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ABSTRACT 

Travel time reliability (TTR) has received great attention in the past decades. The 

majority of TTR measures rely on the travel time percentile function as a basic element 

for performance evaluation. There are two main approaches for deriving the travel time 

percentile function: simple unimodal probability distribution models and 

mixture/nonparametric models. Despite the tractability of the former approach, they 

cannot sufficiently capture the travel time distributions (TTDs) due to their 

heterogeneity, and also often encounters many issues such as the failure of significance 

tests and the indecisiveness among multiple fitted distributions. On the other hand, the 

latter approach possesses greater flexibility for capturing diverse TTDs, but it does not 

have a simple and closed-form travel time percentile function. Motivated by the above 

drawbacks, this paper proposes a closed-form and flexible approach for estimating the 

travel time percentile function of diverse TTDs based on the Cornish-Fisher expansion 

without the need to assume/fit a certain distribution type. To ensure a high-quality 

estimation, we introduce and integrate two improvements with theoretically proven 

foundation into the Cornish-Fisher expansion while guaranteeing a closed-form 

expression of the travel time percentile function. Specifically, the first improvement, 

logarithm transformation, increases the probability of satisfying the validity domain of 

the Cornish-Fisher expansion; while the second improvement, rearrangement, 

guarantees a monotone travel time percentile function when travel time datasets cannot 

satisfy the validity domain after the logarithm transformation. Realistic travel time 

datasets are used to examine the accuracy and robustness of the proposed method. 

Compared to five widely-used probability distributions, the proposed method is 

sufficiently adaptable to estimating percentile function of diverse TTDs with lower 

estimation error. More importantly, it has a closed-form expression of the travel time 

percentile function, which would facilitate characterizing TTR in large-scale network 

applications. 
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1 INTRODUCTION 

1.1 Motivations and Observations 

(1) Percentile Function as a Basic Element in Travel Time Reliability Measures 

Travelers prefer a reliable travel choice to ensure on-time arrival (van Lint et al., 2008), 

and they value travel time reliability (TTR) almost as much as they value mean travel 

time (e.g., Hollander, 2006; Asensio and Matas, 2008; Li et al., 2010). Thus, TTR plays 

an important role in travelers’ decision making and planners’ cost-benefit assessment 

of transportation projects. In order to better quantify TTR and provide travelers with 

more accurate travel time information, many travel time reliability measures have been 

proposed in the literature, e.g., 90th or 95th travel time (FHWA, 2009), alpha-reliable 

travel time (Chen and Ji, 2005; Ji et al., 2011) or p-percentile travel time (Nie, 2011), 

travel time index, planning time index (NCHRP, 2008), buffer index (Lomax et al., 

2003; SHRP, 2009), skewness-width (van Lint et al., 2008), failure rate (Lomax et al., 

2003), frequency of congestion, misery index (FHWA, 2009), travel time budget (Lo et 

al., 2006, Shao et al., 2006), mean-excess travel time (Chen and Zhou, 2010; Chen et 

al., 2011; Xu et al., 2013, 2017), and travel time reliability ratio (Fosgerau, 2017; Taylor, 

2017). The above reliability measures and their formulas are summarized in Table 1. 

One can see that all these TTR measures are calculated based on either the percentile 

travel time (PTT) function or the distribution tail of travel time percentile function. In 

other words, the travel time percentile function (equivalent to inverse cumulative 

distribution function (CDF)) is the key to calculate TTR measures for characterizing 

travel time variability. As in many transportation research topics such as route choice, 

traffic assignment, and network optimization problems, a closed-form expression of 

travel time percentile function would facilitate the computations of these TTR measures 

and promote their applications in large-scale network applications.  

 
Table 1. A summary of travel time reliability measures. 
Type Reliability measure Formula 

Based on PTT 

90th or 95th travel 
time (90th or 95th TT)

 90%PTT  or  95%PTT  

p-percentile travel 
time (p-PTT) 

 PTT p  

travel time index 
(TTI)  15%

M
TTI

PTT
  

planning time index 
(PTI) 

 
 
95%

15%

PTT
PTI

PTT
  
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buffer index (BI) 
   

 
95% 50%

50%

PTT PTT
BI

PTT


  

skewness-width 
( sk ew , var ) 

   
   

skew 90% 50%

50% 10%

PTT PTT

PTT PTT






 

   
 

var 90% 10%

50%

PTT PTT

PTT



  

Based on 
distribution 
tail of 
percentile 
function 

failure rate (FR)     100% 1 50%iFR P TT p PTT    

frequency of 
congestion (FoC) 

    1 50%iFoC P TT p PTT     

misery index (MI)  
1

0.8
PTT x dx M

MI
M


   

travel time budget 
(TTB) 

    min |TTB p T P TT T p    

mean-excess travel 
time (METT) 

 
11

1 p
METT PTT x dx

p


   

travel time reliability 
ratio (TTRR) 

 
1

TTRR PTT x dx
 

 
 


   

Note: M: mean travel time; PTT(p): p-percentile travel time; p: a given probability;
TT: travel time;  𝑇ത:  travel time corresponding to the user-specified confidence level
p; 𝛼, 𝛽, and  𝛾: travelers’ preference parameters in schedule delay model. 

 

(2) Challenges in Fitting Travel Time Distributions 

Another important observation is the heterogeneity of travel time distributions (TTDs), 

which brings great challenges to fitting TTDs. Many factors, such as unpredictable 

traffic incidents (Cohen and Southworth, 1999), adverse weather conditions (Lam et al., 

2008), and different traffic management and control measures (e.g., road pricing in 

Garnder et al. (2008), and speed limit control in Xu et al. (2018)), can significantly 

affect the travel demand and traffic supply, resulting in multiple or mixed traffic states. 

This means that when evaluating TTR, we would obviously encounter travel time 

observations with different statistical features, i.e., the heterogeneity of TTDs. The 

empirical travel time observations may render multiple statistical characteristics as 

shown in Figure 1. For example, van Lint and van Zuylen (2005) distinguished four 

traffic states (i.e., free-flow traffic, congestion onset, congested traffic, and congestion 

dissipation) corresponding to different shapes of TTDs based on empirical travel time 
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observations. Crawford et al. (2017) also identified the predictable difference in daily 

traffic flow profiles due to known explanatory factors, such as the day of the week or 

the season. In other words, TTDs could not only be right-skewed with a fat tail (van 

Lint and van Zuylen, 2005; Fosgerau and Fukuda, 2012; Susilawati et al., 2013; Kim 

and Mahmassani, 2015; Delhomme et al., 2015) but also be left-skewed or even close 

to the normal distribution as shown in Figure 1.  

 

 
(a) Negative skewness (b) Near-zero skewness 

(c) Positive skewness (d) Strong positive skewness 
Figure 1. Histogram of empirical travel time datasets with various skewness values. 

 

The diversity of TTDs leads to various difficulties and challenges in identifying an 

optimal probability distribution fitting function. Therefore, many probability 

distributions, such as Normal, (Shifted) Lognormal, (Compound) Gamma, Weibull, 

Generalized Beta, Stable, and Burr distributions, have been proposed to fit TTDs in the 

literature (e.g., Polus, 1979; Arroyo and Kornhauser, 2005; Al-Deek and Emam, 2006; 

Mazloumi et al., 2010; Rakha et al., 2010; Castillo et al., 2012; Fosgerau and Fukuda, 

2012; Susilawati et al., 2013; Srinivasan et al., 2014; Taylor, 2017). Besides the 

diversity of distribution types, using a distribution to fit TTDs is also associated with 
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many issues such as the failure of significance test of some distributions, and 

indecisiveness among multiple fitted distributions or among different goodness-of-fit 

(GoF) measures. Plötz et al. (2017) demonstrated that different GoF measures may lead 

to different results of the best fitted distribution types even for the same travel time 

dataset.  

