals can help support723

the decision-making process regarding the subsequent excavation stages.724
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