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Considering User Behavior in Free-floating Bike Sharing System Design: A Data-

informed Spatial Agent-Based Model 

Abstract 

Although bike-sharing has been recognized as an active and sustainable transportation mode, 

the dramatic expansion of free-floating bike sharing (FFBS) services generates problems such 

as illegal parking and low utilization. An effective FFBS system needs to be highly regulated. 

This study combines Big Data and spatial agent-based modeling to understand the interactions 

between stakeholders to assist the bike-sharing system design. The key design decisions 

considered are the locations and capacities of bicycle parking lots in the system, as well as the 

connected bike lanes between parking lots. The model has been applied to the case of Hong 

Kong for demonstration. The results show that the parking lots with higher capacities are 

mostly close to the metro stations, and the cycleways are disconnected even for those that have 

high cycling occupancy. The results indicate that for most target people to be willing to change 

the parking location, the minimum fare discount rate for doing so should be set to 30%. The 

average trip time can be reduced by 3.8%, and per user cost can be reduced by 2.4% with an 

expected investment of 0.12 million USD to build new cycle tracks and connect existing 

cycleways. 
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1. Introduction 

As fuel prices rise, traffic congestion worsens, populations grow, air quality worsens, land use 

management and greater world-wide consciousness arise around climate change, it will be 

necessary to find sustainable modes of transport and better adapt existing modes to move 

people in more environmentally sound, efficient, and economically feasible ways (Bauman, 

Crane, Drayton, & Titze, 2016; DeMaio, 2009; Shaheen, Guzman, & Zhang, 2010). Bike-

sharing, or public bicycle programs, is emerging as a prominent alternative to assist in solving 

the above problems. Bike-sharing schemes have grown in Europe, North America, South 

America, Asia, and Australia (Liu, Jia, & Cheng, 2012). This mobility trend has experienced 

exponential growth over the last years, with over 1,100 cities actively operating automated bike 

sharing systems as of 2017, deploying an estimated 1,900,000 bikes worldwide. Bike-sharing 

schemes have evolved over the years, initially consisting of free-to-use bike systems and 

followed by coin-deposit systems, while the majority of today’s bike-sharing schemes are IT-

based systems, with some cities incorporating additional functionalities such as demand-

responsive and multi-modal systems with real-time information (Shaheen et al., 2010). The 

emergence of free-floating bike-sharing (FFBS) services has revolutionized the market. The 

new services make renting and returning bikes more convenient than ever. 

 

As an FFBS fleet size is not constrained by the capacity of docking stations, it is much easier 

to increase fleet size in the FFBS system. The recent dramatic increase in bike fleets is far 

beyond the expectations of transportation and urban planners. Before the introduction of 

shared-bike service, Hong Kong did not have a city-wide public shared-bike system as the only 

one operating within a park. The rapid expansion of free-floating bike sharing systems in Hong 

Kong started in April 2017, when the first operator launched its service. There were 25,000 

shared bikes distributed in Hong Kong at the peak in the first half year of 2018  (Leung, 2018). 

If there are too many bikes in the system while the utilization of the bikes remains at a low 

level, such services could be fiscally unsustainable or potentially harm the urban transport 

system. In Shanghai, China, there is a bicycle graveyard where 100,000 unused bikes were 

parked (Bird, 2018). In Hong Kong, the government also received more than 800 complaints 

about illegal parking and public space occupation of shared bikes in one year (Legislative 

Council Secretariat, 2018). Amsterdam decided to ban free-floating shared bicycles in 

September 2017 due to the sheer number of bikes taking up space in the city (Van Roy, 2017). 

 

Therefore, the FFBSs should be carefully regulated, taking into the consideration FFBS 

infrastructure represented as parking lots and bike lanes. In our study, the designated parking 

lots for FFBS are different from the stations in a station-based bike sharing system (SBBS). As 

only bike racks need to be installed in parking lots for FFBS rather than expensive kiosk 

machines and docking stations for an SBBS, the infrastructure costs of FFBS are considerably 

lower than for SBBS. Generally speaking, the number of parking lots for FFBS is much greater 

than the number of stations in SBBS. As a result, without considering the land use constraint, 

the high-density distribution of proposed FFBS parking lots can be achieved, and consequently, 

the high accessibility level that FFBS provides will not be compromised. The Hong Kong 

Government endeavors to foster a “bicycle-friendly” environment in new towns and new 

development areas in Hong Kong. The Transport Department will provide not less than 3500 

additional bicycle parking spaces at suitable locations to facilitate cycling by the public (Hong 

Kong Transport Department, 2018). At the same time, the government will develop the cycling 

network and improve existing cycling facilities to promote cycling as a green mode for short-

distance commuting. It is critical to developing a high-performance agent-based model to 

understand bike users’ travel behaviors and support system design by assessing the impact of 

changes in bike-sharing infrastructure at a fine spatial resolution. 
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A novel approach that combines Big Data and ABM for efficient FFBS system design with 

spatial information is presented in this study. The availability of this “big data” (i.e. large-scale 

data sets) on individual bike-sharing travel patterns, represents untapped opportunities to 

consider individual travel behavior when improving bike-sharing system design. The 

contributions of this research to methodology mainly focus on three aspects: 1) spatial 

clustering; 2) high-resolution; and 3) spatial extensions. One of the spatial clustering algorithms, 

k-medoid clustering algorithm, is applied to spatially cluster the origins/destinations (O/D) 

points into bike-sharing parking lots. A high-resolution ABM was developed based on the 

collected bike-sharing travel information that generates agents with the real trip start time and 

O/D points. Geographic information system (GIS) extensions are incorporated to enhance the 

reality of the model. The transport modes including bike and walk are simulated in their own 

traffic lanes (cycleway and footway) based on the corresponding speeds. This study aims to 

understand the travel behaviors of bike-sharing users and assist decision making on FFBS 

system design through a data-informed spatial agent-based model. 

