1	
2 3	
4	
6	
7 8	
9	
10 11	
12	
14^{13}	
15 16	
17	
10 19	
20 21	
22	
23 24	
25 26	
27	
28 29	
30 31	
32	
33 34	
35 36	
37	
38 39	
40 41	
42	
43 44	
45 46	
47	
48 49	
50 51	
52	
53 54	
55 56	
57	
58 59	
60 61	
61 62	
63 64	
65	

Static and dynamic behaviors of granular soil reinforced by
disposable face-mask chips
Jun-Oi Zhang ¹ Xiang Wang ^{1*} Zhen-Yu Yin ^{1*} Ningyu Yang ¹
Department of Civil and Environmental Engineering, The Hong Kong Polytechnic
University, Hung Hom, Kowloon, Hong Kong, China.
Email: xiang.wang@polyu.edu.hk; zhenyu.yin@polyu.edu.hk
Abstract: The stock of disposable face masks has climbed steadily due to COVID-19, which
results in an urgent worldwide environmental problem. This investigation aims to assess the
potential of using waste mask chips (MC) as reinforcement in granular soil. To evaluate the
mechanical properties of the mask chips - granular soil mixture (MSM), a series of monotonic
and cyclic triaxial tests with different confining pressures and MC contents are conducted. There
the shear behavior of MSM is quantified from both static (strength, stiffness, dilatancy) and
dynamic (energy absorption capacity, resilient modulus, deformation) perspectives
Furthermore, based on the static and dynamic indexes, the effects of adding MC into granular

soil are comprehensively analyzed. All experimental results indicate that the MSMs exbibit an

increase of shear strength and a reduction of shear-induced volumetric dilation, but a decrease

in stiffness. The addition of MC also leads to an increase in energy absorption but will not affect

the cumulative strain of MSMs. Thus, MC has great potential to be used in the embankment

construction of road and railway, backfill or reclamation construction, and so on. In addition,

the influence of mask chip content on mechanical behaviors of MSM can be considered in

current constitutive models for further engineering calculation and design relating to of MSMs.

This experimental study provides a new perspective and thought on the recycling of waste face 1/28

24 masks in civil engineering.

25 Keywords: Waste masks; Granular material; Triaxial tests; Static and dynamic characteristics

1 Introduction

Wearing disposable face masks has been proved to be an effective way to reduce the infection of airborne infectious diseases, e.g., SARS, H1N1, and Covid-19. In the background of the global Covid-19 pandemic, the consumption of disposable masks has increased significantly (Karaivanov et al., 2021). It is reported that the global use of face masks is more than 129 billion per month (Prata et al., 2020). Based on the predicted model proposed by Nzediegwu and Chang (2020), more than two hundred thousand tons of face masks are generated around the world each day.

The disposable masks (made of non-biodegradable plastics) take hundreds of years to degrade in the natural environment (Dhawan et al., 2019). Currently, the two major ways to treat disposed masks are sent to landfills and incineration (Saberian et al., 2021). However, the mentioned ways have potential risks. Lightweight masks can be moved easily from landfills in wind and rainwater and decomposed into microplastics to endanger the health of organisms (Fadare and Okoffo, 2020). Moreover, the burning of masks will release a lot of harmful gases. Therefore, it is urgent to find a safe and reliable recycling method for disposable masks.

Besides, waste face masks can be regarded as flexible chips that are often used to improve
the properties of granular soil in engineering construction. In general, adding flexible chips into
granular soil leads to an increase in energy dissipation capacity (Fathali et al., 2017; SolSánchez et al., 2015). Flexible chips are also helpful to protect soil particles from breakage and

45	reduce the dilatancy of granular soils during shear (Buddhima et al., 2018; Gong et al., 2019).
46	Moreover, the additional flexible chips into granular soil have the advantage of decreasing the
47	concentration of contact forces under external loading (Guo et al., 2020; Zhang et al., 2020c).
48	Along this way, waste masks are supposed to be more suitable for improving the engineering
49	properties of granular soils. However, the engineering properties of flexible chips reinforced
50	soil highly relate to the materials. For example, Mashiri et al. (2015) concluded that the
51	additional flexible chip leads to the increasing strength of granular soil, but Lee et al. (2014)
52	indicated that the strength of granular soil decreases with increasing flexible chip content. In
53	addition, Fathali et al. (2017) found that adding a small number of flexible chips can reduce the
54	settlement of granular soil under cyclic load, but this phenomenon was not found in the study
55	of Qi et al. (2018). Thus, understanding the effect of the waste mask on granular soil is
56	important to evaluate the potential of the waste mask as a geo-material, since the mask chips
57	are different from currently used fiber or rubber based chips in term of tensile strength and
58	contact area.
59	This study aims to assess the potential of using waste masks in reinforcing granular soils.

