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ABSTRACT 7 

Because they perform physically demanding manual-handling tasks in awkward postures, construction 8 

workers are at high risk of work-related musculoskeletal disorders (WMSDs). Previous studies have 9 

developed observational postural ergonomic assessment methods to identify WMSD risks. Although 10 

inexpensive and easy to use, these methods are seldom used in construction because they are time-11 

consuming, subject to observer bias, and require well-trained analysts. To address these drawbacks, this 12 

paper propose a vision-based method to automatically classify workers’ postures for ergonomic assessment. 13 

Specifically, it proposes a vision-based method that eliminates the need to collect extensive training-image 14 

datasets by employing classification algorithms to learn diverse postures from virtual images, and then 15 

identifies those postures in real-world images. In addition, the proposed method extracts features from body 16 

silhouettes to lessen the confusion caused by differences between virtual and real-world images, as well as 17 

across different lighting conditions and colors of workers’ clothing. To assess its feasibility, we conducted 18 

laboratory-based tests with varied physical attributes of subjects and image viewpoints. These tests showed 19 

that the method had 88.6% classification accuracy, confirming the usefulness of virtual training images for 20 

posture classification. Thus, the proposed method has potential for automated and real-time ergonomic risk 21 

analysis, and could help to prevent WMSDs not only in the construction industry but in diverse other 22 

occupations and tasks. 23 
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1. INTRODUCTION27 

Construction workers are at high risk of work-related musculoskeletal disorders (WMSDs) because they 28 

perform physically demanding manual-handling tasks in awkward postures (Everett 1999; Boschman et al. 29 

2012). WMSDs are a leading cause of non-fatal injuries in construction, accounting for 27.5% of such 30 

injuries in the United States (CPWR 2018) and 18% of industrial accidents in Hong Kong (OSH 2017). 31 

WMSDs are also associated with high costs to employers through absenteeism, lost productivity, increased 32 

health care and workers’ compensation (NIOSH 2007). Moreover, WMSDs are substantially under-33 

reported, so the problems associated with them are likely to be more severe than indicated by the statistics 34 

(Pransky et al. 1999; Punnett & Wegman 2004). Thus, identifying physical exposure to WMSD risks is 35 

crucial to implementing workplace ergonomic interventions that will help prevent them (Li & Buckle 1999). 36 

Among the existing methods for measuring exposure to WMSD risks, posture-based ergonomic assessment 37 

is one of the most commonly adopted (Janowitz et al. 2006). One of the commonly used approaches widely 38 

used in many industries including construction is an ergonomic assessment by simulating tasks at the 39 

laboratory environments (Li & Buckle 1999; Seo et al. 2015; Antwi-Afari et al. 2017; Antwi-Afari et al. 40 

2018a). However, the need for technologically sophisticated measurement (e.g., whole-body motion-41 

capture systems) or analysis (e.g., biomechanical analysis) methods may hinder the applicability of this 42 

approach in practice. Instead, observation-based postural ergonomic assessment methods quantify risks by 43 

systematically classifying the postures of different body parts and scoring them by experienced experts (Li 44 

& Buckle 1999). As they are quick and easy to use, they have been widely used for initial screening of 45 

specific activities or tasks with higher ergonomic risks at job sites, after which more sophisticated methods 46 

can be applied to identify the sources of such risks (Janowitz et al. 2006). 47 
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Recently, many researchers in construction have tried to improve these ergonomic assessment methods at 48 

construction sites by replacing human observers with wearable sensors or image processing techniques, 49 

with the aim of automatically classifying risky postures while tasks are ongoing (Wang et al. 2015). While 50 

wearable sensor-based approaches have focused on specific body joints (Yan et al. 2017a; Yan et al. 2018) 51 

or risky postures (Antwi-Afari et al. 2018b; Antwi-Afari et al. 2020), the vision-based approaches aim to 52 

assess ergonomic risks based on whole body configuration. Such research efforts have ranged from risky 53 

posture classification using 2D images from a monocular camera (Seo et al. 2016) to ergonomic posture 54 

analysis using 2D or 3D skeleton-based motion data from monocular or depth cameras (Ray & Teizer 2012; 55 

Seo et al. 2015; Liu et al. 2016; Dzeng et al. 2017; Yan et al. 2017b; Zhang et al. 2018). Though the use of 56 

skeleton data enables estimation of body angles, and is thus a reliable means of detecting awkward postures, 57 

2D image-based posture classification has several comparative advantages. For example, extracting 2D or 58 

3D skeletons from RGB or RGB-D images (e.g., Microsoft KinectTM) requires additional processing time 59 

after image collection, whereas 2D image-based posture classification can detect awkward postures directly 60 

from the images. Additionally, 2D image-based approaches are less demanding computationally, because 61 

1) they use a selection of feature descriptors from raw images rather than the whole images, and 2) low 62 

image resolution does not significantly affect their performance, as their classifications rely only on body 63 

silhouettes (Seo et al. 2016). These comparative advantages imply that it might be feasible to develop a 64 

stand-alone smartphone application for quick screening of ergonomically risky tasks that may need more 65 

sophisticated ergonomic analysis to identify effective intervention methods. 66 

However, a key challenge of the 2D image-based approach is its requirement for large, comprehensive 67 

training datasets as a prerequisite for machine learning-based classification (Poppe 2010; Golparvar-Fard 68 

et al. 2013). One way to address this issue is through ‘virtual training data’ that allows extraction of 69 

extensive training images from a wide range of viewpoints, and which has been successfully utilized for 70 

object, face, and gesture recognition (Chiu et al. 2007; Ke et al. 2018; Nikolaev et al. 2018; Tain et al. 2018). 71 

Also, in the specific case of 2D image-based ergonomic assessment, the use of virtually created training 72 
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images to lighten the burden of collecting training data from real-world images has been tested, and deemed 73 

appropriate as a means of classifying ergonomically risky postures from a specific viewpoint. To further 74 

validate the applicability of the use of virtual training datasets for automated posture classification, it is 75 

necessary to address both intra- and inter-class variation attributable to dynamic environments (e.g., 76 

changing viewpoints) and also human variability (e.g., clothing and physical attributes).  77 

