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Abstract

This study explores the effects of complex driving motion on the propulsion perfor-

mance of a flexible foil heaving in the flight regimes of natural flyers. Such a fluid-structure

interaction problem is numerically studied using an immersed boundary lattice Boltzmann

method (IBLBM) based numerical framework. It is found that, at the Reynolds number

200 and when the foil’s bending stiffness and mass ratio are moderate, adding an extra

driving motion of doubled frequency to a purely harmonic motion on the foil’s leading

edge can enhance the thrust and propulsive efficiency by about 860% and 70%, respec-

tively. The improvement in thrust increases with the extra-driving-motion amplitude.

When the extra-driving-motion amplitude is fixed, there exists an optimal extra-driving-

motion phase angle. As the foil becomes much stiffer or lighter, the improvement in the

propulsion performance turns less. On the other hand, as the foil becomes much more

flexible or heavier, drag instead of thrust is generated, and extra driving motion brings no

improvement. Although the extra driving motion can improve the foil’s propulsion per-

formance in flows of different Reynolds numbers, the increasing rate of the thrust reduces

with the Reynolds number. Through this study, details about the competitions among

various forces exerted on the foil and their roles in the foil’s dynamics are also revealed.
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1 Introduction

As one of the most sophisticated lift/thrust generation methods found in nature, the flap-

ping motion adopted by birds and insects can provide superior maneuverability and locomotor

performance for low-Reynolds-number flights [1]. In recent years numerous studies have been

conducted to reveal the fundamental mechanisms of lift/thrust generation by flapping wings

[2, 3], or to explore the influence of a series of key parameters, such as the Strouhal number

[4, 5, 6, 7], reduced frequency [4, 5], Reynolds number [8], aspect ratio [9], flexibility [10, 11] and

mass ratio [10, 11, 12], on flapping-wing aerodynamics. On these topics Shyy et al.[1, 13, 14]

have given several comprehensive reviews.

In many existing investigations, for simplification the flapping of natural flyers was com-

monly assumed as a harmonic motion realized at a single frequency [10, 12, 15]. However, as

the output of a typical neural control system [16, 17], it is usually not the case, as evidenced in

Willmott and Ellington [18] and Altshuler et al. [19]. To facilitate more realistic flapping mo-

tions, therefore, in some studies wing kinematics was first recorded and measured from natural

flyers, and then applied in the following experiments/simulations, such as in Aono et al.[20],

Liu [21] and Bomphrey et al. [22].

From a signal-processing point of view, a real flapping motion consists of a number of

harmonic motions operating at various frequencies, i.e., a combination of a base motion at a

fundamental frequency and multiple extra driving motions at other frequencies. Hence, the

major difference in the wing kinematics of the simplified and real flapping motions in literature

is the extra driving motion. Nevertheless, the role played by the extra driving motion on the

aerodynamic performance of natural flyers has rarely been explored. Thus far, only Lehn et al.

[17] have experimentally proved that undulatory swimmers can utilize extra driving motion to

positively alter boundary-layer vortices so as to enhance their propulsion performance. However,

this finding from undulatory swimmers may not be applicable to natural flyers, since several

key dimensionless parameters, such as the mass ratio and the dimensionless heaving frequency,

in these two flapping phenomena fall into quite different ranges. Thus, the influence of extra

driving motion on the aerodynamic performance of natural flyers still remains unclear. To

bridge this knowledge gap, this paper aims to investigate the effect of extra driving motion on

the propulsion performance of a flexible foil heaving heaving in the flight regimes of natural

flyers. Such a fluid-structure interaction problem is numerically studied using an immersed

boundary lattice Boltzmann method (IBLBM) based framework.
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Figure 1: Schematic of a flexible foil undergoing a pure heaving motion yL(t) prescribed by

Equation 1. U∞ is the freestream velocity, ρf the fluid density, ν the fluid kinematic viscosity,

EI the foil’s bending stiffness, ρs the foil’s linear mass density, and c the chord length.

The remaining of this paper is organized as follows. The problem setup and numerical

method are described in Section 2. The influence of extra driving motion on the aerodynamic

performance of a foil with different bending stiffness and mass ratios heaving at two Reynolds

numbers is examined and discussed in Section 3. A conclusion is given in Section 4.

2 Problem description and methodology

2.1 Problem description

In this study, a two-dimensional thin foil with chord length c, bending stiffness EI and

linear density ρs is immersed in a uniform incoming flow with velocity U∞, density ρf and

kinematic viscosity ν, as depicted in Figure 1. A harmonically heaving motion with frequency

fb and amplitude hb (defined as the base motion) is imposed at the foil’s leading edge, which

is overlaid by another harmonic driving motion with higher frequency fe, generally smaller

amplitude he and relative phase angle φe. Such a combined heaving motion can be described

as

yL(t) =
hb
2

cos(2πfbt) +
he
2

cos(2πfet + φe) (1)

where yL is the leading edge’s y displacement, and the subscripts “b” and “e” denote the base

and extra-driving-motion parameters, respectively.

Assuming the foil as a clamped-free, inextensible elastic plate, its dynamics is governed by

two nonlinear equations [23]

ρs
∂2X

∂t2
− ∂

∂s
(T ∂X

∂s
) + ∂2

∂s2
(EI ∂

2X

∂s2
) = Ff (2)

∂X

∂s
⋅ ∂X
∂s

= 1 (3)
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with boundary conditions

y(t,0) = yL(t);
∂X

∂s
(t,0) = (1,0) imposed at the leading edge,

and T (t, c) = 0;
∂2X

∂s2
(t,c) = ∂

3X

∂s3
(t, c) = (0,0) imposed at the trailing edge,

where s is the Lagrangian coordinate along the foil, X the foil’s position, T the tension force

serving to satisfy the inextensible condition [23], and Ff the fluid loading acting on the flexible

foil, i.e., the difference in flow-induced stress between the upper and lower surfaces of the foil

at X.

The flow dynamics can be described by the incompressible Navier-Stokes equations

∂v

∂t
+ v ⋅ ∇v = − 1

ρf
∇p + ν∇2v + fe (4)

∇ ⋅ v = 0 (5)

where v is the flow velocity, p the pressure, ∇ the gradient operator, and fE the external force.

To parameterize this fluid-structure system, the freestream velocity (U∞), chord length (c),

fluid density (ρf ) and base-motion frequency (fb) are chosen as reference variables. Equations

1 to 5 can be non-dimensionalized as

y∗L(t∗) =
h∗b
2

cos(2πt∗) + h
∗

e

2
cos(2πf∗e t∗ + φe) (6)

m∗k2

π2

∂2X∗

∂t∗2
− ∂

∂s∗
(T ∗∂X

∗

∂s∗
) + ∂2

∂s∗2
(EI∗∂

2X∗

∂s∗2
) = F ∗f (7)

∂X∗

∂s∗
⋅ ∂X

∗

∂s∗
= 1 (8)

k

π

∂v∗

∂t∗
+ v∗ ⋅ ∇∗v∗ = −∇∗p∗ + 1

Re
∇∗2v∗ + f∗E (9)

∇∗ ⋅ v∗ = 0 (10)

For ease of reference, the definitions of all the dimensionless parameters in Equations 6 to

10 are elaborated in Table 1, where the symbol “-” in the third column indicates that the

corresponding parameter changes with time and hence is updated during the simulation.

