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Abstract: Flexible barriers have been proven to be effective measures for mitigating natural 24 

hazards, such as rockfalls, gravel flows and debris flows. This paper presents a new numerical ring 25 

model based on the discrete element method (DEM) to simulate a flexible ring net. The Edinburgh 26 

Bonded Particle Model is applied to create internal forces within a ring element. The mechanical 27 

behavior of a ring element was analyzed from measurements collected during quasi-static tensile 28 

tests. The systematic calibration approach of this ring model is described in detail. Two reduction 29 

factors related to the bond Young’s modulus and the bond radius are proposed to effectively adjust 30 

the bending and axial stiffnesses of the ring element. With calibrated DEM parameters from the 31 

tensile tests, the ring model is validated by reproducing these tensile tests under different boundary 32 

conditions. Finally, a three-dimensional DEM model is established for modeling the rockfall 33 

impact on a flexible ring net. A comparison between the existing test data and simulation results 34 

reveals that the new ring model can accurately reproduce the response of a flexible ring net under 35 

both static and dynamic conditions. 36 

Author keywords: Flexible barrier; Discrete element method; Bond model; Tensile test; 37 

Rockfall. 38 

  39 



 3 / 24 
 

Introduction 40 

Flexible barriers are widely adopted in Hong Kong and many other regions and countries as 41 

protection systems against natural hazards. A flexible barrier protection system for mitigating 42 

rockfalls and debris flows consists of nets, steel ropes, brake elements and steel posts to transfer 43 

loads to foundations. In comparison with rigid barriers and other protective structures, flexible 44 

barrier protection systems are lightweight, have less of an influence on the environment, provide 45 

a considerable reduction in construction time and are also easily maintained in remote areas. A 46 

substantial amount of impact energy is dissipated through the sliding of nodes and large 47 

elastoplastic deformation of ring nets, one of the most distinguishing features of flexible barriers. 48 

In 2012, the Geotechnical Engineering Office (GEO) of The Hong Kong Special Administrative 49 

Region Government (HKSARG) produced a Discussion Note titled “Suggestions on Design 50 

Approaches for Flexible Debris-resisting Barriers” (Kwan and Cheung 2012). However, the design 51 

methods and selection of design parameters in the Discussion Note have not yet been validated. It 52 

is necessary to produce a comprehensive and recognized design standard for flexible barrier 53 

protection systems. 54 

Over the past few decades, due to their low cost and reproducibility, numerical approaches 55 

have been developed as powerful tools for modeling flexible barriers under impact loadings of 56 

either rockfalls or debris flows. Different ring models have been developed for applications in 57 

flexible barriers (Nicot et al. 2001b; Coulibaly et al. 2017). Any type of parametric study is allowed 58 

by numerical methods; this flexibility helps to optimize a typical design. Two major approaches 59 

have been developed for modeling flexible barriers. One is the classical finite element method 60 

(FEM), which has been extensively utilized by engineers and researchers to mathematically model 61 

and numerically solve complicated structural, fluid, mechanical and electrical problems. It is 62 
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essentially a mathematical method dedicated to solving partial differential equations and is well 63 

suited for modeling continuous materials. A commercial finite element code (Abaqus/Explicit), 64 

featuring nonlinear geometrical, mechanical and contact behavior in the structural dynamic range, 65 

was used to model the impact of falling rocks against common steel wire flexible meshes (Cazzani 66 

et al. 2002). Gentilini et al. (2012) proposed a highly nonlinear, dynamic, three-dimensional model 67 

that meets the requirements of major parameters in European guidelines (2008). Later, a few 68 

modifications were suggested in the model of barrier 3000 to enhance its cost-effectiveness and 69 

on-site performance (Gentilini et al. 2013). Volkvein (2004) applied newly developed discrete 70 

elements to the finite element software FARO to simulate ropes and net rings under the influence 71 

of long distance slides and included friction. Moreover, Escallón et al. (2015) developed a model 72 

that accounts for contact interactions in flexible chain-link wire nets with loose connections. 73 

Mentani et al. (2016) investigated the performance of a low-energy rockfall barrier in relation to 74 

the bullet effect based on a finite element model. 75 

On the other hand, a more recently proposed numerical method, the discrete element method 76 