 

To deal with the heterogeneity of TTDs, mixture or nonparametric models have been 

proposed to fit TTDs due to their greater flexibility, e.g., Normal mixture model (Guo 

et al., 2010), Lognormal mixture model (Kazagli and Koutsopoulos, 2012), Gamma 

mixture model (Yang and Wu, 2016), finite mixture of regression model (Chen et al., 

2014), kernel density estimation such as Hasofer–Lind–Rackwitz–Fiessler algorithm 

(Yang et al., 2014), and the fast Fourier transform (Ng and Waller, 2010). For fitting 

TTDs with multi-modality, the non-parametric estimation / mixture models can provide 

a better fitting than unimodal probability distribution models as these models can 

account for the multi-modality (Guo et al., 2010; Rahmani et al., 2015). However, it is 

difficult, if not impossible, to derive a closed-form travel time percentile function from 

these complex models, which is quite important for guaranteeing the applicability of 

TTRs in large-scale networks. Based on the above issues, a natural question arises: Can 

we develop a closed-form with high-quality estimation of the travel time percentile 

function that circumvents the issues associated with distribution fitting method while 

being sufficiently adaptable to capturing the heterogeneity of TTDs?  

 

1.2 Main Contributions of This Paper 

Motivated by the above challenges and difficulties, this paper proposes a closed-form 

and flexible approach for estimating the travel time percentile function based on the 

Cornish-Fisher expansion without the need to assume/fit a certain distribution type. 

Besides the widely used mean and variance, skewness and kurtosis are also used in the 

Cornish-Fisher expansion to characterize the asymmetry and flatness of TTDs, 

respectively. Therefore, the proposed method is more adaptable to accurately capturing 

the empirical characteristics of TTDs. 

 

It should be noted that the Cornish-Fisher expansion (Cornish and Fisher, 1937) has 

received very limited attention in transportation research field to our best knowledge. 

It was used to derive theoretical route choice and network assessment models, such as 

travel time risk model (Lu et al., 2005, 2006; Di et al., 2008), perceived mean-excess 

travel time model (Chen et al., 2011; Xu et al., 2013), and mean-excess total travel time 

model (Xu et al., 2014). Although Zang et al. (2018) has used it for calculating travel 
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time reliability ratio, the Cornish-Fisher expansion is only an approximation of the 

travel time percentile, and thus its estimation accuracy and the monotonicity of the 

estimated percentile function may not be necessarily guaranteed. High-quality 

estimation and monotonicity of the travel time percentile function are critical for 

characterizing TTR. Besides, this paper focuses on a more fundamental subject– the 

whole percentile function of TTDs; while Zang et al. (2018) calculates a particular 

metric –TTRR, which only involves the distribution tail of the inverse CDF. Therefore, 

Zang et al. (2018) emphasizes the accuracy of estimating TTRR, while this paper 

emphasizes the monotonicity required to be a percentile function in mathematical sense 

and the adaptability/flexibility for capturing heterogeneous TTDs. 

 

In this paper, instead of a simple and straightforward adoption, we propose and integrate 

two important methodological improvements with theoretically proven foundation into 

the Cornish-Fisher expansion for estimating the travel time percentile function of 

diverse TTDs. These two methodological improvements, i.e., logarithm transformation 

and rearrangement, can greatly improve the estimation accuracy of the Cornish-Fisher 

expansion while guaranteeing a closed-form expression of travel time percentile 

function. (1) A logarithm transformation is first introduced by making use of the fact 

that the Cornish-Fisher expansion performs better when the unknown distribution is 

closer to the normal distribution. The validity domain of the Cornish-Fisher expansion 

with logarithm transformation (i.e., the applicable condition that guarantees the 

estimated travel time percentile function to be monotone) is also rigorously derived. 

Compared to the original Cornish-Fisher expansion,  the probability of travel time 

datasets being out of the validity domain is reduced after logarithm transformation. (2) 

When travel time datasets cannot satisfy the validity domain after logarithm 

transformation, rearrangement is further integrated to make the estimated percentile 

function to be monotone. We rigorously prove that the rearrangement can strictly reduce 

the estimation error of the Cornish-Fisher expansion. In addition, since Pichler and 

Selitsch (2000) recommended the sixth-order rather than the typical fourth-order 

Cornish-Fisher expansion in value-at-risk model for portfolio optimization, the effect 

of higher-order (up to the sixth-order) moments in the Cornish-Fisher expansion is 

examined. Realistic datasets extracted from the License Plate Recognition (LPR) 

system in Shenzhen, China, are used to test the accuracy and robustness of the proposed 

method compared to five widely-used probability distributions (i.e., Lognormal, 

Weibull, Gamma, Normal, and Burr). 

 

In summary, the main contribution of this paper is the development of a closed-form, 
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flexible, and high-quality estimation of the travel time percentile function for 

characterizing TTR while being adaptable to capturing the heterogeneity of TTDs. 

Since no assumption is needed for the probability distribution type, the proposed 

method circumvents the issues and challenges in fitting unimodal travel time 

distributions, while inheriting the advantages of unimodal distributions due to a simple 

expression of percentile function. The closed-form estimation of travel time percentile 

function would facilitate the computation of the TTR measures and promote their 

applications in large-scale network applications. The proposed method has three main 

features: (1) the distribution-fitting-free characteristic; (2) theoretically proven 

foundation based on the two improvements; and (3) a closed-form expression of the 

travel time percentile function. 

 

The remainder of this paper is organized as follows. Travel time percentile function is 

estimated by the proposed approach in Section 2. Section 3 describes the datasets 

extracted from the LPR system and performance assessment. Section 4 explores the 

accuracy and features of the proposed method, particularly the effects of logarithm 

transformation, rearrangement, and higher-order moments in the Cornish-Fisher 

expansion. Conclusions are summarized in Section 5. 

 

2 MODELING TRAVEL TIME PERCENTILE FUNCTION 

In this section, we propose a closed-form estimation approach for the travel time 

percentile function based on the Cornish-Fisher expansion with two improvements. The 

applications of the proposed method are also briefly presented. 

 

2.1 Approximating Percentile Function Based on Cornish-Fisher Expansion 

The Cornish-Fisher expansion proposed by Cornish and Fisher (1937) can be used to 

estimate any percentile by using high-order moments of a random variable. Zang et al. 

(2018) adopted the Cornish-Fisher expansion by using the first four moments (i.e., 

mean, variance, skewness, and (excess) kurtosis) to estimate the PTT as shown below.  

1 2( ) ( ) ( ) ( )PTT p k TT p k TT   (1)

where 𝑘ଵሺ𝑇𝑇ሻ and ඥ𝑘ଶሺ𝑇𝑇ሻ are the mean and standard deviation of travel time (TT); 

p is a given probability; and 𝜑ሺ𝑝ሻ is related to the skewness (denoted by S) and (excess) 

kurtosis (denoted by K) of TT: 

     
2

2 3 3( ) 1 3 2 5
6 24 36p p p p p p

S K S
p U U U U U U         (2)
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where Up is p-quantile of the inverse standard normal CDF. 

 

One can see that the Cornish-Fisher expansion is only a polynomial approximation of 

the travel time percentile. The accuracy and monotonicity of estimating percentile 

function may not be necessarily guaranteed. Below we introduce two important 

improvements with theoretically proven foundation to improve its estimation accuracy 

and to guarantee its monotonicity in estimating PTTs. 

 

(1) Improvement 1: Logarithm Transformation 

Jaschke (2001) and Zang et al. (2018) pointed out that the accuracy of the Cornish-

Fisher expansion in estimating PTTs is better when the unknown distribution is closer 

to the normal distribution. Motivated with this observation, we introduce the logarithm 

transformation to transfer the original travel time dataset TT (𝑡𝑡ଵ, 𝑡𝑡ଶ, … , 𝑡𝑡௡) into a new 

dataset TTln ( 𝑡𝑡ଵ
ᇱ , 𝑡𝑡ଶ

ᇱ , … , 𝑡𝑡௡
ᇱ  ) as shown in Eq. (3), which is closer to the normal 

distribution. 

 lni itt tt   (3)

Then we use the first four moments of the new dataset to estimate PTTs of the original 

travel time observations, and rewrite Eqs. (1) and (2) as follows: 

 1 ln ln 2 ln( ) exp ( ) ( ) ( )PTT p k TT p k TT   (4)

     
2

2 3 3ln ln ln
ln ( ) 1 3 2 5

6 24 36p p p p p p

S K S
p U U U U U U         (5)

where 1 ln( )k TT , 2 ln( )k TT , lnS , and lnK  are the mean, standard deviation, 

skewness, and kurtosis of the new travel time dataset with the logarithm transformation 

(i.e., TTln). 