Table 1 also lists another two key independent parameters, i.e., the Strouhal number

(St) and the dimensionless base-motion frequency (f∗b ). St in conjunction with the reduced

frequency k determines the base-motion amplitude h∗b . It reflects the ratio of the heaving speed

to the forward speed, thus characterizes the vortex dynamics and vortex shedding behaviour

[10]. Typically, St adopted by natural flyers varies from 0.2 to 0.4 [14], thus it is set as 0.3 in the

present study. f∗b represents the ratio between the foil’s effective inertia (defined as m∗k2/π2,
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where m∗ is the mass ratio) and its bending stiffness (EI∗), thus dictates the foil’s dynamics

and the resulting aerodynamic performance [10]. Specifically, as f∗b approximately falls in the

range of 0.33 to 0.6, the foil can usually attain an optimal propulsive efficiency [10]. Hence,

in this study f∗b is selected as 0.45 when EI∗ and m∗ are moderate, i.e. EI∗ = 4 and m∗ = 1.

Note that the above selected St and f∗b values give rise to k = π/2 and h∗b = 0.6, which are then

fixed in all the cases. In addition, for simplicity, the ratio between the extra-driving-motion

frequency and the base frequency, i.e., (f∗e ), is fixed at 2 throughout this study.

Equation 7 reveals that the dynamics of the flexible foil is affected by the competition

among different types of forces, including the inertial force, tension force and bending force

(the three terms on the LHS of Equations 7) as well as the fluid force (the term on the RHS of

Equation 7). Since in this study the foil is assumed to be inextensible and its deformation is

mainly caused by transverse forces, only the force competition along the transverse direction,

involving the inertial force, bending force and fluid force, is considered. Generally, the inertial

force and the fluid force result in torques about the foil’s leading edge, hence promote or

prevent the foil’s deflection. However, the bending moment passively produced due to the foil’s

deflection always acts as a restoring torque, which prevents the foil from further deflection and

forces the foil to return to its original shape. To describe such competitions, these competing

forces/moments are evaluated as follows.

As will be explained in Section 2.3, in this study the base-motion frequency (f∗b ) is set as

less than 1, which means that the foil’s deformation is mainly determined by its first bending

mode. Under this circumstance, the foil’s transverse inertial force can be estimated from the

y-component inertial forces at its leading and trailing edges, which are expressed as

F ∗I,L,y = −
m∗k2

π2
a∗L,y (11)

F ∗I,T,y = −
m∗k2

π2
a∗T,y (12)

where a∗L,y is the leading edge’s y acceleration and can be derived from Equation 6

a∗L,y(t∗) = −2h∗bπ
2 cos(2πt∗) − 2h∗ef

∗

e
2π2 cos(2πf∗e t∗ + φe) (13)

a∗T,y is the trailing edge’s y acceleration, which is assessed during the simulation.

For the same reason, the bending moment usually achieves its maximum at the foil’s leading

edge, which can be expressed as

M∗

L = ∣EI∗∂
2X∗

∂s∗2
(t∗,0) ∣ (14)
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Table 1: Definitions and selected values of dimensionless parameters in this study.

Dimensionless parameter Definition Values2

Bending stiffness EI∗ = EI/ρfU2
∞
c3 0.8, 4, 16

Base-motion frequency1 f∗b = fb/fN = (2π/k2
1)
√
m∗k2/π2EI∗ 0.223, 0.447, 0.999

External force f∗E = fEc/U2
∞

-

Fluid loading F ∗f = Ff/ρfU2
∞

-

Frequency ratio f∗e = fe/fb 2

Base-motion amplitude h∗b = hb/c = Stπ/k 0.6

Extra-driving-motion amplitude h∗e = he/c 0, 0.06, 0.15, 0.3, 0.45, 0.6

Reduced frequency k = πfbc/U∞ π/2
Mass ratio m∗ = ρs/ρfc 0.25, 1, 5

Pressure p∗ = p/ρfU2
∞

-

Reynolds number Re = U∞c/ν 50, 200

Strouhal number St = fbhb/U∞ 0.3

Lagrangian coordinate s∗ = s/c -

Time t∗ = tfb -

Tension force T ∗ = T /ρfU2
∞
c -

Velocity v∗ = v/U∞ -

Foil’s position X∗ =X/c -

Leading-edge y displacement y∗L = yL/c Prescribed by Equation 6

Extra-driving-motion phase angle φe 0, π/4, π/2, ... , 7π/4, 2π(0)

Gradient operator ∇∗ = c∇ -

1 fN is the first natural frequency of the flexible foil in vacuum, defined as fN = k21
√
EI/ρs/2πc2, where k1 = 1.8751 [24].

2 symbol “-” indicates that the corresponding parameter is updated during the simulation.
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Figure 2: Computational domain with multi-block arrangement (not in scale).

In this study, M∗

L is defined as positive when the foil is upward-deflected, and negative if the

other way around.

As for the fluid force, it can be evaluated through analyzing the distributed fluid loading

along the foil, which will be presented during the discussion.

To evaluate the foil’s aerodynamic performance and the associated power expenditure

under various conditions, two coefficients, i.e., the thrust and power coefficients, are adopted

and defined as

CT = 2FT

ρfU2
∞
c

CP = 2P

ρfU3
∞
c

where FT is the thrust and P is the input power defined as P = Fd,yẏL(t). Fd,y is the vertical

driving force applied at the foil’s leading edge, and ẏL(t) the leading edge’s heaving velocity.

Negative P or CP indicates that energy is transferred from the foil to the driving system.

Since this part of energy cannot be recovered, only positive P or CP is taken into account when

evaluating efficiencies in this study. Such a treatment was also adopted in Yin and Luo [12] and

Shoele and Zhu [25]. Accordingly, the propulsive efficiency of the flexible foil can be calculated

as

η = C̄T

C̄P+

(15)

where C̄T is the time-averaged thrust coefficient and C̄P+ the time-averaged positive power

coefficient.
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2.2 Methodology

To facilitate this study, the incompressible D2Q9 MRT LBE model [26], i.e., two-dimensional

incompressible multiple-relaxation-time lattice Boltzmann equation model with nine discrete

velocities, is employed as an alternative numerical method for solving the two-dimensional

Navier-Stokes equations. The MRT multi-block scheme proposed by Yu et al. [27] is applied

to enhance the computational efficiency while maintaining sound accuracy. The finite differ-

ence method is adopted to solve Equations 7 and 8 for simulating the structure dynamics.

The interplay between the fluid flow and the structure dynamics is linked using the immersed

boundary method (IBM) [28], which is incorporated into the LBM for capturing moving bound-

aries and evaluating the fluid force on the foil. Details of the current numerical algorithm and

its validation can be found in Appendix 4 and our previous work [29, 30, 31, 32].