Ig ١y Ρ ig g Graded crushed rock particles, one of the most widely used granular soil in civil engineering, is used to blend with waste masks. First, a series of monotonic and cyclic triaxial tests are conducted to investigate the improvement in the performance of granular soil by adding waste masks under different mask contents. Then, the results of the monotonic triaxial tests, including the stress-strain behavior and volume change, are quantified. Finally, the evolution of energy absorption, resilient modulus, and cumulative deformation is analyzed through cyclic triaxial tests.

2 Laboratory Testing Program

68 2.1 Tested materials

In this investigation, the adopted granular soil, well-graded limestone, was sampled from a quarry in Changsha, China. Moreover, the disposable face masks in this study were produced by Nanchang Jiangnancheng Medical Instrument Co., Ltd. Blending entire masks with graded crushed stone is a convenient way to consume the waste face masks. However, the size of masks is too large for traditional geotechnical tests considering the size effect. Thus, as shown in Fig. 1a, the masks were cut into pieces (mask chips) and kept a similar aspect ratio as the entire masks. Correspondingly, as shown in Fig. 1b, the size of granular soil was reduced. The railway subballast (Zhang, 2020), a kind of graded crushed stone with the most stringent demands, was used as the standard in scaling. The ratio of the width of mask chip to d_{50} of scaled granular soil is 20, which is equal to the ratio of the width of entire masks to d_{50} of traditional subballast. Moreover, the specific gravity of adopted granular soil and mask chip are 2.67 and 0.59, respectively.

Fig. 1 Tested materials: (a) photograph and (b) particle size distribution

The masks pieces can be regarded as a special fiber (Bordoloi et al., 2017). For the optimal fiber content of fiber-reinforced soils obtained by previous investigations, Salah et al. (2010) and Chen et al. (2015) suggested that the optimum fiber volumetric content in fiber-reinforced soils is 1.0% (approximately equivalent to 0.5% by weight) considering the increasing shear strength. Fardad Amini and Noorzad (2018) reported that the optimum fiber mass content is 1.0% based on the maximum energy dissipation capacity. Talal (1986) and Gopal et al. (1996) indicated that sand stabilized with fiber mass contents >2% achieved no added benefits. Thus, four mask contents (0%, 0.5%, 1.0%, 1.5%) by weight of dry soil are selected in this study. Moreover, the maximum dry density test of mask chips - granular soil mixture (abbreviated as MSM) is conducted by surface vibration compaction. The maximum dry densities of MSM with 0 % and 1.5 % MC content are 2.04 g/cm³ and 1.98 g/cm³, respectively. An increase in MC content leads to an approximately linear decrease in the maximum dry density of MSMs. The reinforcement effects of chip on soil highly relate to their tensile behaviors. As shown in Fig. 2(a), the tensile test of MC is repeated five times by a high precision tension testing system (MTS insight 30). The width and length of the mask chip in the tensile test are 10 mm and 48 mm, respectively. The results of the repetitive test are similar. Thus, a typical curve is selected to highlight the tensile properties of MC. As shown in Fig. 2(b), the force-displacement curve of MC gradually increases to a long plateau, indicating that MC has excellent toughness. Moreover, the strength of the melt-blown layer (middle layer) is smaller than that of the non-woven layer (outer layer). This phenomenon leads to a sudden drop of the force-displacement curve. In summary, the average strength of MC is 16.2 N based on the five repetitive tests.

5/28

6 / 28

of 0.01 mm/min to ensure that fully drained conditions were maintained during shearing, and shearing was completed when 20% axial strain was achieved. Three commonly used confining pressures σ_c , e.g., 25 kPa, 50 kPa, and 100 kPa (Lenart et al., 2014), were adopted in the monotonic triaxial test to investigate the strength parameters. For the cyclic triaxial test, a single-specimen staged loading method (Ding et al., 2021) was adopted as shown in Fig. 3. To evaluate the dynamic characteristics of MSM under different traffic loads, the cyclic load σ_d was 50%, 100%, 150%, ..., of the confining pressure in each loading stage, and each loading stage was cycled 10 times. The cyclic triaxial tests were stopped when the axial strain reached 4%. Moreover, based on the suggestions of previous studies (Bian et al., 2016), the frequency adopted in the tests was equal to 1 Hz. Two confining pressures, e.g., 50 kPa and 100 kPa, were selected to observe the effects of confining pressures on dynamic responses.