 

We can estimate the PTT at any given probability through Eq. (4). In other words, we 

can derive a simple closed-form travel time percentile function via Eq. (4) without the 

need to fit a predefined distribution type of TTDs. From this perspective, this approach 

can also be viewed as a semi-parametric modeling approach in the sense that it inherits 

the following advantages of fitting probability distributions: (1) it is more statistically 

representative than empirical travel time datasets, as a fitted distribution can circumvent 

missing empirical values in the collected sample datasets which may indeed exist in the 

real traffic situation; and (2) it is a powerful means to understand the TTDs, which can 

contribute to the development of improved TTR measures (Susilawati et al., 2013) and 
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the investigation of analytical relationship among many existing TTR measures (Pu, 

2011). Although the non-parametric estimation / mixture models can provide a better 

fitting for TTDs with multi-modality than the proposed method as these models can 

account for the multi-modality (Guo et al., 2010; Rahmani et al., 2015), the widely-

used techniques to estimate their parameters (e.g., the Expectation Maximization 

algorithm and the Bayesian approach based on Markov Chain Monte Carlo) are 

computationally demanding (Redner and Walker, 1984; Chen et al., 2014). Therefore, 

the proposed method is a better choice for the large-scale network applications of 

calculating TTR measures that require many computational efforts due to its 

distribution-fitting-free nature and closed-form expression of the travel time percentile 

function. Besides, it is a flexible approach in capturing diverse TTDs, which will be 

discussed in detail later. 

 

Maillard (2012) and Zang et al. (2018) derived the validity domain of the Cornish-

Fisher expansion to ensure a monotone estimated percentile function. The validity 

domain of the Cornish-Fisher expansion with the logarithm transformation is further 

rigorously derived below. 

 

Proposition 1. The validity domain of the Cornish-Fisher expansion remains intact 

with and without the logarithm transformation. 

Proof. Let fln(p) and f(p) respectively denote the travel time percentile functions derived 

from the Cornish-Fisher expansion with and without the logarithm transformation.  

1 2( ) ( ) ( ) ( )f p k TT p k TT   (6)

 ln 1 ln ln 2 ln( ) exp ( ) ( ) ( )f p k TT p k TT   (7)

where 𝜑ሺ𝑝ሻ and 𝜑୪୬ሺ𝑝ሻ are referred to Eqs. (2) and (5), respectively. In order to be 

a monotone function, df(p)/dp and dfln(p)/dp should be nonnegative: 

 2

( ) ( )
0

df p d p
k TT

dp dp


    (8)

   ln ln
1 ln ln 2 ln 2 ln

( ) ( )
exp ( ) ( ) ( ) 0

df p d p
k TT p k TT k TT

dp dp

      (9)

Namely, 

( )
0

d p

dp


  (10)



10 

ln ( )
0

d p

dp


  (11)

The right-hand side of both Eqs. (2) and (5) can be viewed as a quadratic function of 

the skewness (i.e., S and Sln). Also, since the coefficients of the polynomial function in 

terms of skewness are the same for the right-hand side of Eqs. (2) and (5), 

ln ( ) / 0d p dp   equals ( ) / 0d p dp  . Therefore, the Cornish-Fisher expansion with 

and without the logarithm transformation have the same validity domain. Zang et al. 

(2018) derived the validity domain of the Cornish-Fisher expansion without the 

logarithm transformation. We can further rewrite it in a simpler form as shown in Eq. 

(12) and visualized in Figure 2. For a more detailed derivation of Eq. (12), please refer 

to Appendix A. 

   
2 4 2 2 4 2

6 2 1 , 6 2 1

11 1 8 11 1 8
4+ 16, 4+ 16

9 81 3 9 81 3

S

K S S S S S S

     
 

       
 

 (12)

 

Figure 2. The validiy domain of the Cornish-Fisher expansion with and without the 
logarithm transformation. 

This completes the proof.               

 

Remark 1. The logarithm transformation can make highly skewed datasets to be less 

skewed (McDonald, 2009). Although the validity domain of the Cornish-Fisher 

expansion with the logarithm transformation remains intact, the probability of travel 

time datasets being out of the validity domain is reduced after the logarithm 

transformation. In other words, the proposed logarithm transformation expands the 
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applicable domain of the analytical estimation for travel time datasets with larger 

skewness and kurtosis. The empirical results in Section 4 will demonstrate the 

promising improvement of the Cornish-Fisher expansion in estimating PTTs 

contributed by the logarithm transformation. 

 

(2) Improvement 2: Rearrangement 

Although the logarithm transformation can increase the probability of satisfying the 

validity domain, extremely skewed travel time datasets may still be out of the validity 

domain. This phenomenon will not only result in a large estimation error, but will also 

render the estimated percentile function invalid. To ensure a monotone estimated 

percentile function when travel time datasets cannot satisfy the validity domain, we 

integrate increasing rearrangement proposed by Chernozhukov et al. (2010) (i.e., sort 

the estimated values in increasing order) into the Cornish-Fisher expansion. The 

rearrangement can reduce the estimation error of the Cornish-Fisher expansion as 

shown in Proposition 2. 

 

Lemma 1. If there exist two regions X1⊂ 𝑋 (𝑋 ൌ ሾ0, 1ሿ) and X2⊂ 𝑋, such that for all 

x1 ∈ X1 and x2 ∈ X2, we have that (i) 𝑥ଵ ൏  𝑥ଶ, (ii)𝑓መሺ𝑥ଵሻ ൐ 𝑓መሺ𝑥ଶሻ, and (iii) 𝑓଴ሺ𝑥ଵሻ ൏

𝑓଴ሺ𝑥ଶሻ. Then the rearrangement for any 𝑝 ∈ ሾ1, ∞ሿ strictly reduces the estimation 

error:  

       
1/ 1/

*
0 0

p pp p

x X x X

f x f x dx f x f x dx
 

 

   
     

    
   (13)

where f0 is the true percentile function of the travel time datasets, i.e., the target 

monotone function to be estimated; 𝑓መ  is the predicted percentile function, i.e., an 

initial estimation to the target function f0; and 𝑓መ∗ is the rearrangement of 𝑓መ. 

Proof. See Chernozhukov et al. (2010). 

 

Proposition 2. When travel time datasets exceed the validity domain, the 

rearrangement can strictly reduce the estimation error of the Cornish-Fisher expansion 

in estimating PTT. 

Proof. We use ptt and Sptt to stand for the percentile travel time (before rearrangement) 

and the sorted percentile travel time (after rearrangement). Let 𝑝𝑡𝑡௥ሺ𝑖ሻ and 𝑝𝑡𝑡௙ሺ𝑖ሻ 

denote the ith empirical and estimated percentile value of the observed dataset at the 

cumulative probability 𝑃௜ ൌ Pr ሺ𝑡𝑡 ൏ 𝑇𝑇௜ሻ , respectively. When travel time datasets 

cannot satisfy the validity domain, some estimated PTTs would not monotonically 

increase as the cumulative probability increases. So, there must exist two regions X1 

and X2 for the estimated travel time percentile function 𝑝𝑡𝑡௙ and the real travel tine 
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percentile function 𝑝𝑡𝑡௥  satisfying: (i) 𝑖 ൏ 𝑗 , (ii)  𝑝𝑡𝑡௙ሺ𝑖ሻ ൐ 𝑝𝑡𝑡௙ሺ𝑗ሻ , and (iii) 

  𝑝𝑡𝑡௥ሺ𝑖ሻ ൏ 𝑝𝑡𝑡௥ሺ𝑗ሻ , i ∈  X1 and j ∈  X2. Therefore, according to Lemma 1, the 

rearrangement can strictly reduce the estimation error of the Cornish-Fisher expansion 

in estimating PTT. This completes the proof.   

 

Corollary 1. When travel time datasets cannot satisfy the validity domain, the 

rearrangement can strictly improve the estimation accuracy of the Cornish-Fisher 

expansion in estimating PTT in terms of RMSE (root mean squared error) and R2 

(coefficient of determination). 

