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ABSTRACT
We demonstrate the use of high-fidelity computational fluid dynamics simulations in machine-learning based active flow control. More
specifically, for the first time, we adopt the genetic programming (GP) to select explicit control laws, in a data-driven and unsupervised
manner, for the suppression of vortex-induced vibration (VIV) of a circular cylinder in a low-Reynolds-number flow (Re = 100), using
blowing/suction at fixed locations. A cost function that balances both VIV suppression and energy consumption for the control is carefully
chosen according to the knowledge obtained from pure blowing/suction open-loop controls. By implementing reasonable constraints to VIV
amplitude and actuation strength during the GP evolution, the GP-selected best ten control laws all point to suction-type actuation. The
best control law suggests that the suction strength should be nonzero when the cylinder is at its equilibrium position and should increase
nonlinearly with the cylinder’s transverse displacement. Applying this control law suppresses 94.2% of the VIV amplitude and achieves 21.4%
better overall performance than the best open-loop controls. Furthermore, it is found that the GP-selected control law is robust, being effective
in flows ranging from Re = 100 to 400. On the contrary, although the P-control can achieve similar performance as the GP-selected control
at Re = 100, it deteriorates in higher Reynolds number flows. Although for demonstration purpose the chosen control problem is relatively
simple, the training experience and insights obtained from this study can shed some light on future GP-based control of more complicated
problems.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5115258., s

I. INTRODUCTION

Active flow control (AFC) has been hot in the field of fluid
mechanics, in which a fluid system is purposely altered by actua-
tors through exerting a small amount of energy input. Compared
with passive control methods that usually involve geometrical
changes, AFC is adaptive and hence can realize more effective
control in a much wider operation range. Depending on whether
the signals from the system output are fed back to regulate the
actuator(s), AFC can be either open loop or closed loop.1 Com-
pared with open-loop control, closed-loop control can adjust actu-
ation using feedback signals from the sensors and therefore can
automatically operate in a much wider range. The control can be
realized using either model-based methods or model-free meth-
ods. The former includes linear model,2 stochastic model,3 reduced
order model,4 etc., which have been successfully employed in
many flow control problems. Take a classical control problem,

i.e., vortex-induced vibration (VIV) suppression, as an exam-
ple. Wang et al.5 applied the proportional-integral control for
windward-suction-leeward-blowing (WSLB)-based VIV suppres-
sion, suggesting that although the selected control strategies can
completely suppress the VIV, the performance depends very much
on the choices of control parameters.

Contrary to model-based methods, in model-free methods, the
control law is derived in a data-driven and unsupervised manner.
Among various methods in this type, a machine learning method,
i.e., genetic programming (GP), has attracted great attention and
has been successfully applied in AFC. Gautier et al.6 first applied the
GP to control the recirculation area of a backward-facing step. The
optimal control law, converged after 12 generations, could reduce
the recirculation area by 80%. Following this work, Debien et al.7

used the GP control to mitigate separation and early reattachment of
turbulent boundary layer from a sharp-edge ramp. In turbulent mix-
ing layer manipulation experiments, Parezanovic et al.8 showed that
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the GP control can find the same intrinsic velocity signals essential
for optimal control as those observed in reduced-order model-based
feedback control. Furthermore, under the lock-on condition, they
also demonstrated that the robustness of the GP control significantly
outperforms open-loop controls when varying the freestream veloc-
ities.9 Using another variant model of GP, i.e., the linear GP, Li
et al.10 conducted close-loop control tests for a car model and
achieved a 22% drag reduction.

Note that the above GP-based AFCs were all realized in experi-
ments, where the data-driven process can usually be conducted in
a reasonable period of time. To our best knowledge, so far there
is no GP-based AFC facilitated using high-fidelity computational
fluid dynamics (CFD) simulations, probably due to very high com-
putational costs associated with producing enough training data.
However, with the rapid development of computing hardware and
software, using CFD-simulated data for machine learning becomes
readily feasible. Hence, in this study, we explore the use of high-
fidelity CFD simulations to facilitate GP-based AFC. For demon-
stration purposes, we choose to control a VIV system vibrating in
low Reynolds number flows. We understand that both open-loop
and model-based controls have performed quite well in this type
of problem. Hence, the purpose is not to showcase the superiority
of machine learning-based control but to seek for the first time
an alternative way to control this classical problem. The physi-
cal insights and training experience obtained from this study can
shed some light on future GP-based control of more complicated
problems.