Fig. 3 Load oscillogram for the cyclic triaxial test

All the tested specimens were numbered, and the details of each specimen are summarized in Table 1. The 'C' and 'P' in the name of specimens indicate mass content and confining pressure, respectively. For example, C05P25 is the specimen with 0.5% chip content under

T	Table 1 Test strategy and basic geotechnical properties of the specimens				
Materia	Chip content (%)	Triaxial test strategy	σ _c (kPa)	Void ratio	
C0P25		Monotonic	25		
C0P50	0	Monotonic and cyclic	50	0.544	
C0P100		Monotonic and cyclic	100		
C05P25		Monotonic	25		
C05P50	5	Monotonic and cyclic	50	0.558	
C05P10)	Monotonic and cyclic	100		
C10P25		Monotonic	25		
C10P50	10	Monotonic and cyclic	50	0.573	
C10P10)	Monotonic and cyclic	100		
C15P25		Monotonic	25		
C15P50	15	Monotonic and cyclic	50	0.587	
C15P10)	Monotonic and cyclic	100		

3 Interpretation of Triaxial Tests under Monotonic Loading

To further analyze the results of the monotonic triaxial tests, the axial strain ε_1 , deviatoric

8 / 28

stress q, effective mean stress p, and stress ratio η are defined as follows:

$$\varepsilon_1 = \frac{h_0 - h}{h_0} \tag{1}$$

$$q = \frac{h\bar{f}}{V} \tag{2}$$

$$p = \sigma_c + q/3 \tag{3}$$

$$\eta = \frac{q}{p} \tag{4}$$

where h_0 and h are the height of the sample before shear (after consolidation) and at present, respectively; V is the current volume of the sample; \overline{f} is defined as the load on the loading plate; and σ_c is the confining pressure.

3.1 Stress-strain relationship

Fig. 4 illustrates the evolution of stress ratio η with shear. η of MSM undergoes a sharp soar to a peak value before expanding gradually to plateau values. The peak and residual strength are similar to previous laboratory investigation of subballast (Suiker Akke et al., 2005), indicating that the adopted crushed stone can reflect the mechanical properties of traditional graded crushed stone.

Fig. 4a indicates that an increase in MC content (C) leads to a delayed and indistinct stress peak. The stress-strain relationships of the MCMGs change from a strain-softening type to a strain-hardening type. This phenomenon means that the stress-strain behavior changes from a brittle to a predominantly ductile response with an increasing chip in the skeleton of the specimens. Similar observations have been reported by laboratory and numerical investigations (Kim and Santamarina, 2008; Marandi and Tajabadipour, 2016). Moreover, the addition of mask chips leads to a larger strength because the chip can exert additional tension on the surrounding particles to restrain their movement (Zhang et al., 2020b).

 Comparing Fig. 4a, Fig. 4b, and Fig. 4c, with increasing confining pressure σ_c , the stress

peak is delayed and gradually disappears. The reasons for this phenomenon are: (1) The instability of the pores increases with the increase in particle contact stress (Zhang et al., 2020a); (2) The surface unevenness of particles decreases under the condition of high local stress, resulting in a decrease in the friction coefficient (Harkness et al., 2016). Compared to low confining pressure conditions (Fig. 4a), the stress curves of specimens with different chip content are similar under high confining pressure (Fig. 4c), indicating that the influence of chip content highly relates to the external load.

Fig. 4 Stress-strain curves of mask reinforced soil under different confining pressures: (a) 25 kPa, (b) 50 kPa, and (c) 100 kPa

The initial modulus E (defined as the secant modulus at 1% strain) and E_{50} (defined as the secant modulus at 50% strain corresponding to the peak stress) are used to reveal the effect of C on stiffness. To weaken the influence of confining pressure, the initial moduli are expressed in terms of stress ratio and summarized in Fig. 5. As shown in Fig. 5a, the initial modulus drops with increasing confining pressure and chip content. Moreover, the decrease of initial modulus caused by increasing C is highly dependent on the confining pressure; the greater the confining pressure is, the more obvious this decrease. According to the numerical investigation conducted by Zhang et al. (2020b), the particles around flexible chips are easy to rearrange at the beginning

Fig. 5 Summary of the modulus results: (a) E and (b) E_{50}

According to the Mohr-Coulomb yielding criteria, the internal friction angle (φ) and the cohesion force (*c*) of specimens in peak state are obtained for different *C*. Notably, φ and *c* of the specimens with 1.5% chip content are not listed because the peak strength of C15P100 and C15P50 was not observed in triaxial tests. Fig. 6 shows the effect of MC content on the φ and *c*. With increasing MC content, φ increases. According to previous numerical investigation of flexible chip reinforced soil (Zhang et al., 2020b), the flexible chips can restrict the movement of surrounding particles by activating the internal tension, and the restriction is 197 transferred by the friction of the chip-soil interface. Thus, the increasing MC content leads to

shear) increases. Interestingly, compared to pure crushed stone, the volume change of MSM is

213 less affected by confining pressure.