 

2. Related research 

The FFBS is originated from China, which has not been very popular in other countries.  The 

system design studies related to FFBS are sparse, most are focused on SBBS. Some SBBS 

system design methods also can be used as references for FFBS system development. Thus, 

the system design studies related to FFBS and SBBS are both reviewed. One way of improving 

the service quality of a bike-sharing system (BSS) is to improve its system design. Key design 

decisions include station size, station location, number of bikes at stations, number of stations 

and bike lanes connecting the stations. Some studies are dedicated to optimizing these decisions 

against economic constraints, including facility cost and travel value of time, or demand 

constraints.  García-Palomares, Gutiérrez, and Latorre (2012) used a GIS approach to identify 

the potential trip demand and locate stations using location-allocation models, but the 

passengers’ behaviors were not considered. Vogel and Mattfeld (2011) applied data mining to 

operational data to offer insight into typical usage patterns of BSS then to predicate the bike 

demand in improving strategical and operational planning. Yan, Lin, Chen, and Xie (2017) 

focused on leisure bike-sharing trips and presented four time-space models considering the 

stochasticity of demand and different optimization objectives. Nair and Miller-Hooks (2016) 

formulated an equilibrium network design model to determine the optimal system 

configuration of a bicycle sharing system in Washington, D.C. which involved a fleet of 

bicycles positioned at various stations across the large network. Romero, Ibeas, Moura, 

Benavente, and Alonso (2012) proposed a bi-level mathematical programming model to 

optimize the location of public bicycle docking stations, a genetic algorithm was used in the 

upper level to search for the distribution of a given number of docking stations that maximized 

the number of bicycle users, and the interactions through the modeling of the modal split 

between car and bike were considered in the low level. Martinez, Caetano, and Eiró (2012) 

presented a heuristic, encompassing a Mixed Integer Linear Program (MILP) to simultaneously 

optimize the location of shared biking stations, the size of the vehicle fleet, and regulates the 

bicycle relocation activities in a regular operation day. Garcia-Gutierrez, Romero-Torres, and 

Gaytan-Iniestra (2014) determined the station's location based on these people mobility 

considerations, and the estimated number of bicycles/parking lots per station given the 

probability of using the BSS system based on the knowledge of the potential user preferences. 

 

The measure for BSS design also depended on the objective of stakeholders (Ho & Szeto, 2014). 

From a government perspective, social benefits such as environmental benefits, user 
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satisfaction, and demand coverage are important. For private BSS operators, revenue and return 

on investment rate are perhaps more essential. Lin and Yang (2011) presented a mathematical 

formulation considering the service level and investment cost, including station cost and bike 

lane cost. To make the model more practical, Lin, Yang, and Chang (2013) further formulated 

the design as a hub location inventory problem and presented a greedy drop heuristics method 

to solve the problem posed in a hypothetic transport network. The mathematical model 

proposed by Frade and Ribeiro (2015) aimed at maximizing the demand coverage and return 

on investments as an optimization target at the zone level.  

 

There are only three recent papers on FFBS considering the system design. Reiss and 

Bogenberger (2016) identified the mobility patterns based on detailed GPS-Data Analysis for 

the FFBS and built a demand model to forecast the upcoming demand and reveal the optimal 

fleet distributions. A validation method was used to evaluate and proof the benefit of potential 

relocation. Caggiani, Camporeale, Ottomanelli, and Szeto (2018) proposed a methodology for 

the strategic design of FFBS whose facilities could be allocated in the territory according to 

spatial and social equity principles. Bao, He, Ruan, Li, and Zheng (2017) used a greedy network 

expansion heuristic to generate a bike lane network plan set to maximize the usage while 

remaining within a construction budget and considering connectivity constraints. This 

approach is not applicable when individual trajectories are not available.  

 

To the best of our knowledge, there is little literature integrating free-floating bikes with a 

public transportation system with consideration of the spatial structure of transport network 

and users’ interaction and adaptation behaviors at the same time, especially in the case of Hong 

Kong. 

 

In this research, agent-based modeling (ABM) is used to overcome the limitations of previous 

studies. ABM has been used to investigate many transportation science problems such as the 

mode choice problem (Lu & Hsu, 2017; Lu, Hsu, Chen, & Lee, 2018); traffic signal control 

(Aziz, Nagle, et al., 2018), parking (Levy, Martens, & Benenson, 2013; Zhang, Guhathakurta, 

Fang, & Zhang, 2015) and hurricane evacuation (Ukkusuri et al., 2017). There have been a few 

studies applying agent-based approaches to model trips related to bicycling include supporting 

walk-bike infrastructure investment (Aziz, Park, et al., 2018) and improving system 

sustainability with bike sharing (Lu et al., 2018). Traditional econometric and approximate 

proportional models do not as such accommodate agent level interaction. In contrast, ABMs 

can capture dynamic attributes such as learning from experience and spatial evolution in the 

system (Lu, Taiebat, Xu, & Hsu, 2018). For instance, in our study, bike operators can 

dynamically deploy the parking lots with optimal capacities based on daily demand. With the 

extension of GIS on an ABM platform, all the bicycling activities can be simulated on a real 

road network. Moreover, the web-crawling method is used to collect the global positioning 

system (GPS) records of bike-sharing activities. The bike user agents’ travel information 

(including trip origin/destination, trip start time) have a one-to-one correspondence to the 

individual-based bike-sharing travel data. Thus, a high-resolution spatial ABM is built to 

simulate and represent a BSS with a bottom-up approach, simulating the interactions between 

bike users, operators, and the government, and representing the evolutions of users’ cycling 

choices as influenced by different FFBS system formulations. 

