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Abstract 

With the likelihood of autonomous vehicle technologies in public transport and taxi 22 

systems prior to privately-owned vehicles increasing, their actual impact on commuting in real-23 

world road networks is insufficiently studied. In this study, an agent-based model is developed to 24 

simulate how commuters travel by autonomous taxis (aTaxis) in real-world road networks. The 25 

model evaluates the travel costs and environmental implications of substituting conventional 26 

personal vehicle travel with aTaxi travel. The proposed model is applied to the City of Ann Arbor, 27 

MI to demonstrate the effectiveness of aTaxis. Our results indicate that to meet daily commute 28 

demand with wait times less than 3 minutes, the optimized autonomous taxi fleet size is only 20% 29 

of the conventional solo-commuting personal car fleet. The commuting cost decreases by 38%, 30 

and daily vehicle utilization increases from 14 minutes to 92 minutes. In case of utilizing internal 31 

combustion engine aTaxis, energy consumption, GHG emissions, and SO2 emissions are 32 

respectively 16%, 25%, and 10% higher than conventional solo commuting, mainly due to 33 

unoccupied repositioning between trips. Given the emission intensity of the local electricity grid, 34 

the environmental impacts of electric aTaxis do not show significant improvement over 35 

conventional vehicles.  36 

 37 
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Introduction 42 

Since 1969, commuters in the U.S. have primarily traveled to work in personally-owned 43 

vehicles, representing 90% of all commuters during the past two decades (Santos et al., 2011). 44 

Consequently, heavy traffic congestion can easily occur during commute peak hours, which can 45 

generate hefty travel costs and considerable environmental impacts. For example, Los Angeles 46 

currently experiences the most severe traffic congestion in the U.S., with a typical half-hour 47 

commute taking 60% longer during the morning and 81% longer during the evening (Jonathan, 48 

2016). Light-duty vehicles, including passenger cars and light-duty trucks, are responsible for 61% 49 

of transportation greenhouse gas (GHG) emissions in the U.S. (EPA, 2016). Every year over 2,200 50 

premature deaths and at least $18 billion in health care costs in 83 of the U.S.’s largest urban areas 51 

can be partly attributed to air pollution from traffic (Larry, 2011). Meanwhile, personal cars remain 52 

unused for approximately 95% of the day (OECD, 2015). The 2009 National Household Travel 53 

Survey (NHTS) data show that the average vehicle ownership per licensed driver is 0.99 (Santos 54 

et al., 2011). There are far more cars in the U.S. than Americans need to reach their desired 55 

destinations according to current travel patterns in most locations (Fagnant and Kockelman, 56 

2014b). 57 

Fully autonomous vehicles are expected to become a commercial reality in the next decade. 58 

Given the higher capital cost of early adoption, they are likely to be introduced first in public fleets 59 

and by transportation corporations, such as Lyft, Uber, and Car2Go (Heard et al., 2018). Ride-60 

sharing and car-sharing companies are teaming up with automakers to introduce fleets of driverless 61 

taxis, which they see as becoming ubiquitous in urban areas. Autonomous taxis (aTaxis) may 62 

provide a solution to the problems presented above. The trajectory of technological progress 63 

suggests aTaxis will eventually be able to travel anywhere a conventional vehicle can go. The use 64 
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of aTaxis in car-sharing services may compete with conventional taxis or even shared taxi services 65 

because this new mode can bypass the costs associated with drivers (Liang et al., 2016; Zachariah 66 

et al., 2014). Specifically, aTaxi systems have the potential to reduce the average wait time and 67 

enhance ride-matching experiences for passengers compared with a conventional car-sharing 68 

program (such as Zipcar and Car2go) with fixed rental and return stations, and aTaxi also can 69 

reduce the operating costs and provide more affordable service for low-income populations 70 

compared with app-based car-sharing programs (such as Uber) (Shen and Lopes, 2015, Zhang, et 71 

al., 2015a). Compared with personal vehicles, aTaxis can transform transportation from an owned 72 

asset into a subscription or pay-on-demand service, with vehicle ownership needs to be reduced 73 

accordingly (Fagnant and Kockelman, 2014b). Used in this way, aTaxis can enable consumers to 74 

make more spontaneous trips, be more productive and/or have more time to relax during travel, in 75 

addition to providing more predictable and shorter travel times while improving rider safety (Burns 76 

et al., 2013). 77 

This study analyzes the potential of using aTaxis as a transport mode for commuting travel 78 

rather than as a full substitution of existing transportation networks. The objective of this study is 79 

to optimize the aTaxi fleet size to meet the commuting demand, keeping the wait times below an 80 

acceptable threshold while minimizing the system vehicle miles traveled (VMT). Then the 81 

corresponding environmental performance and total travel cost of this system are evaluated using 82 

an Agent-Based Modeling (ABM) method. The commuting model simulates heterogeneous travel 83 

patterns to anticipate aTaxi system implications for various travelers, who previously commuted 84 

in personal vehicles. The research contributes to the understanding of the impact of autonomous 85 

vehicles in three areas. First, the simulation is based on a real road network; Second, the hidden 86 
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travel costs related to the value of commuters’ time are considered; And third, the environmental 87 

impacts of the internal combustion engine (ICE) aTaxis and electric aTaxis are both evaluated.  88 

