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Abstract—Epilepsy is a neurological illness caused by abnor-

mal discharge of brain neurons, where epileptic seizure can lead 

to life-threatening emergencies. By analyzing the encephalogram 

(EEG) signals of patients with epilepsy, their conditions can be 

monitored and seizure can be detected and intervened in time. As 

the identification of effective features in EEG signals is important 

for accurate seizure detection, this paper proposes a multi-view 

deep feature extraction method in attempt to achieve this goal. 

The method first uses fast Fourier transform (FFT) and wavelet 

packet decomposition (WPD) to construct the initial multi-view 

features. Convolutional neural network (CNN) is then used to 

automatically learn deep features from the initial multi-view fea-

tures, which reduces the dimensionality and obtain the features 

with better seizure identification ability. Furthermore, the mul-

ti-view Takagi-Sugeno-Kang fuzzy system (MV-TSK-FS), an 

interpretable rule-based classifier, is used to construct a classifi-

cation model with strong generalizability based on the deep mul-

ti-view features obtained. Experimental studies show that the 

classification accuracy of the proposed multi-view deep feature 

extraction method is at least 1% higher than that of common 

feature extraction methods such as principal component analysis 

(PCA), FFT and WPD. The classification accuracy is also at least 

4% higher than the average accuracy achieved with single-view 

deep features. 

Index Terms—EEG; Seizure detection; Multi-view; Feature 

extracting; Deep learning.1 

I. INTRODUCTION

bout 1-2% of people worldwide suffer from epilepsy. The

unpredictability of epileptic seizures is the main cause of 

disability and even death. Although most people with epilepsy 

appear the same as able-bodied people during non-seizure 

periods, the spontaneity of seizures affects the quality of life 

seriously and can be fatal. Encephalogram (EEG) is an im-
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portant means to record the activities of brain neurons. The 

electrophysiological signals generated by the neurons contain 

information that reflects the overall brain activities at the cer-

ebral cortex. Since the electrical brain waves resulting from 

abnormal discharge of neurons during seizures are different 

from those generated during normal discharges, EEG can be 

used to detect seizures by identifying the characteristic brain 

signals, which is instrumental for predicting the onset of sei-

zures and applying in-time interventions. On the other hand, 

accurate seizure detection is a key to automatic closed-loop 

treatment, where electrical stimulation, drug infusion, cooling 

or biofeedback, for example, can be applied to patients when 

seizure is detected. The types and the extent of closed-loop 

treatments may also be determined automatically based on the 

features extracted from the epileptic EEG signals that inform 

patient’s condition. Besides, accurate seizure detection can be 

used to assess patient’s condition during neurological surgery. 

With the advance of machine learning, intelligent algo-

rithms have been increasingly applied to improve the accuracy 

of EEG-based seizure detection. These algorithms include 

classification methods such as support vector machines (SVM) 

[6, 7], naive Bayes (NB) [9], neural networks [11] and fuzzy 

logic systems [13, 14], as well as feature extraction methods 

like principal component analysis (PCA) [15], wavelet packet 

decomposition (WPD) [6, 16] and high order crossings (HOC) 

[17]. For seizure detection, features are extracted from raw 

EEG signals to train classification models that can identify 

different states of epilepsy. Despite the proliferation of feature 

extraction and classification methods, extracting effective 

features with essential information for accurate seizure detec-

tion is still a critical challenge. 

In recent years, deep learning emerges as an effective ma-

chine learning paradigm that has received extensive attention 

in feature learning. In deep learning, the idea of multi-level 

combinations is adopted to achieve complex feature represen-

tations through a large number of simple expressions. It learns 

and adjusts the weights at each layer of the neural network to 

obtain the features that are more likely to attain the desired 

output. That is, the input features are optimized at each layer 

to learn increasingly discriminative features. Deep learning 

techniques have been applied effectively for EEG signal pro-

cessing. Different feature extraction methods are adopted to 

extract features from the EEG signals [18-20], whereby sei-

zure detection is performed using convolutional neural net-

work (CNN). 