To this end, the present study proposes and tests a new form of 2D image-based posture classification, in 78 

which awkward postures are identified by machine-learning algorithms trained using virtual image datasets 79 

to minimize the efforts to collect training images from a real world. In particular, considering varying 80 

viewpoints of cameras and workers’ different physical attributes (e.g., height and weight), the proposed 81 

approach enables to create customized virtual images for the targeted workers to be assessed, which would 82 

be challenging when collecting real-world images. To test the proposed approach, we conducted laboratory 83 

experiments by collecting diverse views of eight male subjects who were chosen to reflect the range of 84 

physical attributes such as height and body mass. Next, virtual training images were created by adjusting 85 

our virtual human model to match real conditions (i.e., viewpoints and individual differences). Image 86 

features from body silhouettes were then extracted in a manner that sought 1) to minimize color and texture 87 

differences between virtual and real-world images, and 2) to capture local variation in trunk and limb 88 

movements. Machine-learning algorithms for posture classification were then applied to a set of video 89 

images illustrating postures simulated by the eight subjects. 90 

The remaining manuscript is organized as follows. In Chapter 2, existing postural ergonomic analysis 91 

methods are introduced. Then, in Chapter 3, machine learning algorithms using virtually created training 92 

images for awkward posture classification are presented. Chapter 4 describes laboratory testing and results 93 

to validate the proposed approach. Finally, in Chapter 5, potential difficulties and directions for future 94 

research are discussed on the basis of the findings. 95 

2. POSTURAL ERGONOMIC RISK ASSESSMENT 96 
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Previous epidemiological studies have linked WMSDs to exposure to job-related risk factors such as 97 

repetitive motion, heavy lifting, forceful manual exertion and awkward postures (Kumar 2001; Punnett & 98 

Wegman 2004). As the level of potential WMSD risk can vary according to the intensity, frequency and 99 

duration of such exposure during task performance, quantitative evaluation enables practitioners to identify 100 

risky tasks and workers needing immediate ergonomic intervention to prevent WMSDs (David 2005). The 101 

ergonomic methods that have been introduced to assess WMSD risks include 1) self-reports, 2) observation, 102 

and 3) instrumental or direct measurement (Li & Buckle 1999; David 2005). Of these methods, observation 103 

is the most widely used because of its low cost, ease of use, and non-interference with ongoing activity 104 

(Genaidy et al. 1994). Observational methods include but are not limited to the Ovako Working Posture 105 

Analysing System (OWAS; Karhu et al. 1977; Karhu et al. 1981); Rapid Upper Limb Assessment (RULA; 106 

McAtamney & Corlett 1993); Posture, Activity, Tools and Handling (PATH; Buchholz et al. 1966); and 107 

Rapid Entire Body Assessment (REBA; Hignett & McAtamney 2000). All are designed to identify potential 108 

WMSD risks by recording working postures on proformas and scoring them according to predetermined 109 

criteria. Even though each method has its own categories for posture classification, with varying degrees of 110 

detail, the level of ergonomic risk in each one is determined via human observation of postural combinations 111 

of trunk and limbs. 112 

Of the four methods mentioned above, OWAS and PATH have been deemed the most suitable for use in 113 

the construction industry, on the grounds that they are based on work sampling: the observation of workers 114 

at fixed time intervals to allow estimates of the proportion of time taken in risky postures (Buchholz et al. 115 

1996). Since PATH is based on OWAS, both methods feature similar postural categories and risk-ranking 116 

systems. OWAS identifies four working postures for the back, three for the arms, and seven for the legs, 117 

and has three weight categories for the load being handled; and the combination of these four variables into 118 

a four-digit code (Figure 1) summarizes the whole-body posture. For example, the worker in Figure 1A is 119 

hammering a nail while kneeling on one knee. According to the OWAS postural codes, his posture is ‘2’ 120 

for the back, ‘1’ for the arms, and ‘4’ for the legs; and because the weight of his hand load is less than 10kg, 121 
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the load is coded as ‘1’. Thus, the postural code for this posture is ‘2-1-4-1’, which falls into Action 122 

Category (AC) 3 (Figure 1B). AC 3 indicates that this posture is distinctly harmful, and thus corrective 123 

action should be taken as soon as possible. The action categories for postural ergonomic risk assessment 124 

were determined by physicians, work analysts, and workers, and subsequently validated by an international 125 

group of ergonomic experts (Karhu et al. 1977). 126 

 127 

Figure 1. Postural Ergonomic Assessment in OWAS 128 

 129 

Influential research studies have applied OWAS or PATH to identify potential ergonomic risks during 130 

construction tasks. Paquet et al. (2001) found that, in contrast to manufacturing tasks, construction ones 131 

exhibit significant variations in exposure to WMSD risk factors, not only across tasks but also between 132 

individuals performing the same task. Thus, systematic objective assessment using an observational work-133 

sampling approach such as PATH enables practitioners to see which tasks require immediate intervention 134 

and to implement appropriate controls. For example, a pioneering study by Kivi and Mattila (1991) applied 135 

OWAS in the building construction industry, and recommended the development of work-redesign 136 

measures that would minimize awkward postures on construction sites. Subsequent studies have been 137 

conducted on hammering tasks (Mattila et al. 1993), concrete work such as formwork installation, rebar 138 

tying and concrete pouring (Li & Lee 1999; Buchholz et al. 2003), iron work (Forde & Buchholz 2004), 139 
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scaffolding (Saurin & de Macedo Guimarães 2008), and highway-tunnel construction (Tak et al. 2011). 140 

Despite the validity and usefulness of these methods, however, they are very time-consuming, as they rely 141 

either on direct human observation or human review of video-recordings (Dzeng et al. 2018), with about 142 

30 minutes required for analyzing a single task (Lowe 2004). Some studies have used computer programs 143 

to record and analyze postures, but their classification processes has remained manual (Kivi & Mattila 1991; 144 

Li & Lee 1999). Also, to help ensure reliable recording of postures, these studies employed trained 145 

ergonomists or provided ergonomics training to observers, either of which approaches would imply 146 

additional costs if these methods are applied in construction where safety managers would not have 147 

appropriate expertise for ergonomic assessments. 148 

To address these issues, many construction researchers have employed advanced sensing technologies to 149 

replace human observers with these technologies, with varying degrees of success. These technologies can 150 

be divided into two categories, 1) body-attached sensor-based approaches and 2) vision-based approaches. 151 