 

3. The method  

Figure 1 shows the research workflow. In order to assist decision making for FFBS system 

design, two tasks are proposed: bike user travel behavior analysis and spatial ABM model 

development. 
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Figure 1. Research workflow 

 

3.1. Descriptive analysis of bike users’ behaviors 

Data collection: As FFBSs are commonly operated by private companies, they usually do not 

grant the general public access to needed data. To solve this problem, a web-crawling method 

was developed to collect streaming data of bike-sharing trips in real-time. A program has been 

built to simulate the requests made in the smartphone app and systematically collect the server’s 

response, containing the list of nearby available bikes. The hired bike will disappear from the 

pool, and if the trip terminates, it will reappear in a new coordinate. Therefore, after cyclical 

collection, the origin and destination of a bike trip can be obtained by searching for the 

geolocation change of each bike chronologically. The unique 9-digit bike ID and the real-time 

GPS location of every available FFBS bike in Hong Kong were continually recorded at a 

frequency of 5 minutes on average. Data from one of the largest FFBS bike operators in Hong 

Kong has been collected. The data for this study were collected from February 8 to February 

28, 2018. The data are fully anonymous—no user information is associated. This research 
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examines a large-scale dataset containing more than one million bike-sharing trip records in 

Hong Kong to explore the impacts of individual travel patterns. Each record has GPS 

coordinates of one specific bike and an observed timestamp. 

 

Data preprocessing: Some redundant information and errors exist in the raw data, so we run a 

series of preprocessing steps. The first preprocessing step reduces redundant coordinate 

information about stationary bikes and cleans up some errors due to GPS drifting. For example, 

one kind of GPS drifting occurs from instabilities in civilian GPS sensors, which can cause a 

bike to seemingly teleport from one location to another before shifting back to the same 

location. We then removed some unrealistically short- or long-distance movement (riding time 

less than 1 minute and longer than 3 hours) because such movements might not be associated 

with an actual cycling activity (Shen, Zhang, & Zhao, 2018). For instance, the movement of a 

bike over a very short trip time could result from noncycling causes such as GPS instability, 

local bike relocation by bike-sharing operators, etc.  And the movement of a bike for a very 

long trip time could result from bike maintenance and relocation by bike-sharing operators. 

After overly long/short trips based on duration were singled out, 98.6% of the BS trips were 

selected for subsequent analyses.  

 

Travel behavior analysis: To provide insights into the modeling part, user behavior analysis is 

conducted. A descriptive analysis is conducted to identify the travel patterns of FFBS users in 

Hong Kong. The bike-sharing travel information, including temporal factors (trip start/end time, 

trip duration), spatial factors (O-D points) are extracted and saved in the dataset for population 

generation in the ABM model. 

 

3.2. Spatial agent-based model development 

3.2.1. Model experiment settings and initialization 

The model was built using the GAMA platform (GAMA, 2016), which can construct spatially 

explicit agent-based simulations. In the ABM model, there are three agents: bike users, 

operators, and bikes. These agents interact with each other and also adapt to changes in the 

environment. The time step is one minute. The spatial resolution is 1m×1m. 

 

Bike users: The bike users’ trip information including O-D matrix and trip start time are 

directly imported from the individual bike-sharing trip information in the dataset. Figure 2 

shows the import process of bike-sharing trip data. The disorganized trip origins and 

destinations from the bike-sharing trip dataset are identified as the parking points, which are 

saved in an ESRI shapefile format for the subsequent spatial cluster analysis. The bike users 

have different distributions of socio-economic status represented as different values of time 

(VOT) of cycling and walking. The cyclists’ VOT are higher than the VOT for the car and 

public transport, as the time spent on cycling is comparatively unproductive. However, Van 

Ginkel (2014) claimed that VOT of cycling is lower because it brings health and convenience 

for the users. Koppelman and Bhat (2006) indicated that the travelers are much more sensitive 

to out-of-vehicle time than to in-vehicle time, meaning that a higher disutility is generated from 

a minute of out-of-vehicle time compared to a minute of in-vehicle time. In this study, the VOT 

of cycling and walking are evaluated as 60% and 100% of the bike users’ hourly salary level 

(Lu & Hsu, 2017; Lu et al., 2018). The user agents’ hourly incomes are based on the distribution 

of hourly wage (all employees) from the Report on Annual Earnings and Hours Survey (Hong 

Kong Census and Statistics Department, 2017). But it should be acknowledged that most bike 

users are young people, whose hourly incomes may not fully correspond to the survey data on 

all employees across a wider age bracket. 
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The accessibility of FFBS parking lots is a crucial factor in encouraging bike sharing use. In 

Hong Kong, the main factors affecting the choice of transport mode are travel time and walking 

distance between location for getting on/off the mechanized transport and the locations of trip 

origin/destination. We only consider the accessibility level as the key factor influencing the 

bike use. This is because the bike agents embedded in the model are already bike users based 

on the real bike-sharing trip data. The only difference is the changes in the parking lots’ 

distributions, which is represented as the accessibility level, quantified by the distance between 

O/D and bike parking lots. Lin et al. (2013) showed that the bicycle stations should not be 

located more than 300–500m from important origins and destinations of traffic. Thus, people 

will become a bike user if at least one bike-sharing parking lot is located less than 500m from 

the user agent’s origin/destination. 