Throughout this study, the computational domain is set as 60c(L)×40c(W) with a uniform

flow translating from the left to the right with a speed U∞ = 0.01 (determined through the

convergence test in Appendix 4), as shown in Figure 2. The flexible foil is placed 20c downstream

from the inlet boundary, and the base heaving motion imposed at its leading edge is symmetric

about the channel centerline. In addition, the entire computational domain is divided into

four sets of blocks with the mesh density being increased by a factor of 2 as the block number

increases. Around the foil, the block (Block 4) with the finest mesh spacing ∆x = c/96 (also

determined through the convergence test in Appendix 4) is used in the present study.

The boundary conditions are also specified in Figure 2. At the inlet, the non-reflecting inlet

boundary condition proposed by Izquierdo and Fueyo [33] is used, whereas at the outlet, the

homogenous Neumann boundary condition is implemented. The Dirichlet boundary condition

is applied with the x velocity U∞ and y velocity 0 on the top and bottom walls. On the foil’s

surface are imposed the no-slip and no-penetration boundary conditions.

2.3 Case summary

According to Section 2.1, the extra driving motion is described by three parameters, i.e.,

its frequency (f∗e ), amplitude (h∗e) and phase angle (φe). In this study, the extra-driving-motion

frequency is fixed at a value twice the base-motion frequency, i.e., f∗e = 2f∗b . Therefore, the

foil’s aerodynamic performance is mainly influenced by the change of the other two parameters.

In addition, the performance can also be affected by the foil’s bending stiffness (EI∗) and mass

8



Table 2: Key simulation results for the baseline case

Parameter C̄T η C̄P+ ∣D∗∣max

Value 0.43 0.101 4.27 0.21

ratio (m∗), and the fluid property represented by the Reynolds number (Re). Hence, this

study is devoted to investigating the effects of extra driving motion with various amplitudes

and phase angles on the aerodynamic performance of the foil with different bending stiffness

and mass ratios heaving in the flow at selected Reynolds numbers. The values for these five

parameters are chosen as follows. h∗e varies from 0 to 0.6, covering six different values, where

h∗e = 0 means no extra driving motion, corresponding to the simple-driving-motion case. Eight

φe values are chosen from 0 to 2π with an increment π/4. EI∗ is set as 0.8, 4, 16 and m∗ is

selected as 0.25, 1 and 5. These EI∗ and m∗ values are close to those chosen by wide species

of flying insects, such as fruit fly, bumble bee, dragonfly and hawkmoth [10, 34]. Under these

circumstances, the base-motion frequency f∗b is in the range of 0.223 to 0.999, indicating that

the foil’s deformation is mainly dictated by the first bending mode. Furthermore, the fluid-

structure interaction problem is studied at two selected Reynolds numbers, i.e., Re = 50 and

200, which are slightly larger than the minimum Reynolds number (i.e., O(10)) adopted by

natural flyers [1]. The selected values for these five parameters are also summarised in Table 1.

3 Results and Discussion

3.1 Effects of extra driving motion

Figure 3 gives an overview of the simulation results when the foil with moderate bending

stiffness EI∗ = 4 and mass ratio m∗ = 1 undergoes the pure base heaving motion (denoted as the

baseline case hereinafter) or the motion combining the base motion and extra driving motion

with various amplitudes (h∗e) and phase angles (φe) at Re = 200. For easy comparison, the data

for the baseline case are represented by dashed horizontal lines, which are also listed in Table

2. Furthermore, according to Equation 6, one can get y∗L(t∗, φe, h∗e) = −y∗L(t∗ + 1/2, φe + π,h∗e),
indicating that, for extra driving motion of a given amplitude, if its phase angle increases (or

equivalently decreases) by π, the motion of the foil’s leading edge is mirrored, and so is the

foil’s resulting dynamics. As such, only the results in the range of 0 < φe < π are presented.

The first two rows of Figure 3 show the time-averaged thrust coefficient (C̄T ) and propulsive

9



Figure 3: Variation of the foil’s time-averaged thrust coefficient (C̄T ), propulsive efficiency

(η), time-averaged positive power coefficient (C̄P+) and maximum absolute deflection (∣D∗∣max)

against the extra-driving-motion phase angle φe, under extra-driving-motion amplitude h∗e =
0.06 (a), 0.15 (b), 0.3 (c), 0.45 (d) and 0.6 (e). The horizontal dashed lines represent the

baseline case. The foil has the moderate bending stiffness and mass ratio, i.e., EI∗ = 4 and

m∗ = 1, and heaves in a flow of Reynolds number Re = 200. All the values are evaluated based

on the data collected over the 17th to 20th heaving cycles, within which the transient effect

has disappeared.
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efficiency (η), respectively, which represent the foil’s propulsion performance. It is seen that the

generated thrust C̄T can be enhanced by any adopted extra driving motion. Such enhancement

increases with the extra-driving-motion amplitude h∗e . At given h∗e , C̄T approaches its maximum

approximately at φe = π/2 or 3π/4, and its minimum at around φe = 0 or π/4. The maximum

C̄T = 4.14 among all the cases appears at h∗e = 0.6 and φe = π/2, which is about ten times of the

value C̄T = 0.43 in the baseline case.

The efficiency η is also improved, as shown in the second row of Figure 3. At given h∗e ,

its variations against φe are similar to the corresponding C̄T curves. But it does not vary too

much with h∗e . Its maximum η = 0.173 among all the cases appears at h∗e = 0.15 and φe = 3π/4,

improved by about 70% if compared with the value η = 0.101 in the baseline case. Compared

with the improvement in thrust, however, this improvement is much less significant. This is

because that the introduction of extra driving motion also consumes a significant amount of

additional driving power, which increases with h∗e , as revealed in the third row of Figure 3.

The last row of Figure 3 reveals that the foil’s maximum deflection ∣D∗∣max (defined as

∣D∗∣max =max(∣y∗T -y∗L∣), where y∗L and y∗T are the leading- and trailing-edge y displacements,

respectively) is enhanced by the extra driving motion. Furthermore, similar to the variation

in C̄T , its increment also increases with h∗e regardless of the extra-driving-motion phase angle.

This suggests that ∣D∗∣max, C̄T and h∗e are positively correlated, consistent with the finding by

Kang et al. [10] that ∣D∗∣max and C̄T is positively correlated for flapping foils.

To unveil the reason for the improvement in the thrust, two representative cases are selected

for detailed investigation, i.e., the baseline case and the case with φe = 3π/4 and h∗e = 0.15, the

latter attaining the most significant thrust improvement in its h∗e group. In these two cases,

the data collected from the 21st heaving cycle are used for discussion, and the instant at the

beginning of this cycle is defined as t∗ = 0 for convenience.

In the baseline case, since only a purely sinusoidal motion is imposed at the foil’s leading

edge, the foil’s deformation process in the upstroke is mirrored from that in the downstroke,

as evidenced by the time histories of the leading- and trailing-edge y displacements shown in

Figures 4(a) and 4(b), respectively. Hence, only the dynamics in the downstroke (shaded region

in Figure 4) is discussed.