The paper is organized as follows: first, the ABM literature on autonomous vehicles is 89 

reviewed to inform the development of our method for modeling the commute with aTaxis in an 90 

urban road network. The method is shown and explained in detail in the subsequent section. Then 91 

the application to Ann Arbor, MI in the U.S. is presented, followed by the main results of several 92 

scenarios. The conclusions drawn from the simulation results, and finally, potential directions for 93 

future research are offered. 94 

 95 

Literature review 96 

Several modeling efforts have addressed the potential impacts of autonomous vehicles on 97 

traffic networks. Fagnant and Kockelman (2014b) designed an agent-based model for autonomous 98 

vehicle-sharing throughout a grid-based urban area and concluded that one shared an autonomous 99 

vehicle (SAV) could replace approximately eleven privately-owned vehicles, traveling 10% more 100 

distance than used for comparable non-shared trips, but also resulting in an improved 101 

environmental impact. Boesch and Ciari (2015) suggested agent-based transport models are 102 

suitable for modeling future transport scenarios that incorporate autonomous vehicles. They 103 

discussed some possible research questions on autonomous vehicles, such as potential future car 104 

fleet size, prospective demand patterns, and possible interactions between public transport and 105 

autonomous vehicles. Burns et al. (2013) applied a relatively simple analytical model to the case 106 

of Ann Arbor, Michigan and concluded that autonomous vehicle-sharing could enhance mobility 107 

at considerably lower cost than privately-owned vehicles. Zellner et al. (2016) used an agent-based 108 

approach to examine how interventions such as using autonomous shuttles and making streetscape 109 
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enhancements for pedestrians and cyclists may mitigate the first/last mile problem of public transit, 110 

with consideration to other factors such as parking fees and fuel costs. Four Chicago 111 

neighborhoods with different densities and income levels were simulated, and the automated 112 

shuttle buses were assumed to have no capacity constraints. They concluded that a dedicated 113 

automated shuttle service could support significant mode shifts by increasing the utilization of 114 

public transit. Liang et al. (2016) simulated the use of electric automated taxis for the first/last mile 115 

of train trips with the objective of maximizing daily profits through optimizing service zone 116 

locations and which reservations were accepted. However, the model only considered trips are 117 

occurring in the service zone, thus ignoring inter-zonal trips. Additionally, it assumed all the 118 

origins and destinations of passengers’ requests are coming or going to the center of the service 119 

zone. And the automated taxis were also treated as “flows” rather than as independent vehicles, 120 

which means that the battery recharging needs of specific vehicles were not represented. 121 

Zhang et al. (2015a) used agent-based modeling to study the effect of shared autonomous 122 

vehicles (SAV) on urban parking demand by varying the fleet size and passenger wait time in a 123 

hypothetical city laid out in a grid network. Their simulation results indicated that with a low 124 

market penetration rate of 2%, SAV users reduced their parking demand by 90%. Fagnant and 125 

Kockelman (2015a) used an agent- and network-based simulation to deliver a benefit-cost analysis 126 

for fleet size optimization with dynamic ride-sharing based on a system of SAVs in Austin, Texas. 127 

The authors concluded that dynamic ride-sharing could reduce overall vehicle miles traveled, thus 128 

avoiding new congestion problems. Chen et al. (2016) simulated the operation of shared 129 

autonomous electric vehicles (SAEVs) under various vehicle range and charging infrastructure 130 

scenarios in a gridded city modeled roughly on Austin, Texas, and predicted that with each SEAV 131 

replacing 5-9 privately-owned vehicles, the unoccupied VMT could be reduced by 3-4%, with 132 
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average wait times between 2 and 4 minutes. Martínez et al. (2016) developed an agent-based 133 

model to simulate a station-based one-way car sharing system by dividing the city of Lisbon into 134 

a homogeneous grid of 200m by 200m cells, where trips are generated between two grid-cells at 135 

each hour. Martínez et al. (2014) proposed an agent-based simulation model to assess the market 136 

performance of newly shared taxi service in Lisbon. A set of rules for space- and time-matching 137 

between the shared taxis and passengers was identified, but the interactions between passengers 138 

and vehicles (such as the waiting time limit of passengers) were ignored. Levin et al. (2017) used 139 

realistic flow models to make predictions about the benefits of replacing personal cars with SAVs 140 

and found that, without dynamic ride-sharing, the additional unoccupied repositioning trips made 141 

by SAVs increased congestion and travel times. However, the model is based on a downtown grid 142 

network, and intra-zonal trips are not considered. Zhang et al. (2017) examined the influence of 143 

SAVs on urban parking demand based on a real transportation network with calibrated link level 144 

travel speeds, but the trips always start and end at the Traffic Analysis Zone (TAZ) centroid and 145 

the intra-zonal travel time is ignored. 146 

Table 1 summarizes previous studies related to shared autonomous vehicle modeling. As it 147 

appears, most of the research done so far on this topic has been simulated on a highly developed 148 

grid or hypothetical city and is constrained by several assumptions, such as grid-based 149 

transportation network, constant travel speed across the network, and passengers with uniform 150 

travel behavior. Furthermore, planning and operation of autonomous taxis on commuting travel 151 

have received less attention. The present work seeks to fill these knowledge gaps. 152 

 153 
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Proposed multi-agent model 154 

This study utilizes agent-based modeling to simulate the anticipated autonomous vehicles’ 155 

effect on commute travel. Agent-Based Models (ABMs) are well suited for modeling and studying 156 

the impacts of traffic behavior (Lu and Hsu, 2017).  Du and Wang (2012) suggested an ABM 157 

approach can explore explanations, testify assumptions, and predict changes or emergence of 158 

individual behaviors upon urban change. ABMs enable representation of highly heterogenous and 159 

behaviorally complex populations of agents and modeling both spatially and temporally large-160 

scale interactions between the agents for the study of dynamic but coherent system behaviors 161 

(Eppstein et al., 2011). One of the benefits of the agent-based computational process approach is 162 

that no complicated mathematical algorithms are required. The agents are driven by rational 163 

behaviors, and irrelevant aspects are ignored. These features of ABMs may explain their increasing 164 

popularity in studies of transportation logistics and traffic flow. Miller and Heard (2016) suggest 165 

that agent-based models can help define reasonable scenarios of technology deployment and 166 

evaluate designs that can lower transportation-related emissions.  167 

The model is implemented with GAMA, a software platform for constructing spatially explicit 168 

agent-based simulations (GAMA, 2016). Integrating a geographic information system (GIS) and 169 

traffic simulation leads to a more realistic representation of real-world transportation activities 170 

(Cai et al., 2012). Figure 1 shows how the research is conducted according to the following steps:  171 