The constitutive model is the basic to predict the engineering properties of soils. The stress-dilatancy relationship is essential for the fundamental constitutive behavior. According to Li and Dafalias (2000), the dilatancy d was quantified as $d\varepsilon_v^p/d\varepsilon_q^p$, where $d\varepsilon_v^p$ and $d\varepsilon_q^p$ denote incremental plastic volumetric strain and incremental plastic deviatoric strain, respectively. The elastic strain is relatively small under adopted confining pressure; thus, $d\varepsilon_v^p$ and $d\varepsilon_q^p$ are assumed equal to incremental volumetric strain and incremental deviatoric strain (Qi et al., 2019), respectively.

Roscoe et al. (1963) assumed that the plastic input work is equal to the dissipated energy.
Thus, the dilatancy *d* under compression condition can be defined as follow:

$$d = M - \frac{q}{p} \tag{6}$$

M is the stress ratio in phase transformation. Because of the discrepancy in fitting experimental tests, a constant D is often introduced to modify the Roscoe' dilatancy (Chang and Yin, 2010; Jefferies, 1993):

slope of the curve remains unchanged.

Fig. 8a illustrates the stress ratio-dilatancy curves for specimens with σ_c = 50 kPa. The stress ratio-dilatancy curves decrease with increasing stress ratios and turn back at the peak stress. This phenomenon suggests that the stress ratio in the peak state is larger than that in the critical state because the specimens were prepared at a relatively dense state. In addition, as C increases, the dilatancy curve moves up because of the increasing M. It is worth noting that dof all specimens can be well fitted by Eq. (7), and the D of all specimens is basically equal. This indicates that most traditional constitutive models can be directly employed to predict the shear behaviors of MSMs. The critical state is also an important index for the constitutive model of soils. However, the addition of mask chip delayed critical state; consequently, most specimens did not reach the

critical state in triaxial tests. Qi et al. (2019) indicated that the phase transformation state (PTS) influences the critical state of granular materials significantly. Along this way, the phase transformation state lines are plotted in Fig. 8b. For all specimens, the PTS lines exhibit good linearity. In addition, the increasing *C* leads to the upward movement of the PTS line, and the

14 / 28

Fig. 8 Effect of chip content on: (a) stress-dilatancy relationship and (b) phase transformation state line

248 4 Interpretation of Triaxial Tests under Cyclic Loading

The most unignorable road performance of granular soil in civil engineering is the absorption of transportation vibration. The changes in the transportation vibration energy absorbed by the structural layer, which is consists of granular soil, can be divided into the following three parts (Qi et al., 2018). First, energy is dissipated during the elastic deformation of soil particles. Second, this energy is transformed into internal energy via friction between particles. Third, the transportation vibration energy leads to the movement and breakage of soil particles, resulting in plastic deformation. Therefore, the cyclic triaxial tests are analyzed for three parts, including energy consumption W_D , resilient modulus M_R , and cumulative deformation. The calculation methods of hysteresis loop-related indexes W_D and M_R are listed in Fig. 9. A_{ABC} is the area of the hysteresis loop.

262 10a illustrates the hysteresis loops of MSM with different C at the last loading stage. With the

```
15 / 28
```

increase in C, the hysteresis loop gradually inclines to the right, indicating that the rebound deformation increases gradually, which is due to the increase in the elastic deformation ability of MSM due to the addition of the mask chips. The increasing C leads to an increase in the area of the hysteresis loop, indicating that the energy absorption capacity increases with the additional mask chip. Moreover, the change of inclination of the loop is small, indicating that the increasing energy absorption capacity can be attributed to the increasing width of the loop. Fig. 10b presents the hysteresis loops of C10P50 at N = 15, 25, 35, 45, 55, and 65 (the applied σ_d from 50 kPa to 175 kPa). The width of the hysteresis loop increases with increasing cyclic axial stress, leading to the increase of energy absorption capacity. In addition, the slopes of loops are similar under different cyclic loads, demonstrating that the dynamic properties of MSM are stable under conventional traffic load.

Fig. 10 Variation of hysteresis loops with: (a) chip content and (b) external load

4.1 Energy absorption

The energy absorption capacity of the structural layer in the road\railway field is significant. Actually, a part of input vibration energy is absorbed by this layer, and others is output to the surface of the subgrade. The increase in the energy absorption capacity of the graded crushed stone layer can significantly enhance the durability of the road structure (Indraratna et al., 2018). The energy consumption W_D in different loading stages are presented in Fig. 11. The value of W_D is the average calculated from the last five hysteresis loops in a specific loading stage. Moreover, the cyclic load σ_d was converted to the stress ratio form to distinguish the effect of confining pressure.