II. PROBLEM DESCRIPTION AND METHODOLOGY
A. Problem description

VIV occurs when asymmetrical vortex pairs shed from a cir-
cular cylinder that is immersed in a uniform flow. Figure 1 shows
a schematic of this fluid-structure interaction (FSI) problem. The
velocity of the uniform incoming flow is U0. The cylinder of diame-
ter D0 is connected to a spring in the transverse direction while being
fixed in the streamwise direction.

The transverse motion of the cylinder is governed by

mÿ = −Ky + FL, (1)

where y is the transverse displacement, K is the stiffness of the spring,
and FL is the lift force. The dynamic response of the cylinder is
mainly determined by two parameters, i.e., the mass ratio m∗ and
the reduced velocity UR, defined as

m∗ = m
ρ0D2

0
, UR = U0

fND0
, (2)

where fN = (K/m)1/2/2π is the natural frequency of this mass-spring
system in vacuum. In the present study, m∗ = 2 and UR = 5 are cho-
sen, at which the system is operated in the lock-on region,11 and
hence, the VIV is difficult to suppress.5,12–15

To facilitate AFC, a pair of jets is applied on the cylinder’s lee
side. As depicted in Fig. 1, their angular position is set as γjet = 70○

and each jet slot consists of a 10○ arc, which is slightly ahead of the
mean separation point (i.e., 62.8○, with a variation of 2.9○ accord-
ing to Wu et al.16). It has been shown in our previous study that
this setting is effective in influencing the development of vortices.13

FIG. 1. Schematic of the VIV system. The jet pair is marked with two red arcs.

To reduce the parameter space, here we only focus on the con-
trol where the jet pair is issued with identical velocity along the
streamwise direction. The velocity can be positive or negative, cor-
responding to the blowing or suction mode, respectively.

B. CFD solver and setup
In this study, unsteady CFD simulations are conducted to

provide training data for GP-based machine learning. In the sim-
ulations, the fluid is treated incompressible and Newtonian. We
adopt the lattice Boltzmann method (LBM) to numerically solve
the Navier-Stokes equation, using an evolution procedure with sep-
arated collision and streaming steps. In this method, we use the
multirelaxation time algorithm17 to enhance numerical stability and
the He-Luo model18 to ensure fluid incompressibility.

Figure 2 shows a schematic of the computational domain, grid
partition, and boundary conditions. The size of the computational
domain is 64D0 × 20D0. The circular cylinder is initially located at
the centerline, 20D0 downstream from the inlet. The multiblock grid
partition method, proposed by Yu et al.,19 is utilized to balance the
computational accuracy and efficiency. We adopt a four-level grid
refinement, where the mesh resolution is doubled from level 0 to
level 3, each having uniform meshes.

We apply the Dirichlet boundary condition at the inlet and
top/bottom walls, which is achieved via a modified bounce-back
scheme with momentum exchange.20 The inlet velocity is set as U0
= 0.02c, where c is the lattice speed, corresponding to a time step
δt = T0/3200, where T0 = D0/U0 is set as a reference time period.
The convective flow condition, i.e., ∂tu + U0∂xu = 0, is utilized
at the outlet to allow the vortices to smoothly cross the boundary
with the least reflection.21 On the vibrating cylinder, we employ
the double-linear interpolations for the treatment of curved bound-
ary,22 the third-order nonequilibrium extrapolation scheme for the
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FIG. 2. Schematic of the computational domain, grid parti-
tion, and boundary conditions (not in scale).

mesh refilling process,23 and the corrected momentum exchange
method24 to calculate the hydrodynamic forces.

Although via comparisons with various existing methods25 the
above simulation framework has been proven to be sufficiently
accurate for simulating moving boundary problems, and the same
grid partition and boundary setup have also been verified13 and
extensively used5,14,15 in our previous studies, here we present
additional mesh convergence and validation studies for simulated
flow past a fixed or vibrating cylinder at Re = 100. Table I lists
the results simulated using meshes of three different resolutions,
together with. It is seen that in case II of the present study, where
a mesh spacing of δx = D0/64 is adopted in the Level 3 block, the
mesh resolution is sufficient for both fixed and vibrating cylinder
cases, with discrepancies of less than 1% in all concerned quan-
tities (i.e., drag coefficient Cd, lift coefficient Cl, Strouhal number
St, and cylinder vibration amplitude yA) if compared with Case
III, where the finest mesh is applied. These concerned quantities
are also quite close to the results from the existing studies.13,26,27

Hence, the set of mesh used in Case II is adopted in the current
study.