 172 

Step 1: Collecting commute and spatial data of the study city, including road network, the 173 

geographic distribution of office, commercial, and residential buildings, commuting speed, and a 174 

number of commuting trips by trip start time. 175 
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Step 2: Using agent-based modeling to understand how a system of aTaxis will perform in meeting 176 

the daily commute demand. 177 

Step 3: Optimizing the fleet size to ensure the wait times are below an acceptable threshold during 178 

peak hours while simultaneously minimizing total VMT. 179 

Step 4: Once the fleet size is known, evaluating the available travel cost and environmental 180 

impacts of this commuting system. 181 

Step 5: Finally, comparing the travel cost and environmental performance of the aTaxi scenario 182 

with the personal car scenario. 183 

Simulation environment and agents 184 

Commuting demand is concentrated in two peak periods: 6:00–9:00 am and 4:00–6:00 pm. 185 

Given the first possible commuting, the trip begins at 12:00 am, and the last return commuting trip 186 

begins at 11:59 pm (Santos et al., 2011), 0:00:00–23:59:59 was chosen as the service period of the 187 

aTaxi.Twenty four hours of commute behaviors were simulated using a time step of 5 minutes, 188 

resulting in 288-time steps in the 24-hour service period. In the model, office and residential 189 

buildings are represented as the origin and destination of those commuting trips, and the real road 190 

networks are followed during the commute trips.  191 

There are two types of agents in this model, commuter agents, and aTaxi agents. Commuters 192 

who place a request to an aTaxi, and the individual aTaxis that set their shortest route paths serving 193 

the commuters to their destinations behave according to the well-known Floyd–Warshall algorithm 194 

(Aini and Salehipour, 2012), which is one of the most efficient algorithms for finding the shortest 195 

path between any two nodes in a given network (Floyd, 1962, Warshall, 1962). 196 

(a) The commuters 
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Every commuter has two spatial parameters: home (a residential building) and workplace (an 197 

office building). Population density is based on the spatial distribution of commuters’ home 198 

locations at the beginning of the simulation. People commute between the home and workplace 199 

every weekday, with most starting their commute to work around 6:00–9:00 am and beginning 200 

their journeys home around 4:00–6:00 pm. Commuters’ time leaving home and workplace obey 201 

the normal distribution. The 20,000 commuters have their choice of transportation: personal car or 202 

aTaxi. Krueger et al. (2016) showed that travel cost, travel time, and waiting time might be decisive 203 

factors that influence the adoption of SAVs and the acceptance of dynamic ride-sharing. In the 204 

model used here, commuters have different hourly incomes that obey a lognormal distribution. 205 

Commuters’ waiting time limits are uniformly distributed and vary from 1 minute to 5 minutes. 206 

Commuters can decide whether or not to share vehicles with others. Commuters that choose not 207 

to share will bear a higher travel cost. Zhang et al. (2015b) showed that the average hourly income 208 

for ride-sharing commuters is 13% lower than the national average. Hence, commuters’ 209 

willingness to share is negatively correlated to their hourly income in the model.  210 

(b) The autonomous taxis (aTaxis) 

Based on commuters’ willingness to share, there are two types of aTaxis: one that can be 211 

simultaneously shared by multiple passengers; one that can pick up and drop off a single passenger. 212 

The second condition occurs when: 1) the passenger is not willing to share an aTaxi with others, 213 

or 2) an aTaxi does not show up before reaching the waiting time limit of the potential second 214 

passenger. Idle aTaxis are randomly distributed in the city at the beginning of the simulation. 215 

During the simulation, aTaxis park directly at the last passenger’s destination if not assigned to the 216 

next trip. It picks commuters up from their homes then brings them to their workplace, or it picks 217 

them up from their workplaces then brings them home. The maximum capacity of aTaxis is set as 218 
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four. Only passengers on the same trip starting hour have the potential to share a vehicle. The 219 

vehicles used in the model operate at different travel speeds by time of day. To realistically 220 

simulate traffic congestion during peak hours, vehicle travel speed depends on the number of 221 

vehicles on the road and the road capacity (see Eqs. (1) and (2)). In Eq. (2), the free-flow speed is 222 

a theoretical distance per time unit that a vehicle could travel without the presence of other vehicles 223 

(Jeerangsuwan and Kandil, 2014), which is set at 33 miles per hour (mph) (Zhang et al., 2015a). 224 

The aTaxi can optimize its route to deliver all on-board commuters to their respective destinations. 225 

An optimized route means the shortest distance between the highest 𝛼𝑣  (speed coefficient) to 226 

deliver all the commuters to their destinations. The aTaxis’ schedule routes are first-come, first-227 

served for commuters willing to share rides, as explained in detail in the next section.  228 

 
𝛼𝑣 = 𝑒

−𝑁𝑟𝑜𝑎𝑑
𝑅𝐶  

𝛼𝑣  ∈   [0.10, 1.00]  

(1) 

 𝑣 = 𝛼𝑣   ×  𝑣𝑓𝑓 (2) 

Where 𝑁𝑟𝑜𝑎𝑑 is the number of vehicles on the road, 𝑅𝐶 is road capacity, 𝑣 is vehicle speed, and 229 

 𝑣𝑓𝑓 is vehicle’s free flow speed. 230 

Interactions among agents 231 

Ride-sharing 232 

 Ride-sharing appears to be essential for sustainable adoption of autonomous vehicle use to 233 

mitigate congestion and environmental consequences  (Taiebat et al., 2018).  Fagnant and 234 

Kockelman (2015a) showed that VMT might rise by over 8% if no ride-sharing is allowed in 235 

satisfying travel demand with autonomous taxis. Zhang et al. (2015b) also found that autonomous 236 

vehicle ride-sharing can offer superior service to a non-ridesharing autonomous vehicle system, 237 

through shorter trip delays, lower trip costs, less VMT generation, and, in the long run, better 238 
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environmental outcomes. In this study, commuters can choose to participate in ride-sharing if they 239 

are willing. 240 

There are four operational parameters in the model: waiting time limit, occupancy, added 241 

distance, and in-vehicle time. Waiting time limit is the maximum time passenger wait between 242 

when the passenger requests the vehicle and when the vehicle arrives for pick-up. If the passenger 243 

cannot get an aTaxi within the waiting time limit, he/she will use the personal car as usual.  244 