 

Bike operators: Bike operators deploy their bikes with the optimal distribution and fleet size 

to meet the daily demand.  If the use frequency of the bike at a specific parking lot is zero, the 

operator will remove this bike in the next day, and the capacity of this parking lot will be 

reduced by one accordingly. In contrast, if a user cannot rent a bike at this parking lot, the 

operator will put one bike at this parking lot next day, the capacity of this parking lot increased 

by one accordingly. After several day-to-day adjustments, a supply and demand balance is 

achieved. The optimized locations and capacities of parking lots with the determined amount 

of parking lots can be realized. 

 

Bikes: As FFBS bikes are not designed for racing, we use 15 km/h as a cycling reference speed 

on the level cycleway (Shen et al., 2018). Some cycle lanes are isolated and only connected by 

footway, where cycling is not allowed (Hong Kong Transport Department, 2018). Therefore, 

5 km/h on average, a speed equivalent to walking, can be achieved on the footway. The dataset 

gives accurate time and geolocation date of the trip O-D, while it does not provide information 

about the route that users choose. The travel trajectories in this study are the shortest possible 

routes generated on a high-resolution GIS map. 

 

The environment: The proposed model was applied to Sha Tin, Hong Kong for demonstration 

(see Figure 3). The Sha Tin study area is highlighted in yellow in Figure 3. The red area is the 

metro area, where bicycle parking is prohibited. Sha Tin is the most populous city in the New 

Territories of Hong Kong, with a 2011 population census of 630,273 within an area of 35.87 

km2. Sha Tin also has a “bicycle-friendly” environment with well-equipped bike infrastructures. 

The prototype of the spatial ABM model is shown in Figure 2. The grey lines represent the 

footways and cycleways. The bike users are represented as red dots. The trip origin and 

destination exported from the bike-sharing trip dataset are shown as light-blue and light-yellow 

dots, respectively. The clustered parking lots are represented as blue crosses. The bikes are 

shown as the black squares, which are parked at the parking lots. A digital elevation model 

(DEM) has been constructed so that contiguous slopes along bike lanes can be obtained, which 

is used as a factor impacting bicycling speed in the estimation (see Figure 4). Based on the real 

road network, the bike users who have specific origins and destinations are assumed to choose 

the shortest path for cycling. The shortest path here means the path with the shortest travel time 

by considering the length and slope simultaneously. Their trajectories are generated and saved 

as an ESRI shapefile format for the road occupancy analysis. 
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Figure 2. The prototype of the spatial ABM model 

 

 

 

 

 
Figure 3. The study area and nearby areas 
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Figure 4. Digital elevation model of Sha Tin 

 

3.2.2. Model calibration 

The day that used for calibration was selected randomly, based on the criteria that weather was 

suitable for cycling and most cyclists are observed on that day based on the bike-sharing trip 

dataset. The calibration method for picking one representative day is based on Wallentin and 

Loidl (2015). Finally, Friday 09 February 2018 was selected. On this date, the maximum 

temperature was slightly above 17°C, and no precipitation was recorded. 

 

The number of bike users, bicycling trip start time, and the origin/destination of the bicycling 

trip in the model are from the bike-sharing trip dataset collected with the web crawling method. 

Only two kinds of data, average trip time and a number of used bikes, were used to calibrate 

the bicycling trip behaviors. In the business as usual (BAU) scenario, there are no clustered 

parking lots, the bike users start their bicycling trips from their own trip origin at a specific 

start time and end their trips at their own trip destination. First, we compared the trip time 

generated from the BAU model and reality. Second, there are 540 bike users and 336 used 

bikes from real data, which means some bikes’ use frequency is more than one. Based on the 

simulation results, the previous endpoint and current start point of the bike used by different 

users are sometimes not the same places. This phenomenon can be explained by the GPS error 

of the users’ smartphones. The maximum GPS error range is 80 meters. Table 1 shows the 

calibration results. The model has a good fitting degree with reality. The simulated average trip 

time is shorter than the real trip time, likely because the trajectories of bike users are defined 

as the shortest path, which may cause the simulated trip time to be shorter than the real trip 

time, especially for round-trips that have the same or very similar origin and destination. 
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Table 1. The model calibration 

Scenarios Average trip time (m) Number of used bikes 

BAU 13 340 

Reality 16 336 

 

3.2.3. Spatial cluster of the disorganized bike-sharing parking points 

The trip O-D geolocation in the dataset suggests the demand to rent/return a shared-bike at 

such a spot. We use spatial clustering algorithms to cluster the disorganized trip O-D points 

into candidate parking lots.  The bike users rent or return the bikes at these parking lots. The 

trip O-D points’ distance between each other less than the cluster threshold is aggregated into 

one candidate parking lot. The cluster threshold is measured based on real road network 

distance. Thus, the spatial clustering algorithm such as k-means and DBSCAN based on 