It is seen from Figure 4 that, due to the foil’s flexility, the trailing-edge y displacement lags

a bit (about 0.06 in time) behind the leading-edge y displacement, but with a significantly larger

amplitude. Given that for sinusoidal motions acceleration is antiphase with displacement and

11
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Figure 4: Time histories of the (a) leading-edge y displacement (y∗L), (b) trailing-edge y

displacement (y∗T ), (c) deflection (D∗), (d) leading-edge y inertial force (F ∗I,L,y), (e) trailing-

edge y inertial force (F ∗I,T,y), (f) bending moment at the leading edge (M∗

L), and (g) thrust

coefficient (CT ) for the baseline case where h∗e = 0, the case with h∗e = 0.15 and φe = 3π/4, and

the case with h∗e = 0.15 and φe = 5π/4, when EI∗ = 4 and m∗ = 1.
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Figure 5: Distribution of dimensionless fluid loading (F ∗f ) over the heaving flexible foil during

the downstroke in the baseline case. The dashed triangle-headed arrow indicates the foil’s

heaving direction, and its length reflects the heaving speed.

also antiphase with inertial force as described in Equations 11 and 12, the leading- and trailing-

edge y inertial forces (F ∗I,L,y and F ∗I,T,y) are in phase with their respective displacements, as

evidenced in Figure 4. It is also observed from Figures 4(c) and 4(f) that the bending moment

at the leading edge M∗

L follows the trend of the foil’s deflection D∗, indicating a positive

correlation between these two quantities. Furthermore, the thrust CT repeats twice within one

heaving cycle with its peaks appearing slightly after the peak/though of the bending moment

(about 0.07 in time).

The evolution of various parameters shown in Figure 4 together with the fluid loading (F ∗f )

along the foil at selected instants shown in Figure 5 reflect the consequence of force competition

on the foil’s dynamics. Specifically, during the first half of the downstroke, i.e., t∗ < 0.25, the

inertial force along the foil is generally oriented upwards as indicated by the positive leading-

and trailing-edge y inertial forces shown in Figures 4(d) and 4(e), and the fluid loading points

roughly along the same direction, as shown in Figures 5(a) to 5(c). Thus, the inertial force and

the fluid force collaborate to further the foil’s upward deflection during this period. Therefore,

the bending moment at the leading edge M∗

L remains positive, as shown in Figure 4(f), trying

to recover the foil’s shape from its upward deformation.

At t∗ = 0.1, the foil achieves its largest upward deflection, as shown in Figure 4(c). At

this instant, the bending moment approaches its maximum M∗

L = 3.28. The foil then starts

to recover its shape, during which its underneath fluid is repelled downward and downstream.

Accordingly, the upward- and upstream-oriented fluid loading acts on the foil as the reaction

force, as evidenced by Figure 5(b). This fluid loading slightly increases as the upward-oriented

inertial force reduces with time, leading to the maximum instantaneous thrust CT = 0.99 at

around t∗ = 0.17, as shown in Figure 4(g). This explains the slight time delay of the maximum

thrust behind the maximum bending moment as revealed in Figure 4.

13



During the second half of the downstroke, i.e., 0.25 < t∗ < 0.5, the foil first recovers

its original shape at the beginning, and then starts to deflect downward under the reversed

inertial force, as evidenced at the two instants shown in Figures 5(d) and 5(e). During this

period, the fluid loading still points upwards, which then generates drag when the foil deflects

downward, as confirmed in Figure 4(g). Compared to the thrust produced in the first half of

the downstroke, however, this drag is relatively smaller. Hence a net thrust is obtained in this

baseline case.

In the case with φe = 3π/4 and h∗e = 0.15, the foil’s leading-edge y displacement does not

vary purely sinusoidally, as shown in Figure 4(a). Thus, unlike in the baseline case, in this

case the foil’s deformation processes during the downstroke and during the upstroke are not

mirrored, and CT does not repeat twice within one heaving cycle, as shown in Figure 4. It is

noticed that the leading-edge y displacement only deviates a little from that in the baseline

case. This slight deviation, however, leads to significant changes to other parameters, implying

that introducing small extra driving motion into the base motion can result in substantial

changes to the foil’s dynamics and aerodynamic performance. This can be attributed to that

the extra-driving-motion frequency fe is twice the base-motion frequency fb. For the extra-

driving-motion amplitude h∗e = 0.15, the amplitude of the leading-edge y inertial force at the

extra-driving-motion frequency then becomes the same as that at the base-motion frequency,

as indicated by Equations 11 and 13. As such, the instantaneous leading-edge y inertial force

is greatly increased at around t∗ = 0.55 and 0.85 in this case, as shown in Figure 4(d).

At t∗ = 0.55, the leading-edge y inertial force approaches its downward maximum, i.e.,

F ∗I,L,y = −5.74, about twice of that in the baseline case. This causes the successive increase in

the inertial force along the foil as it moves upwards. At t∗ = 0.65, the trailing-edge y inertial

force approaches its downward maximum F ∗I,T,y = −14.02, about three times of that in the

baseline case. Hence, the downward-oriented inertial force acting on the whole foil during this

period is much larger than that in the baseline case. Furthermore, the fluid loading is also

oriented along the same direction during this period, whose strength is generally larger than in

the baseline case, as indicated by Figures 6(b) and 6(c) and the mirrored images of Figures 5(b)

and 5(c). As such, these two types of forces collaboratively result in a much larger deflection

that is accompanied by a much larger bending moment.

At t∗ = 0.69, the leading-edge bending moment approaches its negative maximum, i.e.,

M∗

L = −7.22, more than twice of that in the baseline case. This greatly enhanced bending

moment forces the foil to revert much faster. This can be evidenced by the fact that the foil
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deflection changes from its negative maximum (D∗ = −0.47 at t∗ = 0.69) to its positive maximum

(D∗ = 0.38 at t∗ = 0.99) within just 0.3 heaving cycle, whereas the foil spends much more time,

i.e., a half heaving cycle, undergoing the same process with deflections of much less magnitudes

in the baseline case, as shown in Figure 4(c). Hence, the foil accelerates its upper-side fluid

upwards and downstream more rapidly, attaining much larger fluid loading at t∗ = 0.7, as

revealed by comparing Figure 6(c) and the mirrored image of Figure 5(c). Furthermore, the

initial deflection of this rapid heaving process, i.e., D∗ = −0.47 at t∗ = 0.69, is more than twice of

that at t∗ = 0.59 in the baseline case, as shown in Figure 4(c). This larger downward deflection

enables the foil to experience more upstream-oriented components of the fluid loading, hence

further enhances the thrust. As a result of these two factors, the thrust reaches its maximum

CT = 6.31 at t∗ = 0.73 (see Figure 4(g)), more than six times of that in the baseline case.

Likewise, the augmented leading-edge y inertial force at around t∗ = 0.85 is able to induce

a larger deflection with a larger bending moment. As such, the fluid loading is augmented

and also more oriented towards upstream at around t∗ = 1 (or at around t∗ = 0 due to the

periodicity) than in the baseline case, as shown in Figures 5(a) and 6(a). Eventually, the thrust

is also notably increased at around t∗ = 1.04 (or t∗ = 0.04).