Occupancy is the number of passengers in the aTaxi, which varies from 0 to 4. Ride-sharing occurs 245 

when the occupancy is more than 1. According to Zachariah et al. (2014), to share a ride, an 246 

additional occupant cannot increase the distance of any direct trip by more than 20%. Thus, the 247 

added distance should be 20% less than the random original distances between passengers’ homes 248 

and workplaces. For example, consider two potential passengers who want to travel from their 249 

workplaces to home. Passenger A is the first passenger and passenger B is the potential second 250 

passenger. Passenger A’s home location and workplace location are set as  𝐴ℎ  and 𝐴𝑤  and 251 

passenger B’s home location and workplace location are set as 𝐵ℎ  and 𝐵𝑤 . The following 252 

equations need to be satisfied for the ride-sharing to occur. 𝐵𝑟𝑒𝑞𝑢𝑒𝑠𝑡 means the aTaxi location when 253 

passenger B asks to share a ride. The added distance algorithm is defined in Eqs. (3), (4) and (5) 254 

as: 255 

 𝑑𝐵𝑟𝑒𝑞𝑢𝑒𝑠𝑡−𝐵𝑤 ≤ 𝑡𝐵 × 𝑣 (3) 

 𝑑𝐴𝑤−𝐵𝑤−𝐴ℎ−𝐵ℎ
≤ 1.2 × 𝑑𝐴𝑤−𝐴ℎ

 (4) 

 𝑑𝐴𝑤−𝐵𝑤−𝐴ℎ−𝐵ℎ
≤ 1.2 × 𝑑𝐵𝑤−𝐵ℎ

 (5) 

Where 𝑑 represents the distance, and  𝑡 is waiting time limit. 256 

 257 
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The aTaxi first takes passenger A home because of the first-come, first-served rule. The aTaxi 258 

then stops to board additional passengers if the maximum capacity has not been reached. This 259 

study only considers ride-sharing in the SAV scenarios and assumes all commuters drive 260 

individually with their vehicles in the business as usual (BAU) scenario. In the SAV scenarios, 261 

one scenario has two kinds of mode choices—aTaxi and personal car (PC). The passengers choose 262 

different transport modes based on their waiting time limit and the waiting time for the closest 263 

aTaxi. In the BAU scenario, the occupancy and added distance are set to 1 and 0, respectively, and 264 

passengers’ wait time is 0. In-vehicle time represents the time spent in the traveling vehicle, which 265 

is converted into cost in economic evaluations. 266 

Travel cost 267 

Travel cost is the primary concern for people choosing among different transport modes. One 268 

of the objectives of this study is to minimize the total travel cost in this commuting system based 269 

on the passengers’ perspectives. Some studies used detailed cost categories to estimate the total 270 

cost for the operation of SAV system including vehicle costs (capital, running, and maintenance 271 

costs), infrastructure costs, and fleet management service costs based on various operational 272 

scenarios (Bösch et al., 2017, Chen and Kockelman, 2016). This research only considers the 273 

service cost for commuters. The operational costs undoubtedly account for a large proportion of 274 

system’s costs for Transportation Network Companies, but travel economics for commuters 275 

largely influences the decision for adoption and utilization of system from a consumer point of 276 

view. In this study, the explicit financial costs of the service for commuters are considered, as well 277 

as the hidden costs associated with the time invested in various mobility-related activities. This 278 

analysis has received less attention in the literature compared to the operational cost of the system. 279 

 280 
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(a) Explicit cost  

The regular fare for UberX (non-surge periods) consists of a base fare of $1 and a $1.65 281 

booking fee, plus $1.30 per mile plus $0.26 per minute. As aTaxis do not need drivers, operating 282 

costs are lower (Liang et al., 2016). With consideration of these costs reductions and other factors, 283 

Fagnant and Kockelman (2015a) set their simulated non-shared trip price to $1.00 per mile (less 284 

than a third of average taxi cab rates in Austin, Texas). The simulation results of Burns et al. (2013) 285 

showed that the costs per trip-mile of personal cars and SAVs were $ 0.75 and $ 0.41, respectively, 286 

without considering the decreased parking costs and the value of time. Bauer et al. (2018) 287 

estimated that the lowest cost of service provided by shared automated electric vehicles fleet could 288 

be $0.29-$0.61 per revenue mile. Spieser, et al. (2014) concluded that a mobility system featuring 289 

autonomous vehicles could be almost half as expensive as a system based on conventional human-290 

driven cars. An average $1 per trip mile fare for non-shared aTaxis was assumed here, and the 291 

personal car fee was assumed to be $1.4 per trip mile based on the price ratio of aTaxi and personal 292 

car mentioned above. In the case of sharing, the explicit cost after picking up the next passenger is 293 

shared by all the passengers, based on their trip distances. 294 

(b) Hidden cost  

Value of time (VOT) here is defined as “the monetary valuation of the total time invested in 295 

mobility-related activities” (Ellram, 2002, Spieser, et al., 2014). The time spent requesting, waiting 296 

for, entering, and traveling is monetized with passengers’ VOT based on the level of comfort.  Less 297 

comfortable trips incur a higher cost (Spieser et al., 2014). For example, personal trips on local 298 

roads during free-flowing traffic are priced at 50% of the median wage (Manpower-Research, 299 

2015), while the cost of traveling during heavy traffic is represented at 150% of the median wage 300 

(Institute, 2013). For aTaxis, commuters can experience a higher level of comfort, since they can 301 
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use their travel time to perform other activities (reading, eating, talking, texting, sending an email 302 

or watching a movie). Zhang et al. (2015a) and Wadud (2017) also contend that the personal 303 

valuation of travel time may decline, as passengers reap productivity gains due to time free from 304 

driving.  In contrast, Yap et al. (2016) showed that in-vehicle time in an autonomous vehicle is 305 

experienced more negatively than in-vehicle time in manually driven cars, the travelers’ negative 306 

attitudes regarding trust and sustainability of autonomous vehicles are major influences. After 307 

considering the above research results, the personal trip time in aTaxis and personal cars was priced 308 

at 20% and 67% of the personal wage, respectively (Spieser, et al., 2014). For example, when the 309 

wage is $28.40 per hour (the median Ann Arbor wage), the corresponding VOT in aTaxis is 310 

approximately $5.68/hour, which is one-third of that in personal cars, at $19.03/hour. Table 2 311 

summarizes the parameters for total travel cost evaluation.  312 

Environmental impacts 313 

According to Fagnant and Kockelman (2014a), even gasoline-powered SAVs could 314 

substantially reduce negative environmental impacts, consuming approximately 16% less energy 315 

and generating 48% less volatile organic compound emissions per person-trip compared to 316 

conventional vehicles. However, Miller and Heard (2016) argue that the GHG emissions of 317 

autonomous vehicles could decrease on a functional unit basis (i.e., per-passenger-mile), while 318 

overall transport-related GHG emissions increase as VMT increases (Brown et al., 2014, Morrow 319 