Proof. We use Sptt to stand for the sorted percentile travel time (after rearrangement). 

Let 𝑆𝑝𝑡𝑡௙ሺ𝑖ሻ denote the ith value of the estimated percentile in increasing order; let 

𝑝𝑡𝑡തതതത  denote the mean of the empirical percentile values; (𝑇𝑇ଵ, 𝑇𝑇ଶ, … , 𝑇𝑇௡ ) is the 

increasing order of the observed dataset (𝑡𝑡ଵ, 𝑡𝑡ଶ, … , 𝑡𝑡௡); and n is the sample size. Note 

that the estimation accuracy is better when R2 is higher and when RMSE is lower. 

According to Lemma 1, we have Eq. (14) for any i and j (i ∈ X1 and j ∈ X2):  

   
1 1

2 2 2 22 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )f r f r f r f rSptt i ptt i Sptt j ptt j ptt i ptt i ptt j ptt j       (14)

Recall that  2

1
( )

n

ri
ptt i ptt


 ൐ 0, and 𝑓ሺ𝑥ሻ ൌ 𝑥ଵ/ଶ is a monotonically increasing 

function of x. Thus, we obtain Eqs. (15)-(16) from Eq. (14).  

2 2 2 2
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )f r f r f r f rSptt i ptt i Sptt j ptt j ptt i ptt i ptt j ptt j

n n

     
  (15)

       

2 2 2 2

2 2 2 2

1 1 1 1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

f r f r f r f r
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r r r ri i i i

Sptt i ptt i Sptt j ptt j ptt i ptt i ptt j ptt j

ptt i ptt ptt i ptt ptt i ptt ptt i ptt
   

   
  

      
(16)

Therefore,  

   2 2

1 1
( ) ( ) ( ) ( )

:

n n

f r f ri i
Sptt i ptt i ptt i ptt i

RMSE  
n n

 
 

 
  (17)
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2 1 1
2 2

1 1
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: 1 1

( ) ( )
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r ri i

Sptt i ptt i ptt i ptt i
R  

ptt i ptt ptt i ptt

 

 

 
  

 

 
 

 (18)

Namely, the RMSE and R2 of the Cornish-Fisher expansion are strictly improved due 

to the rearrangement. This completes the proof.          

 

Corollary 2. When travel time datasets cannot satisfy the validity domain, if we have
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( ) ( ) ( ) ( )f r f rSptt i ptt i ptt i ptt i    and ( ) ( ) ( ) ( )f r f rSptt j ptt j ptt j ptt j    for 

any i and j (i ∈ X1 and j ∈ X2), the rearrangement can strictly improve the estimation 

accuracy of the Cornish-Fisher expansion in estimating PTT in terms of MAPE (mean 

absolute percentage error).  

Proof. For any i and j (i ∈ X1 and j ∈ X2), if ( ) ( ) ( ) ( )f r f rSptt i ptt i ptt i ptt i    

and ( ) ( ) ( ) ( )f r f rSptt j ptt j ptt j ptt j   , then we have:  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
f r f r f r f r

r r r r

Sptt i ptt i Sptt j ptt j ptt i ptt i ptt j ptt j

ptt i ptt j ptt i ptt j

   
    (19)

Therefore,  

1 1

( ) ( ) ( ) ( )1 1
: 100% 100%

( ) ( )

n n
f r f r

i ir r

Sptt i ptt i ptt i ptt i
MAPE  

n ptt i n ptt i 

 
     (20)

Note that the estimation accuracy is better when MAPE is lower. Namely, the MAPE 

of the Cornish-Fisher expansion is strictly improved due to the rearrangement. This 

completes the proof.                 

 

Corollary 3. When travel time datasets cannot satisfy the validity domain, if for any 

i∈X1, there exists one j∈X2 satisfying ( ) ( )f fSptt i ptt j  and ( ) ( )f fSptt j ptt i , the 

rearrangement can also strictly improve the estimation accuracy of the Cornish-Fisher 

expansion in estimating PTT in terms of 𝜒ଶ. 

Proof. See Appendix B. 

 

In summary, when travel time datasets cannot satisfy the validity domain, the logarithm 

transformation can be used to increase the probability of satisfying the validity domain 

as presented in Proposition 1 and Remark 1. If travel time datasets still exceed the 

validity domain after the logarithm transformation, the rearrangement can not only 

guarantee the monotonicity of the estimated travel time percentile function, but also 

improve the estimation accuracy of the Cornish-Fisher expansion as proved in 

Proposition 2 and its corollaries. Therefore, our proposed method integrates both the 

logarithm transformation and rearrangement into the Cornish-Fisher expansion for 

more accurately estimating the travel time percentile function.  

2.2 Effect of Higher-Order Moments in Cornish-Fisher Expansion 

Pichler and Selitsch (2000) recommended up to the sixth-order Cornish-Fisher 

expansion after comparing with Johnson transformation, Delta-Normal, and the fourth-
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order Cornish-Fisher expansion. However, previous studies (Lu et al., 2005, 2006; Di 

et al., 2008; Chen et al., 2011; Xu et al., 2013, 2014; Zang et al., 2018) in transportation 

domain only used up to the fourth-order Cornish-Fisher expansion (i.e., the first four 

moments). The difference between the fourth-order, fifth-order and sixth-order 

Cornish-Fisher expansion lies in the term of 𝜑୪୬ሺ𝑝ሻ in Eq. (4). Eq. (21) provides the 

formulas for 𝜑୪୬ሺ𝑝ሻ when using the first four, five, and six moments (see Section 12.5 

of Johnson and Kotz (1970) for more details). 
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 (21)

where ki is the ith cumulant of travel time, which can be derived from the standardized 

central moment as shown below: 

3 3

4 4

5 5 3

3
10

k
k
k



 


 
 

 

2
6 6 4 315 10 30k        

(22)

where μi is the ith standardized central moment of travel time. In Section 4.3, we will 

examine the effect of higher-order moments in estimating the travel time percentile 

function. More specifically, we will examine the benefit of considering up to the fifth 

or sixth order in the Cornish-Fisher expansion for estimating travel time percentiles. 

 

2.3 Application of The Proposed Method 

As shown in Table 1, most TTR measures are based on the travel time percentile 

function as a basic element. The percentile (p) is usually fixed for a particular reliability 

measure, such as 95% and 50% percentiles in the buffer index. Recall that PTTs 
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estimated by our proposed method in Eq. (4) are based on the percentile of standard 

normal distribution (Up). A fixed PTT (PTT(p)) corresponds to a fixed percentile of 

standard normal distribution (Up) in Eq. (5). The most widely-used fixed percentiles of 

the standard normal distribution and their corresponding PTT expressions can be 

readily computed for calculating TTR measures as shown in Table 2 and Table 3. 

 
Table 2. Values of the typical percentiles of the standard normal distribution 

Percentile 𝑈ଵ଴% 𝑈ଵହ% 𝑈ହ଴% 𝑈଼଴% 𝑈ଽ଴% 𝑈ଽହ% 
Value -1.2816 -1.0364 0 0.8416 1.2816 1.6449 

 

Table 3. Closed-form expressions of the most widely-used PTTs in reliability measures. 

Percentile Closed-form expression 

PTT(10%)   ln ln ln ln lnexp 1.2816 0.1071 0.0725 0.0611 2S K S       

PTT(15%)   ln ln ln ln lnexp 1.0364 0.0124 0.0831 0.0821 2S K S       

PTT(50%)  ln ln lnexp 0.1667 S   

PTT(80%)   ln ln ln ln lnexp 0.8416 0.0486 0.0804 0.0838 2S K S      

PTT(90%)   ln ln ln ln lnexp 1.2816 0.1071 0.0725 0.0611 2S K S      

PTT(95%)   ln ln ln ln lnexp 1.6449 0.2843 0.0202 0.0188 2S K S      

Note: 𝜇୪୬ and 𝜎୪୬ are the mean and standard deviation of the travel time datasets 

after the logarithm transformation, i.e., 𝑘ଵሺ𝑇𝑇୪୬ሻ and ඥ𝑘ଶሺ𝑇𝑇୪୬ሻ in Eq. (4). 