(DEM), which was initially proposed by Cundall and Strack (1979), is also capable of modeling 77 

the mechanical response of debris-resisting systems. It is the simplest discrete medium model; it 78 

adopts a particle system composed of a large number of spherical particles, meeting Newton's 79 

second law of motion and employs a spring-damper model to describe the interaction between 80 

particles. Bertrand et al. (2008, 2012) introduced a remote interaction model to simulate the 81 

double-twisted hexagonal mesh and rockfall protection fences based on the DEM under European 82 

guidelines (2008). Li and Zhao (2018) used this remote interaction model to simulate the same 83 

hexagonal-shaped wire mesh coupled with a debris mixture by using computational fluid dynamics 84 

(CFD). Thoeni et al. (2013) further improved the remote interaction model by considering 85 
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distortion of the wires and hexagons. Albaba et al. (2017) established a DEM model of granular 86 

flows impacting an elementary mesh by adopting a cylindrical element (Bourrier et al. 2013). 87 

In summary, the FEM is based on continuum mechanics theory; thus, it is appropriate to use 88 

this approach for modeling a continuous medium. However, specific algorithms are required to 89 

describe potential cracking or local failure, which is time consuming to implement. In contrast, 90 

compared to the FEM, the DEM is particularly well suited to model mechanical systems in which 91 

large relative displacements may occur during a loading process, owing to its inherent advantage 92 

in describing the granular material with particle interactions. Large displacements and failures can 93 

be easily simulated. Consequently, the DEM is suitable for modeling both flexible barriers and 94 

granular flowing materials as well as their interactions. In accordance with different materials, 95 

geometries and connection types, flexible net systems vary. However, only few bond models have 96 

been employed to simulate a simple wire mesh. A circular ring net, as a typical protection structure, 97 

has seldom been considered with the DEM due to its complex structure and special mechanical 98 

response. There is a lack of a systematic calibration process to reproduce the ring behavior both 99 

under static and dynamic conditions. 100 

This paper presents a newly developed ring model that uses the DEM to simulate the behavior 101 

of a circular wire ring. This new ring model is developed from the Edinburgh Bonded Particle 102 

Model (EBPM) (Brown et al. 2014) based on Timoshenko beam theory with limited 103 

simplifications and assumptions. The mechanical behavior of a wire ring in a quasi-static tensile 104 

test is investigated using the new ring model. To determine the rigidity and bond strength of a wire 105 

ring, a novel calibration approach on bond parameters is elaborated based on a parametric study 106 

of tensile tests and experimental data from the literature. The model reliability is assessed by 107 

reproducing tensile tests carried out on a steel ring under different boundary conditions. Finally, 108 
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the capability of the new ring model is further tested to replicate the tests results of dynamic 109 

rockfall impact on a squared ring net. This approach enables the accurate modeling of both a 110 

circular ring net and granular materials as well as their interactions in the same computational 111 

framework.  112 

 113 

Model Description 114 

Normally, a typical flexible barrier protection system consists of various components, such as net, 115 

supporting cables, brake elements, posts, and anchors, among which the metal wire net (Fig. 1) 116 

plays a vital role either in the mechanical behavior or in the failure mode of the entire system. A 117 

metal wire net is composed of interconnected wire rings. Hence, the behavior of a wire ring, called 118 

a ring element, under loading becomes a basic and fundamental issue. In this study, the DEM is 119 

used to simulate a ring element in EDEM software. The EBPM (Brown et al. 2014) is applied to 120 

the particles in contact to resist not only tensile and shear forces but also compressive forces and 121 

bending and twisting moments through the EDEM Application Programming Interface (API).  122 

The EBPM, proposed by Brown at el. (2014), is based on Timoshenko beam theory that, unlike 123 