One promising type of body-attached sensor is the Inertial Measurement Unit (IMU; Wang et al. 2015), 152 

which consists of an accelerometer, a gyroscope and a magnetometer that jointly measure movements of 153 

specific body parts to which the IMU is attached. Thus, if multiple IMUs are attached to the same person, 154 

the body angles that are required to identify awkward postures can be calculated based on the relative 155 

movements of multiple body parts: e.g., a head and a trunk in the case of back-bending angles (Yan et al. 156 

2017a). Moreover, IMU-based whole-body motion-capture systems can provide 3D skeleton models that 157 

can be used to directly calculate specific joint angles (Seo et al. 2017), or to detect ergonomically risky 158 

postures through machine-learning techniques (Chen et al. 2017). Recently, a wearable insole pressure 159 

sensor has been also used to identify ergonomically hazardous postures by detecting abnormal foot pressure 160 

patterns due to over-exertion during construction activities (Antwi-Afari et al. 2018b; Antwi-Afari et al. 161 

2020). Additionally, significant research efforts have been devoted to leveraging the benefits of computer 162 

vision techniques for ergonomic assessments. For example, Seo et al. (2016) proposed a 2D image-based 163 

posture-classification algorithm to differentiate awkward postures based on body silhouettes. Given that 164 



8 

 

images can provide richer information on body postures than body-attached sensors can, many researchers 165 

have proposed ergonomic assessment based on skeletons extracted either from 2D images from an ordinary 166 

camera, or from 3D images produced by RGB-D sensors (e.g., Ray & Teizer 2012; Seo et al. 2015; Liu et 167 

al. 2016; Yan et al. 2017b; Zhang et al. 2018; Yu et al. 2019b). For example, Dzeng et al. (2017) proposed 168 

a novel approach that automatically records postures based on OWAS, and analyzes ergonomic risks using 169 

skeleton-based motion data extracted from Microsoft KinectTM. Thanks to the achievement in deep learning 170 

algorithms, more reliable and accurate classification of awkward postures on images has been enabled, 171 

extending the applicability of vision-based ergonomic assessments (Yu et al. 2019b; Yang et al. 2020; Chu 172 

et al. 2020). Also, recent research efforts have tried to combine the data from both computer vision 173 

approaches and wearable sensors to not only improve the accuracy of ergonomic risk detection, but also 174 

provide additional information (e.g., locations of workers) that would be needed for effective intervention 175 

(Cheng et al. 2013; Yu et al. 2019a).  176 

However, it remains unclear which approach would be best suited to the context of construction work, as 177 

body-attached sensor-based approaches and vision-based approaches have different limitations. One 178 

frequently mentioned limitation of body-attached sensors is the discomfort they cause to workers, which in 179 

some cases interferes with ongoing work. Vision-based approaches, meanwhile, have been criticized due 180 

to limited site coverage by cameras and the high likelihood of occlusions. Given that the purpose of postural 181 

ergonomic assessment is initial screening for risky tasks based on work sampling, data collection at 182 

different positions for diverse tasks should be required. When using vision-based approaches based on 2D 183 

images, the safety personnel can easily record videos using a hand-held camera or a smartphone, without 184 

having to interfere with ongoing work to attach sensors to workers, and quickly move on to other individuals 185 

and tasks. For these reasons, vision-based approaches to postural ergonomic assessment appear to be more 186 

promising than their sensor-based counterparts. 187 

To sum up, observation-based postural ergonomic assessment methods have been widely used to identify 188 

ergonomic risks during occupational tasks including construction. To address the limitation of time-189 
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consuming and error-prone manual observations, the recent research efforts have proposed automated 190 

posture classification approaches using both wearable sensors and computer vision techniques. Even though 191 

both approaches have shown promising results in terms of awkward posture identification, the vision-based 192 

approach would be more suitable for quick screening of risk tasks without any interference with on-going 193 

work. However, from a technical point of views, the vision-based approaches have suffered from the need 194 

for significant manual efforts to collect training images from a real-world (Golparvar-Fard et al. 2013). The 195 

performance of vision-based posture classification would heavily rely on the quantity of training images 196 

that is large enough to include any possible variations on images. This issue would be more significant for 197 

vision-based posture classification of construction workers as the human body consists of the head, the 198 

torso and the limbs, creating a variety of postures depending on different tasks unlike other project entities 199 

(e.g., equipment, materials) in construction. This has been well-recognized as a significant research 200 

challenge in not only the computer science domain, but also the construction domain (Yu et al. 2010; 201 

Golparvar-Fard et al. 2013).  202 

 203 

3. METHODS 204 

The purpose of the computer vision-based postural classification algorithms proposed in this study is to 205 

identify and classify different bodily postures, as defined by existing postural ergonomic evaluation 206 

methods, from video or time-lapse images. Figure 2 shows the present study’s overall research procedure. 207 

Its key basis is the insight that different postures within images create distinguishable pixel patterns (i.e., 208 

image features), allowing classification algorithms to learn patterns from training images and differentiate 209 

among postures in test images. As discussed above, one of the key challenges of vision-based approaches 210 

is the creation of comprehensive training images that reflect variations in real-world conditions such as 211 

viewpoints or workers’ physical attributes. To address it, training-image datasets obtained through virtual 212 

human modeling were used. In addition, the current study applied an algorithm for vision-based posture 213 

classification using image features from body silhouettes obtained by background subtraction. These 214 

postural classification algorithms lead a classifier to learn diverse postures from virtual training images, 215 
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and then to classify the postures in real-world images. Additionally, the present research combines newly 216 

proposed image features (e.g., shape-based features) with well-established ones (e.g., radial histograms of 217 

silhouettes) to better reflect morphological variations in the body silhouettes of people in different postures. 218 