 

With Table 3, we can obtain a closed-form expression for any PTT-based reliability 

measures (e.g., 90th or 95th TT, p-PTT, PTI, TTI, BI, 𝜆௦௞௘௪ and 𝜆௩௔௥  in Table 1) 

without the need to assume/fit TTDs. From this perspective, the proposed method is an 

easy and parsimonious way to calculate reliability measures for large-scale applications, 

especially when working with a large number of links/paths and time periods. For the 

TTR measures based on the distribution tail or the integral of percentile function (e.g., 

FR, FoC, MI, TTB, METT, and TTRR in Table 1), numerical integration (e.g., using 

Simpson’s rule) is straightforward to calculate the integral of percentile function based 

on the closed-form travel time percentile function. Therefore, the proposed method is 

much easier to apply than probability distributions without closed-form inverse CDF. 

This is also the reason why Taylor (2017) highly recommended the Burr distribution to 

calculate TTRR owing to the existence of an analytical expression for the inverse CDF, 
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but one cannot obtain a closed-form expression of TTRR for the Burr distribution.  

 

3 DATASETS AND PERFORMANCE ASSESSMENT 

In this section, we describe the empirical travel time datasets and the GoF measures 

used in the accuracy analysis. 

 

3.1 Empirical Travel Time Datasets 

The empirical travel time datasets were extracted from the License Plate Recognition 

(LPR) system in Shenzhen, China. As shown in Figure 3, the studied route comprises 

of five consecutive links numbered from 1 to 5. Their travel time observations were 

collected during 6:00 AM to 10:00 AM (including peak and off-peak hours) from 

December 3 (Tuesday) to December 5 (Thursday) and December 7 (Saturday), 2013. 

Table 4 shows the detailed information about these five links, including the link length, 

mean travel time and standard deviation of the collected travel time datasets.  

 

TTDs constructed over a 30-minute or 15-minute interval are usually used to validate 

the performance of TTD models (e.g., Ramezani and Geroliminis, 2012; Chen et al., 

2017; Zheng et al., 2017). In this paper, for each studied link, the datasets of each day 

(from 6:00 AM to 10:00 AM) are divided into 8 groups with a time interval of 30 

minutes per group unless specified otherwise. It should be noted that with 30 minutes 

as the time interval of TTDs, we can have more groups of TTDs with diverse skewness, 

including the heavily right-skewed TTDs (i.e., with long tails), to validate the flexibility 

of the proposed method. In total, there are 152 groups of travel time datasets after 

deleting those with less than 50 samples. The minimum, mean, median, and maximum 

sample sizes of these 152 groups are 122, 1195, 1063, and 2910, respectively. All the 

travel time observations are normalized by the link length to exclude travel time 

variation resulted from the varied link length, which allows us to focus on the travel 

time variability due to speed variation (Daganzo, 1997; Mahmassani et al., 2013; Saberi 

et al., 2014). For simplicity, travel time is referred to as normalized travel time 

hereinafter.  
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Figure 3. Location of the five consecutive studied links in Shenzhen, China. 
 
Table 4. Characteristics of the five consecutive studied links. 

Link 
no. 

Length 
(km) 

Date 
collected 

Mean travel time 
(s) 

Standard deviation 
(s) 

1 4.1 

Dec 3, 2013 243.49 33.40 
Dec 4, 2013 241.68 22.19 
Dec 5, 2013 240.66 24.52 
Dec 7, 2013 221.00 18.25 

2 2.6 

Dec 3, 2013 182.88 25.27 
Dec 4, 2013 184.65 28.30 
Dec 5, 2013 183.68 33.28 
Dec 7, 2013 162.26 18.30 

3 3.0 

Dec 3, 2013 167.77 12.72 
Dec 4, 2013 168.72 13.74 
Dec 5, 2013 173.47 20.82 
Dec 7, 2013 160.69 11.17 

4 3.2 

Dec 3, 2013 244.98 97.32 
Dec 4, 2013 229.75 86.32 
Dec 5, 2013 281.23 109.13 
Dec 7, 2013 168.53 14.10 

5 3.5 

Dec 3, 2013 191.57 22.00 
Dec 4, 2013 200.61 36.27 
Dec 5, 2013 191.13 20.48 
Dec 7, 2013 176.72 7.24 

 

The outlier filtering algorithm used in this paper is the same as Oliveira-Neto et al. 

2 
3 4 5 

1 

6 
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(2012), which was proposed by Clark et al. (2002) specifically for removing travel time 

outliers of LPR datasets. In this algorithm, any travel time observation lying outside the 

interval determined by Eq. (23) is classified as an outlier. 

13

m

i ei
e

tt M
M

m



   (23)

where tti denotes the travel time of vehicle i; Me is the median for each 5-min block of 

travel time; and m is the number of observations within each 5-min block. 

 

3.2 Performance Assessment 

To assess the performance of the proposed method for travel time datasets with various 

statistical characteristics, five widely-used travel time probability distributions (i.e., 

Lognormal, Weibull, Gamma, Normal, and Burr) are used to estimate PTTs for 

accuracy comparison. The algebraic forms of probability density function (PDF) and 

inverse CDF (i.e., the percentile function) of the above five distributions are 

summarized in Table 5.  

 
Table 5. PDF and inverse CDF formulas of five widely-used travel time distributions.  
Distribution PDF Inverse CDF/percentile function 

Lognormal 
2

2

1 1 (ln )
( ) exp

22

x
f x

x


 

 
  

 
   1 1( ) expF p p      

Weibull 

1

( ) exp
k k

k x x
f x

  

               
    

1
1 ln(1 ) kF p p     
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x

f x
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


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Burr  

 11

( ) 1

kc c
ck x x

f x
  

                
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1
1/1( ) 1 1

k cF p p      

Remark: 
-1()   is the quantile function of standard normal distribution 

 

To set up a fair comparison, all the accuracy analyses are based on the empirical PTTs, 

i.e., the empirical PTTs are used as the true values of PTTs in calculating the GoF 

measures: MAPE, RMSE, 𝜒ଶ, and R2. The use of four GoF measures is motivated by 
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the observation that different GoF measures may lead to different results of the best 

fitted distribution types (Plötz et al., 2017). Both MAPE (i.e., percentage error) and 𝜒ଶ 

(i.e., significant difference) focus on the relative difference; RMSE focuses on the 

absolute difference between estimated values and observed values; and R2 describes the 

correlation between estimated values and observed values. Note that the value of PTT 

is positive infinity when the cumulative probability is equal to 1. Our calculation of the 

four GoF measures will not involve the PTT at the cumulative probability of 1.  

 

4 RESULTS AND ANALYSES 

In this section, we first assess the performance of the logarithm transformation and 

rearrangement in estimating the travel time percentile function. Then, the estimation 

accuracy of the proposed method is compared with five widely-used travel time 

probability distributions. Finally, we examine the effect of higher-order travel time 

moments in the Cornish-Fisher expansion.  

 

4.1 Effects of Logarithm Transformation and Rearrangement 

In the following analysis, Analytical4, Analytical4_log, and Analytical4_log_RE are 

used to denote the original Cornish-Fisher expansion, the Cornish-Fisher expansion 

with the logarithm transformation, and the Cornish-Fisher expansion with both the 

logarithm transformation and rearrangement, respectively. The number 4 represents the 

use of the first four moments of travel time in the estimation.  

 

The validity domain and the scatter plot of skewness and kurtosis of travel time datasets 

without and with the logarithm transformation are shown in Figure 4. One can see that 

the logarithm transformation not only increases the probability of satisfying the validity 

domain, but also makes the travel time datasets closer to the validity domain compared 

with the original datasets. Among the 152 groups, 58 groups (38.16%) satisfy the 

validity domain without the logarithm transformation, and 80 groups (52.63%) satisfy 

the validity domain after the logarithm transformation.  
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(a) Skewness and kurtosis scatter of the 
original travel time datasets 

(b) Skewness and kurtosis scatter of the 
new travel time datasets after the 

logarithm transformation 
Figure 4. The validity domain and the skewness-kurtosis scatter diagram. 