Euler-Bernoulli beam theory, accounts for the effects of transverse shear deformation. The EBPM 124 

provides a more accurate representation of true bending in a beam. Beams that are either short or 125 

have large expected deflections are more accurately modeled by considering Timoshenko beam 126 

theory. 127 

To bond particles that are not physically in contact when using EBPM, it is necessary to set a 128 

contact radius larger than the physical radius of a particle, thus forming an overlap between two 129 

particles. Once the simulation time exceeds the bond time, the bond initialization procedure will 130 
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be triggered. Particles will be bonded by a Timoshenko beam element, which links the centers of 131 

the two particles, as illustrated in Fig. 2(a). With the increase in time step, the bond forces and 132 

moments governed by the Timoshenko beam theory are updated: 133 

 ΔF = K Δu   (1) 134 

where ΔF  is the incremental force vector, which contains 12 force and moment increments at the 135 

two ends of the bond [Fig. 2(b)]; Δu is the displacement (rotation) vector, which contains 12 136 

displacement and rotation increments at the two ends of the bond; and K  is a 12×12 tangential 137 

stiffness matrix, which is derived from the differential equations for beam deformation using the 138 

unit displacement theory for a Timoshenko beam. By adding all the increments since the first step 139 

of the computation, the total internal forces and moments F  can be obtained: 140 

 F = ΔF   (2) 141 

There are three strength criteria that determine the failure of bonds: the compressive C , 142 

tensile T  and shear strength criteria. If any of the maximum stresses exceed the limit values of 143 

strength, the bond will break. The maximum compressive stress maxC , tensile stress maxT and 144 

shear stress max  are obtained by beam theory. 145 
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where 
2
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4

4

b
b

r
I


 . br  is the disc radius of the bond. bA  is the cross-sectional area of the 149 

bond. bI is the second moment of area of the bond. p  and q  represent the two ends of the bond.  150 

Although the bonds behave in a linear elastic brittle manner, with accurately calibrated rigidity 151 

and strength, the new ring model is capable of exhibiting large deformation consistent with the 152 

elastoplastic behavior that a metal wire ring typically experiences. 153 

The bond elements describe the bond behavior within a ring element. For the nonbonded 154 

contact, such as the contact between the granular material and flexible ring net, the force-155 

displacement relationship is determined by the Hertz-Mindlin contact law (Johnson 1987), which 156 

follows a spring-dashpot configuration in two directions, namely, normal and tangential (Fig. 3). 157 

The contact force is calculated by the sum of the normal force and the tangential force. Both forces 158 

include spring parts ( nsF ; tsF ) and damping parts ( ndF ; tdF ).  159 

The normal spring force nsF  is a function of normal overlap n  between the particles in 160 

contact and is expressed as 161 

 

3

* * 2
4

3
ns nF E R    (6) 162 
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*E  is the equivalent Young’s modulus. 
*R  is the 163 

equivalent particle radius. 
iE , 

iR , 
iv  and jE , jR , jv  are the Young’s moduli, Radii and Poisson’s 164 

ratios of the two particles in contact. The normal damping force is given by 165 
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.   is the damping ratio governed by the 167 

coefficient of restitution e . nS  is the normal stiffness. 
*m  is the equivalent mass. 

rel

nv  is the normal 168 

component of the relative velocity. 
im  and jm  are the masses of each contact particle. The 169 

tangential spring force tsF  is based on the tangential overlap t  and is limited by the Coulomb 170 

friction  . It is expressed as 171 

 
ts t tF S     (8) 172 
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. tS  is the tangential stiffness. 
*G  is the equivalent 173 

shear modulus. The tangential damping force is given by 174 

 *5
2

6

rel

td t tF S m v    (9) 175 

where 
rel

tv  is the tangential component of the relative velocity. 176 

 177 

Model Calibration 178 

The quasi-static tensile test is one of the most effective ways to investigate the mechanical 179 

characteristics of a material. The bearing and deformation capacity of a ring element can be 180 

determined from such tests. Model calibration work is an essential procedure when applying the 181 



 10 / 24 
 

EBPM to a flexible ring net. Once the material and deformation parameters of a ring element are 182 

determined by the test results, full-scale impact tests on flexible ring nets can proceed. 183 

DEM Modeling of a Tensile Test 184 

A high-grade steel wire ring net is adopted in this paper. The tested wire ring was fabricated with 185 