Euclidian distance are out of consideration. Two spatial clustering algorithms, hierarchical and 

k-medoid clustering algorithms, are tested. The hierarchical clustering algorithm, specifically, 

means the hierarchical single-linkage agglomerative algorithm, which works on the location 

attribute and considers that a group is composed of points following this property: a point 

belongs to a group if there is at least one point in this group that is at a distance lower or equal 

to the cluster threshold. The center of hierarchical clustering is the point with the minimum 

distances between other points in the cluster. The k-medoids algorithm is a clustering algorithm 

related to the k-means, with the only difference being that k-medoids chooses data points as 

centers instead of the centroid of that cluster. The average accessibility distance of the bike 

users to the bike parking lots are changed with these spatial cluster processes, and bike usage 

is also influenced. Table 2 shows the performances of these two spatial clustering algorithms. 

The performance here refers to the average distance between points labeled to be in a cluster 

and a point selected as the center of that cluster, indicating how compact each cluster is. The 

number of parking lots is generated from hierarchical clustering algorithm with the different 

cluster threshold from 100m to 1000m with the step of 100m. The k in the k-medoid clustering 

algorithm is defined with this number of parking lots. We can see that the k-medoid algorithm 

has better performance with the same number of parking lots. Figure 5 shows the clustering 

results of these two algorithms with the same number of parking lots. Different colors represent 

different clusters. We can see that the clustered parking lots are distributed more uniformly 

with the k-medoid clustering algorithm, and the better performance—higher accessibility 

level—can be explained. Thus, the k-medoid clustering algorithm is selected to generate 

parking lots.  
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Table 2. The performances of hierarchical and k-medoid clustering algorithms 

Cluster 

threshold 

(m) 

No. of 

parking 

lots (k) 

Hierarchical 

performance 

K-medoid 

performance 

100 350 45 40 

200 132 285 121 

300 70 697 194 

400 30 1178 320 

500 18 1241 409 

600 15 1256 450 

700 10 1286 596 

800 3 1405 1286 

900 2 2989 1660 

1000 1 3198 2678 

 

 

 

 
Figure 5. The distributions of the parking lots with the two clustering algorithms 

 

3.2.4. Optimization of the location and capacity of parking lots 

The criteria for optimization of the location and capacity of the parking lots are defined as 1) 

minimizing the users’ travel cost incurred in the bicycling trips, and 2) minimizing the system 

cost of the bike sharing operator. In comparison to the SBBS, FFBS saves on start-up costs by 

circumventing the construction of expensive docking stations and kiosk machines. Thus, the 

construction cost of parking lots is not considered in this study.  

 

There is a basic tradeoff in determining the locations and capacities of bicycle parking lots. 

The user cost can be reduced with the increase of the parking lots and bike fleet size, but the 

system cost may be increased with the expansion of the FFBS. Determining the optimum 

distribution of the parking lots is a multi-objective optimization problem. The problem 

formulation is presented as follows: 
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Objective functions: 

 Min UC = EC + HC (1) 

 Min SC = OC + CC − (EC + deposit × no. users × 5%) (2) 

 

UC and SC refer to the user cost and system cost. EC and HC represent the explicit cost and 

hidden cost of users. Explicit cost refers to the service fees of bike-sharing. And the hidden 

cost is related to the travel time and access time (the walking time to take or park the bikes at 

the designed parking lots) of bike users multiplied by their corresponding VOT. OC and CC 

represent the operating cost and capital cost of the bike-sharing system, respectively. Operating 

costs incur from maintenance, distribution, staff, insurance, office space, storage facilities, 

website hosting and maintenance (DeMaio, 2009). Capital costs include purchase and 

fabrication of the bikes (DeMaio, 2009). The lifespan of bicycles is assumed to be three years. 

The straight-line depreciation method is applied to calculate the yearly capital cost, which can 

distribute the fixed assets evenly to each year according to the service life. We also assume 

there is a 5% annual rate of return from the bike users’ deposits. 

 

The number of possible solutions to the optimized distribution of parking lots is too large for 

enumeration, as much as the total number of bike-sharing points in reality. Thus, a heuristic 

technique known as Pareto optimization is proposed to solve optimization problems. Heuristic 

methods have several advantages, such as that they are easy to implement on a computer, and 

they can be applied to virtually any ABM. This is particularly important for models that are too 

complex for conversion to other mathematical forms (Oremland & Laubenbacher, 2014). In 

this study, a genetic algorithm (GA) is applied to search the control space in an attempt to find 

the Pareto frontier. Figure 6 shows the Pareto frontier. 

 

Solutions on the Pareto frontier represent those that cannot be improved upon in terms of one 

objective without some sacrifice in another. In this sense, each solution on the Pareto frontier 

is optimal concerning some choice of weights. Figure 7 shows one of the optimum 

distributions of the parking lots (k=135). The corresponding average accessibility performance 

is 106m, which is below the maximum walking distance. Based on the parking lots distribution, 

we can find certain parking lots are located around the metro stations and riverside. As we 

mentioned before, the bike will be removed if its daily utilization is zero and the corresponding 

capacity of these parking lots will be reduced by one, and a parking lot’s capacity will be 

increased by one if one user cannot rent a bike at this parking lot. The optimized capacities of 

parking lots are obtained with the day-to-day adjustment. Because human mobility behavior is 

93% predictable (Song, Qu, Blumm, & Barabási, 2010), we can foresee an individual's future 

whereabouts based on his or her previous trajectory, especially for the commuter trips during 

weekdays. Thus, the optimum locations and capacities of parking lots can meet the daily bike-

sharing demand well. The corresponding capacities of parking lots based on the optimum 

distribution (k=135) are presented in Figure 7. We can see that the parking lots close to metro 

stations have higher capacities, which means bike-sharing may be used as first/last mile 

connections of the transit. 
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Figure 6. The Pareto frontier of the number of parking lots.  