C. GP control
The GP is a symbolic regression method in machine learn-

ing. Initially proposed by Koza,28 this concept was inspired by the

genetic algorithm (GA).29 Although they share many common fea-
tures, such as replication, crossover, mutation, the major differ-
ence between them is that the GP generates symbolic expressions
using the locator/identifier separation protocol (LISP) language,
while the GA only produces optimized values. The symbolic regres-
sion enables the GP to derive model-free controllers, where each
symbolic expression becomes an explicit control law.

Figure 3 presents an outlook of the GP evolution framework
for the AFC. Every GP-generated control law will be assessed by the
FSI simulation module, which couples the fluid flow, single-freedom
structure motion, and the jet-realized AFC. The outcome of the FSI
simulation module, i.e., the cost function J [presented in Eq. (3)], will
then be sent back to the GP selection module. After the assessment
is done for all control laws in one generation, they will be ranked
according to their J values. The best few control laws generating
smallest J values are chosen to produce the candidate control laws
of the next generation using the GP.

The parameters used in the current GP evolution are listed in
Table II, which are similar to those in Li et al.10 To generate symbolic
expressions, the GP includes four basic algebraic operators (i.e., +,
−, ×, ÷) and four transcendental functions (i.e., sin, cos, log, tanh).
Here, the transcendental functions are chosen to introduce nonlin-
ear characteristics. Specifically, sine and cosine functions introduce
periodicity, the hyperbolic tangent function sets a threshold value,
and logarithm brings in slowly or rapidly varying trends at certain

TABLE I. Mesh convergence and validation studies for simulated flow past a fixed or vibrating cylinder at Re = 100.

Vibrating cylinder

Mesh resolution Fixed cylinder with m∗ = 2 and UR = 5

Case (Level 3) D0/δx Cd Cl St yA St

I 256 × 128 32 1.350 ± 0.009 ±0.325 0.167 ±0.474 0.182
Present study II 512 × 160 64 1.374 ± 0.011 ±0.338 0.169 ±0.522 0.186

III 1024 × 320 128 1.375 ± 0.011 ±0.341 0.169 ±0.527 0.186
Russell and Wang26 . . . . . . 1.38 ± 0.007 ±0.332 0.169 . . . . . .
Choi et al.27 . . . . . . 1.34 ± 0.011 ±0.315 0.164 . . . . . .
Wang et al.13 . . . 60 . . . ±0.337 0.169 ±0.545 0.186
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FIG. 3. Schematic of the GP evolution framework for the
AFC.

ranges of the argument. Note that we did not include the exponen-
tial or power function in order to avoid sharp changes in the control
outputs.

It is generally assumed that, given sufficiently large population
size and after a sufficient number of generations, the GP evolution
can converge to globally optimal individuals. Though not having
been rigorously proved due to the complexity in symbolic opera-
tions, this assumption has been well proved for the GA.30 In this
study, we choose to let the learning process evolve for 25 gener-
ations, each containing a population of 50 members. Initially, the
population members are given random expressions, and the depth
of tree-like symbolic structures ranges from 2 to 6. Once the evalua-
tion of all 50 members, i.e., candidate control laws, in one generation
is completed, they will be sorted according to their cost function
values. The best 5 members generating smallest J values, i.e., 5 tour-
naments, are then chosen to produce all 50 members in the next
generation. During this evolution, three principal genetic operations
are employed, i.e., replication, crossover, and mutation. First, the
5 tournaments can replicate themselves to participate in competi-
tions in the next generation. Second, they also get a chance to breed,
so that their children can inherit the genes from two excellent par-
ents and could possibly perform better than their parents. This is a

TABLE II. Parameters used in the GP selection module.