Al/Zn coated wires to improve corrosion resistance to extend the service life. Each ring was 186 

obtained by wrapping a single 3 mm diameter steel wire 12 times. The tested ring had a 300 mm 187 

internal diameter and was held in place by three metal clips.  188 

In engineering practice, each ring element in a flexible ring net connects to four neighboring 189 

ring elements. Thus, there are four contact points on every ring element. A series of laboratory 190 

tests were carried out on a servo-hydraulic universal testing machine at the Swiss Federal Institute 191 

of Technology Zurich (ETHZ) (Grassl 2002). The tested ring element was mounted in a specially 192 

designed steel double plate device that can create different boundary conditions. The bolts were 193 

fixed on the holes through bushings, and the ring element was positioned in the middle of the 194 

double plates. The top double plates moved at a velocity of between 0.2 mm/s and 1 mm/s, 195 

depending on the experimental setup (Fig. 4).  196 

The DEM modeling of a tensile test conducted in this paper is shown in Fig. 5 and is based on 197 

the same setup as that of the laboratory test in Fig. 4(a). The circular ring is discretized by bonding 198 

100 particles to form a closed loop ring with the EBPM. Since a bond has the same circular cross-199 

section as a wire ring, changes need to be made to the radius of the bonded particle and the bond 200 

to meet the requirements for different steel wire diameters. The cross-sectional area of a ring can 201 

be determined by the sum of the areas of the wires, but this approach will overestimate the bending 202 
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stiffness of the ring. Thus, a reduction coefficient   was introduced to calculate the equivalent 203 

cross-sectional area ( eqA ) of a ring (Escallón and Wendeler 2013): 204 

 ' 2

eq eq w wA A r n     (10) 205 

where wr  is the radius of a wire and wn  is the number of windings. In this study, an equivalent 206 

particle radius (4.5 mm) is calculated as a reference case regardless of the value of  . The axial 207 

and bending stiffnesses are adjusted by the bond Young’s modulus and bond disc radius, which 208 

will be discussed in the following sections. The number of particles is a significant issue in the 209 

DEM simulation. As the bond is straight, as more particles are generated, the results of the ring 210 

simulation will become more accurate. The deformation of the DEM model with 100 bonded 211 

particles will be used to represent the curvature of a ring. The computational efficiency would 212 

decrease if more particles are used. Furthermore, the coefficient of bond strength variation is set 213 

to 0 to ensure that all the bonds in a ring have the same bond strength. 214 

In addition to the bond parameters that are directly related to the tensile failure of the ring 215 

element, other values of the numerical and nonbonded contact parameters for the reference case 216 

are listed in Table 1. The global damping coefficient in the EBPM is defined as the damping 217 

applied to the particles through the equations of motion so that energy is dissipated in every particle 218 

in the system. A damping coefficient of 0.95 defines the test as a quasi-static problem, which 219 

compensates for the instability of the model induced by a relatively large loading rate (5 mm/s). 220 

Hence, a larger time step (7.87e-07) can be employed to improve the computational efficiency, 221 

and the impact of the dynamic effect can be minimized (Cho et al. 2007). 222 

Fig. 6 depicts the four stages of the quasi-static tensile test of a 300 mm diameter ring element 223 

fixed at 4 vertices of contact:  224 
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(a) Bonds are generated between particles at the bond time. Then, the steel plates move at a certain 225 

velocity, and forces act on the ring through the four bolts. 226 

(b) The ring deforms nonlinearly due to the change in geometry, which represents the bending 227 

behavior of the ring. 228 

(c) The ring is stretched into a rectangular shape, and geometric nonlinearity no longer occurs. The 229 

forces increase faster in this stage than they did in the second stage. The bearing capacity is 230 

determined mainly by the normal force in the ring. 231 

(d) The deformation of the ring increases with loading until a bond is broken and the ring fails. 232 