 W_D in different loading stages is shown in Fig. 11a to illustrate the energy absorption capacity of MSMs under conventional traffic loads. With increasing η' , W_D increases rigidly with increasing gradient. This phenomenon shows that the energy absorption capacity of MSM is extremely sensitive to the external load, indicating that increasing η' leads to wider hysteresis loop, consistent with the variation in the hysteresis loop shown in Fig. 10. Moreover, increasing *C* leads to the monotonic increase of energy absorption capacity of MSM in adopted chip content (0% to 1.5% chip mass content).

Fig. 11b summarizes the energy consumption W_D of each specimen under different confining pressure σ_c . W_D with $\sigma_c = 50$ kPa and 100 kPa are marked as black and red lines, and the different cyclic stress ratios are distinguished by different line types. For all samples, W_D increases with increasing mask content, indicating that the additional mask leads to the monotonic increasing of energy absorption capacity of granular soils under conventional load conditions. With increasing σ_c , the energy absorption capacity of all specimens substantially increases for two reasons. One reason is that the input energy of specimen surges. The other reason is that, specimen become denser under a higher confining pressure, leading to the increased number of contact points (Itasca, 2014). Moreover, the distance between black lines

is much smaller than that of red lines, suggesting that the effect of confining pressure on low

cyclic stress ratio is less than that on high cyclic stress ratio. This result reflects that the width

hysteresis loops in a specific loading stage. Fig. 12 illustrates the evolution of the resilient

modulus with cyclic loading to investigate the effect of mask content and confining pressure.

The relationship between M_R and mask content is explored in Fig. 12. It is observed that, for

a specific cycle stress ratio, the M_R value decreases as the mask content increases. Moreover,

 M_R decreases rapidly in the initial state and expands gradually to plateau values. This

phenomenon indicates that the stiffness of MSM will be stable after bearing a certain time under
 transportation loads and keep constant under conventional stress conditions.

Two typical cyclic stress ratios are selected to investigate the effect of confining pressure, as shown in Fig. 12b. M_R with $\sigma_c = 50$ kPa and 100 kPa are marked as black and red lines, and the different cyclic stress ratios are also distinguished by different line types. The black lines are entangled, but an obvious distance between red lines is observed. This phenomenon means that M_R of specimens with $\eta' = 0.75$ is not stable; that is, the increasing confining pressure inhibits the time for the specimen to reach stability. Moreover, the larger the confining pressure is, the greater the resilient modulus. Moreover, the resilient modulus of all the samples decreases with increasing C. This phenomenon also shows that an increase in C leads to a decrease in the stiffness and an increase in the compressibility of MSMs under the same load conditions. Compared to the solid lines, the dotted lines are more linear, indicating that the effect of C is related to the external load.

Fig. 12 Evolution of the resilient modulus with: (a) cyclic load and (b) mask content

4.3 Deformation characteristics

Teixeira et al. (2006) suggested that the deformation of the granular layer is a proper indicator to evaluate the safety of tracks. According to previous investigations of deformation behaviors of granular soils, the settlement mainly occurs in the first few vibrations under a constant cyclic load (Qian, 2014). Thus, even if there are only ten cyclic loads per loading stage, the deformation data is valuable. The evolution of the deformation (expressed as strain) is summarized in Fig. 13. Fig. 13a illustrates the time history curves of specimens with different mask content under $\sigma_c = 100$ kPa. For a specific loading stage, the plastic deformation (cumulative axial strain) first increases rapidly and then gradually to a plateau, indicating that the settlement is concentrated in the first vibration. Moreover, in the same loading stage, the bottom of all curves coincides basically, and the top of the curve is quite different. This phenomenon demonstrates that the elastic and plastic deformations caused by the additional mask are inconsistent. The increasing C results in a huge increase in elastic deformation and a slight decrease in plastic deformation.

The effects of confining pressure on cumulative settlement are compared in Fig. 13b. The specimens with $\sigma_c = 50$ kPa and 100 kPa are marked as black and red lines, and the different mask contents are denoted by different line types. As shown in Fig. 13b, for a specific loading stage, the cumulative axial strain increases with decreasing slope and finally tends to a plateau (named stable state). Moreover, the apparent stable state does not appear in the last few loading stages, indicating that the increasing cyclic stress ratio will inhibit the appearance of a stable state. The black lines are lower than red lines, suggesting that the increase of confining pressure will improve the instability of MSMs. In other words, increasing confining pressure leads to

357 decreasing dynamic strength of MSMs under the same cyclic stress ratios.

374 3. The influence of mask chip content highly relates to the external load. Moreover, there
375 is a great probability that some existing constitutive models can predict the shear behavior of
376 MSMs.

This investigation may promote the application of MC in civil construction and the effective reuse of waste masks. Besides, future work will focus on the interface between cohesive soil and the flexible chip in the perspective of microstructure micromechanics.