 

Figure 5 shows the average and the worst GoF performance derived from Analytical4, 

Analytical4_log, and Analytical4_log_RE for all 152 groups. We can see that the 

logarithm transformation greatly improves the performance of Cornish-Fisher 

expansion in estimating PTT, while the rearrangement further reduces the estimation 

error. For example, the average R2 value has been improved from 0.71 to 0.97, which 

indicates that the estimated PTTs derived from Analytical4_log_RE have a much 

stronger positive correlation (i.e., 0.97) with the empirical PTTs than the estimated 

PTTs from Analytical4. More importantly, Analytical4_log_RE has a much lower 

worst estimation error than Analytical4. Specifically, the maximum RMSE, MAPE, 

and  χଶ have been reduced from 43.94 to 9.24, from 57.01% to 10.80%, from 4069.90 

to 339.04, respectively; and the minimum R2 has been increased from -9.37 to 0.54. 

Note that values of R2 outside the range of 0 to 1 can occur when the model fits the data 

worse than a horizontal hyperplane (Kvålseth, 1985). The worst case in terms of R2 for 

Analytical4 (i.e., -9.37) means that a wrong model may be used to estimate the PTTs.  
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(a) Effect of the logarithm transformation and rearrangement on RMSE 

 
(b) Effect of the logarithm transformation and rearrangement on MAPE 

 
(c) Effect of the logarithm transformation and rearrangement on 𝜒ଶ 
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(d) Effect of the logarithm transformation and rearrangement on R2 
Figure 5. Effect of logarithm transformation and rearrangement on the GoF measures. 
 

The above significant improvements of estimation quality are due to three major effects 

of the logarithm transformation as proved in Proposition 1 and the rearrangement as 

proved in Proposition 2 and its corollaries: (1) the logarithm transformation increases 

the probability of satisfying the validity domain; (2) the logarithm transformation 

makes the travel time datasets closer to the validity domain even if they still cannot 

satisfy the validity domain; and (3) the rearrangement can guarantee a monotone 

estimated percentile function and simultaneously reduce the estimation error of the 

Cornish-Fisher expansion. Therefore, the proposed method, i.e., estimating PTTs via 

the Cornish-Fisher expansion with the logarithm transformation and rearrangement, is 

a more robust approach with a lower estimation error than estimating PTTs just via the 

Cornish-Fisher expansion. 

 

4.2 Accuracy Comparison Between the Proposed Method and Five Widely-Used 

Probability Distributions 

Among the 152 groups, the Burr distribution fails to fit 4 groups of travel time datasets 

due to the nonexistence of a maximum likelihood estimator. These 4 failure groups are 

either left-skewed or close to the normal distribution (i.e., with skewness and kurtosis 

of (-0.72, -0.22), (-0.25, -0.60), (-0.22, -0.87), and (0.09, -1.15), respectively). Wingo 

(1993) and Ghitany and Al-Awadhi (2002) pointed out that certain requirements are 

needed to ensure the existence and uniqueness of the maximum likelihood estimation 

for the Burr distribution. Since previous studies (Susilawati et al., 2013; Taylor, 2017) 

only demonstrated its promising performance in fitting right-skewed TTDs, it may not 
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be suitable to select the Burr distribution as the candidate probability distribution for 

fitting left-skewed travel time datasets. 

 

Table 6 shows the accuracy comparison of Analytical4_Log_RE and five widely-used 

probability distributions. One can see that Analytical4_Log_RE has the best GoF for 

these datasets. Even when we ignore the four groups that failed to be fitted by Burr 

distribution, Analytical4_Log_RE is still the best fitted model in terms of average 

RMSE, 𝜒ଶ and R2. Despite that the Burr distribution is the best model in terms of 

average MAPE for those successfully fitted datasets, the proposed 

Analytical4_Log_RE has the closest accuracy to the Burr distribution (1.54% vs. 1.10%) 

compared with Lognormal, Weibull, Gamma, and Normal distributions. Overall, the 

above results demonstrate the promising performance of the proposed method in 

estimating PTTs compared with the five widely-used probability distributions of travel 

times.   

 
Table 6. Accuracy comparison of Analytical4_Log_RE and five widely-used 
probability distributions. 

Methods Analytical4_Log_RE Lognormal Weibull Gamma Normal Burr 

RMSE 1.38 2.57 5.40 2.71 3.32 NA (1.92) 

MAPE  1.54% 2.65% 7.37% 3.07% 4.30% NA (1.10%) 

χଶ 34.33 120.99 796.62 138.72 434.75 NA (102.54) 

R2 0.97 0.89 0.47 0.88 0.81 NA (0.94) 

Remark: NA means that the Burr distribution fails to fit all 152 groups of datasets; the numbers in the 

parenthesis correspond to the average results of the successfully fitted groups (148 groups). 

 

In the literature, the right-skewed characteristic of TTDs has received great attention 

(e.g., van Lint and van Zuylen, 2005; Fosgerau and Fukuda, 2012; Susilawati et al., 

2013; Kim and Mahmassani, 2015; Delhomme et al., 2015). However, as discussed in 

Section 1 and shown in our empirical datasets, we would obviously encounter TTDs 

those are close to the normal distribution or left-skewed due to the heterogeneity of 

traffic states. Hence, the approaches of estimating the travel time percentile function 

should have great robustness and flexibility for fitting diverse TTDs. To test the 

robustness and flexibility of the proposed method and the five widely-used distributions, 

the 152 groups are categorized into four classes according to their skewness. The four 

classes are: (1) left-skewed datasets (-2≤S<0); (2) right-skewed datasets (0≤S<2); (3) 

highly right-skewed datasets (2≤S<4); and (4) extremely right-skewed datasets (4≤S). 

Table 7 shows the average and the worst estimation error of Analytical4_Log_RE, 

Lognormal, Weibull, Gamma, Normal, and Burr distributions in terms of RMSE, χ2, 

and R2; and Table 8 shows the MAPE. 
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Table 7. Accuracy comparison of Analytical4_Log_RE, Lognormal, Weibull, Gamma, 
Normal, and Burr distributions for four classes in terms of RMSE, χ2 and R2.  

Error 

metric 
Method 

Left skewed Right skewed Highly right skewed 
Extremely right 

skewed 

7 groups (4.61%) 
81 groups 

(53.29%) 
41 groups (26.97%) 23 groups (15.13%) 

Avg Max Avg Max Avg Max Avg Max 

RMSE 

Analytical4

_log_RE 
1.13 2.68 0.69 3.54 1.50 5.35 3.68 9.24 

Lognormal 2.68 5.59 1.26 6.14 3.02 9.32 6.36 11.31 

Weibull 1.96 2.73 3.12 10.13 6.72 13.70 12.10 21.18 

Gamma 2.29 4.93 1.32 6.74 3.20 9.74 6.88 12.79 

Normal 1.72 3.96 1.58 8.55 3.76 11.61 9.17 23.07 

Burr  NA NA NA NA 1.56 6.68 4.46 9.60 

𝜒ଶ 

Analytical4

_log_RE 
29.09 105.66 21.62 279.79 35.59 339.04 78.46 206.30 

Lognormal 137.38 409.16 65.87 751.63 135.88 1101.84 283.56 621.70 

Weibull 87.27 130.25 397.59 2038.91 1041.52 4730.63 1981.26 4147.68 

Gamma 104.59 330.34 73.36 732.73 157.15 1286.43 346.45 744.30 

Normal 65.10 226.56 147.52 1824.15 252.83 2529.24 1883.09 20009.26 

Burr  NA NA NA NA 36.76 474.26 115.96 326.39 

R2 

 Avg Min Avg Min Avg Min Avg Min 

Analytical4

_log_RE 
0.99 0.97 0.99 0.97 0.96 0.89 0.88 0.77 

Lognormal 0.96 0.89 0.97 0.89 0.85 0.68 0.68 0.54 

Weibull 0.97 0.95 0.76 0.32 0.20 -0.21 -0.23 -0.71 

Gamma 0.97 0.91 0.97 0.87 0.83 0.65 0.63 0.48 

Normal 0.98 0.94 0.95 0.80 0.76 0.50 0.33 0.00 

Burr  NA NA NA NA 0.96 0.83 0.84 0.67 

Remark: Avg, Max and Min: the average, maximum and minimum results. 