Parametric Study on the Bond Parameters of the Tensile Test Simulations 233 

For the purpose of simulating a specific ring element, the relationship between the DEM 234 

parameters and failure criteria should be studied. The influences of the three most important bond 235 

parameters, bond Young’s modulus, mean bond tensile strength and bond radius multiplier, are 236 

investigated by analyzing the force-deformation characteristics, breaking load and maximum 237 

deformation of a ring element. Other nonbonded contact parameters are not considered to have a 238 

significant influence on the failure mode of a ring. The ranges of the values used in the parametric 239 

study are shown in Table 2. 240 

Effects of the Bond Young's Modulus 241 

Fig. 7(a) plots the effects of the bond Young’s modulus (
bE ) on the load-displacement relationship 242 

of the ring. The range of the bond Young’s modulus is from 40 GPa to 200 GPa. With the increase 243 

in the bond Young’s modulus, the bonds become stiffer. Thus, to produce the same deformation 244 

of the ring, a greater applied loading force is needed to resist the induced bond forces. For a ring 245 
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with a 200 GPa bond Young’s modulus, the ring breaks during the shape-changing stage. Fig. 7(b 246 

and c) show the respective relations between the bond Young’s modulus and the breaking load and 247 

maximum elongation at failure. Because the value of the bond Young’s modulus modifies the 248 

stiffness of the bond, considerable elongation occurs when the bond Young’s modulus decreases 249 

to 40 GPa, which is more than three times that when the bond Young’s modulus is 200 GPa. A 250 

significant increase in loading is observed accordingly. 251 

Effects of the Mean Bond Tensile Strength 252 

Fig. 8 shows the effects of the mean bond tensile strength (
sT ) on the load-displacement 253 

relationship, breaking load and maximum elongation of a ring. The tested mean bond tensile 254 

strengths range from 4 GPa to 20 GPa and the bond Young’s modulus is 120 GPa. The load-255 

displacement curves of the 5 tests nearly overlap due to the identical stiffness of the rings. 256 

Generally, the breaking load and maximum elongation increase with the mean bond tensile 257 

strength. Linear relations are observed after the ring is stretched into a rectangular shape. During 258 

this stage, the bond force is mainly affected by the properties of the material itself, rather than the 259 

geometrical deformation. 260 

Effects of the Bond Radius Multiplier 261 

The bond radius multiplier   is a reduction coefficient of the bond radius that can influence the 262 

bond stiffness and strength: 263 

 min( , )b A Br r r   (11) 264 

where Ar  and Br  are the radii of particles A and B, respectively. Fig. 9 demonstrates the effects of 265 

the bond radius multiplier on the load-displacement relationship, breaking load and maximum 266 
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elongation of a ring. The range of the bond radius multiplier is from 0.5 to 0.9. The bond radius 267 

multiplier has a significant influence on the breaking load because it changes the cross-sectional 268 

area of the bond. For a given mean bond tensile strength, the bond force and stiffness decrease 269 

with the decreasing cross-sectional area. Therefore, the bond becomes more ductile as the bond 270 

radius multiplier decreases. The maximum elongation will slightly increase. However, the effects 271 

of the bond radius multiplier on the maximum elongation are less significant in contrast with the 272 

results of varying the bond Young’s modulus. 273 

Rigidity and Bond Strength Determination of a Ring Element 274 

The reference case of the quasi-static tensile test reveals that the bending and axial stiffnesses of 275 

the ring dominate the ring element behavior in different stages. Notably, the equivalent particle 276 

radius (
eqr ) of 4.5 mm was determined based on the actual cross-section of a circular ring and the 277 

particle number of a ring element in the simulation. The equivalent particle radius did not equal 278 

the equivalent bond radius (
eqR ), which affects the stiffness of a ring element. The bending 279 

stiffness can be expressed as 280 

 

4

4

eq

bending

R
k EI E


    (12) 281 

where 
2eq

eq w w eq

A
R r n r


   . E  is the steel Young’s modulus (200 GPa). The axial stiffness 282 

can be expressed as 283 

 2

axial eqk EA E R    (13) 284 

Grassl (2002) found that the theoretical axial stiffness is five times the rigidity in the tensile 285 

test for wire rings with 7, 12 and 19 turns. This should be explained by the different utilization of 286 
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the individual wires because the axial stiffness k  decreases with the increased loading for a single 287 

wire tensile test. The overall axial stiffness of a wire ring is the sum of the individual wires 288 

connected in parallel. Therefore, the sum of the axial stiffness should be less than 
wn k  and the 289 

axial stiffness can be rewritten as 290 

 21

5
axial w wk E r n   (14) 291 

As mentioned in the proceeding sections, the bending stiffness should be reduced to eliminate 292 

the overestimation of the area moment of inertia by decreasing the equivalent bond radius. 293 