381 Acknowledgments

This research was financially supported by the Research Grants Council (RGC) of Hong
Kong Special Administrative Region Government (HKSARG) of China (Grant No.: R503718F).

Reference

386	ASTM-Standards, 2020. Standard test method for consolidated drained triaxial
387	compression test for soils (D7181-20). ASTM Stand. Guid.
388	ASTM-Standards, 2013. Standard Test Method for Load Controlled Cyclic Triaxial
389	Strength of Soil. ASTM Stand. Guid.
390	Bian, X., Jiang, J., Jin, W., Sun, D., Li, W., Li, X., 2016. Cyclic and Postcyclic
391	Triaxial Testing of Ballast and Subballast. J. Mater. Civ. Eng. 28.
392	https://doi.org/10.1061/(asce)mt.1943-5533.0001523
393	Bordoloi, S., Hussain, R., Garg, A., Sreedeep, S., Zhou, WH., 2017. Infiltration
394	characteristics of natural fiber reinforced soil. Transp. Geotech. 12, 37-44.
	22 / 28

1	395	https://doi.org/https://doi.org/10.1016/j.trgeo.2017.08.007
2 3 4	396	Indraratna, B., Qi, Y., Heitor, A., 2018. Evaluating the Properties of Mixtures of
5 6 7	397	Steel Furnace Slag, Coal Wash, and Rubber Crumbs Used as Subballast. J. Mater. Civ.
8 9 10	398	Eng. 30. https://doi.org/10.1061/(asce)mt.1943-5533.0002108
11 12	399	Chang, C.S., Yin, ZY., 2010. Modeling Stress-Dilatancy for Sand under
13 14 15	400	Compression and Extension Loading Conditions. J. Eng. Mech. 136.
16 17 18	401	https://doi.org/10.1061/(asce)em.1943-7889.0000116
19 20 21	402	Chen, M., Shen, SL., Arulrajah, A., Wu, HN., Hou, DW., Xu, YS., 2015.
22 23	403	Laboratory evaluation on the effectiveness of polypropylene fibers on the strength of
24 25 26	404	fiber-reinforced and cement-stabilized Shanghai soft clay. Geotext. Geomembranes 43,
27 28 29	405	515-523. https://doi.org/https://doi.org/10.1016/j.geotexmem.2015.05.004
30 31 32	406	Dhawan, R., Bisht, B.M.S., Kumar, R., Kumari, S., Dhawan, S.K., 2019. Recycling
33 34	407	of plastic waste into tiles with reduced flammability and improved tensile strength.
35 36 37	408	Process Saf. Environ. Prot. 124, 299–307.
38 39 40	409	https://doi.org/https://doi.org/10.1016/j.psep.2019.02.018
41 42 43	410	Ding, Y., Zhang, J., Chen, X., Wang, X., Jia, Y., 2021. Experimental investigation
44 45 46	411	on static and dynamic characteristics of granulated rubber-sand mixtures as a new
40 47 48	412	railway subgrade filler. Constr. Build. Mater. 273, 121955.
49 50 51	413	https://doi.org/https://doi.org/10.1016/j.conbuildmat.2020.121955
52 53 54	414	Fadare, O.O., Okoffo, E.D., 2020. Covid-19 face masks: A potential source of
55 56 57	415	microplastic fibers in the environment. Sci. Total Environ. 737, 140279.
58 59	416	https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.140279
60 61 62		23 / 28
63 64 65		

1	417	Fardad Amini, P., Noorzad, R., 2018. Energy-based evaluation of liquefaction of
2 3 4	418	fiber-reinforced sand using cyclic triaxial testing. Soil Dyn. Earthq. Eng. 104, 45–53.
5 6 7	419	https://doi.org/10.1016/J.SOILDYN.2017.09.026
8 9 10	420	Fathali, M., Nejad, F.M., Esmaeili, M., 2017. Influence of Tire-Derived Aggregates
11 12	421	on the Properties of Railway Ballast Material. J. Mater. Civ. Eng. 29.
13 14 15	422	https://doi.org/10.1061/(asce)mt.1943-5533.0001702
16 17 18	423	Gong, H., Song, W., Huang, B., Shu, X., Han, B., Wu, H., Zou, J., 2019. Direct
19 20 21	424	shear properties of railway ballast mixed with tire derived aggregates: Experimental and
22 23	425	numerical investigations. Constr. Build. Mater. 200, 465–473.
24 25 26	426	https://doi.org/10.1016/j.conbuildmat.2018.11.284
27 28 29	427	Gopal, R., M., V.R., D., C.H., 1996. Probabilistic Analysis of Randomly
30 31 32	428	Distributed Fiber-Reinforced Soil . J. Geotech. Eng. 122, 419-426.
33 34	429	https://doi.org/10.1061/(ASCE)0733-9410(1996)122:6(419)
35 36 37	430	Guo, Y., Ji, Y., Zhou, Q., Markine, V., Jing, G., 2020. Discrete Element Modelling
38 39 40	431	of Rubber-Protected Ballast Performance Subjected to Direct Shear Test and Cyclic
41 42 43	432	Loading. Sustain https://doi.org/10.3390/su12072836
44 45	433	H., G.D., Talal, A., 1986. Behavior of Fabric- Versus Fiber- Reinforced Sand. J.
46 47 48	434	Geotech. Eng. 112, 804-820. https://doi.org/10.1061/(ASCE)0733-
49 50 51	435	9410(1986)112:8(804)
52 53 54	436	Harkness, J., Zervos, A., Le Pen, L., Aingaran, S., Powrie, W., 2016. Discrete
55 56	437	element simulation of railway ballast: modelling cell pressure effects in triaxial tests.
57 58 59	438	Granul. Matter 18. https://doi.org/10.1007/s10035-016-0660-y
60 61 62		24 / 28
63 64		
65		