 219 

 220 
Figure 2. Overall Procedure for Vision-based Posture Classification 221 

 222 

3.1. Creating Virtual Training Datasets 223 

Training images for diverse postures were obtained by using virtual human modeling, an emerging 224 

technology for motion simulation in a virtual environment (VE; Demirel & Duffy 2007). A virtual human 225 

model with specific physical attributes such as height and weight is inserted and animated according to 226 

human motion-capture data in a 3D virtual space, thus generating virtual training image datasets of the type 227 

illustrated in Figure 3. 228 

 229 

 230 
Figure 3. Procedure for Virtual Training Datasets 231 

 232 
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First, motion data from workers at real-world construction sites was collected using motion-capture systems 233 

such as an RGB-D sensor and an IMU-based motion capture system (Figure 3A). Then, the virtual human 234 

model could be manipulated into any posture from any viewpoint, with substantial variability in physical 235 

attributes, without requiring new motion data from actual workers. Nevertheless, actual workers’ motion 236 

data was collected because, given the unstandardized and complex nature of construction work, manual 237 

manipulation of postures might have missed important configurations, and at this stage, the researchers 238 

wished to encompass as diverse a range of workers’ postures as possible. That being said, however, if any 239 

posture was noted as missing, a virtual human model allowed the creation of that posture simply by 240 

modifying existing postures without further real-life observation, making it relatively easy to update the 241 

training datasets. 242 

Once the motion data were obtained, the virtual human model was constructed and simulated in the VE on 243 

the basis of such data (Figure 3B). Specifically, as body profiles—i.e., silhouettes in images—are 244 

significantly influenced by individual differences in height and weight, virtual human models representing 245 

diverse distributions of such characteristics within a specified population had to be created by creating 246 

multiple variants of the virtual human model. Then, the human model was projected onto an image sphere 247 

to create a sequence of images depicting human postures. By changing the positions of the virtual camera, 248 

virtual video sequences could be created from all of the possible viewpoints that would exist under real-249 

world conditions (Figure 3C). 250 

Each video image was then labeled according to the postures to be used in training datasets. As described 251 

above, current methods of postural ergonomic assessment define whole-body postures by combining the 252 

observed postures of specific body parts (Karwowski & Marras 1998). Such combinations in video images 253 

can be automatically identified using corresponding motion data where 3D limb positions and body angles 254 

are available (Figure 3D). The use of 3D skeleton data permits both accurate and instant postural labeling 255 

for training datasets, and can be extended to any type of postural ergonomic assessment simply by varying 256 

the criteria used to define postures of interest. 257 
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3.2. Obtaining Body Silhouettes through Background Subtraction 258 

Because variation in body shape provides enough information to identify distinct postures and motions in 259 

visual data, body silhouettes have been widely used for spatial representation of actions by the human body 260 

(Weinland et al. 2011). In the present study, the use of body silhouettes had the additional advantage of 261 

being unaffected by variations in color, texture and contrast, thus eliminating confusion that might 262 

otherwise have been caused by variations in lighting conditions or in the colors of workers’ clothing. 263 

Moreover, body silhouettes are unaffected by differences between virtual and real-world images, thereby 264 

enabling algorithms trained using only virtual training images to accurately identify distinct postures in 265 

real-world images. 266 

Nevertheless, accurate posture classification is dependent on effective techniques for deriving clear body 267 

silhouettes from images. The present study employed background-subtraction and noise-removal 268 

algorithms to obtain clear body silhouettes, with a bounding box serving as a Region of Interest (ROI) to 269 

extract image features at the next step (Figure 4). Background-subtraction algorithms define the current 270 

pixel as foreground when the difference between its value and those of pixels in the background model 271 

exceeds a threshold value (Piccardi 2004). This study utilized a state-of-the-art background-subtraction 272 

algorithm, ViBe, which is robust to lighting changes and the appearance of new objects within the scene as 273 

it updates the background model over time (Barnich & Van Droogenbroeck 2001). 274 

 275 

 276 
Figure 4. Background Subtraction and Detection of Bounding Box 277 

  278 
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ViBe deals with the problem of background subtraction as one of classification (Barnich & Van 279 

Droogenbroeck 2011). It classifies a current pixel value (v(x), the value of the pixel located at point x in the 280 

image) by comparing that value against its corresponding background model at the pixel location x, M(x), 281 

which is modeled by vi, background sample pixel values having been established in the N previous frames 282 

(Eq. 1). Specifically, if the number of background pixel samples close to the new pixel value in a Euclidean 283 

color space is higher than a given threshold, the current pixel is classified as background. Additionally, the 284 

background model is continually modified to adapt to lighting changes or to new objects appearing in a 285 

scene via a conservative update method, in which the background model is updated using the value of the 286 

current pixel value after the latter has been defined as background. 287 

                   ℳ(𝑥𝑥) = {𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑁𝑁}  where 𝑣𝑣𝑖𝑖 is a background pixel sample                         (1) 288 

After subtraction, the foreground images might nevertheless have noisy pixels in the background. As shown 289 

in Figure 4B, for example, shadows on walls and high-contrast edges can result in the false detection of 290 

background regions (Elgammal et al. 2000). To remove noisy pixels from the background, several noise-291 

removal algorithms were deployed, and removed objects containing fewer than 50 pixels; then, a median-292 

based filter replaced the noisy pixels (f(x, y), a pixel value at the position of (x, y)) with median values (g(x, 293 

y), a median filtered pixel value) in a 5×5 pixel window, as shown in Equation 2 (Dong & Xu 2007). In 294 

addition, a morphological closing operation was performed to fill in the narrow gaps and small holes in 295 

body silhouettes. Once a clear silhouette was generated, a bounding box was placed around it, and this box 296 

served as an ROI for feature extraction (Figure 4C). 297 

                               𝑔𝑔(𝑥𝑥,𝑦𝑦) = 𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (∑ ∑ 𝑓𝑓(𝑥𝑥 − 𝑒𝑒, 𝑦𝑦 − 𝑗𝑗)2
𝑗𝑗=−2

2
𝑖𝑖=−2 )                         (2) 298 

 299 

3.3. Extracting Image Features from Body Silhouettes 300 

At the next stage, image features representing body postures were extracted from body silhouettes. Because 301 

of their power to capture complex body movements, silhouette-based techniques have been widely used for 302 
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action recognition (Poppe 2010). Generally, temporal variations in body silhouettes are key characteristics 303 

of image features when the aim is robust action recognition. However, for purposes of the present study, 304 

posture classification had to rely upon the limited information that could be gleaned from a single body 305 

silhouette, yet extract posture-specific image features containing information rich enough not only to 306 

classify diverse postures, but also to generalize across small variations in workers’ appearance. 307 