GP setup Parameter values

Number of generations 25
Population size 50
Tournament size 5
Operators +, −, ×, ÷, sin, cos, log, tanh
Constant range [−1, 1]
Mutation probability 0.6
Replication probability 0.1
Crossover probability 0.3
Parsimony coefficient 0.001

process called crossover [as depicted in Fig. 4(a)]. Last, the tourna-
ments may also experience mutations, in which a part of the tree-like
expression structure happens to be replaced by another randomly
produced expression. Three typical mutation modes, i.e., subtree
mutation, hoist mutation, and point mutation, are adopted in this
study, as depicted in Figs. 4(b)–4(d).

In the current GP evolution framework, the probabilities for
replication, crossover, and mutation are set as 0.1, 0.3, and 0.6,
respectively. Here, we adopt a large mutation probability to ensure
the diversity in a generation of a limited population size. In addition,
to avoid producing very lengthy symbolic expressions, the parsi-
mony coefficient is set as 0.001. More detailed information about
the GP can be found in Poli et al.31 and Pedregosa et al.32

During the GP evolution process for learning optimum control
laws, the most time-consuming procedure is the FSI simulation due
to the high-fidelity CFD simulations and numerous cases involved
(in total, 1250 cases for a 25-generation evolution). To save the time,
we applied the graphics processing unit (GPU) acceleration tech-
nique, which is capable of improving the efficiency by an order of
102, as has been shown in our previous study.33 The FSI simulations
were performed on a main node with a Xeon E5-2620 CPU together
with a Tesla K40c GPU. The evaluation of each case only took about
22 min, which can be further reduced if more powerful hardware is
used.

III. RESULTS AND DISCUSSIONS
A. Open-loop control

To provide prerequisite information for the machine learning-
based closed-loop control, we first conduct open-loop controls,
where two types of actuation are applied, i.e., pure blowing and pure
suction, with constant velocities. The temporal histories of the cylin-
der’s transverse displacement are compared in Fig. 5(a), where t/T0
= 0 corresponds to the instant when the cylinder is fixed and its
surrounding flow achieves the dynamic steady state and t/T0 = 10
corresponds to the instant when the cylinder is released to vibrate
and the actuators start to operate. It is seen that the pure blowing
can consistently mitigate the VIV, and the control improves with
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FIG. 4. Examples of main modes in generating new popula-
tions: (a) crossover, (b) subtree mutation, (c) hoist mutation,
(d) point mutation.

the blowing strength. But for the pure suction control, the VIV can
only be mitigated when the actuation is strong enough, i.e., |ujet|
≥ 3U0. When weak suction (i.e., |ujet| ≤ 2U0) is applied, the VIV is
even worse off compared with the uncontrolled case.

The observed difference in the control effects between the pure
blowing and pure suction is believed to be related to the interaction
of these fluidic manipulations with the development of shear lay-
ers and resulting vortices. In the pure blowing control, the issuing
jets tend to interrupt the development of shear layers, causing early
shedding of vortices. As such, compared with the uncontrolled case,
the vortices shed at a higher frequency as revealed in Figs. 5(b) and
5(c). Furthermore, it is seen from Fig. 5(c) that the issuing jets tend
to slice the vortices into small pieces, which then merge again with

weaker strength. These weakened vortices then induce smaller lift
and smaller VIV amplitude.

In the pure suction control, the fluidic entrainment tends to sta-
bilize the shear layers, allowing them to develop for a longer time and
evolve into stronger vortices. As such, the vortices shed at a lower
frequency as revealed in Figs. 5(b) and 5(d). If the suction is relatively
weak, such as in the ujet = −U0 and −2U0 cases, the stronger vortices
are close enough to the cylinder, inducing larger lift and larger VIV
amplitude. However, if the suction is strong enough, such as in the
|ujet| ≥ 3U0 case, the stabilized shear layers are maintained for a much
longer distance, forming vortices that are already far away from the
cylinder, as confirmed in Fig. 5(d). Hence, the resulting lift and VIV
amplitude become significantly smaller.