The above discussions reveal that the thrust generation depends on two major factors.

One is the foil’s deflection D∗ determining the orientation of fluid loading, and the other is the

foil’s shape recovering rate reflecting the magnitude of fluid loading. If both or at least one

of these two factors is improved, the thrust is very likely enhanced. Also, despite some delay,

it is found that the foil’s deflection D∗ evolves in a similar way as the leading-edge y inertial

force F ∗I,L,y, since the foil experiences the fundamental bending-mode vibration due to the fact

that both the base-motion and extra-driving-motion frequencies are smaller than the foil’s first

natural frequency, i.e., fb < fN and fe < fN . Therefore, the generated thrust can be qualitatively

estimated from the F ∗I,L,y maxima and their following rate of change.

The above criterion is found to be valid for all the cases illustrated in Figure 3. On one

hand, with the increase of extra-driving-motion amplitude, generally the leading-edge y inertial

force F ∗I,L,y and its rate of change become larger, thus the thrust increases. On the other hand,

the change of extra-driving-motion phase angle h∗e also affects F ∗I,L,y and its rate of change, and

hence the generated thrust. For example, at a given h∗e = 0.15, the case with φe = 5π/4 achieves

its global maximum F ∗I,L,y (in negative sign) at t∗ = 0.45 and hence its maximum thrust with

some delay at around t∗ = 0.64, as revealed in Figures 4(d) and 4(g). If compared with the case

with φe = 3π/4, even though the negative F ∗I,L,y maxima are identical in these two cases (Note
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Figure 6: Distribution of dimensionless fluid loading (F ∗f ) over the heaving flexible foil at

selected instants, in the case with EI∗ = 4, m∗ = 1, h∗e = 0.15 and φe = 3π/4. The dashed

triangle-headed arrow indicates the foil’s heaving direction, and its length reflects the heaving

speed.

that the F ∗I,L,y evolution in these two cases are mirrored from each other about t∗ = 0 or 0.5, as

shown in 4(d)), the following rate of change in the case with φe = 5π/4 is smaller. Consequently,

its peak thrust is smaller, as clearly shown in Figure 4(g). Furthermore, a detailed comparison

among all the cases in this h∗e group unveils that either the global maximum F ∗I,L,y or its following

rate of change becomes smaller when φe deviates from 3π/4. As a result, the peak thrust and

accordingly the time-averaged thrust are smaller than those in the case with φe = 3π/4.

Although not presented here for brevity, it is found that when f∗e = 1 and 1.5, i.e., the

extra-driving-motion frequency is set as around 0.45 and 0.67 times of the foil’s first natural

frequency, and by keeping the amplitude of extra-driving-motion induced leading-edge y inertial

force unchanged, similar or even better improvements in the foil’s deflection and net thrust can

be achieved as compared to in the cases with f∗e = 2 (i.e., 0.89 times of the foil’s first natural

frequency). This indicates that the extra-driving-motion frequency being close to the foil’s

first natural frequency does not play a determining role in enhancing the foil’s propulsion

performance.

3.2 Effects of bending stiffness

The previous section explains why and how the foil’s thrust is enhanced by means of extra

driving motion, for the cases with the moderate bending stiffness EI∗ = 4 and mass ratio

m∗ = 1. Equations 11, 12 and 14 also clearly show that the bending stiffness and mass ratio

can affect the inertial force and bending moment, thus their competition, and ultimately the

foil’s dynamics and aerodynamic performance. Nevertheless, whether similar improvements can

be achieved if the foil becomes more flexible/stiffer or lighter/heavier remains unknown. To
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Figure 7: Variation of time-averaged thrust coefficient (C̄T ) and propulsive efficiency (η)

against extra-driving-motion phase angle φe for the foil with the moderate mass ratio m∗ = 1

and bending stiffness EI∗ = 0.8 (a), 4 (b) and 16 (c) heaving with extra driving motion of

amplitude h∗e = 0.15. The horizontal dashed lines represent the simple-driving-motion cases.

address this issue, investigations on the effects of the foil’s bending stiffness and mass ratio are

performed in this and next sections.

Figure 7 shows the time-averaged thrust coefficient (C̄T ) and propulsive efficiency (η) for

the cases where the foil with the bending stiffness EI∗ = 0.8, 4 and 16 and moderate mass ratio

m∗ = 1 heaves with the pure base motion and with the complex driving motions with extra-

driving-motion amplitude h∗e = 0.15 and phase angle φe varying from 0 to π. Note that the

cases with EI∗ = 4 have been discussed in Section 3.1, and Figure 7(b) is directly reproduced

from Figures 3(b1) and 3(b2) for ease of comparison.

When the foil becomes more flexible with EI∗ = 0.8, both the thrust C̄T and efficiency η

are negative in the simple-driving-motion case, as shown in Figure 7(a), meaning that a drag

instead of a thrust is produced. This degradation in the propulsion performance originates

from the fact that, as the foil becomes more flexible, the bending moment plays a much less

role in the foil’s dynamics, and hence the foil’s dynamics is dominated by the other two types

of forces, i.e., the fluid force and the inertial force. Under this condition, the fluid and inertial

forces are generally a pair of action and reaction forces, as described in Equations 7, 11 and

12. Such a relation can also be evidenced by examining these two forces at a selected instant

t∗ = 0.1, as shown in Figures 8(b) and 9(a). At this instant, the leading- and trailing-edge y

inertial forces (F ∗I,L,y and F ∗I,T,y) are positive, i.e., upward-oriented, as revealed in Figures 8(c)

and 8(d), but the fluid loading mainly points downwards (see Figure 9(a)). Since the fluid
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Figure 8: Time histories of the (a) leading-edge y displacement (y∗L), (b) deflection (D∗), (c)

leading-edge y inertial force (F ∗I,L,y), (d) trailing-edge y inertial force (F ∗I,T,y), and (e) thrust

coefficient (CT ) in the simple-driving-motion case where h∗e = 0 and the case with h∗e = 0.15 and

φe = 3π/4, when EI∗ = 0.8 and m∗ = 1.

Figure 9: Distribution of dimensionless fluid loading (F ∗f ) over the heaving flexible foil at

selected instants in the simple-driving-motion case with EI∗ = 0.8 and m∗ = 1. The dashed

triangle-headed arrow indicates the foil’s heaving direction, and its length reflects the heaving

speed.
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Figure 10: Distribution of dimensionless fluid loading (F ∗f ) over the heaving flexible foil in

the simple-driving-motion case with EI∗ = 0.8 and m∗ = 1 (a) and the case with h∗e = 0.15

and φe = 3π/4 (b) at t∗ = 0.65. The dashed triangle-headed arrow indicates the foil’s heaving

direction, and its length reflects the heaving speed.

loading also points slightly downstream due to the foil’s upward deflection, it produces drag to

the foil, as confirmed in Figures 8. This is quite different from that in the simple-driving-motion

case with moderate flexibility EI∗ = 4 (i.e., the baseline case), where thrust is produced mainly

in the first half of each stroke (See Figure 4(g)). In the current case the much smaller bending

moment cannot effectively support the shape recovering process and hence induce thrust. Even

though thrust can be produced as the foil reverts in the second half of each stroke, say at around

t∗ = 0.4 as shown in Figure 9(b), it is induced by the inertial force and not strong enough to

compensate the drag produced in the first half stroke, as revealed in Figure 8(e). Therefore,

the net thrust is slightly negative in this simple-driving-motion case.