 308 

 309 
Figure 5. Silhouette-based Image Features 310 

 311 

In the current study, attributes of body shapes derived from body silhouettes were used as image features. 312 

Those attributes included: 1) the aspect ratio of the bounding box; 2) the ratio of the minor to the major axis 313 

of the ellipse that could be fitted to the silhouette; and 3) the orientation of the ellipse itself (Figure 5A). 314 

They are intended to capture morphological variations in body silhouettes according to different postures. 315 

Aspect ratio is a measurement that provides an intuitive cue about the size of an object, and thus can serve 316 

as a morphological feature for human detection or gait analysis (Garcia & Tziritas 1999; Broggi et al. 2000; 317 
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Wang et al. 2003). The aspect ratio of the bounding box also provides a unique cue for recognizing bodily 318 

postures, especially when differentiating standing from other postures, as shown in Figure 5. In addition, a 319 

body silhouette can be defined by an ellipse fitted to it (i.e., by the ratio between the major and minor axes 320 

of the ellipse and the slope of the major axis), which helps to classify postures in the bounding box that 321 

have similar aspect ratios, such as back-bending and knee-bending. To extract more detailed shape-based 322 

features, the bounding box is further divided into 2×1 (two subsets) and 2×2 (four subsets) sub-windows, 323 

and features extracted from each sub-window. 324 

As a local descriptor for capturing details in postures, a radial histogram of the silhouette—the center of 325 

which is defined as the silhouette’s center of mass (CM)—is also extracted from the image (Figure 5B). 326 

The position of CM was calculated using the formula 327 

�̅�𝑥 =  
∑ ∑ 𝑗𝑗 𝐵𝐵[𝑖𝑖,𝑗𝑗]𝑚𝑚−1

𝑗𝑗=0
𝑛𝑛−1
𝑖𝑖=0

𝐴𝐴
,   𝑦𝑦� =  

−∑ ∑ 𝑖𝑖 𝐵𝐵[𝑖𝑖,𝑗𝑗]𝑚𝑚−1
𝑗𝑗=0

𝑛𝑛−1
𝑖𝑖=0

𝐴𝐴
                                 (3) 328 

where B[𝑒𝑒, 𝑗𝑗] is a binary image of the body silhouette; A is the area of the image; and  �̅�𝑥 and 𝑦𝑦� are the 329 

coordinates of the CM with respect to the top left pixel. Then, the bounding box was divided into 16 slices, 330 

and the ratio of black to white pixels in each slice histogrammed with 16 bins. 331 

 332 

3.4. Classification Algorithm 333 

Once the image features were constructed, a classifier had to learn them from virtual training datasets if it 334 

was to accurately classify postures in new testing images. The classifier the researchers selected was a 335 

Support Vector Machine (SVM), which is widely used in action recognition (Poppe 2010). In brief, standard 336 

SVM classification aims to separate a set of training vectors belonging to two classes, but it can be extended 337 

by combining a number of two-class classification SVMs to form a multi-class classifier (Hsu & Lin 2002). 338 

The present study implemented the one-against-one method, which constructs k(k-1)/2 classifiers (k being 339 
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the number of classes), each of which is trained on data from two classes and predicts the class of a testing 340 

vector based on majority voting (Kreßel 1999). 341 

 342 

3.5. Post-processing for Noise Removal 343 

The proposed method performs posture classification based on frame-by-frame processing, which means 344 

that each frame is classified independently. Under real-world conditions, workers perform tasks by varying 345 

their postures, but specific postures are generally maintained for a certain period (e.g., several seconds). As 346 

such, if classification results show variation across a brief sequence of consecutive frames, it is likely that 347 

the postures involved might be incorrectly classified. To eliminate such noise, any classified posture that 348 

did not persist for more than 10 consecutive image frames was re-labeled as whatever posture dominated 349 

the adjacent frames, as shown in Figure 6. 350 

 351 

352 

Figure 6. Post-processing of Classification Results 353 

 354 

4. LABORATORY TESTING 355 

Laboratory tests of the proposed method were conducted under a variety of conditions, i.e., multiple 356 

viewpoints (intraclass variation) and individual differences in physical attributes (interclass variation). 357 

Their primary purpose was to establish whether training images from a virtual environment, independent 358 
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of real-world testing conditions, were applicable to the posture classification of images with both intra- and 359 

interclass variation, and if so, whether such classification was more accurate than than that obtained via 360 

human observation. To obtain reliable training and testing images, data collection procedures were carefully 361 

controlled in the laboratory environment, following a pre-designed protocol (data available from the 362 

corresponding author upon request). 363 

 364 

4.1. Testing Postures 365 

For purposes of the above-mentioned laboratory test, the researchers selected three representative postures 366 

involving different body parts, i.e., back-bending for back posture, arm-raising for arm posture, and knee-367 

bending for leg posture, as shown in Figure 7. Each resulting combination of three postures was defined by 368 

reference to the OWAS codes for ergonomic risk: that is, as Category 1, 2, 3, or 4, with a higher number 369 

indicating a more risky posture. For example, in OWAS, when the upper body is bent forward or backward 370 

by 20 degrees or more, the posture is classified as ‘back-bending’. An ‘arm-raising’ entails both arms being 371 

at or above shoulder level; and a ‘squat’ is when both knees are bent at an angle of 150 degrees or less. 372 

 373 

 374 
Figure 7. Examples of Postures in Training and Testing Images 375 

 376 

  377 
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4.2. Data Collection 378 

The tests were carried out in the Construction Laboratory at the University of Michigan. As shown in Table 379 

1, male subjects with divergent physical attributes such as height and Body Mass Index (BMI) were 380 

recruited to represent human variability in silhouettes. Only male subjects were recruited because the 381 

overwhelming majority of construction workers at high ergonomic risk are men; in the U.S., for example, 382 

only 2.4% of production workers in construction are women (CPWR 2018). To ensure the representation 383 

of typical physical characteristics among males aged 20 and over, six subjects with heights and BMIs 384 

between the 25th and 75th percentiles were the main focus of such recruitment (CDC 2012; Flegal et al. 385 