FIG. 5. (a) Temporal variations in the cylinder’s transverse displacement, where for clarity, each data set is shifted up from its lower neighbor. Instantaneous vorticity distribution
in (b) the uncontrolled case, (c) the blowing case with ujet = 3U0, and (d) the suction case with ujet = −3U0. The vorticity is normalized by T0 and is scaled to the [−0.2, 0.2]
interval. The gray lines denote vortices using the λci criterion,34 with λci = 0.1. The symbol “+” denotes the equilibrium position of the cylinder.
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From these results, it can be concluded that the minimum
required actuation strength that makes both types of actuation effec-
tive is about |ujet| = 3U0, with which the pure blowing and the
pure suction can reduce the VIV amplitude by 94.8% and 94.4%,
respectively, if compared with that in the uncontrolled case.

If the actuation strength is further increased, the improve-
ment in the VIV mitigation becomes marginal. Thus, the energy
expenditure due to the actuation should be taken into account to
evaluate the overall control performance. Below, we introduce a
cost function considering both effectiveness and efficiency of the
control:

J = J1 + J2 =
1
Δt ∫

t0+Δt

t0

∣y∣2
D2

0
dt +

C
Δt ∫

t0+Δt

t0

u2
jet

U2
0

dt. (3)

The cost function J consists of two parts: J1 reflects the mean square
of VIV amplitude over a selected long period Δt and J2 reflects the
mean energy consumed by the blowing/suction actuation during
the same period. In this study, the evaluation of the cost function
starts from t0 = 80T0 and lasts for a period Δt = 50T0. This selected
period allows the cylinder to freely oscillate for about 9 uncontrolled
cycles, which is enough for the evaluation of the averaged control
performance.

In Eq. (3), J2 is weighed with a coefficient C, which is deter-
mined by the results of the current open-loop controls. Since the
control with ujet = ±3U0 can drastically reduce the VIV amplitude
and further increasing the actuation strength only slightly improves
the control while consuming much more energy, we deem that
ujet = ±3U0 is the best choice and hence set C = 0.002 to ensure
the minimization of the corresponding J values. As shown in Fig. 6,
the J values in the ujet = ±3U0 case, i.e., 0.018 36 and 0.018 43, are
the smallest among all cases. Therefore, the cost function defined in
Eq. (3) and the weighting coefficient C = 0.002 are adopted in the
subsequent close-loop controls.

FIG. 6. Comparison of the open-loop controls by considering both VIV suppression
and energy consumption, where in the x-axis, “U” denotes the uncontrolled case,
“B” denotes blowing cases, and “S” denotes suction cases, and the number reflects
the actuation strength.

B. GP control
To ensure the generation of reasonable controls, two con-

straints are enforced during the GP selection process. That is, when
evaluating each candidate control law, the FSI simulation will be ter-
minated if the VIV amplitude exceeds 0.6D0 (i.e., slightly larger than
that in the uncontrolled case) or if the actuation velocity exceeds
4.5U0 (i.e., 50% higher than ujet = ±3U0 in the best open-loop con-
trols). A very large J value will then be assigned to this control law to
ensure that it no longer contributes to the proceeding generation.

The evolution process is shown in Fig. 7, where each dot rep-
resents a candidate control law. For the sake of better presentation,
a small number of control laws that produce J > 0.2 are not shown.
About 79% of control laws appear under the blue dashed line that
represents the uncontrolled case, and about 27% of control laws
appear under the green dashed-dotted line that represents the best
open-loop control case (with ujet = 3U0). The evolution process pro-
ceeds for 25 generations. As depicted by the red line in Fig. 7, the
minimum cost function value in each generation quickly converges
after just three generations. The control law with the overall min-
imum cost function value, i.e., J = 0.014 69, appears in the 13th
generation.

Figure 8(a) presents ten best control laws. It is intriguing to see
that all these ten control laws use suction-type actuation. Except for
one that corresponds to uniform suction, these control laws exhibit a
similar trend, i.e., the suction strength is nonzero when the cylinder
is at its equilibrium position (i.e., y = 0) and increases nonlinearly
with the cylinder’s transverse displacement. Among them, the best
control law is

ujet

U0
= 1 − 3.637 cos−1( ∣y∣

D0
). (4)

With this control law being implemented, the jet actuation and the
cylinder’s dynamic response are examined in Fig. 8(b). Compared

FIG. 7. GP evolution process, where the red solid line describes the trend of mini-
mum cost function values, the blue dashed line represents the uncontrolled case,
and the green dashed-dotted line represents the best open-loop control. Colors of
the circular symbols are arranged according to their appearance sequence in each
generation.
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FIG. 8. (a) Ten best control laws selected
by the GP method. (b) Evolution of
the actuation strength and the cylinder’s
transverse location in the case controlled
by the best control law.

with the uncontrolled case, the VIV amplitude is reduced by 94.2%,
a value close to that in the best open-loop control cases (ujet = ±3U0).
However, compared with the best open-loop control cases, the opti-
mal GP controller further reduces the energy cost by 22.2% and
hence achieves a much better overall performance with the J value
reduced by 21.4%.