When the extra driving motion is introduced, no improvement is observed, unlike in the

cases with EI∗ = 4. On the contrary, it is even worse regardless of the extra-driving-motion

phase angle φe, as revealed in Figure 7(a). Although unexpected, this degradation is be-

cause that the inertial force enhanced by the extra driving motion can induce extra anti-phase,

downstream-oriented fluid force, and hence extra drag. This can be confirmed by comparing

the forces produced in one representative case, i.e., the case with φe = 3π/4, with those in the

simple-driving-motion case. For example, at around t∗ = 0.65, the inertial force points down-

wards in both cases, but it is larger in the complex-driving-motion case, as revealed in Figures

8(c) and 8(d). Since the fluid force is roughly equal and opposite to the inertial force, the fluid

loading is upward- and downstream-oriented in both cases, but larger in the complex-driving-

motion case, as shown in Figure 10. Therefore, the drag increases around this instant in the

complex-driving-motion case, as confirmed in Figure 8(e).

Note that the criterion introduced in Section 3.1, i.e., the generated thrust can be qualita-

tively estimated from the F ∗I,L,y maxima and their following rate of change, is no longer valid in
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Figure 11: Distribution of dimensionless fluid loading (F ∗f ) over the heaving flexible foil

during the downstroke in the simple-driving-motion case with EI∗ = 16 and m∗ = 1. The

dashed triangle-headed arrow indicates the foil’s heaving direction, and its length reflects the

heaving speed.

this complex-driving-motion case. The reason is because in this case the applied extra-driving-

motion frequency, fe, is about twice of the foil’s first natural frequency, fN , and hence the

foil experiences high-order oscillations, as reflected by the irregular D∗ and F ∗I,T,y fluctuations

shown in Figures 8(b) and 8(d).

When the foil becomes much stiffer with EI∗ = 16, positive thrust C̄T = 0.09 and efficiency

η = 0.028 can be attained in the simple-driving-motion case, and both of them can be improved

by introducing the extra driving motion regardless of the phase angle φe, as shown in Figure

7(c). At φe = π/2, C̄T and η approach their respective maxima C̄T = 0.5 and η = 0.086, more

than five and three times of the values in the simple-driving-motion case, respectively. A close

inspection reveals that the mechanisms for thrust generation in the simple-driving-motion case

and extra-driving-motion-induced thrust enhancement are the same as those in the cases with

moderate flexibility EI∗ = 4. Hence, they are not repeated here for the sake of brevity. Despite

of these similarities, it is observed from Figures 7 that the stiffer foil produces significantly

smaller thrust than the foil with EI∗ = 4 under the same leading-edge forcing condition. This

is because that the stiffer foil requires less deformation to balance a similar amount of inertial

and fluid forces. Thus, the interaction of the fluid with the heaving foil mainly occurs in

the vertical direction, as evidenced by the fluid loading distribution over the foil during the

downstroke in the simple-driving-motion case shown in Figure 11. As a result, less horizontal

force, or thrust, is generated.
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Figure 12: Variation of time-averaged thrust coefficient (C̄T ) and propulsive efficiency (η)

against extra-driving-motion phase angle φe for the foil with the moderate bending stiffness

EI∗ = 4 and the mass ratio m∗ = 0.25 (a), 1 (b) and 5 (c) heaving with extra driving motion of

amplitude h∗e = 0.15. The horizontal dashed lines represent the simple-driving-motion cases.

3.3 Effects of mass ratio

Figure 12 shows the time-averaged thrust coefficient (C̄T ) and the propulsive efficiency (η)

for the cases where the foil with moderate bending stiffness EI∗ = 4 and mass ratio m∗ = 0.25, 1

and 5 heaves with the pure base motion and with the complex driving motions of extra-driving-

motion amplitude h∗e = 0.15 and phase angle φe varying from 0 to π.

When the foil becomes lighter with m∗ = 0.25, positive thrust C̄T = 0.25 and efficiency

η = 0.084 are produced in the simple-driving-motion case, and they can be improved by the

extra driving motion with any φe, just like in the cases with m∗ = 1 as discussed in Section 3.1.

However, when m∗ = 0.25 the thrust in both the simple-driving-motion and complex-driving-

motion cases is generally smaller than that when m∗ = 1, as revealed in Figures 12(a1) and

12(b1). This can be attributed to the fact that when the foil is lighter, less inertial force is

induced, resulting in smaller deformation and hence smaller thrust.

It is interesting to see that, when comparing Figure 12(a) with Figure 7(c), the propulsion

performance in the cases with EI∗ = 4 and m∗ = 0.25 and in the cases with EI∗ = 16 and

m∗ = 1 is qualitatively alike. This similarity stems from the fact that these two cases share an

identical ratio of EI∗ to m∗, i.e., EI∗/m∗ = 16. Hence, the competitions between the bending

moment and the inertial force in these two sets of cases are similar as indicated in Equations

21



Figure 13: Distribution of dimensionless fluid loading (F ∗f ) over the heaving foil during the

downstroke for the simple-driving-motion case with EI∗ = 4 and m∗ = 0.25. The dashed

triangle-headed arrow indicates the foil’s heaving direction, and its length reflects the heaving

speed.

7 and 14, which leads to similar aerodynamic performance for the foil. The similar force

competitions can also be evidenced by the foil’s deformation and fluid loading distribution

during the downstroke in the two simple-driving-motion cases, as shown in Figures 11 and

13. Furthermore, this similarity also confirms the key role of the dimensionless base-motion

frequency (f∗b = 2π/k2
1

√
m∗k2/π2EI∗), where the EI∗ to m∗ ratio appears, in determining the

foil’s dynamics and aerodynamic performance [10].

Likewise, for the cases with m∗ = 5, since their EI∗ to m∗ ratio is 0.8, identical to that

in the cases with m∗ = 1 and EI∗ = 0.8 which have been discussed in Section 3.2, the foil fails

to produce effective thrust in the simple-driving-motion case, and no obvious improvement is

obtained through the extra driving motion, either, as revealed in Figure 12(c).

3.4 Effects of Reynolds number

Besides the bending stiffness and the mass ratio, the Reynolds number Re also affects

the heaving foil’s dynamics and aerodynamic performance. It describes the fluid’s inertia-to-

viscosity ratio, thus determines the fluid loading acting on the foil. To examine the influence of

Reynolds number on the heaving foil’s aerodynamic performance and also on the effectiveness

of extra driving motion, a series of additional cases with Re = 50 and the other parameters

remaining identical to those in the cases explored in Section 3.1 is simulated. All the simulated

time-averaged thrust coefficient (C̄T ) and propulsive efficiency (η) are plotted in Figure 14.