III, et al., 2014). Added VMT may also amplify drawbacks associated with high automobile use, 320 

such as increased gasoline consumption and oil dependence, and higher obesity rates (Fagnant and 321 

Kockelman, 2015b). Zhang et al. (2015b) indicate that although SAV systems tend to generate 322 

more VMT, the vehicle life cycle GHG and air pollutant emissions and energy consumption can 323 

still be reduced due to fewer cold starts and reductions in parking infrastructure requirements. 324 
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Fagnant and Kockelman (2014b) also acknowledge that compared to personal cars, the reduced 325 

parking needs of aTaxis could reduce emissions as well as traffic congestion. 326 

GHG and pollutant emissions from conventional vehicles could be further ameliorated through 327 

the use of low-emission and energy-efficient drivetrain technologies (Taiebat et al., 2018). Fully 328 

electrically-powered fleets could eliminate all tank-to-wheel emissions from car travel (OECD, 329 

2015). Chen et al. (2016) showed that SAVs and electric vehicle technology have natural synergies. 330 

Thus, electric aTaxis have been integrated into this commuting system. Hawkins et al. (2013) 331 

found that electric vehicles (EVs) powered by the present European electricity mix could decrease 332 

the global warming potential (GWP) 10% to 24% compared to conventional diesel or gasoline 333 

vehicles, assuming lifetimes of 150,000 km. The specific energy requirements to operate light-334 

duty vehicles is around 0.30 - 0.46 kWh/mile (Kintner-Meyer et al., 2007), and the average 335 

emission rates of DTE Energy system serving Michigan electric customers are about 3.1 lbs/MWh 336 

for SO2 and 1,950 lbs/MWh for CO2 (Parks, et al., 2007), so the SO2 emissions and GHG emissions 337 

of electric aTaxis are straightforward to estimate. 338 

The vehicle life cycle inventories from Chester and Horvath (2008), Chester and Horvath (2009) 339 

are used, which include parking infrastructure. In our model, it is assumed that personal cars and 340 

aTaxis are all conventional gasoline sedans. Following the assumption of Fagnant and Kockelman 341 

(2015a), aTaxis are assumed to have a 250,000-mile service life, aligning with the expected 7-year 342 

service life of Canadian taxis, which typically log more than 248,000 miles over their lifetimes 343 

(Stevens and Marans, 2009), though SAVs may actually offer longer service due to their smoother 344 

automated driving profile. Life-cycle environmental impacts of autonomous vehicles and light-345 

duty vehicles (Fagnant and Kockelman, 2014b, Zhang, et al., 2015b) were the basis for the 346 
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environmental impacts of aTaxis and personal cars shown in Table 3. Only energy consumption, 347 

GHG emissions, and SO2 emissions are considered.  348 

 349 

A case study of the city of Ann Arbor 350 

Model experiment settings and initialization 351 

In this section, a detailed view of a city’s existing commuting patterns, topology, and other 352 

characteristics used to build a transportation model are presented to. Recently passed legislation 353 

in Michigan allows self-driving vehicles to operate on any Michigan roadway, which widens 354 

opportunities for autonomous vehicle development (Burden, 2016). Ann Arbor is representative 355 

of small to medium-sized cities in the United States, based on the data from the 2009 NHTS. The 356 

city covers an area of 44 square miles with a population of 117,770 (City-data, 2013). Among the 357 

39,095 people who live and work in Ann Arbor, 50% (around 20,000) drive single-passenger 358 

vehicles to work, 20% walk to work, 11% take the bus, and 5% bike to work, according to the 359 

Washtenaw Area Transportation Study's most recent transit profile conducted in 2009 (Biolchini, 360 

2013). The analyses focus on the 20,000 people that drive alone in their commute travels, which 361 

is the BAU scenario in this study.  362 

The model is based on an area of 6.97 miles × 6.29 miles containing Ann Arbor. Taking 363 

advantage of Ann Arbor Open Data, the spatial information for buildings, roads, and the city 364 

boundary are incorporated into the model (City-Services, 2017). In Figure 2, the residential and 365 

office buildings are represented by different colors (grey for residential and purple for 366 

office/commercial), which serve as the origins and destinations of commuter travels within Ann 367 

Arbor. The population density in the model is based on the spatial distribution of residential 368 

buildings. The vehicles are shown as red squares. For people shown as circles, different colors 369 
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depict the different objectives, with blue denoting “working” people traveling from home to work, 370 

and yellow depicting “resting” people traveling from work to home. The median income of Ann 371 

Arbor residents is $56,835 per year, which translates into $28.4/hour (40 hours/week, 50 372 

weeks/year). Table 4 shows the basic parameters used in the Ann Arbor case study. 373 

 374 

Model validation 375 

Using real-world data to calibrate and validate the behavior model increases credibility and 376 

trust in this agent-based model and its results. Three components are used to validate the 377 

commuting model based on the BAU scenario: commute speed, commute time, and commute trips 378 

by time of day. The commute speed and commute time are collected from an Ann Arbor 379 

commuting survey (City-data, 2013).  From the survey data, the average commute speed is 27.60 380 

mph, and the corresponding simulation result is 27.52 mph. The average surveyed commute time 381 

within Ann Arbor is 10 minutes, and the commute time from the simulation results is 7.44 minutes, 382 

a difference that can be explained by the inclusion of boarding and alighting time in the survey 383 

data while the commute time from the simulation results only considers the driving time. Data 384 

from the 2009 National Household Travel Survey (NHTS) is used to validate the commute trips 385 

by time of day (Figure 3). These data contain extensive information about each commuting trip 386 

made by an individual living and working in small-medium cities, including the start times of daily 387 

trips to work and return trips home. In Figure 3, the morning peak hours of commuting travel are 388 

from 6 am to 9 am, and the evening peak hours are from 4 pm to 6 pm. In the simulation, the start 389 

time of trips to work and home both follow a normal distribution. The simulation data in the figure 390 

have the best fit with the NHTS data. 391 
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Scenario simulation 392 