 

Table 8. Accuracy comparison of Analytical4_Log_RE, Lognormal, Weibull, Gamma, 
Normal, and Burr distributions for four classes in terms of MAPE. 

Method 
Left skewed Right skewed 

Highly right 

skewed 

Extremely right 

skewed 

Avg Max Avg Max Avg Max Avg Max 

Analytical4_log_RE 0.77% 1.94% 0.77% 3.09% 1.80% 5.39% 4.06% 10.80% 

Lognormal 1.62% 3.54% 1.38% 4.90% 3.14% 8.99% 6.52% 13.03% 

Weibull 1.15% 1.64% 3.79% 11.41% 9.54% 18.17% 18.00% 33.66% 

Gamma 1.43% 3.23% 1.52% 5.42% 3.61% 10.38% 8.08% 18.32% 

Normal 1.16% 2.68% 1.91% 8.33% 4.79% 14.19% 12.80% 36.78% 

Burr NA NA NA NA 0.95% 3.25% 1.95% 3.78% 

 

From Table 7 and Table 8, we can draw the following conclusions:  
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 The proposed Analytical4_Log_RE is the most robust and flexible approach that 

can work for all four classes of datasets. It has the smallest average and worst 

estimation errors in terms of RMSE, χ2 and R2 as shown in Table 7. 

 One can see that the proposed Analytical4_Log_RE performs much better than the 

normal distribution. Improvement 1 in Section 2.1 is proposed based on the 

observation that the Cornish-Fisher expansion performs better when unknown 

distribution is closer to the normal distribution. However, the above observation 

does not mean that the Cornish-Fisher expansion performs just as the normal 

distribution would do. 

 As for MAPE, the proposed Analytical4_Log_RE is still the best model for the first 

two classes and has the closest accuracy to the Burr distribution (i.e., the best model) 

for the last two classes. However, the Burr distribution may encounter the fitting 

failure problem for heterogeneous TTDs, e.g., the first two classes in Table 7 and 

Table 8. This further verifies the flexibility of the proposed Analytical4_Log_RE 

for various heterogeneous TTDs. 

 The best fitted distribution can be different in terms of different GoF measures as 

pointed out by Plötz et al. (2017). This conclusion is also verified in our results. 

The reason is that different GoF measures focus on different aspects of estimation 

error as discussed in Section 3.2. However, Analytical4_Log_RE is the best model 

for all classes in terms of RMSE, χ2, and R2, and it is very competitive with the 

Burr distribution which works best for highly or extremely right-skewed datasets 

in terms of MAPE. From Eqs. (17), (18), (20), and (B-2), one can see that an 

inaccurate estimation of a small value (i.e., large relative error) may have a larger 

influence on MAPE compared to RMSE, 𝝌𝟐  and R2, while an inaccurate 

estimation of a large value (i.e., small relative error) may have a smaller influence 

on MAPE compared to RMSE, 𝝌𝟐 and R2. Therefore, the inconsistency between 

the results of MAPE and the three other GoF measures may suggest that the 

proposed method has different estimation performances between large and small 

PTTs.  

 

To further validate the above conclusions, we also use the travel time observation 

datasets of these five consecutive links to construct 20 TTDs with a longer time interval 

(i.e., 240 minutes). In addition, we use travel time observation datasets over two weeks 

from 6:00 AM-10:00 AM on an urban expressway (i.e., the red line numbered by 6 in 

Figure 3) to construct another TTD. Results are shown in Table 9 and Table 10. We can 

draw the same conclusions as those concluded from Table 7 and Table 8.  

Table 9. Accuracy comparison of Analytical4_Log_RE and five widely-used 
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probability distributions for TTDs constructed with a 240-minute time interval. 

Method 
RMSE MAPE 𝜒ଶ R2 

Avg Max Avg Max Avg Max Avg Min 

Analytical4_log_RE 3.29 10.04 2.90 7.87 1818.53 9417.73 0.95 0.78 

Lognormal 5.43 18.38 4.47 10.55 4324.02 21846.56 0.88 0.63 

Weibull 7.40 12.90 9.52 19.12 12344.38 32017.19 0.62 
-

0.19 

Gamma 5.14 13.44 4.94 10.80 4193.38 15974.99 0.88 0.61 

Normal 5.75 12.36 6.62 13.95 12066.17 103938.87 0.83 0.43 

Burr  5.00 17.51 2.07 11.13 3622.95 19631.89 0.85 0.28 

 
Table 10. Accuracy comparison of Analytical4_Log_RE and five widely-used 
probability distributions for a two-week travel time dataset. 

Methods Analytical4_Log_RE Lognormal Weibull Gamma Normal Burr 

RMSE 2.84 9.53 13.12 10.07 12.40 3.79 

MAPE  2.75 8.25 17.87 9.92 15.10 2.00 

χଶ 8265.83 113849.35 556168.75 141210.74 329832.55 11739.40 

R2 0.98 0.77 0.57 0.75 0.62 0.96 

 
In summary, compared with the widely-used mean and variance, skewness and kurtosis 

are used in the proposed Analytical4_Log_RE method to capture the asymmetry and 

flatness of TTDs, respectively. Therefore, Analytical4_Log_RE can more accurately 

capture the TTDs directly based on the statistical characteristics, making it more robust 

and flexible in estimating percentile function for heterogeneous travel time datasets.  
 

4.3 Effect of Higher-Order Moments in the Cornish-Fisher Expansion 

For estimating the travel time percentile function, higher-order moments (i.e., up to the 

fifth-order or sixth-order) are used in the Cornish-Fisher expansion as shown in Eq. (21) 

to examine their effects on the estimation accuracy. Table 11 shows the average and 

worst estimation errors of the fourth, fifth, and sixth-order Cornish-Fisher expansions 

in estimating the travel time percentile function (Analytical4_log_RE, 

Analytical5_log_RE, and Analytical6_log_RE for short).  
 
Table 11. Estimation errors of using higher-order moments. 

Metric 
Analytical4_log_RE Analytical5_log_RE Analytical6_log_RE 

Avg Max Avg Max Avg Max 

RMSE 1.78 9.24 8.71 267.20 3.07ൈ 10ଽ 3.16ൈ 10ଵଵ 

MAPE 1.98% 10.80% 9.00% 231.23% 3.13ൈ 10଼% 3.23ൈ 10ଵ଴% 

χଶ 46.04 339.04 2108.70 71456.99 4.26ൈ 10ଶଵ 4.38ൈ 10ଶଷ 

R2 
Avg Min Avg Min Avg Min 

0.96 0.54 -3.54 -382.68 -5.20ൈ 10ଵ଼ -5.36ൈ 10ଶ଴ 

From Table 11, the fourth-order method has the lowest estimation error for all four GoF 
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measures. Besides, both the average and the worst estimation errors have a sharp 

increase for all four GoF measures when taking higher-order moments into account. In 

other words, the consideration of the fifth and sixth moments in the Cornish-Fisher 

expansion would have significantly worse estimation accuracy and extremely 

unreasonable estimated PTTs. 

 

To further explore why the higher-order Cornish-Fisher expansion unexpectedly 

performs worse in estimating PTTs, the 152 groups are divided into two classes 

according to the change of estimation error after introducing higher-order moments. In 

Class 1, higher-order moments reduce the estimation error; In Class 2, higher-order 

moments increase the estimation error. The more detailed information about these two 

classes is provided in Table 12. One can see that the average and maximum skewness 

and kurtosis in Class 2 are all greater than Class 1. In other words, the travel time 

datasets in Class 1 are closer to the normal distribution, while the travel time datasets 

in Class 2 are stronger right-skewed with a fatter tail. 

 

Table 12. The detailed information of Class 1 and Class 2. 