Since as revealed in Section 3.1 the foil’s maximum deflection (∣D∗∣max) is positively correlated

with the extra-driving-motion amplitude, all the data are plotted against ∣D∗∣max, similar to

the way adopted in Kang et al. [10].
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Figure 14: Variation of time-averaged thrust coefficient (C̄T ) and propulsive efficiency (η)

against the maximum absolute deflection (∣D∗∣max) for the foil undergoing complex-driving-

motion motions with extra-driving-motion amplitude (h∗e) varying from 0.06 to 0.6 and phase

angle (φe) varying from 0 to π, in the flows of Reynolds number Re = 50 and 200. The foil has

the moderate bending stiffness and mass ratio, i.e., EI∗ = 4 and m∗ = 1. Note that, at Re =

50, the simple-driving-motion case reads C̄T = −0.06, η = −1.4% and ∣D∗∣max = 0.22, and at Re

=200, the simple-driving-motion case reads C̄T = 0.43, η = 10.1% and ∣D∗∣max = 0.21.

It is seen from Figure 14 that, with the increase of Reynolds number, both the thrust and

propulsive efficiency are enhanced. This is not surprising because, as Re increases, the viscosity

plays a less role in the fluid-foil interaction, resulting in a reduction of the drag component of

the fluid loading, and hence the enhancement of the thrust and efficiency. It is also confirmed

from Figure 14 that, with the introduction of extra driving motion, the thrust can be improved

(Note that the thrust is C̄T = −0.06 and 0.43 at Re = 50 and 200, respectively, in the simple-

driving-motion cases), and the improvement increases with the maximum deflection ∣D∗∣max or

the extra-driving-motion amplitude h∗e . This, again, confirms the positive correlations among

C̄T , ∣D∗∣max and h∗e . Interestingly, the current results reveal that the increase of Reynolds

number causes the reduction in the increasing rate of the thrust. As depicted in Figure 14, at

Re = 200 the power of the increase in thrust is kC̄T ,Re=200 = 1.89, which is only a half of that at

Re = 50, i.e., kC̄T ,Re=50 = 3.85. As for the propulsive efficiency, it seems less dependent of the

maximum deflection or the extra-driving-motion amplitude, indicating that the generation of

a larger thrust usually requires more power input regardless of the Reynolds number.
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4 Conclusion

We numerically studied the influence of complex driving motion on the dynamics and

resulting propulsion performance of a flexible foil heaving in the flight regimes of natural flyers.

Extra driving motion of different amplitudes (h∗e) and phase angles (φe) is imposed on the

leading edge of the foil that has already undergone a harmonic base motion. The major findings

are as follows:

1. When the foil’s bending stiffness and mass ratio are moderate, i.e., EI∗ = 4 and m∗ = 1,

both the inertial force and the bending force of comparable strength participate in the

force competition, and hence large thrust can be generated. The extra driving motion

can greatly enhance both the thrust and propulsive efficiency. The improvement in thrust

increases with h∗e . At a given h∗e , there exists an optimal φe. As for the propulsive

efficiency, since the introduction of extra driving motion requires additional power input,

it is not as much improved as the thrust, and does not vary too much with h∗e .

2. As the foil becomes much stiffer or lighter, i.e., EI∗/m∗ significantly increases, the bending

force plays a dominant role in the force competition. As such, the foil’s deformation

becomes smaller, leading to the generation of less thrust. In this case, the influence of

extra driving motion is similar to that for the foil with moderate properties.

3. As the foil becomes much more flexible or heavier, i.e., EI∗/m∗ significantly reduces, the

inertial force plays a dominant role in the force competition. The fluid force required

to balance the inertial force is oriented downstream during the first half of each stroke,

hence generates drag instead of thrust. The extra driving motion makes the situation

even worse.

4. If both the base-motion and extra-driving-motion frequencies are smaller than the foil’s

first natural frequency, the change in generated thrust can be qualitatively estimated by

the change of two prescribed quantities: the maximum absolute value of the leading-edge

y inertial force F ∗I,L,y and its following rate of change. If both or at least one of them

is improved, e.g., by the extra driving motion, the thrust is very likely enhanced. This

criterion is found to be valid for all the eligible cases in this study.

5. Although the extra driving motion can improve the heaving foil’s propulsion performance

in flows of different Reynolds numbers, the thrust’s increasing rate with respect to the
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foil’s maximum deflection ∣D∗∣max (or equivalently the extra-driving-motion amplitude

h∗e) reduces with the Reynolds number.

This study confirms that the propulsion performance of a flexible heaving foil can be

enhanced by incorporating extra driving motion into a purely harmonic motion. This, to some

extent, explains why natural flyers do not adopt purely harmonic flapping motions [18, 19], and

why more realistic kinematics should be taken into account in flapping-wing studies. Although

inspiring, it should be pointed out that the three-dimensional effect which is an important factor

for the natural flyers is not considered in this study. Furthermore, the effects of several other

important parameters, such as the Strouhal number, the reduced frequency and the frequency

ratio, are not explored when the extra driving motion is incorporated. All of these will be

systematically investigated in our near-future work.

Appendix

A.1 Validation

To validate the current fluid-structure interaction numerical framework, three cases are

selected and simulated for different validation purposes. The first case is for validating the

pure solid structure solver, the second is for the pure fluid solver, and the third is for the

fluid-structure coupling solver. For each case, the results obtained from the present numerical

framework are compared with the analytical or numerical results from the literature.

In the first case, a filament is initially pinned at one of its ends with a position angle

(Θ0 = π/100) relative to its equilibrium location. After released from the rest in vacuum,

the filament keeps swinging under the influence of the gravity. If the bending stiffness of the

filament can be negligible, the lateral displacement of any point on the filament at anytime can

be evaluated by [23]

y(t, s) =
∞

∑
i=1

4Θ0l

z2
i

J2(zi)
J2

1 (zi)
J0 (zi

√
s

l
) cos(zit

2

√
g

l
) (16)

where l is the filament length, s the arc-length along the filament measured from its free end,

g the gravitational acceleration, J1 and J2 the first and second bessel functions, and zi the

ith real root of the equation J0(z) = 0. Through summing up the first 20 terms in Equation

16, the analytic solution of the time-dependent non-dimensional lateral displacement of the
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Figure 15: Time histories of the filament’s free-end displacement.
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Figure 16: Time histories of the lift and drag coefficients (CL and CD) over the first four

flapping cycles at Re = 75.

filament free end (y∗(t,0) = y(t,0)/l) is approximated and plotted in Figure 15. It can be seen

that the analytical result is indistinguishable from that obtained through the present numerical

framework.

In the second case, the simulation of a rigid thin wing flapping in an enclosed domain at

Re = 75 is performed, which has been extensively investigated by Eldredge [35] and Vanella

et al. [36] using different numerical methods. In this case, the wing undergoes the heaving and

pitching motions simultaneously, with the heaving amplitude being 2.8 times its chord length

and the pitching amplitude equal to π/2. And the phase difference between the heaving and

pitching motions is set as 0. It can be seen from Figure 16 that the numerical results based

on the current numerical framework agree well with the simulation results from the literature

[35, 36] when comparing the lift and drag coefficients (CL and CD) over the first four flapping

periods.