Several scenarios were used for the evaluation of autonomous taxi performance in commuting 393 

trips. The same random number is used in the simulation runs for different scenarios to ensure that 394 

any difference in outputs is not caused by noise from the random number seed that starts the 395 

simulation. All simulation results are generated from 100-run Monte-Carlo simulations.  These 396 

scenarios are generated by varying three principle parameters in the simulation: fleet size, vehicle 397 

types, and operation strategies. 398 

Fleet size: In the BAU scenario, the fleet size equals the commuting population (commuters 399 

who drive alone to work). In the SAV scenarios, the aTaxi fleet size is also related to the 400 

commuting population, which is varied from 10% to 90% of the BAU commuting population in 401 

10% steps.  402 

Vehicle types: The BAU scenario represents the current situation—20,000 people commuting 403 

alone by their cars. In the SAV scenarios, there are two kinds of scenarios simulated—an all aTaxi 404 

scenario and a mode choice scenario. In the all aTaxis scenario, all personal cars are replaced with 405 

aTaxis, and people can choose to share aTaxis with others or not. It means 50% of people driving 406 

alone to work only can choose aTaxis as their commute mode in all aTaxi scenarios, while the 407 

other 50% of people will still keep their previous commute modes, such as walking or cycling, 408 

which are not covered in this study. In the mode choice scenario, the 50% of people driving alone 409 

to work can choose aTaxis or personal cars based on their waiting time limit and waiting time for 410 

the closest aTaxi. The electric aTaxi system is also simulated, with the environmental impacts 411 

compared to the personal car system. Full battery-electric vehicles today still have limited range 412 

compared to gasoline vehicles and thus need time for recharging (OECD, 2015). Nonetheless, 413 

Taiebat et al. (2018) indicate that it is easier to integrate electric propulsion vehicle into a dynamic 414 
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ride-sharing system than into a non-ridesharing system, as the former has longer and more frequent 415 

chargeable breaks during the daytime. Electric aTaxis are assumed to have a fast battery recharge 416 

time of 30 minutes (using Level III chargers) and a vehicle range of 110 miles (Chen, et al., 2016). 417 

Operation strategies: In the optimized fleet size scenario, several vehicle operation strategies 418 

are tested for further performance optimization. At the beginning of the simulation, idle aTaxis are 419 

randomly distributed in the city (Zhang et al., 2015a), or the empty aTaxis are spatially clustered 420 

according to the population density or building density. During the simulation, the aTaxis park 421 

directly at the last passenger’s destination if not assigned to the next trip (OECD, 2015), or the 422 

aTaxis gravitate toward high-demand areas based on population density or building density after 423 

sending the last passenger to its destination (Zhang et al., 2017). 424 

Figure 4 shows the travel time of the SAV and BAU scenarios (the average wait time of the 425 

BAU scenario is 0 minutes as people can drive their car anytime they like). In the SAV scenarios 426 

when all the commute modes are aTaxis (all aTaxis scenario), the waiting time is reduced from 427 

2.88 minutes to 0.70 minutes since the fleet size is larger. In the SAV scenarios when passengers 428 

have mode choice, the waiting time of the aTaxi fleet size is relatively short, between 0.61 minutes 429 

and 0.13 minutes, as the passengers can choose the convenient mode. 430 

Table 5 shows the VMT of the SAV and BAU scenarios. Compared with the BAU scenario, 431 

as fleet size is increased in the SAV scenarios, the total VMT is increasing, and the unoccupied 432 

VMT is also increasing. This is a result of the cruise distances that aTaxis accumulate when 433 

commuters request a ride. The total cruise distance will be longer when there are more aTaxis. But 434 

the total VMT is not increased drastically with the larger fleet size, as the service aTaxis provide 435 

overlaps with the commuting activity already performed without aTaxis.  436 
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In the SAV scenarios, the simulation results of all aTaxis and mode choice scenarios are 437 

compared. In the mode choice scenario, the unoccupied VMT is much smaller than in all aTaxis 438 

scenarios. The total VMT in all aTaxis and mode choice scenarios are very close. However, 439 

significantly larger fleet size (more vehicles) is needed in the mode choice scenario. For example, 440 

only 4,000 aTaxis are needed to serve 20,000 passengers in the all aTaxis scenario, while in the 441 

mode choice scenario, 10,555 personal cars and 2539 aTaxis are needed. This is because 442 

passengers with mode choices turn to personal cars as the commuting mode when aTaxis cannot 443 

arrive within their waiting time limit. It can be concluded that the waiting time is still a big 444 

challenge for aTaxis compared with the personal cars. 445 

 446 

Results and discussion 447 

The final ideal fleet size is determined by passengers’ wait time, in-vehicle time and total VMT. 448 

The optimized fleet size is determined when the average waiting time is less than 3 minutes, the 449 

average in-vehicle time is less than 15 minutes per trip, and the VMT is minimized throughout the 450 

simulation day (Zhang et al., 2015a, Zhang, et al., 2015b).The optimized fleet size here is 4,000, 451 

20% of that in the BAU scenario. The average wait time is 2.74 minutes, and the VMT is increased 452 

by 33.6% because of the unoccupied vehicle travel of the aTaxis. As there is little difference in 453 

total VMT for the all aTaxi and mode choice scenarios, and many fewer vehicles are needed in the 454 

all aTaxis scenario, the optimized scenario uses 4,000 aTaxis in the all aTaxis scenario. 455 

To further minimize the total VMT and average wait time, several operation strategies are tested. 456 

Figure 5 shows the operation algorithm of aTaxis. The blocks highlighted by yellow represent the 457 

operation strategies mentioned before: the location of initial parking and the behavior after serving 458 

the last passenger. High-demand areas refer to the high population density areas or high building 459 
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density areas. The green blocks show the ride-sharing conditions. It can be found the ride-sharing 460 

only occurs when all the conditions are satisfied. The low rate of ride-sharing can be explained. 461 