On the other hand, multi-view learning technology also 

finds applications in epileptic seizure detection. Various fea-

ture extraction methods are applied to obtain multi-view da-

tasets of EEG signals [14, 21]. The datasets are then used for 
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detecting epileptic seizure by using multi-view learning tech-

niques. Multi-view learning technology is a learning paradigm 

with multi-view data that leverages the similarities and differ-

ences among the views. Multi-view learning algorithms can be 

divided into three types, namely, co-training, multiple kernel 

learning and subspace learning. Co-training algorithms per-

form alternate training of different views to maximize data 

consistency among the views. Multiple kernel learning algo-

rithms train models using different kernels that are associated 

with different views, such that the kernels are combined line-

arly or nonlinearly to improve learning performance. Subspace 

learning algorithms consider data from multiple views from a 

common subspace and use different techniques to obtain the 

subspaces of the multi-view data. Although the multi-view 

learning approaches are significantly different, they are pri-

marily based on the principles of consensus or complementa-

rity to ensure successful multi-view learning. 

In order to construct effective EEG features for seizure de-

tection, this paper proposes a deep multi-view feature extrac-

tion method for EEG signals, which is based on multi-view 

and deep learning technology to construct classifier for seizure 

detection. The deep multi-view feature learning method pro-

posed in this paper is summarized below. 

1) Construction of initial multi-view EEG features Many 

methods have been proposed to construct features from 

EEG signals, each with specific advantages. In this pa-

per, multi-view features are used to combine the ad-

vantages of these methods for seizure detection. The 

multi-view features constructed here include frequency 

domain features acquired by fast Fourier transform 

(FFT), time-frequency features acquired from WPD, 

and the original time domain features. 

2) Construction of deep multi-view features To improve 

the effectiveness of the initial multi-view features, 

CNN is used to construct deep multi-view features 

based on the initial multi-view data. Compared with the 

initial multi-view features, the deep multi-view features 

extracted has lower dimensionality and higher dis-

criminability. 

3) Construction of multi-view learning classifier Finally, 

multi-view classifier learning technology is adopted to 

train the classification model based on the deep mul-

ti-view features learned by using CCN, which yields a 

more generalized multi-view classifier for seizure de-

tection with EEG signals. 

The proposed method is advantageous in that it utilizes not 

only deep learning but also multi-view learning, where shal-

low features of the EEG signals are first generated from dif-

ferent views to construct the multi-view deep features with 

deep learning. This can optimize the feature representation 

effectively for seizure detection. When multi-view deep fea-

tures are integrated with multi-view learning to generate the 

multi-view classifier for seizure detection, the generalizability 

of the proposed method is further enhanced. 

This paper is organized as follows. Section II describes the 

relevant technical background of the proposed algorithm. Sec-

tion III proposes the seizure detection algorithm based on deep 

multi-view feature learning. Experimental analyses are given 

in Section IV. Finally, conclusions and future work are de-

scribed in Section V. 

II. RELATED WORK 

This section provides a brief introduction of the work relat-

ed to the proposed method, including the significance of using 

EEG signals for seizure detection, the application of machine 

learning and deep learning in epileptic seizure detection, and a 

review of multi-view learning techniques. 

A. Seizure detection using EEG signals 

EEG signals reflect the activities of brain neurons and have 

been widely used in the fields of epileptic seizure detection. 

Automatic algorithms are developed to analyze EEG signals 

so that the information contained inside the signals is con-

verted into distinctive outputs for determining different states 

of epilepsy, e.g. whether seizure is about to occur or is occur-

ring. A major goal of EEG-based epilepsy detection is to make 

such conversion as fast and accurate as possible. A variety of 

epilepsy detection algorithms have been proposed in recent 

years [8, 10, 12, 14, 22]. In [22], a method adopting transfer 

learning and semi-supervised learning is used to classify the 

status of epilepsy with EEG signals. In [14], multi-view 

learning technology is used for automatic recognition of epi-

leptic EEG signals based on shallow features. In [8, 10, 12], 

deep learning techniques are used to automatically classify 

epilepsy by using deep features. These algorithms apply mul-

ti-view learning and deep learning techniques separately and 

demonstrate promising performance. This suggests that the 

integration of multi-view learning and deep learning is a 

promising approach to further increase the accuracy of 

EEG-based epilepsy detection. 