A question may arise from the above finding that the GP-
selected best control laws all point to suction-type actuation: is
it inevitable or just caused by an initial bias introduced at the
beginning of the GP evolution? To address this issue, we con-
ducted another set of GP evolution, in which the settings remain
the same but only the blow-type actuation is enforced. As shown
in Fig. 9(a), the evolution lasts for 10 generations, and the mini-
mum cost function value quickly converges after just 4 generations.
The best control law with the overall minimum cost function value
J = 0.016 25 appears in the 7th generation, which is 11.5% smaller
than the best open-loop blowing control (i.e., with ujet = 3U0) but
10.6% larger than the best control selected in the first set of GP
evolution [i.e., the control described by Eq. (4)]. The correspond-
ing control law is shown in Fig. 9(b), suggesting that the blowing
velocity first increases rapidly with the cylinder’s transverse displace-
ment to a peak of about 3.3U0 at |y| ≈ 0.05D0 and then gradually
decreases, quite different from the best suction-type controls shown
in Fig. 8(a). Controlled with this law, the cylinder’s VIV ampli-
tude is similar to that controlled by Eq. (4), as shown in Fig. 10(a).
However, Fig. 10(b) reveals that the blowing velocity oscillates
violently between 1.4U0 and 3.2U0, a consequence of the rapid

change near the cylinder’s equilibrium position (i.e., y = 0) as sug-
gested in Fig. 9(b). This violent velocity oscillation is responsible for
a higher energy expenditure and hence a higher overall cost function
value. From this supplementary study, we confirm that under the
current settings, the overall best control laws being the suction-type
actuation is inevitable.

C. Comparison with P control
To further evaluate the GP-based VIV control, we compare the

GP-selected optimal controller [i.e., Eq. (4)] with conventional linear
control techniques, i.e., the proportional integral differential (PID)
control. Since our previous study has revealed that the P or I con-
trol alone is eligible to completely suppress the VIV,5 here we only
choose the P control for the comparison, which can be described as

ujet

U0
= P
∣y∣
D0

. (5)

Like the GP control, the P control also gives an explicit relationship
between the actuation velocity and cylinder’s transverse displace-
ment. However, it enforces a rigid linear relationship. A number of P
values ranging from −80 to 100 are tested. To avoid unrealistic actu-
ation strength, we also limit the actuation velocity magnitude within
4.5U0.

Figure 11 shows the variation in cost function values against
the P values. It is seen that for the P values studied herein,
J1 monotonically decreases with the absolute P value, indicating that

FIG. 9. (a) GP evolution process with
only blow-type controls enforced, where
the red solid line describes the trend of
minimum cost function values and the
blue dashed line represents the uncon-
trolled case. Colors of the circular sym-
bols are arranged according to their
appearance sequence in each genera-
tion. (b) The best blow-type control law
selected by the GP method.
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FIG. 10. Evolution of (a) the cylinder’s
transverse position and (b) the actua-
tion velocity for the cases with the GP-
selected best control law, the best blow-
type control law, and the two best open-
loop control laws.

FIG. 11. Variation in the P control cost function values against the P values, where
the dashed line represents the value of the best GP-selected control. In the his-
togram, the region between the two vertical dashed-dotted lines denotes cases
that the control does not reach the velocity constraint. The uncontrolled case, i.e.,
the P = 0 case, is also shown for comparison purpose.

the cylinder’s VIV amplitude reduces with |P|. It is also interest-
ing to see that at the same |P| value, the blow-type control (with
positive P) suppresses more VIV than the suction-type control (with
negative P). Different from J1, if taking the energy consumption into

account, the overall cost function J slightly fluctuates when |P| > 30,
due to the enforcement of the actuation strength constraint. From
these results, it can be concluded that the P control can suppress the
VIV well. In the best case, i.e., the case with P = 80, the control can
suppress the VIV amplitude by 91.2%, and the total cost function J
approaches the value in the best GP-selected control.