Some representative simulation results are shown in Table 6. The first column shows the origin 462 

condition: the empty aTaxis are randomly distributed in the initial stage and park at the location 463 

of the last passenger’s destination before receiving the new request. The second column shows the 464 

best simulation results, the total VMT is minimized, and the average wait time is less than 3 minutes. 465 

Although the fourth and fifth columns show less wait time and higher ride-sharing rate, the total 466 

VMT is significantly large. Thus, the operation algorithm in the second column (the empty vehicles 467 

park based population density at the beginning of the simulation, and wait at the location of the 468 

last passenger’s destination until receiving the new request) are used for the following simulation. 469 

In the optimized fleet size scenario, the vehicle utilization for daily commuting is improved to 470 

92 minutes, as opposed to the BAU scenario of privately-owned vehicles typically used for 14 471 

minutes in daily commute travel. The average occupancy is 1.3 in the optimized fleet size scenario. 472 

This may reflect the low probability of matching trips that satisfy the ride-sharing algorithm, a 473 

phenomenon in accord with the findings of  Zhang et al. (2015a).  474 

The total travel cost is composed of explicit costs and hidden costs, which are highly sensitive 475 

to the level of VMT and VOT. The more vehicle miles traveled, the greater the total travel cost. 476 

The VMT in aTaxis is increased due to the distance that vehicles travel while unoccupied as they 477 

drive to pick up passengers. The lower the value of time, the lower the total travel cost. For aTaxis, 478 

passengers are relieved from driving, and they can use their time as desired. Their productivity can 479 

be improved through working in the aTaxis. Therefore, the VOT of the aTaxi is greatly reduced. 480 

Overall, for the ride-sharing trips in the optimized SAV scenario, the average total cost per mile is 481 
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approximately $1.29 ($1.0 for explicit cost and $0.29 for hidden cost), which is 38% lower than 482 

the non-sharing trips in the BAU scenario.  483 

In contrast, the environmental performance of the aTaxis system is not positive, since the 484 

environmental impacts of the transportation system are highly related to VMT, and the VMT is 485 

increased even in the SAV scenarios because of the unoccupied vehicle travels. In the optimized 486 

SAV scenario, the system energy consumption, GHG emissions, and SO2 emissions are 16%, 25%, 487 

and 10% higher, respectively, than in the BAU scenario. The environmental results are consistent 488 

with Miller and Heard (2016): autonomous vehicles could become more environmental-friendly 489 

on a functional unit basis (i.e., per-passenger-mile), while overall transport-related GHG emissions 490 

increase as VMT increase. Environmental outcomes do not improve in the electric aTaxi scenario 491 

when the fleet size is also set to 4,000. While corresponding system energy consumption and GIG 492 

emissions are 7% and 1% lower than those in the BAU scenario, the total SO2 emissions are 493 

increased by 560% compared to BAU scenario. This is mainly due to the carbon emission intensity 494 

of Michigan’s grid mix. Thus, the environmental performance does not improve as expected with 495 

the introduction of autonomous vehicles for commuting in Michigan.  496 

It is also found that aTaxis require far fewer vehicles than are currently on the road, while the 497 

total distance traveled is greater due to the unoccupied aTaxi travel as they accommodate the 498 

geographical distribution of demand. To explore road conditions with the introduction of aTaxis, 499 

road occupancy was studied (see Figure 6). Road occupancy represents the total number of 500 

vehicles using the specific road during one weekday. In the optimized SAV scenario, the average 501 

road occupancy increases by 12% compared with the BAU scenario, but as suggested by 502 

Zakharenko (2016), increased traffic would not necessarily cause a congestion increase, as the 503 

SAVs are expected to run efficiently. The traffic congestion should be further investigated with 504 
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more factors, such as travel directions. This unexpected traffic problem is due to the low rate of 505 

ride-sharing and increased VMT in the SAV scenarios. This result indicates that policymakers and 506 

planners should not view vehicle automation through rose-colored glasses as a solution to traffic 507 

jams and environmental implications. 508 

In the case of Ann Arbor, aTaxis are only used for end-to-end trips as there is no transit. Using 509 

aTaxis to connect the first/last mile trips of transit will be explored further in ongoing work. Given 510 

the relatively small size of Ann Arbor, the results from this work are not representative for other 511 

cities, especially large metropolitan areas where average commute time is over one hour per day. 512 

Future study will develop similar agent-based models for large metropolitan areas with long, 513 

complex commute patterns. In addition, we consider only the income of commuters affects their 514 

willingness to share. Social and racial factors, in fact, play equally important roles in ride sharing, 515 

which will be further examined in the future. Meanwhile, more realistic features can be added to 516 

this modeling framework, such as the consideration of traffic signals and further validation of the 517 

model through vehicle trips crossing the main intersection. 518 

 519 

Conclusion and policy recommendation  520 

This study developed a simulation model to evaluate the travel costs and environmental 521 

impacts of aTaxis for commuting. The major contribution of the model described in this paper is 522 

to simulate aTaxis traveling on a real road network, where all vehicles start and end their trips and 523 

travel on the road. Moreover, hidden travel costs related to commuters’ value of time are 524 

considered, and the environmental impacts of aTaxis are estimated to compare electric aTaxis, 525 

gasoline aTaxis, and conventional gasoline cars. 526 
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The optimized fleet size is obtained with minimized VMT and reasonable average wait times 527 

for passengers—which this study determined to be 20% of the fleet size of the BAU scenario. The 528 

results of the optimized fleet size scenario show that total commute costs are reduced by 38% and 529 

the daily vehicle utilization is increased from 14 minutes to 92 minutes, but the daily road 530 

occupancy is increased by 12%. This system’s energy consumption, GHG emissions, and SO2 531 

emissions increase by 16%, 25%, and 10%, respectively compared to the BAU scenario. This is 532 

mainly due to increased unoccupied VMT and less ride-sharing. The unsatisfactory environmental 533 

performance of aTaxis is not improved when gasoline aTaxis are converted to electric aTaxis: the 534 

corresponding energy consumption and GHG emissions can be 7 % and1% lower than those in the 535 