Notes: Frontier points are marked with a triangle and non-frontier points with a circle; the 

number in the figure is the k in the k-medoid algorithm, which also equals the number of 

parking lots. Here 1 HKD ≈ 0.13 USD. 

 

 

 
Figure 7. The locations and capacities of parking lots (k=135) 
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3.3. Scenarios simulations 

3.3.1. Parking incentive 

Based on the simulation results, the parking lots with higher capacities are mostly close to the 

metro stations, which leads to the problem of over-clustering of bicycles around public transit 

stations during peak hours. To solve this problem, parking incentives are proposed based on 

the cycling trajectories in the ABM model. For example, bike user A always uses FFBS to 

connect the first-mile metro trip from home to the metro station on weekdays. Because the 

presence of too many bikes obstructs the entryways of metro stations during the morning peak, 

the cheaper-parking incentive will be sent to the people A’s smartphone to encourage him to 

park the bike at other parking lots with an acceptable walking distance to the metro station. The 

bike user’s utility can be changed, which is represented as the user cost, where the explicit 

cost—the cycling fee—may be reduced with the incentives, but the hidden cost related to the 

walking time may be increased. If the utility is improved, in other words, the user cost is 

reduced, the bike user will park the bike at other parking lots rather than near the metro station 

entryway.  

 

Subsidies to encourage the use of certain parking spots and to stop bicycles from agglomerating 

are studied. As delineated in Hong Kong Transport Department regulations (Hong Kong 

Transport Department, 2018), bike-sharing operators must facilitate the return of their bicycles 

to designated bicycle parking places through incentive schemes for good bicycle parking 

practices and penalties for non-compliance. The Portland State University TREC Center (2018) 

found that nearly two-thirds of bike-sharing riders considered the discount important in their 

decision to sign up for membership. Lyft, the company that has purchased the largest bike-

sharing operator in the US, offers discounts to people who use the bikes and scooters to connect 

to transit (Hawkins, 2018). One bike-sharing operator in Hong Kong has also claimed that 

customers can earn 30 minutes of free riding credits when they park certain bicycles in 

designated areas (Sun, 2017). In the present study, two incentive strategies are tested including 

30 minutes of free riding, and a fare discount (as compared to the original fee). 

 

Based on the simulation results (Table 3), a discount scenario with a 30% reduction in price 

(or higher discount) has the same effect on parking behavior as the 30-minute free riding 

scenario, with most people are willing to change the parking location. Target people here means 

the bike users who would ordinarily park their bikes close to the metro stations with a distance 

less than 100 meters during peak hours (7am-9am and 6pm-8pm). Thus, the operators are 

suggested to provide a 30% fare discount to solve the over-clustering parking problem. 26% of 

bike users are willing to change their parking location far away from the metro stations when 

the discount rate is zero, which means no incentives for the parking. Because their cycling 

distance is shorter, although the walk distance is longer, the corresponding total user cost is 

still reduced. Compared with the BAU scenario (k=135), the accessibility distances of these 

scenarios are increased, which means this parking regulation brings a certain inconvenience 

for the bike users. For example, in the scenario of 30-minute free riding, the accessibility 

distance is increased by 60.5%. 
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Table 3. Simulation results of different parking incentive strategies 

Incentive strategies 

 

Target people 

Num 

willing to 

change 

Average 

accessibility 

distance (m) 

Access 

increase% 

Discount 

rate (%) 

100 19 15 169.9 60.5 

90 19 15 169.9 60.5 

80 19 15 169.9 60.5 

70 19 15 169.9 60.5 

60 19 15 169.9 60.5 

50 19 15 169.9 60.5 

40 19 15 169.9 60.5 

30 19 15 169.9 60.5 

20 19 14 162.7 53.7 

10 19 8 131.0 23.7 

0 19 5 134.8 27.3 

Free 30 min 19 15 169.9 60.5 

BAU(k=135) n/a n/a 106.0 0 

Notes: Here Num willing to change refers to the people from the target people group are willing 

to change the parking location with corresponding incentives. The average accessibility 

distance means the average distance between O/D and selected parking lots. 

 

3.3.2. Bike lane extension 

Based on the simulated road occupancy, a bike lane extension scenario was simulated. The 

major problem of bicycle infrastructure in Hong Kong is that cycle tracks are underutilized and 

disconnected. Bike users need to wheel their bikes on the footway. High cycle modal share 

may be achieved and sustained with a safe, extensive, and continually improving cycling 

infrastructure (Ashwani, 2015). Castillo-Manzano and Sánchez-Braza (2013) stated that 

Seville’s high cycling modal share was the result of the development of extensive new cycling 

infrastructure. There are some projects on clustering/summarizing trajectories on the road 

network (Han et al., 2012; Kharrat at al., 2008), which help urban planners to know the popular 

routes and improve the public transportation system. 