B. EEG epilepsy detection based on machine learning  

Machine learning techniques have received considerable at-

tention for automatic seizure detection with EEG signals. In 

[23], four methods – random forest (RF), decision tree (DT) 

algorithm C4.5, SVM+RF, SVM+C4.5 – are used to detect 

seizure, where RF yields the best classification results. In [24], 

approximate entropy and sample entropy extracted by WPD 

are used as features, whereby SVM and extreme learning ma-

chine are used as classifiers for epileptic seizure detection. 

Besides, WPD and kernel PCA (KPCA) are adopted in [25] 

for dimensionality reduction, followed by using Tak-

agi-Sugeno-Kang (TSK) fuzzy logic system as the classifier. 

Advancement in automatic seizure detection is achieved with 

these algorithms.  

With the development of deep learning, classical algorithms 

such as stacked auto-encoder [26-28], deep belief networks 

[29-31], CNN [32-34] and recurrent neural networks [35-38] 

have been applied to biomedicine effectively. Attempts have 

been made to use CNN to process EEG signals. For example, 

CNN is used to perform one-dimensional convolution on the 

original raw EEG signals to predict epileptic seizure [18]. In 

[19], EEG signals are transformed to the frequency domain by 

Fourier transform and classified using CNN. Moreover, EEG 
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signals are encoded into pixel colors through feature pro-

cessing to form a two-dimensional pattern [20] for epileptic 

seizure prediction. In general, deep learning techniques have 

demonstrated promising performance in EEG signal pro-

cessing. 

C. Multi-view learning technology 

Multi-view learning is a machine learning paradigm devel-

oped for datasets with features from different views. Since 

multi-view cooperation can effectively utilize both the inde-

pendence of each view and the correlation between different 

views in the learning process, a better modeling effect is 

achieved when compared with models obtained based on sin-

gle-view data. For dataset without natural segmentation of 

features from different views, it is possible to manually con-

struct different views for multi-view learning to achieve better 

learning effect than methods that use the original features from 

a single view only. 

Canonical correlation analysis (CCA) [39, 40], co-training 

[41, 42], sparse multi-view SVM [43] are common algorithms 

that have been applied to different multi-view data application 
scenarios. In fact, multi-view learning techniques have been 

applied to detect epileptic seizure with EEG signals. Tensor 

decomposition is performed on multi-view features to extract 

new features which can enhance classification performance for 

seizure detection [21]. Multi-view fuzzy system classifier is 

proposed in [14] for epileptic seizure detection with EEG sig-

nals, where multi-view data are obtained by adopting different 

feature extraction methods and utilizing TSK fuzzy system as 

classifier to train the detection model. 

III. EPILEPSY DETECTION BASED ON EEG SIGNALS USING 

DEEP MULTI-VIEW FEATURE LEARNING 

In the proposed method, the initial multi-view features are 

constructed using FFT and WPD with the original raw EEG 

signals. The features are then used to generate deep mul-

ti-view features using deep neural networks and CNN. Finally, 

a multi-view classification model is trained using the deep 

multi-view features. In this section, the overall framework of 

the proposed method is described in subsection A. The details 

of the initial feature representation from three different views 

of the EEG signals are given in subsection B. The structure of 

the CNN used to extract deep features from the different views 

is introduced in subsection C. The procedure of constructing 

the classifier using the multi-view Takagi-Sugeno-Kang fuzzy 

system (MV-TSK-FS) and deep multi-view features is de-

scribed in subsection D.  

A. Framework of Deep Multi-View Learning for Epilepsy 

Detection  

The framework of the proposed method is shown in Fig. 1. 