1	439	Indraratna, B., Qi, Y., Heitor, A., 2018. Evaluating the Properties of Mixtures of
2 3 4	440	Steel Furnace Slag, Coal Wash, and Rubber Crumbs Used as Subballast. J. Mater. Civ.
5 6 7	441	Eng. 30, 04017251. https://doi.org/10.1061/(asce)mt.1943-5533.0002108
8 9 10	442	Itasca, 2014. User's manual for PFC3D.
11 12 13	443	Jefferies, M.G., 1993. Nor-Sand: A simple critical state model for sand.
14 15 16	444	Geotechnique 43. https://doi.org/10.1680/geot.1993.43.1.91
17 18	445	Karaivanov, A., Lu, S.E., Shigeoka, H., Chen, C., Pamplona, S., 2021. Face masks,
19 20 21	446	public policies and slowing the spread of COVID-19: Evidence from Canada. J. Health
22 23 24	447	Econ. 78, 102475. https://doi.org/10.1016/J.JHEALECO.2021.102475
25 26 27	448	Kim, H.K., Santamarina, J.C., 2008. Sand–rubber mixtures (large rubber chips).
28 29	449	Can. Geotech. J. 45, 1457–1466. https://doi.org/10.1139/t08-070
30 31 32	450	Lee, C., Shin, H., Lee, JS., 2014. Behavior of sand-rubber particle mixtures:
33 34 35	451	experimental observations and numerical simulations. Int. J. Numer. Anal. Methods
36 37	452	Geomech. 38, 1651–1663. https://doi.org/10.1002/nag.2264
39 40	453	Lenart, S., Koseki, J., Miyashita, Y., Sato, T., 2014. Large-scale triaxial tests of
41 42 43	454	dense gravel material at low confining pressures. Soils Found. 54, 45–55.
44 45 46	455	https://doi.org/https://doi.org/10.1016/j.sandf.2013.12.005
47 48	456	Li, X., Dafalias, Y.F., 2000. Dilatancy for Cohesionless Soils. Geotechnique 50,
49 50 51	457	449-460. https://doi.org/10.1680/geot.2000.50.4.449
52 53 54	458	Marandi, M., Tajabadipour, M., 2016. Effect of Rubber Tire Chips-Sand Mixtures
55 56 57	459	on Performance of Geosynthetic Reinforced Earth Walls. Period. Polytech. Civ. Eng.
58 59	460	61. https://doi.org/10.3311/PPci.9539
61 62		25 / 28
63 64		
65		

1	461	Mashiri, S., Vinod, J.S., Sheikh, M., 2015. Constitutive Model for Sand–Tire Chip
3 4	462	Mixture, International Journal of Geomechanics.
5 6 7	463	https://doi.org/10.1061/%28ASCE%29GM.1943-5622.0000472
8 9 10	464	Nzediegwu, C., Chang, S.X., 2020. Improper solid waste management increases
11 12 12	465	potential for COVID-19 spread in developing countries. Resour. Conserv. Recycl. 161,
13 14 15	466	104947. https://doi.org/https://doi.org/10.1016/j.resconrec.2020.104947
16 17 18	467	Prata, J.C., Silva, A.L.P., Walker, T.R., Duarte, A.C., Rocha-Santos, T., 2020.
19 20 21	468	COVID-19 Pandemic Repercussions on the Use and Management of Plastics. Environ.
22 23 24	469	Sci. Technol. 54, 7760–7765. https://doi.org/10.1021/acs.est.0c02178
24 25 26	470	Qian, Y., 2014. Integrated computational and experimental framework for the
27 28 29	471	assessment of railroad ballast life-cycle behavior.
30 31 32	472	Roscoe, K., Schofield, A., Wroth, C., 1958. On The Yielding of Soils.
33 34 35	473	Geotechnique 8, 22–53. https://doi.org/10.1680/geot.1958.8.1.22
36 37	474	Roscoe, K., Thurairajah, A., Schofield, A., 1963. Yielding of Clays in States
38 39 40	475	Wetter than Critical. Geotechnique 13, 211–240.
41 42 43	476	https://doi.org/10.1680/geot.1963.13.3.211
44 45 46	477	Saberian, M., Li, J., Kilmartin-Lynch, S., Boroujeni, M., 2021. Repurposing of
47 48	478	COVID-19 single-use face masks for pavements base/subbase. Sci. Total Environ. 769,
49 50 51	479	145527. https://doi.org/https://doi.org/10.1016/j.scitotenv.2021.145527
52 53 54	480	Salah, S., S., N.S., Fadi, F., 2010. Shear Strength of Fiber-Reinforced Sands. J.
55 56 57	481	Geotech. Geoenvironmental Eng. 136, 490–499.
58 59	482	https://doi.org/10.1061/(ASCE)GT.1943-5606.0000235
61 62		26 / 28
63 64		
65		