 

In our model, new bike lanes are suggested to be built parallel to the popular footways that 

have intensive trajectories. Thus, disconnected bike lanes can be connected. Identifying the 

heterogeneity (occupancy here) can assist in ranking candidate locations for infrastructure, 

which is a standard process in investment choices with a limited budget. There is a monetary 

cost 𝑐𝑖 associated with each road segment 𝑅𝑖 in converting a footway segment into a bike lane 

(e.g., building the railings and clearing the space). The cost for the construction of bike lanes 

and cycle tracks are 90HKD (11.7USD) and 630HKD (81.9USD) per meter, respectively 

(Weigand, McNeil, & Dill, 2013). Most cycleways in Hong Kong are cycle tracks that separate 

the cyclists from motor traffic and provide a high level of security. Thus, the cycle tracks 

construction cost is selected for bike lane extension investment. Figure 8 shows the road 

occupancy of the existing cycleway and footway. Road occupancy represents the total number 

of bike trips that occur on a specific road on one weekday. The roads next to the river has 

higher occupancy, but these roads are not all cycleway; some are footways, which connect the 

cycleways. The candidate cycle tracks are indicated with an ID number corresponding 

occupancy in the Figure 8. The candidate cycle tracks and the corresponding construction cost 

are shown in Table 4. We can find most high-occupancy roads have gentle slopes, which is 
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consistent with the findings that cyclists tend to avoid slopes (Hood, Sall, & Charlton, 2011; 

Li, Wang, Liu, & Ragland, 2012; Menghini, Carrasco, Schüssler, & Axhausen, 2010). If 0.12 

million USD were invested to build new cycle tracks and connect existing cycleways, the 

average trip time could be reduced by 3.8%, per user cost reduced by 2.4%, and the number of 

used bikes reduced from 227 to 211. Bike users’ satisfaction could be improved accordingly, 

attracting more potential bike users. 

 

 
Figure 8. The road occupancy (k=135) 

 

 

 

Table 4. Candidate cycle tracks and corresponding construction cost 

ID Length Slope Occupancy 
Construction 

cost (USD) 

5756 260.62 9.65 52 21345 

5893 134.30 7.48 48 11000 

5864 119.84 1.98 30 9815 

4066 169.49 0.88 29 13882 

4067 132.69 1.27 29 10868 

4068 186.88 2.75 29 15306 

5922 152.10 1.67 26 12457 

5941 114.70 2.12 26 9395 

5580 245.50 10.69 25 20107 

Total cost (USD) 124175 
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5. Discussion and Conclusion 

This research presents a novel approach which integrates Big Data techniques into ABM to 

assist FFBS system design with spatial information. The k-medoid clustering algorithm is 

applied to spatially cluster the origins/destinations (O/D) points into bike-sharing parking lots. 

A high-resolution ABM was built that utilizes bike-sharing trip data to generate agents with 

real trip start time, trip O/D, and socio-demographic attributes. The bicycling and walking are 

based on a real transportation network with specific attributes such as road length and slope. 

The model acts as a laboratory to assess the impact of different strategical designs for bike 

lanes and parking lots. 

 

Based on the simulation results generated in this study, as the number of designed parking lots 

increases, the per-user cost decreases accordingly, while as the total system cost increases, the 

optimum distribution of parking lots was found based on the Pareto frontier results. Then the 

capacities of parking lots are optimized considering the interactions between bike users and 

operators. The parking lots with higher capacities are mostly close to the metro stations, which 

leads to the problem of over-clustering of bicycles around public transit stations during peak 

hours. The roads, including footways and cycleways, have higher occupancy and are mostly 

near the riverside. The cycleways are disconnected, even those with high occupancy. 

Cycleways with intensive cycling trajectories are suggested to be built parallel to popular 

footways. Two scenarios were simulated to examine the effect of such decisions. The scenario 

of parking incentive shows encouragement of user agents not parking the bikes block the metro 

stations during the peak hour may bring certain inconvenience for the users represented as the 

increased accessibility distance. The minimum discount rate for encouraging most target 

people to change the parking location is 30%. 26% of bike users are willing to change their 

parking location farther from the metro stations even if the discount rate is zero. In the bike 

lane extension scenario, the average trip time can be reduced by 3.8%, and the per user cost 

reduced by 2.4% with a 0.12 million USD investment in building new cycle tracks and 

connecting existing cycleways. 

 

The results of the study provide an advanced tool to assist in FFBS system design and 

understand the behaviors of bike users under various policy scenarios. The method used to 

develop this model can be used for FFBS system design in other cities. The potential benefits 

of this research are broader than providing comprehensive information for BSS development. 

Data availability of detailed GPS records including O/D points and generated trajectories can 

benefit other parties. By aggregating cycling trips, transportation planners can identify 

mismatches between cycling demand and infrastructure supply. In addition, the framework has 

the potential to be applied to other infrastructure systems and help inform the complex decision 

making for developing and improving integrated transportation systems such determining joint 

ticket formulation for metro-bike traveling and bike-sharing parking lot distributions around 

metro stations. 