Class Group size Percentage 
Average 

skewness 

Maximum 

skewness 

Average 

kurtosis 

Maximum 

kurtosis 

Class 1 49 32.24% 0.35 1.20 0.67 4.78 

Class 2 103 67.76% 1.53 4.24 5.46 21.09 

 

Figure 6 (a) shows the boxplot of RMSE for Class 1. Without loss of generality, Figure 

6 (b) shows the estimated percentile functions for Group 36 (skewness: -0.26; kurtosis: 

-0.56) in Class 1 derived from empirical CDF, Analytical4_log_RE, 

Analytical5_log_RE, and Analytical6_log_RE. Analytical5_log_RE and 

Analytical6_log_RE can perform better than Analytical4_log_RE when travel 

time datasets are close to the normal distribution or left skewed. The above result is 

consistent with the conclusion that higher-order Cornish-Fisher expansion leads to 

more accurate results in the portfolio optimization research (Pichler and Selitsch, 2000). 

However, the accuracy difference between the fourth-order and fifth/sixth-order 

Cornish-Fisher expansions is trivial. Such a small improvement is negligible in the real-

world applications. However, when travel time datasets are right-skewed as in Class 2, 

the estimated PTTs derived from higher-order Cornish-Fisher expansion can get worse. 

Without loss of generality, Figure 7 shows the percentile functions estimated by the 

fourth, fifth, and sixth-order Cornish-Fisher expansions for Group 41 (skewness: 4.56; 

kurtosis: 25.11) in Class 2. One can see that the higher-order Cornish-Fisher expansion 

may produce extremely unreasonable estimation of PTTs when travel time datasets are 
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extremely right-skewed.  

 

 

(a) RMSE boxplot of Analytical4_log_RE, Analytical5_log_RE and 
Analytical6_log_RE for Class 1. 

 

(b) Percentile function curves for Group 36 in Class 1 derived from empirical CDF, 
Analytical4_log_RE, Analytical5_log_RE, and Analytical6_log_RE 

Figure 6. The boxplot of RMSE for Class 1 and percentile function curves for Group 
36 in Class 1. 
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Figure 7. The percentile function curves for Group 41 in Class 2 derived from 
Analytical4_log_RE, Analytical5_log_RE, and Analytical6_log_RE. 

 

Compared to the profit and loss distribution in portfolio optimization (i.e., the main 

application context of the Cornish-fisher expansion), TTDs have diverse statistical 

properties, i.e., TTDs can be left-skewed, close to normal, and right-skewed. However, 

higher-order Cornish-Fisher expansion only performs better for capturing the left tail 

of unknown distribution (Pichler and Selitsch, 2000), which means that higher-order 

Cornish-Fisher expansion is not suitable for estimating the travel time percentile 

function of diverse TTDs. What we see here is Ockham’s razor in action: a higher-order 

model may be more powerful, however it is also much more sensitive to the dataset and 

it would perform worse than the lower-order model once the dataset is outside its input 

domain. 

 

According to Section 4.2 and the above discussion, the first four moments are already 

able to provide high-quality estimation for capturing both left-skewed and right-skewed 

characteristics of TTDs. Hence, from the perspective of robustness and flexibility, we 

suggest using only the first four moments in estimating the travel time percentile 

function to make the proposed method simple and less sensitive to the datasets. Only 

when the accuracy requirement is extremely high or the majority of sample datasets are 

left-skewed, the fifth-order or the sixth-order moment could be considered in the 

Cornish-Fisher expansion for estimating PTTs. 

 

5 CONCLUSIONS 

In this paper, we proposed a closed-form estimation of the travel time percentile 

F
 -

1 (p
)
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function based on the Cornish-Fisher expansion while being adaptable to accurately 

capturing the heterogeneity of TTDs in characterizing the TTR. For guaranteeing the 

high-quality estimation of the travel time percentile function, we proposed and 

integrated two improvements into the Cornish-Fisher expansion: (1) logarithm 

transformation and (2) rearrangement. The logarithm transformation was first 

introduced into the Cornish-Fisher expansion for ‘transforming’ the highly skewed 

datasets to be less skewed, by making use of the fact that the Cornish-Fisher expansion 

performs better when the unknown distribution is closer to the normal distribution. 

Compared with the original Cornish-Fisher expansion, the validity domain of Cornish-

Fisher expansion with the logarithm transformation remains unchanged. This means 

that the probability of travel time datasets satisfying the validity domain increases after 

performing the logarithm transformation. When travel time datasets cannot satisfy the 

validity domain after the logarithm transformation, the rearrangement was then adopted 

to ensure a monotone estimated travel time percentile function. We rigorously proved 

that the rearrangement can strictly reduce the estimation error in terms of four GoF 

measures: RMSE, MAPE,  𝜒ଶ, and R2 when travel time datasets exceed the validity 

domain.  

 

Realistic travel time datasets that cover five links across four days were used to examine 

the accuracy and robustness of the proposed method. Results demonstrated that the two 

improvements in the proposed method (i.e., logarithm transformation and 

rearrangement) can greatly reduce the estimation error while ensuring a monotone 

estimated travel time percentile function. Compared to the five widely-used probability 

distributions, the proposed method is a more robust and flexible approach to accurately 

estimating the travel time percentile function of TTDs with diverse characteristics. 

Besides, the first four moments are already able to capture the heterogeneity of TTDs 

compared with higher-order moments, and thus we suggest using only the first four 

moments in the Cornish-Fisher expansion for estimating travel time percentile function. 

 

In summary, the advantages of the proposed method are three folds: (1) its distribution-

fitting-free nature circumvents the issues associated with fitting a predefined 

distribution type to TTDs; (2) it has a promising estimation quality with theoretically 

proven foundation based on the two improvements; and (3) it has a closed-form 

expression of the travel time percentile function, which could facilitate the computation 

of TTR measures and promote their applications in large-scale network applications. 

For future research, several directions are worthy of further investigations. As the 

proposed method is an easy and parsimonious way to derive a closed-form travel time 
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percentile function, a direct application is the online calculation of reliability measures, 

which is the basis of real-time reliability information dissipation or monitoring platform. 

Besides, Pu (2011) investigated the analytical relationship among many existing TTR 

measures via the Lognormal distribution assumption. Compared to the Lognormal 

distribution, the proposed method has a closed-form expression of percentile function 

directly based on the first four moments of travel time. We plan to investigate the 

analytical relationship between many existing TTR measures and statistical indicators 

of travel time via the proposed method.  

 

APPENDIX A 

From Zang et al. (2018), the validity domain of the Cornish-Fisher expansion without 

the logarithm transformation is as follows: 
2
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This can be rewritten as: 
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Let 
2

2 4 21 11 1 5 7
( ) + + +
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S
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 
   

 
. Obviously, f(K) is a quadratic 

function of K. Considering that the coefficient of the quadratic term (i.e., 1/16) is greater 

than 0, f(K)≤0 implies that: (1) f(K)=0 has two roots; and (2) K that satisfies f(K)≤0 sits 

between these two roots. Therefore, the discriminant of f(K) must be non-negative: 

 

22
4 2

22 2

11 1 1 5 7
= + 4 + 0

72 2 16 54 9

108 10368 2 72

S
S S

S

          
   

    

 (A-3)

Then, we have 
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The first area S1 is useful in real applications of the Cornish-Fisher expansion, while 

the second area S2 is too large and abandoned given with the actual skewness of travel 

time datasets. Then, the two roots of f (K)= 0 are: 
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Namely,  

   
2 4 2 2 4 2

6 2 1 , 6 2 1

11 1 8 11 1 8
4+ 16, 4+ 16

9 81 3 9 81 3

S

K S S S S S S

     
 

       
 

 (A-6)

Obviously, the range of S and K defined by Eq. (A-1) is equal to the range of S and K 

defined by Eq. (A-6). Therefore, the validity domain of the Cornish-Fisher expansion 

can be finally written as Eq. (A-6). 

 

APPENDIX B 

We continue to consider the definition of i and j in Lemma 1 (i.e., ( ) ( )r rptt i ptt j  

and ( ) ( )f fptt i ptt j  ). Note that the logarithm transformation (i.e., the exponential 

function in Eq. (4)) makes ( ) ( ) 0f fptt i ptt j  . Then, we have 
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If for any i ∈  X1, there exists one j ∈  X2 satisfying ( ) ( )f fSptt i ptt j   and

( ) ( )f fSptt j ptt i , then we have 
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Namely, 𝜒ଶ of the Cornish-Fisher expansion in estimating the PTTs is improved due 

to the rearrangement. This completes the proof.          
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