However, according to Eq. (13), the axial stiffness will decrease with the bond radius; this result 294 

is consistent with the parametric study. The reduction of the bond radius cannot change the bending 295 

and axial stiffnesses independently. Based on the equations and findings from the parametric study, 296 

the bond Young’s modulus can likewise influence the bending and axial stiffnesses; thus, two 297 

coefficients  and  , are inserted into Eq. (12) and Eq. (13): 298 

 

4( )

4

eq

bending

R
k E

 
   (15) 299 

 2( )axial eqk E R     (16) 300 

where eq eqR r  . Substitution of Eq. (14) into Eq. (16) gives the reduction factor of the axial 301 

stiffness: 302 

 2 1

5
    (17) 303 
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  and   can be easily obtained by Eq. (17) once the reduction factor of bending stiffness 304 

( 4 ) is known. 4  can be determined by assuming 1   and testing different values of   until 305 

reaching a good agreement with the experimental bending response. 306 

The experiment (Grassl 2002) related to the ring with 4 vertices of contact is employed for 307 

model calibration. Finally, the bond Young’s modulus, bond tensile strength and bond radius 308 

multiplier were calibrated by fitting the experimental and DEM results (Fig. 10). There is a slight 309 

difference between these sets of results in the final stage of the test. The fluctuation in the physical 310 

test may be explained by the incompatible deformation of the individual wires and the slip between 311 

the wire and clips, whereas the DEM model cannot account for these effects. The results are also 312 

compared to the FEM predictions by Grassl (2002). The FEM ring element was developed and 313 

implemented in the FARO finite element program. The resistance due to bending and traction for 314 

any boundary conditions are detected with 8 bar and 8 spring elements. Our new ring model 315 

exhibits a better fit in the tensile regime than that of the FEM result. The values of the DEM 316 

parameters of the ring tensile test are listed in Table 3. 317 

 318 

Model Validation 319 

Modeling of Tensile Tests with Different Boundary Conditions 320 

To validate the calibrated parameters of the ring model, two additional DEM tensile tests of the 321 

same 300 mm diameter ring element with 2 and 3 vertices of contact were conducted. The obtained 322 

load-displacement relationship is compared to the corresponding experimental data and FEM 323 

results (Grassl 2002), as shown in Fig. 11(a and b). The bending stiffness is slightly underestimated 324 

for both cases, mainly attributable to the constant change in the cross-sectional area of the ring in 325 
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the bending regime. Different area moments of inertia shall lead to different bending stiffnesses. 326 

In addition, because the ring model is not able to consider plastic deformation in the bending 327 

regime, the ring will enter the tensile regime slightly earlier than in the experiment.  328 

Furthermore, a more complex loading condition with a group of 8 interconnected wire rings 329 

[Fig. 4(d)] was considered to account for the ring net response. The DEM predictions agree with 330 

the experimental results, matching the net response in both the bending and tensile regimes [Fig. 331 

11(c)]. The ring model exhibits a better performance in describing the axial resistance of the group 332 

wire rings than that of the FEM model. Sudden drops in loading occur in the tensile regime due to 333 

the sliding motion between the wire rings in contact. 334 

Owing to the proper calibration of parameters and the inherent advantage of the ring model 335 

in dealing with geometrical nonlinearity, the model response is quite agreeable to the results of the 336 

experiment in various loading configurations. Therefore, further study of the entire flexible ring 337 

net can be carried out on the basis of the new ring model. 338 

Modeling of Rockfall Impact Tests on a Flexible Ring Net 339 

Based on the tensile test results of the ring element, the overall performance and dynamic response 340 

of the flexible ring net is evaluated by a falling rock impact test. The experimental test was 341 

conducted at the Swiss Federal Rockfall Test Site in Walenstadt (SG), Switzerland (Grassl 2002). 342 