 

As with all modeling exercises, we are generating scenarios to explore possible future options, 

not to predict actual futures. However, some limitations should be acknowledged. The current 

model only considers the operation cost based on statistical data, and the detailed dynamic 

rebalances cost will be simulated in future work. The impacts of FFBS strategic designs in the 

scenarios will be validated by travel survey data from before-after project completion analysis 

in our future work. 
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Appendix 

 

ODD protocol table of FFBS model 

 

Elements of ODD protocol Description 

overview 1.Purpose Free-floating bike sharing system design 

2.1 Entities Bike users, bike operators, and bikes 

2.2 State variables Bike users: Trip origins/destinations, selected parking 

lots, hourly salary, bicycling fee, walking/bicycling 

time, accessibility level of selected parking lots, travel 

trajectories 

Bike operators: parking lots location/capacity, 

operating cost, capital cost, bike fleet size 

Bikes: use frequency, speed, start/end parking lots 

 

2.3 Scales Space: Sha Tin, Hong Kong (6 km * 6 km) 

Spatial: location of agents, resolution 1m * 1m 

Temporal: one-minute interval update of activities 

 

3. Process overview 

and scheduling 

1. Bike users population synthetic based on the bike-

sharing trip dataset. 

2. Spatial clustering of existing O/D points to 

candidate parking lots. 

3. Bike operator assigns bikes in different parking lots 

based on bike-sharing travel demand (the number of 

bike users whose distance to the parking lots are less 

than 500m). 

4. Bike users rent/return bikes at certain parking lots. 

5. Bike operators optimize the location/capacity of 

parking lots until the supply and demand balance is 

achieved. For example, the parking lots with the zero 

daily capacity and bikes with the zero daily use-

frequency are removed from the system the next day. 

If one bike user cannot rent the bike at parking lot A, 

the bike operator will add one bike at this parking lot 

next day. 

7. Scenarios simulation of parking incentives: 

Encourage the bike users to use certain parking lots 

and stop bicycles from agglomerating around metro 

stations with two incentive strategies including 30-

minutes free riding, and fare discount. Observe the 

minimum discount and the average accessibility 

distance. 

8. Scenario simulation of bike lane extension: New 

bike lanes are suggested to be built parallel to the 

popular footways that have intensive trajectories. 

Then the disconnected bike lanes can be connected. 

Observe the total construction cost and the 

corresponding user cost and bicycling time. 
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Design 

concepts 

4. Theoretical and 

empirical 

background 

1. The bike user agents’ hourly incomes are based on 

the distribution of hourly wage (all employees) from 

the Hong Kong annual earning survey. 

2. The bike users who have specific origins and 

destinations are assumed to choose the shortest path 

for cycling. 

3. The bike users only select the bike-sharing parking 

lots located less than 500m from the user agent’s 

origin/destination. 

4. The lifespan of bikes is assumed to be three years. 

5. The bike operators can get 5% annual rate of return 

from the bike users’ deposits. 

6. The criteria for optimization of the location and 

capacity of the parking lots are defined as minimizing 

the users’ travel cost incurred in the bicycling trips and 

minimizing the system cost of the bike sharing 

operator. 

7. The bike users decide to change parking locations or 

not based on utility maximization theory. 

 

 

Details 5. Initialization ➢ Transportation map with bike lanes, footways and 

metro stations 

➢ Bike-sharing parking points (trip O/D) 

➢ Spatial clustering of disorganized parking points 

into candidate parking lots with a definite number 

(equals k in the k-medoid algorithm). 

➢ Bike user walks to its start parking lot and starts 

its trips from trip origin with the respective start 

time. 

 

6. Input data ➢ Bike user agents’ travel behaviors (trip 

origin/destination, trip start time) are defined by 

the bike-sharing trip dataset. 

➢ Bike user agents’ social-economic characteristics, 

especially for the hourly income, which are 

defined by the distribution of hourly wage (all 

employees) from the Hong Kong annual earning 

survey 

➢ The existing bike lanes, footways and metro 

stations are defined by the Hong Kong 

transportation map. 

➢ The slopes information of bike lanes and 

footways are defined by the Hong Kong digital 

elevation model. 

➢ Existing parking points are defined by real bike-

sharing O/D points. 

➢ Cost parameters of bike-sharing system including 

system operating cost and capital cost of bikes are 
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summarized from the open data of bike-sharing 

companies in China. 

➢ The construction cost of the cycle track is defined 

by studies related to bicycle facilities cost. 

 

7. Sub-models ➢ The scenario of parking incentive: 

Purpose: Encourage the bike users to use certain 

parking lots and stop bicycles from agglomerating 

around metro stations 

Process: Two incentive strategies are tested including 

30-minutes free riding and fare discount.  

The bike users choose to change the parking lots 

depend on their utility (travel cost). The travel cost is 

composed of the explicit cost and hidden cost. 

Generally speaking, the hidden cost is increased, as 

the walking distance from the parking lot to the 

destination (metro station here) is increased. But the 

explicit cost (bicycling fee) is decreased with these 

two incentive strategies. If the user cost is reduced, the 

bike user will park the bike at other parking lots rather 

than near the metro station entryway. 

Observation: The most effective incentive strategy 

(the minimum discount rate of bicycling fee with the 

most target people willing to change the parking 

locations) and the average bike users’ accessibility 

distance 

 

➢ The scenario of bike lane extension: 

Purpose: Construct new cycle tracks parallel to the 

popular footways that have intensive trajectories. 

Thus, the disconnected bike lane network can be 

connected. 

Process: Bike users need to wheel their bikes on the 

footway when the bike lanes are disconnected. The 

candidate cycle tracks are identified by the daily 

bicycling occupancy of the existing footways. The 

footways with the high occupancy are given priority 

for cycle track construction. The construction cost of 

cycle tracks is 630HKD (81.9USD) per meter. 

Observation: The total construction cost and improved 

system performance (including bicycling cost and 

time). 

 

 

 