D. Robustness at larger Reynolds numbers
Robustness is an important issue for control laws. Similar to

what has been reported in Gautier et al.,6 in this section, we will
assess the robustness of the best GP-selected control law [i.e., Eq. (4)]
and the best P control law [i.e., Eq. (5) with P = 80] as well as the best
open-loop controls (i.e., with ujet = ±3U0) by evaluating their per-
formance at various Reynolds numbers. CFD simulations at higher
Reynolds numbers were conducted by linearly increasing the spatial
and temporal resolutions. For instance, at Re = 400, 2048 × 640 grid
nodes were used for each of the four grid blocks, and 6400 time steps
were used in each T0 period.

The cost function values obtained from different control strate-
gies at the Reynolds numbers ranging from 100 to 400 are plotted in
Fig. 12. Figure 12(a) shows that the GP control and the open-loop
controls can all remarkably suppress the VIV at Re > 100, despite
that the control becomes slightly less effective at Re = 100. Com-
pared with these controls, the P control performs relatively poorly,
especially at higher Reynolds numbers. If the energy consumption is
taken into account, it is seen from Fig. 12(b) that in general the GP

FIG. 12. Variation in (a) J1 and (b) J of
different controls against the Reynolds
number ranging from 100 to 400, where
the open-loop controls is conducted with
ujet = ±3U0 and the P control uses
P = 80.
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control performs the best and is very robust, maintaining low J val-
ues at all Reynolds numbers. The open-loop controls are also robust,
not affected too much by the Reynolds number. On the contrary,
the P control is much affected. It obtains the overall smallest J value
at Re = 200 while obtaining the overall largest J value at Re = 400.
These results indicate that the GP control is not only effective and
efficient but also robust, suitable for VIV control under various flow
conditions.

IV. SUMMARY
In this study, we demonstrate the use of high-fidelity CFD

simulations in machine learning-based AFC. For the first time, we
adopt the GP method to select the best explicit control laws, in
a data-driven and unsupervised manner, for the suppression of a
VIV system vibrating in a low Reynolds number flow (Re = 100).
Being weighted according to the prior knowledge obtained from
pure blowing/suction open-loop controls, the chosen cost function
takes both VIV amplitude and energy expenditure for the control
into consideration. Another set of closed-loop control using a lin-
ear controller, i.e., the P control, is also conducted for comparison
purposes. The major conclusions are summarized as follows:

(1) With the implementation of the GPU acceleration technique,
it is now feasible to run a large number of high-fidelity CFD
simulations to facilitate machine learning-based AFC.

(2) The current GP evolution process converges very fast, after
just three generations. It is interesting to see that by imple-
menting the constraints for maximum allowed VIV mag-
nitude (0.6D0) and maximum allowed actuation strength
(4.5U0), the GP-selected best ten control laws all use suction-
type actuation. The best control law [i.e., Eq. (4)] suggests that
the suction strength should be nonzero when the cylinder is
at its equilibrium position and should increase nonlinearly
with the cylinder’s transverse displacement. It is effective and
efficient in the VIV control, suppressing the VIV amplitude
by 94.2%, meanwhile reducing the energy cost by 22.2% if
compared with the best open-loop controls.

(3) The GP control is robust in flows ranging from Re = 100 to
400. Although the P control at Re = 100 can achieve simi-
lar performance as the GP-selected control, it deteriorates at
Reynolds numbers higher than 300.

Note that due to the randomness involved in generating ini-
tial population and mutation during the evolution, in different runs
the GP evolution may produce best control laws in different expres-
sions. But the level of minimum cost function after the convergence
is achieved should not be affected too much. Although the selected
VIV problem to be controlled is relatively simple, the training expe-
rience and insights obtained from this study can shed some light on
future GP-based control of more complicated problems.

In real conditions, it may be difficult to find enough reliable
data for machine learning, which can be caused by either high costs
or very rough measurements in practical experiments. Since liter-
ally CFD simulations do not have physical constraints, with the
fast advancement of computing power and artificial intelligence
(AI) algorithms, hopefully in the near future much more complex
engineering problems can be solved with relative ease using this
framework.
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