The test ring net employed was composed of the same 300 mm diameter rings as the tensile test in 343 

the above section. Each ring is linked with four others. A total of 180 ring elements constitute the 344 

net with dimensions of 3.9 m × 3.9 m. The net was fixed to the top of a rigid steel frame by 345 

shackles. A boulder of mass 825 kg was lifted to 3 m above the net and dropped with 24.3 kJ of 346 

kinetic energy [Fig. 12(a)]. In parallel to the experiment, an FEM model (Grassl 2002) was built 347 
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to simulate the rockfall tests. The aforementioned FEM ring element was used to describe the wire 348 

net behavior. For each ring, 8 nodes are used to connect the bar elements and detect the contact 349 

points of adjacent rings and rockfall material. 350 

By making use of the experimental data, a full-scale three-dimensional DEM model was 351 

established to validate the test and obtain a better understanding of the interaction between the 352 

rockfall and flexible ring net. For a real flexible ring net, the connection points between the rings 353 

is moveable, which allows the ring elements to slide during the impact. To accurately simulate the 354 

behavior of the ring net, 180 ring elements formed by 18000 particles were generated in three-355 

dimensional space through the EDEM API [Fig. 12(b)]. In the stage of particle generation, each 356 

ring was rotated to an appropriate degree to avoid contact with the other rings. Bonds were created 357 

between only adjacent particles within each ring. In addition, boundary conditions represented by 358 

rigid steel rings were added to the outermost rings, allowing rotation and sliding of the rings. A 359 

spherical boulder was released from the same height to the net as that in the physical test. Moreover, 360 

since the ring net is influenced by gravitational acceleration, it is necessary to consider the initial 361 

sag of the net by allowing the net to fall to a free state before boulder impact. 362 

Fig. 13 displays the three-dimensional lateral view of the net deformation developed during 363 

the impact test at different time points. Fig. 14(a) depicts the evolution with time of the rockfall 364 

acceleration, in comparison with the test data and FEM results. Time 0 corresponds to the first 365 

contact of the boulder with the net. This result indicates a good correlation between the 366 

experimental results and the DEM simulation. The acceleration of the boulder in the DEM model 367 

increases slightly faster than that in the experiment from time 0.1 s to time 0.15 s. The distinct 368 

initial states of the interconnected wire rings between the model and experiment may lead to this 369 

difference, although the initial sag of the net was taken into account. In accordance with the 370 
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calibration procedures, impact tests were repeatedly performed for different sizes of wire rings 371 

with 7 and 19 turns to further evaluate the reliability of the ring model [Fig. 14(b and c)]. It is 372 

observed that the maximum acceleration of the boulder decreases with an increasing number of 373 

turns. In contrast to the FEM results, the developed DEM ring model with less oscillations is more 374 

accurate for predicting the dynamic response of a flexible ring net under rockfall impact. 375 

 376 

Summary and Findings 377 

In this paper, the Edinburgh Bonded Particle Model (EBPM) is employed to establish a new 378 

numerical ring model for a steel wire ring. The effects of the bond parameters of this ring element 379 

are investigated by means of a series of parametric studies in modeling quasi-static tensile tests. 380 

The rigidity and bond strength of the ring model are carefully calibrated. In addition, the ring 381 

model is validated by comparing computed values with test data. A three-dimensional discrete 382 

element method (DEM) model for a flexible ring net is developed and applied for simulating the 383 

deformation of a flexible ring net under the impact of a falling rock. Based on these works, the 384 

following findings are obtained: 385 

1. The new numerical ring model for a steel wire ring (a ring element) based on the EBPM is 386 

suitable for modeling a steel wire ring. 387 

2. The calibration of bond parameters in this new ring model can be easily performed by comparing 388 

the modeling values with available test data. 389 

3. The three-dimensional DEM flexible ring net based on our new ring model can reproduce the 390 

behavior of a ring net barrier under rockfall impact, allowing engineers to employ this model as 391 

a design tool of this typical structure. Furthermore, the model also has great potential in the 392 
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study of the interaction between flexible barriers and other natural hazards, including gravel 393 

flows and debris flows in the same framework due to the inherent merits in describing particle 394 

interactions by the DEM. The proposed DEM model will enable parametric studies on the 395 

interaction between flexible barriers and natural hazards under more complicated impact loading 396 