It consists of three core components, i.e., the construction of 

the initial multi-view feature, the automatic learning of deep 

multi-view features and the training of the multi-view classifi-

er. 

B. Initial Multi-View Features Construction 

The original EEG signals are time domain signals. Although 

the signals contain some useful time features, features in other 

domains can be used to extract more discriminative infor-

mation. Transformation of the EEG signals from the time do-

main can be conducted using traditional feature extraction 

techniques. To obtain frequency domain features, Fourier 

transform can be used to transform the signals from the time 

domain to the frequency domain. Any continuous signals can 

be transformed to the frequency domain provided that the sig-

nals are periodic. Furthermore, wavelet transform can be used 

to transform the signals into the time-frequency domain and 

obtain the instantaneous frequency at each time point while 

retaining the time features of the signals. When calculating the 

instantaneous frequency, since the signal length is very short, 

the frequency features obtained by wavelet transform is more 

accurate. 

In the proposed method, features are extracted from the 

original EEG signals from three views, i.e., time domain, fre-

quency domain and time-frequency domain, to construct the 

initial multi-view EEG data. 

1) Time Domain 

The original EEG signals are time-series signals that change 

with time. A discrete point in the signals represents the energy 

intensity at a certain time, or the measured voltage value at 

that moment. This paper uses the original EEG signals as the 

features of the time domain view. Fig. 2 plots a channel of the 

EEG signals from the time domain, where the horizontal axis 

is time and the vertical axis is the amplitude of the signal.  

2) Frequency Domain  

EEG signals can be considered as the superposition of sig-

nals of different frequencies. The frequency range of interest 

spans from 0 Hz to 60 Hz. It is divided into six frequency 

bands: Delta-1 (0-2 Hz), Delta-2 (2-4 Hz), Theta (4-8 Hz), 

Alpha (8-15 Hz), Beta (15-30 Hz) and Gamma (30-60 Hz). 

In this study, in order to reduce the number of features in 

the frequency domain and to preserve the original features, the 

sampling interval after discrete Fourier transform is set to 1 

Hz. The studies in [44, 45] show that the features of epileptic 

seizure mainly appear between 4Hz and 30Hz. Hence, we 

have adopted the frequency band between 4 Hz and 30 Hz in 

our experiments to construct the initial features in the fre-

quency view. Fig. 3 shows the frequency domain features ob-

tained by transforming the time domain signals shown in Fig. 

2, where the horizontal and the vertical axis represent fre-

quency and amplitude respectively. 

3) Time-frequency Domain 

Time-frequency features describe the instantaneous fre-

quency of the signals at various time points. Wavelet decom-

position is a commonly used method to transform time domain 

signals to the time-frequency domain, where the trigonometric 

function base of Fourier transform is changed to the wavelet 

function base. There are two variables in the wavelet functions, 

i.e., a  and  , where a  controls the expansion and contrac-

tion of the wavelet transform, i.e., frequency; and   controls 

the translation of the wavelet transform, i.e., time. By control-

ling these two variables, wavelet transform can realize adap-
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tive time-frequency signal analysis on multiple scales.  

WPD is a common wavelet transform method [24, 46]. It is 

used in this paper to obtain time-frequency features of the 

EEG signals. The wavelet basis function adopted is 

Daubechies (dbN), which has good regularity. Since the order 

of wavelet basis functions increases with the smoothness of 

the functions and the localization ability in the frequency do-

main, the higher the order of the functions, the better the re-

sults of band division. However, high order vanishing mo-

ments would lead to increase in computation time which is 

undesirable and deteriorates real-time performance. In this 

paper, the order of the wavelet functions is set to 4. Since the 

signals to be transformed into the time-frequency domain are 

three-dimensional data (channel * frequency * time), the 

number of features after transformation is usually very high. 