2012). However, to test extreme samples, two additional subjects, one in the 4th and the other in the 96th 386 

percentile for height, were also recruited. Thus, testing images including various postures were collected 387 

from eight subjects, reflecting possible variations on body silhouettes due to height (ranging from the 4th 388 

to the 96th percentile) and BMI (ranging from the 5th to the 75th percentile). 389 

 390 
Table 1. Subjects’ Heights and BMIs 391 

 #1 #2 #3 #4 #5 #6 #7 #8 Average 

Height 163cm 
(4.1 %tile) 

173cm 
(34.4 %tile) 

175cm 
(44.7 %tile) 

175cm 
(44.7 %tile) 

180cm 
(70.4 %tile) 

180cm 
(70.4 %tile) 

181cm 
(74.8 %tile) 

189cm 
(95.9 %tile) 177cm 

BMI 25.6 
(normal) 

18.5 
(under) 

24.4 
(normal) 

25.2 
(normal) 

23.5 
(normal) 

29.3 
(over) 

26.3 
(over) 

25.8 
(over) 24.9 

Note: under (underweight, < 18.5 BMI), normal (normal weight, 18.5 to 24.9 BMI) and over (overweight, 392 
25.0 to 29.9 BMI) 393 

 394 

The subjects were asked to simulate each posture 10 times. They began by standing up straight, and then 395 

either bent their backs up to 90 degrees; raised their arms as high as they comfortably can; or bent their 396 

knees as if they were squatting, followed by standing up straight once more. They were given enough time 397 

to practice so that they were able to simulate the postures identically. 398 
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While simulating each posture, videos were recorded from three viewpoints (left, rear left diagonal, and 399 

rear), as shown in Figure 8. These perspectives were chosen in consideration of the fact that front views are 400 

not easily obtainable on construction sites, where workers generally face workspaces such as walls. 401 

 402 
Figure 8. Testing Images from Three Viewpoints (Left, Left-diagonal and Rear) 403 

 404 

From videos recorded at 30 frames per second, a total of 60,091 image frames (or around 7,500 per subject) 405 

were extracted as testing images, as shown in Table 2. Additionally, motion data for each subject were 406 

collected using a RGB-D sensor (i.e., Microsoft KinectTM) to identify postures in the corresponding images 407 

as ground truth. For the training data, nine different virtual human models representing, respectively, the 408 

15th, 50th and 85th percentiles for male height and BMI were created, and then simulated in a VE using 409 

one subject’s motion data. Next, image sequences were extracted from the same viewpoints with testing 410 

images. Both training and testing images were processed to obtain body silhouettes, after which image 411 

features were extracted using MATLAB software. 412 

Table 2. Numbers of Testing Images of Each Posture, by Viewpoint 413 

Postures Viewpoints 
Left Left-diagonal Rear Sub-total 

Standing 9,616 7,676 9,906 27,198 
Back-bending 3,829 3,070 3,937 10,836 
Arm-raising 4,823 3,355 3,862 12,040 

Knee-bending 3,640 3,122 3,255 10,017 
Subtotal 21,908 17,223 20,960 Total: 60,091 

 414 
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4.3. Testing Conditions and Measures 415 

Laboratory testing of the proposed method served three purposes: 1) assessment of the overall classification 416 

performance by viewpoint, without taking the selection of optimal training images into account (Test #1); 417 

2) establishing the effect of viewpoint-choice on classification performance (Test #2); and 3) measuring the 418 

effect of the virtual models’ physical attributes on classification performance (Test #3). Below, a 419 

comparison between the results of Test #1 and those of Tests #2 and #3 will be followed by a discussion of 420 

the advantages of virtual training images that are readily adjustable to real-world conditions. 421 

In Test #1, the proposed method was assessed from each viewpoint and for all subjects, while the SVM 422 

classifier learned all the virtual training images from nine virtual models and three viewpoints, without 423 

adjusting either for viewpoints or for anatomical variation in the virtual models. As its measures of 424 

classification performance, Test #1 utilized accuracy, i.e., the ratio of true positives to the total number of 425 

images; precision, the ratio of true positives to the combined total of true and false positives; and recall, 426 

the ratio of true positives to the combined total of true positives and false negatives. These three measures 427 

were calculated in a confusion matrix to define the performance of a given classification model. 428 

Test #2 examined the hypothesis that, if training images and testing images shared the same viewpoint, 429 

classification performance would be improved. For this test, two sets of training images were selected, one 430 

from a left view and the other from a left-diagonal view, on the grounds that these only slightly different 431 

viewpoints could cause confusion when classifying postures, and thus be more challenging for the SVM 432 

classifier. Then, each subject’s posture was classified using both the left and left-diagonal sets of training 433 

images. Using a paired t-test, the classification accuracy when the same viewpoint was used in both the 434 

training and testing images was compared against such accuracy when the viewpoints did not match. 435 

Test #3 was designed to test the hypothesis that the selection of training images from a virtual model with 436 

similar physical attributes to the subject would enhance classification accuracy. For this test, nine sets of 437 

training images were sorted according to the physical attributes of the virtual models, i.e., 3 (short, average, 438 
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tall) ×3 (underweight, medium, overweight), and used to classify the subjects’ postures. Classification 439 

accuracy when selecting a virtual model with similar physical attributes to those of each subject was then 440 

compared against the accuracy achieved when dissimilar virtual models were selected, again via a paired t-441 

test. 442 

 443 

4.4. Testing Results 444 

Table 3 presents the proposed system’s posture-classification results by viewpoint. The results indicate that 445 

the proposed algorithms performed better when testing images from a left view (88.6%) than when testing 446 

those taken from a left-diagonal perspective (85.6%) or from the rear (78.4%). More specifically, there was 447 

no confusion between back-bending, arm-raising and knee-bending postures in a left view, whereas 448 

confusion between these postures increased as the viewpoint shifted from the left toward the rear. This 449 

implies that a side view will likely yield the best classification results. Most classification errors occurred 450 

as a consequence of confusion between standing and other postures (i.e., back-bending, arm-raising and 451 

knee-bending). From all three viewpoints, significant numbers of standing-posture images were wrongly 452 

classified as depicting one of the other three postures, and conversely, the other three postures tended to be 453 

wrongly recognized as standing. Further investigation revealed that the cause of such errors was similarity 454 

in the subjects’ transitions from standing to other postures. 455 

Table 3. Posture-classification Results by Testing-image Viewpoint 456 

 
 