conditions.  397 

4. Compared with finite element modeling of a ring net, any simplified fine-mesh modes composed 398 

of truss or spring elements are not necessarily established in a discrete element model. It is more 399 

accurate to describe the behavior of both a single ring element and an entire flexible ring net 400 

under impact loadings with the DEM than the FEM. Other deformable components, such as 401 

steel cables and brake elements, can be added into our DEM model to evaluate the performance 402 

of a whole flexible ring net barrier system under impact loadings. 403 

It is recommended that large-scale physical model impact tests related to rockfalls and debris 404 

flows be executed to compare and validate the proposed numerical DEM model with new ring 405 

elements in the future. 406 
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Table 1. Values of DEM Parameters for the Reference Case of a Quasi-Static Tensile Test 

DEM Parameters Values 

Bond 

Bond Young’s modulus (GPa) 120 

Bond Poisson’s ratio 0.3 

Compressive strength (GPa) 16 

Tensile strength (GPa) 16

Shear strength (GPa) 10 

Coefficient of variation of the strength 0 

Bond radius multiplier 0.8 

Non-bond 

Particle radius (mm) 4.5 

Particle contact radius (mm) 8 

Particle density (kg/m3) 7800 

Particle Young’s modulus (GPa) 200 

Particle Poisson’s ratio 0.3 

Coefficient of static friction 1 

Coefficient of rolling friction 0 

Coefficient of restitution 0.5 

Numerical 

Loading rate v (m/s) 0.005 

Global damping coefficient 0.95 

Time step (s) 7.87e-07 

Table

https://www.editorialmanager.com/jrnemeng/download.aspx?id=331615&guid=3bd5df31-1087-49f5-abb8-4578b1562913&scheme=1
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Table 2. Parametric Study on Bond Parameters of a Quasi-Static Tensile Test 

Parameters Refence Min Max 

Bond Young’s modulus (GPa) 120 40 200 

Mean bond tensile strength (GPa) 16 4 20 

Bond radius multiplier 0.8 0.5 0.9 

  



Table 3. Calibrated Bond Parameters for a 300mm Flexible Ring Element 

Parameters Values 

Bond Young’s modulus (GPa) 292 

Bond Poisson’s ratio 0.3 

Tensile strength (GPa) 41 

Shear strength (GPa) 12 

Coefficient of variation of the strength 0 

Bond radius multiplier 0.43 
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Figure Caption List 

Fig. 1. Flexible metallic wire ring net in Hong Kong 

Fig. 2. Two particles bonded by a Timoshenko beam element 

Fig. 3. Schematic of the Hertz-Mindlin contact model 

Fig. 4. Quasi-static tensile tests with 300 mm diameter steel ring elements: (a) 4 vertices of 

contact; (b) 3 vertices of contact; (c) 2 vertices of contact; (d) a group of 8 wire rings 

Fig. 5. The DEM model of a quasi-static tensile test 

Fig. 6. Four stages of the reference case tensile test 

Fig. 7. Effects of the bond Young’s modulus on (a) load-displacement relationship; (b) 

breaking load; (c) maximum elongation 

Fig. 8. Effects of the mean bond tensile strength on (a) load-displacement relationship; (b) 

breaking load; (c) maximum elongation 

Fig. 9. Effects of the bond radius multiplier on (a) load-displacement relationship; (b) 

breaking load; (c) maximum elongation 

Fig. 10. Comparison of DEM simulation values with FEM and experimental results of a 

tensile test with a 300 mm diameter steel ring element (4 vertices of contact) 

Figure Caption List



Fig. 11. Comparison of DEM simulation values with FEM and experimental results of a 

tensile test with a 300 mm diameter steel ring element: (a) 3 vertices of contact; (b) 2 vertices 

of contact; (c) a group of 8 wire rings 

Fig. 12. The rockfall impact test on a flexible ring net: (a) setup of physical model test; (b) 

the DEM model 

Fig. 13. The three-dimensional and lateral view of net deformation for the impact test 

Fig. 14. Comparison of DEM simulation values with FEM and experimental results of the 

flexible ring net under the rockfall impact: the evolution with time of the rockfall acceleration: 

(a) 12 turns per wire ring; (b) 7 turns per wire ring; (c) 19 turns per wire ring