In the third case, a filament with the dimensionless flexibility 0.0015 and mass ratio 1.5 is
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Figure 17: Time histories of the filament’s free-end displacement (a) and flapping patterns

over one flapping cycle (b) to (d).

immersed in a uniform flow at the filament-length-based Reynolds number, i.e., Re = 200, and

it is initially placed at a position angle (Θ0 = π/10) relative to the streamwise direction with

the filament boundary conditions the same as in the first case. After released from the rest,

the filament undergoes flapping motion under the influence of both the gravitational and flow

fields. Figure 17(a) shows that the non-dimensional lateral displacements of the filament free

end (y∗(t,0) = y(t,0)/l) obtained by the current numerical framework agree well with those in

the literature [37, 38]. Besides, the periodic flapping pattern of the filament is captured based

on the current numerical framework, and is plotted in Figure 17(b). It can be seen that the

current flapping pattern well matches that given by Favier et al. [37], as shown in Figure 17(c).

Furthermore, the similar flapping pattern is also experimentally discovered by Zhang et al. [39],

even though their experiment was conducted at a higher Reynolds number, i.e., Re = O(104).

Through the above three validation cases, it can be confirmed that the current numerical

framework is well validated. More details of the LBM numerical algorithm and its validation

can be found in our previous work [29, 30, 31, 32].
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Table 3: Selected cases for convergence test.

Parameter
Values

First case Second case Third case

Mesh spacing (∆x) c/48 c/96 c/96

Freestream velocity (U∞) 0.02∆x/∆t 0.02∆x/∆t 0.01∆x/∆t
Non-dimensional time step (U∞∆t/c) 1/2400 1/4800 1/9600
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Figure 18: Results for the convergence test: Time histories of the (a) thrust CT and (b) power

coefficients CP of the heaving flexible foil over five heaving cycles when Re = 200, m∗ = 1,

EI∗ = 4, St = 0.3, k = π/2 (corresponding to h∗b = 0.6), f∗e = 2, h∗e = 0.15 and φe = 3π/4. The

red dashed, purple dotted-dashed and black solid lines correspond to the cases with ∆x = c/48

and U∞∆t/c = 1/2400, ∆x = c/96 and U∞∆t/c = 1/4800, and ∆x = c/96 and U∞∆t/c = 1/9600,

respectively.

A.2 Convergence test

To guarantee the independence of the numerical results in this study on the mesh and

time-step resolutions, three cases are selected for the convergence test, as listed in Table 3,

where ∆t is the unit time step. In these cases, the dimensionless parameters for the fluid

and flexible foil are set as Re=200, m∗ = 1, EI∗ = 4, St = 0.3, k = π/2 (corresponding to

h∗b = 0.6), f∗e = 2, h∗e = 0.15, and φe = 3π/4. Figure 18 shows that the time histories of the thrust

and power coefficients (CT and CP ) over five heaving cycles for these three cases are nearly

indistinguishable. To ensure the accuracy, the mesh and time-step settings for the third case,

i.e., ∆x = c/96 and U∞∆t/c = 1/9600, are adopted throughout this study.

28



Acknowledgments

We gratefully acknowledge the financial support for this study from the Research Grants

Council of Hong Kong under General Research Fund (Project No. 152493/16E) and the De-

partmental General Research Fund (Project No. G-UA5A & G-YBLP) from the Department

of Mechanical Engineering of The Hong Kong Polytechnic University. We also acknowledge

Dr Zheng Fan from School of Mechanical and Aerospace Engineering, Nanyang Technological

University, for covering some of the computational costs for this study.

References

[1] W. Shyy, Y. S. Lian, J. Tang, D. Viieru, and H. Liu. Aerodynamics of low Reynolds number

flyers, volume 22. Cambridge University Press, 2007.

[2] C.P. Ellington, C. Van Den Berg, A.P. Willmott, and A.L.R Thomas. Leading-edge vortices

in insect flight. Nature, 384(6610):626, 1996.

[3] M.H. Dickinson, F.O. Lehmann, and S.P. Sane. Wing rotation and the aerodynamic basis

of insect flight. Science, 284(5422):1954–1960, 1999.

[4] K. B. Lua, T. T. Lim, K. S. Yeo, and G. Y. Oo. Wake-structure formation of a heaving

two-dimensional elliptic airfoil. AIAA J., 45(7):1571, 2007.

[5] J.M. Akkala, A.E. Panah, and J.H.J. Buchholz. Vortex dynamics and performance of

flexible and rigid plunging airfoils. J. Fluids Struct., 54:103–121, 2015.

[6] K.B. Lua, S.M. Dash, T.T. Lim, and K.S. Yeo. On the thrust performance of a flapping

two-dimensional elliptic airfoil in a forward flight. J. Fluids Struct., 66:91–109, 2016.

[7] S.M. Dash, K.B. Lua, T.T. Lim, and K.S. Yeo. Enhanced thrust performance of a two

dimensional elliptic airfoil at high flapping frequency in a forward flight. J. Fluids Struct.,

76:37–59, 2018.

[8] J. Tang, D. Viieru, and W. Shyy. Effects of reynolds number and flapping kinematics on

hovering aerodynamics. AIAA J., 46(4):967, 2008.

[9] H. Dong, R. Mittal, and F. M. Najjar. Wake topology and hydrodynamic performance of

low-aspect-ratio flapping foils. J. Fluid Mech., 566:309–343, 2006.

29



[10] C.K. Kang, H. Aono, C. E. S. Cesnik, and W. Shyy. Effects of flexibility on the aerodynamic

performance of flapping wings. J. Fluid Mech., 689:32–74, 2011.

[11] X.J. Zhu, G.W. He, and X. Zhang. How flexibility affects the wake symmetry properties

of a self-propelled plunging foil. J. Fluid Mech., 751:164–183, 2014.

[12] B. Yin and H.X. Luo. Effect of wing inertia on hovering performance of flexible flapping

wings. Phys. Fluids, 22(11):111902, 2010.

[13] W. Shyy, H. Aono, S. K. Chimakurthi, P. Trizila, C. K. Kang, C. E. S. Cesnik, and H. Liu.

Recent progress in flapping wing aerodynamics and aeroelasticity. Prog. Aerosp. Sci., 46

(7):284–327, 2010.

[14] W. Shyy, H. Aono, C.K. Kang, and H. Liu. An introduction to flapping wing aerodynamics,

volume 37. Cambridge University Press, 2013.

[15] S. Ramananarivo, R. Godoy-Diana, and B. Thiria. Rather than resonance, flapping wing

flyers may play on aerodynamics to improve performance. Proc Natl Acad Sci U S A, 108

(15):5964–5969, 2011.

[16] H. G. Wu, Y. R. Miyamoto, L. N. G. Castro, B. P. Ölveczky, and M. A. Smith. Temporal
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