Predicted Postures 
Recall*** 

1 2 3 4 
Actual postures 

of testing 
images from      
a left view 

Accuracy** = 
88.6% 

1* 8,075 819 719 3 84.0% 

2 265 3,564 0 0 93.0% 

3 12 0 4,811 0 99.7% 

4 669 0 0 2,971 81.5% 

Precision**** 89.5% 81.3% 87.1% 99.8% - 

Actual postures 
of testing 

images from      

1 6,558 538 509 71 85.4% 

2 221 2,849 0 0 92.7% 

3 8 0 3,323 24 99.0% 
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a left-diagonal 
view 

Accuracy = 
85.6% 

4 1,104 0 0 2,018 64.6% 

Precision 83.1% 84.1% 86.6% 95.3% - 

Actual postures 
of testing 

images from           
a rear view 
Accuracy = 

78.4% 

1 8,305 1,402 75 124 83.8% 

2 862 3,075 0 0 78.1% 

3 904 197 2,692 69 69.7% 

4 895 0 0 2,360 72.4% 

Precision 75.7% 65.8% 97.2% 92.3% - 

* 1. Standing, 2. Back-bending, 3. Arm-raising, and 4. Knee-bending 
** Accuracy: Ratio of true positives to total number of images 
*** Recall: Ratio of true positives to combined total of true positives and false negatives 
**** Precision: Ratio of true positives to combined total of true and false positives 

 457 

The findings of Test #2, which investigated postural variability by viewpoint, underline the importance of 458 

training-image viewpoint selection. As shown in Table 4, mean accuracy was 88.7% when the same views 459 

were used for both training and testing images, but it fell to 80.8% when the alternative view was used for 460 

training images (p = 0.004). The classification errors would increase as the mismatch between training- and 461 

testing-image viewpoints became more marked (e.g., if training images from the rear were combined with 462 

testing images from the left). This result also indicates that differences in the viewpoints from which images 463 

were captured can produce strong variations in body silhouettes, and thus, that the perspectives from which 464 

training and testing images are taken should match each other to enhance classification accuracy. 465 

  466 

  467 
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Table 4. Classification Accuracy by Training-image Viewpoint Similarity or Dissimilarity 468 

Subject 
Classification Accuracy 

Training: Left View 
Testing: Left View 

Training: Left-diagonal View 
Testing: Left View 

#1 90.7% 87.5% 

#2 81.6% 83.0% 

#3 84.1% 81.6% 

#4 89.0% 82.6% 

#5 85.5% 83.7% 

#6 89.3% 72.4% 

#7 94.7% 70.0% 

#8 94.2% 85.8% 

Mean 88.7% 80.8% 

Standard Deviation 4.3% 5.9% 

Note: p = 0.004, paired t-test 

 

Table 5 presents the proposed system’s classification accuracy according to which virtual model was 469 

selected as the source of the training images (Test #3). Training images taken from virtual models with 470 

similar physical attributes to those of the real-world subjects were identified with greater accuracy (mean: 471 

85.8%, standard deviation: 2.4%) than ones that used other virtual models (mean: 83.0%, standard deviation: 472 

3.7%; p = 0.004). These results indicate that variations in silhouette shape linked to individuals’ physical 473 

attributes affected classification performance, and thus, that posture-classification algorithms must take 474 

individual differences in height and body mass into account. 475 

  476 



24 

 

Table 5. Classification Accuracy by Training-model Similarity or Dissimilarity to Subjects 477 

Subject 
Classification Accuracy 

Similar Physical Attributes* Different Physical Attributes 
#1 85.6% 81.7% 

#2 84.2% 82.0% 

#3 83.9% 77.4% 

#4 89.4% 89.1% 

#5 81.9% 79.6% 

#6 85.1% 81.3% 

#7 87.3% 85.9% 

#8 89.0% 86.6% 

Mean 85.8% 83.0% 

Standard Deviation 2.4% 3.7% 

Note: p-value = 0.004, paired t-test 
* Height and BMI. 

 478 

The mean accuracy the proposed system attained when using training images from a virtual model that 479 

matched the individual subject, 85.8%, was slightly lower than the overall accuracy of 88.6% obtained 480 

when all nine virtual models were used to reflect individual subjects’ key physical differences. This implies 481 

that, in each subject’s body silhouette, there were some variations that could not be adequately reflected by 482 

virtual human models, even those of similar height and BMI to the real person. In turn, this suggests that, 483 

rather than adjusting the virtual model’s height and BMI for each subject, it might be preferable to create 484 

virtual models that reflect population variability in body silhouettes, and require the classifier learn such 485 

variability via training images of all possible virtual human models. 486 

 487 
5. DISCUSSION 488 

The results of experimental testing of the proposed system showed that its overall classification accuracy 489 

ranged from 78.4% to 88.6%, depending on image viewpoint. It was also found that the use of training 490 

images similar to testing images (e.g., images captured from the same viewpoint or from a virtual human 491 

models with similar physical attributes to the human subject) significantly increased overall classification 492 
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performance. Despite significant differences in color and texture between virtual training images and real-493 

world testing images, the proposed method yielded acceptable performance (88.6%), implying the strong 494 

potential for practical applications of automated postural ergonomic risk assessment that minimizes the 495 

need to collect real-world training images. In addition, the above testing results imply that the use of virtual 496 

human models that reflect population variability, and the selection of very similar viewpoints to those in 497 

real-world views, will be essential if accuracy is to be improved. Taken together, these results strongly 498 

support the utility of virtually created training datasets with high adjustability for these factors. 499 