BAU scenario, while SO2 emissions increase to 560% compared to BAU scenario.  536 

Our simulation results show that aTaxis do not exhibit significant improvements in 537 

environmental performance compared to personal car use until more people are willing to share 538 

aTaxis rides. A clear policy implication of this study is that aTaxi fleets do not naturally lead to 539 

the higher environmental performance of transportation system. Thus, tailored regulations must be 540 

in place before deployment of this technology to ensure that the design and operation of aTaxi 541 

system are environmental-compliant. Our model is not designed as an accurate forecasting tool 542 

but rather as an initial test of the potential application of aTaxis to commuting travel. The model 543 

can be used to evaluate other prototypes in order to inform policy discussions among planners and 544 

decision-makers, as well as to highlight gaps in existing methods that other model developers can 545 

consider to improve future simulations. 546 
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 690 

Table 1. Previous studies related to shared autonomous vehicle modeling 691 

Papers Objects Method 

Transportation 

network Findings 

Fagnant and 

Kockelman (2014b) SAV ABM Grid city 

One SAV could replace eleven private cars with 

10% more VMT and improved environmental 

impacts 

Burns et al. (2013) SAV Analytical model  None SAV had lower cost than private cars 

Zellner, Massey, 

Shiftan, Levine, and 

Arquero (2016) 

Autonomous 

shuttles ABM None 

Autonomous shuttles could enhance the use of 

public transit 

Liang et al. (2016) 

Electric automated 

taxis  

Mathematical 

models Node-link network 

Electric automated taxis used for first/last mile of 

train trips  

Zhang et al. (2015a) SAV ABM Grid city 

SAV users reduced their parking demand by 90% 

with a low market penetration rate of 2% 

Fagnant and 

Kockelman (2015a) SAV ABM Node-link network 

Dynamic ride-sharing could reduce overall 

vehicle miles traveled, thus avoiding new 

congestion problems 

Chen, Kockelman, 

and Hanna (2016) 

Shared autonomous 

electric vehicles  ABM Grid city 

Each SEAV could replace 5-9 privately-owned 

vehicles 

Martínez, Correia, 

Moura, and Mendes 

Lopes (2016) Car sharing ABM Grid city 

Carsharing performed worse than private cars 

both in terms of time and cost 

Martínez, Correia, 

and Viegas (2014) Shared taxi  ABM Node-link network 

Shared taxi could lead to reduction in the average 

waiting time and average taxi system fare 

Levin, Kockelman, 

Boyles, and Li 

(2017) SAV 

Realistic flow 

models Node-link network 

SAV could increase congestion and travel times 

without dynamic ride sharing 

Zhang, 

Guhathakurta, and 

Ross (2017) SAV 

Discrete event 

simulation  

Node-link network 

with calibrated 

speed 

Parking land use could be reduced by 5% once 

the SAVs serve 5% of the trips within the city of 

Atlanta 

692 
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Table 2. The components of total travel cost 693 

Travel cost Personal car aTaxi 

Explicit cost $1.40 per trip-mile for non-shared trip $1.00 per trip-mile for non-shared trip 

Hidden cost $19.03 per hour with median wage level $5.68 per hour with median wage level 

 694 

  695 
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Table 3. Potential environmental impacts of aTaxis and personal cars per vehicle-mile traveled 696 

(VMT) 697 

Environmental impacts Personal cars aTaxis Electric aTaxis 

Energy consumption (MJ/VMT) 4.96 4.35 3.48 

GHG emissions (kg CO2eq/VMT) 0.36 0.34 0.27 

SO2 emissions (g/VMT) 0.12 0.10 0.60 

 698 

  699 
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Table 4. Basic modeling parameters 700 

Parameter Value 

Service area 6.97 mi. × 6.29 mi. 

Average speed 27.6 mph 

AM peak 6:00-9:00 

PM peak 16:00-18:00 

Free-flow speed 33 mph 

Commute Period 0:00:00-23:59:59 

Commuters’ average hourly income $28.4/hour 

Maximum aTaxis occupancy 4 

 701 

  702 
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Table 5. Vehicle mile traveled (VMT) of SAV and BAU scenarios  703 

SAV 

Fleet 

size 

VMT-aTaxi  

(mile) 

VMT-PC  

(mile) 

Unoccupied VMT 

(mile) 

Total VMT  

(mile) 

All 

aTaxis 

Mode 

choice 

All 

aTaxis 

Mode 

choice 

All 

aTaxis 

Mode 

choice 

All 

aTaxis 

Mode 

choice 

2000 160394 123047 0 32799 3247 746 160394 155846 

4000 170246 113118 0 55822 8686 1253 170246 168940 

6000 171652 111735 0 59839 9691 1315 171652 171574 

8000 171457 111174 0 60289 9643 1264 171457 171463 

10000 171419 111650 0 59693 9666 1306 171419 171343 

12000 171334 111900 0 59455 9624 1302 171334 171355 

14000 171193 112481 0 58736 9602 1308 171193 171217 

16000 171463 112111 0 59353 9671 1292 171463 171464 

18000 171450 111735 0 59775 9670 1267 171450 171510 

BAU 0 127462 0 127462 

 704 

Note: VMT-aTaxi is the VMT traveled by the aTaxis. VMT-PC is the VMT traveled by the personal cars 705 

(PC). Unoccupied VMT is the cruise distances between car location at time of request and pick-up location 706 

that aTaxis accumulate when commuters requesting for a ride.  707 

  708 
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Table 6. The simulation results of respective operation strategies 709 

Item 1 2 3 4 5 

Initial parking 

based on 

Population density N Y N Y Y 

Building density N N Y N N 

Drive toward 

areas with high 

Population density N N N Y N 

Building density N N N N Y 

Fleet size 4000 4000 4000 4000 4000 

Total VMT (mile) 170246 168233 168293 290331 290680 

Unoccupied VMT (mile) 8686 8635 8681 8246 8389 

In-vehicle time (min) 12.85 12.94 12.93 14.26 14.29 

Wait time (min) 2.74 2.68 2.69 1.54 1.54 

Total ride-sharing 4112 4195 4063 4582 4472 

Note: Y refers to Yes, and N refers to No. 710 