483	Sol-Sánchez, M., Thom, N.H., Moreno-Navarro, F., Rubio-Gámez, M.C., Airey,
484	G.D., 2015. A study into the use of crumb rubber in railway ballast. Constr. Build.
485	Mater. 75, 19–24. https://doi.org/10.1016/j.conbuildmat.2014.10.045
486	Suiker Akke, S.J., Selig Ernest, T., Frenkel, R., 2005. Static and Cyclic Triaxial
487	Testing of Ballast and Subballast. J. Geotech. Geoenvironmental Eng. 131, 771–782.
488	https://doi.org/10.1061/(ASCE)1090-0241(2005)131:6(771)
489	Sun, Q., Indraratna, B., Ngo, N.T., 2019. Effect of increase in load and frequency
490	on the resilience of railway ballast. Geotechnique 69, 833-840.
491	https://doi.org/10.1680/jgeot.17.P.302
492	Tatsuoka, F., Gomes Correia, A., 2018. Importance of controlling the degree of
493	saturation in soil compaction linked to soil structure design. Transp. Geotech. 17.
494	https://doi.org/10.1016/j.trgeo.2018.06.004
495	Teixeira, P., Pita, A., Casas-Esplugas, C., Bachiller, A., Robuste, F., 2006.
496	Improvements in High-Speed Ballasted Track Design: Benefits of Bituminous
497	Subballast Layers. Transp. Res. Rec. 1943, 43–49. https://doi.org/10.3141/1943-06
498	Qi, Y., Indraratna, B., Heitor, A., Vinod, J.S., 2018. Effect of Rubber Crumbs on
499	the Cyclic Behavior of Steel Furnace Slag and Coal Wash Mixtures. J. Geotech.
500	Geoenvironmental Eng. 144. https://doi.org/10.1061/(asce)gt.1943-5606.0001827
501	Qi, Y., Indraratna, B., Coop, M.R., 2019. Predicted Behavior of Saturated Granular
502	Waste Blended with Rubber Crumbs. Int. J. Geomech. 19.
503	https://doi.org/10.1061/(asce)gm.1943-5622.0001440
504	Zhang, J., 2020. Investigation of macro- and micro-mechanical properties of waste
	27 / 28
	 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504

1	505	rubber-cohesionless soil mixtures. Central South University.
2 3 4	506	Zhang, J., Wang, X., Yin, ZY., Liang, Z., 2020a. DEM modeling of large-scale
5 6 7	507	triaxial test of rock clasts considering realistic particle shapes and flexible membrane
8 9 10	508	boundary. Eng. Geol. 279, 105871.
11 12	509	https://doi.org/https://doi.org/10.1016/j.enggeo.2020.105871
13 14 15	510	Zhang, Junqi, Chen, X., Zhang, Jiasheng, Jitsangiam, P., Wang, X., 2020b. DEM
16 17 18	511	investigation of macro- and micro-mechanical properties of rigid-grain and soft-chip
19 20 21	512	mixtures. Particuology. https://doi.org/https://doi.org/10.1016/j.partic.2020.06.002
22 23	513	Zhang, Junqi, Chen, X., Zhang, Jiasheng, Wang, X., 2020c. Microscopic
24 25 26	514	investigation of the packing features of soft-rigid particle mixtures using the discrete
27 28 29	515	element method. Adv. Powder Technol. 31, 2951–2963.
30 31 32	516	https://doi.org/https://doi.org/10.1016/j.apt.2020.05.019
33 34 35 36 37 38 40 41 42 43 445 46 47 48 50 52 53 54 55 56	517	
58 59 60 61 62 63 64 65		28 / 28