On examining incorrectly classified image frames, it was found that most errors were associated with 500 

transitional postures, i.e., postures near the frame at which a subject transitioned between standing and 501 

another posture such as back-bending, arm-raising, or knee-bending (Figure 9). As this study defined each 502 

posture on the basis of body angles (e.g., 20 degrees for back-bending, 150 degrees for knee-bending), 503 

postures with body angles close to but not actually meeting these criteria had similar body silhouettes to 504 

those that did meet them, and this was the main cause of classification errors. It should also be noted here 505 

that the tests used in this study were based on all image frames from the relevant videos, which were shot 506 

at 30 frames per second, and that each posture was simulated repetitively within a short cycle time (e.g., 2-507 

3 seconds), and this meant that almost 20% of all images were of transitional postures. However, it is 508 

expected that postural transitions would occur less frequently in practice, and that this would reduce the 509 

number of errors. 510 

 511 
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 512 

Figure 9. Classification Error Analysis 513 

 514 

Further improvement of the proposed system will require algorithmic solutions capable of dealing with 515 

transitional postures. Chalamala and Kumar (2016) have found that probabilistic classifiers are preferable 516 

to deterministic methods such as SVMs for continuous actions with random changes of class. They 517 

proposed a probabilistic model based on transition probabilities (between walking and running) and 518 

occurrence probabilities (whether walking or running), and obtained superior performance to that 519 

achievable by deterministic methods. Though further studies are required to test the feasibility of a 520 

probabilistic approach to postural ergonomic risk assessment, it could represent a viable means of reducing 521 

errors resulting from transitional postures. 522 

While further improvement to classification performance would be desirable and may well be possible, the 523 

existing system’s overall accuracy of nearly 90% compares favorably to observational posture recording. 524 

To achieve better performance, recording videos from a left view would be required, but as it is assumed 525 

that images will be collected using a hand-held camera or a smartphone camera, the camera angle can be 526 
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easily adjusted to suit job conditions. Previous studies that investigated human observers’ posture-527 

classification accuracy have found that even experienced ergonomic analysts could make errors more than 528 

10% of the time (Burt & Punnett 1999; Paquet et al. 2001; Spielholz et al. 2001; Lowe 2004; Weir et al. 529 

2011). Importantly, postural ergonomic analysis based on human observations takes about 30 minutes per 530 

task (Lowe 2004), whereas its 2D image-based equivalent is much more rapid and requires less ergonomics 531 

expertise on the part of those performing it, e.g., construction safety managers. Even though further in-532 

depth investigation by human observers may be needed to understand the individual factors such as working 533 

habits or the environmental factors such as poorly designed workspaces that contribute to awkward postures, 534 

the proposed method will be a useful means of quickly identifying risky activities that need immediate 535 

intervention. 536 

Notwithstanding the potential of the proposed vision-based posture classification algorithm, several 537 

obstacles still need to be overcome before it can be applied in real-world conditions. First, the test for the 538 

algorithm was made only for single postures according to bodily attributes. In reality, however, 539 

combinations of postures (e.g., back-bending + knee-bending, or knee-bending + arm-raising) are 540 

frequently observed. As such, the proposed method needs to be further validated with more complex 541 

postures involving various such combinations. Also, large hand-tools and other objects held by workers can 542 

significantly affect the shape of their silhouettes as obtained via background subtraction, and this might 543 

lead to classification errors. To address this problem, more sophisticated post-processing algorithms may 544 

be required to detect objects and recover clear silhouettes. In addition, since workers are always on the 545 

move in the workplace, the views captured by a video camera will also continually be changing. Thus, 546 

given that a strong similarity of viewpoint between training images and testing images was found in this 547 

study to be key to classification accuracy, it will be essential to determine how best to capture training 548 

images of workers who are always on the move. Automated object-orientation detection to identify an 549 

object’s rotation angles, based on statistical pattern-recognition techniques, could be a solution for 550 

determining how target workers are oriented in camera images (Vailaya et al. 2002).  551 
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6. CONCLUSIONS 552 

This study has proposed a 2D image-based posture-classification method based on machine-learning 553 

algorithms, with the wider aim of automating current postural ergonomic evaluation methods. To assess the 554 

proposed method under diverse conditions, laboratory-based tests were conducted with eight male subjects 555 

possessing different physical attributes. These tests established that the proposed algorithm is capable of 556 

robust posture-classification accuracy, comparable to that attained by human observers. In particular, 557 

considering that the use of customized training datasets created and manipulated in a VE showed better 558 

classification performance, the proposed approach has great potential for dealing with high variability of 559 

human postures that has been one of the challenges in the computer vision domain.  560 

The proposed approach creates a range of opportunities for both research and practice. On the research side, 561 

it could be used to tackle several persistent challenges to vision-based posture classification, including 1) 562 

insufficient numbers of training images for machine learning, 2) how to deal with changes in color, texture 563 

and contrast in images, and 3) the complexity of representing postures across a range of different 564 

observational viewpoints and workers’ anatomical differences. First, a novel method of using training 565 

datasets for diverse postures from a VE was suggested to minimize the effort associated with collecting 566 

training images from a real world. Also, the above test results show that the use of body silhouettes can 567 

address potential errors caused by differences between virtual and real-world images and/or by variations 568 

in image quality. In addition, the proposed approach is robust to intra- and inter-class variability consequent 569 

upon changing viewpoints and individual differences in workers’ physical attributes that could lead to 570 

variations in the imaged postures. Using virtual human models, this approach can create training images in 571 

which body mass and viewpoint can be adjusted as required. Beyond these contributions of the proposed 572 

approach,  573 

In terms of practice, although the proposed approach needs to be further validated with images containing 574 

the more complex postures often adopted in construction, it has the potential to automate ergonomic 575 

assessment methods that are currently time-consuming and error-prone because of their manual procedures. 576 
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In construction especially, those responsible for on-site health and safety are few in number and generally 577 

lack the expertise needed to perform manual ergonomic assessments when identifying WMSD risks. The 578 

proposed approach can help even those practitioners who lack sufficient ergonomic knowledge to perform 579 

postural ergonomic risk assessments simply by making videos of workers. In short, computer vision-based 580 

ergonomic assessment could open the door to proactive control of WMSDs among construction workers 581 

by quickly evaluating all tasks, identifying potential risks, and taking timely action to eliminate those risks. 582 
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