To reduce the number of features and the computation time, a 

large sampling interval of 2 Hz is used in the study. As for 

Fourier transform, the frequency range between 4 Hz and 30 

Hz is only considered [44, 45] as discussed above. Fig. 4 

shows the time-frequency domain features extracted from the 

time domain signals shown in Fig. 2, where the number of 

decomposition layers of the wavelet transform is set to 6. In 

the figure, the horizontal axis is frequency and the vertical axis 

is time. The amplitude at different time and frequency is rep-

resented using the colors shown in the legend on the right. 

C. Deep Multi-View Feature Learning 

In this paper, CNN is used to extract features from EEG 

signals from different views. The initial features in the time, 

frequency and time-frequency domains are first constructed 

following the approach discussed previously. Three different 

CNNs are then constructed to extract deep features from the 

initial features. The CNN uses the results of the output layer to 

calculate the approximation error and performs back propaga-

tion to update the network parameters during training. 

Since the feature vector calculated by the penultimate layer 

of the network only passes through one fully connected layer 

before reaching the output layer, the output of the penultimate 

layer is also considered to be optimized when optimizing the 

network structure according to the results of the output layer. 

Besides the penultimate layer, the CNN also learns a better 

feature expression of the middle layers through the training 

process. We have chosen the output of the penultimate layer as 

the deep features learned by the CNN. The deep features thus 

obtained not only have lower dimensionality than the original 

features, but also possess better discrimination ability to en-

hance the generalizability of the subsequent classification 

model. 

Figs. 5-7 show the CNN architecture used for extracting 

deep features from the three views. In the figures, the notation 
@k m* n  indicates the feature map at each layer of the net-

work, where k  is the number of feature maps of the layer, 

and m* n  is the size of the feature map. The two-dimensional 

convolution kernels of the network are represented by the no-

tation k * m* n , where k  is the number of convolution ker-

nels, m* n  is the size of the convolution kernel. Moreover, 

the three-dimensional convolution kernels are represented by 

k * m* n* l , where k  is the number of convolution kernels, 

and m* n* l  is the size of convolution kernel. The default 

step size of the convolution kernel is set to 1. The input of the 

CNN is the original features from each view, and the output is 

a vector with length equal to 2, corresponding to a seizure or 

non-seizure sample. If the sample is a seizure sample, the val-

ues for the first and the second dimension are 0 and 1 respec-

tively. The values are 1 and 0 respectively for a non-seizure 

sample. 

1) Time Domain Deep Feature Extraction Network  

The CNN architecture shown in Fig. 5 is used for deep fea-

ture extraction from the view of the time domain, which in-

cludes a total of 4 convolution layers and 3 fully connected 

layers. In the time domain, the multi-channel EEG signals can 

be represented as a two-dimensional matrix of channel number 

and time. Here, the input of the CNN is a two-dimensional 

matrix of size 23 * 256, i.e., the number of channels is 23. 

The first convolution layer of the CNN is shown in Fig. 5. It 

adopts a 1*128 convolution kernel and the step size is 1. A 

feature map with size of 23*129 is then obtained. The second 

convolution layer of the CNN adopts thirty 1*65 convolution 

kernels and the step size is 1. Thirty feature maps of size 

23*65 are then obtained. The subsequent convolutional layers 

are constructed by the same token. The fifth layer of the CNN 

is a fully connected layer, where the 10 feature maps of size 

13*16 are first converted into a 1*2080 vector, and further 

into a 1*1024 vector. The fully connected layers that follow 

are constructed in the same way. 

2) Frequency Domain Deep Feature Extraction Network 

Fig. 6 shows the CNN architecture used for deep feature 

extraction from the view of the frequency domain. It includes 

2 convolution layers and 3 fully connected layers. The initial 

multi-channel EEG features in the frequency domain can be 

represented as a two-dimensional matrix of the number of 

channels and the number of frequencies. Here, the input of the 

network is a two-dimensional matrix of size 23 * 27, i.e., the 

number of channels is 23 and the number of sampling points 

in frequency are 27. The operations of each layer in the CNN 

is similar to that of the time domain deep feature extraction 

network described above. 

3) Time-frequency Domain Deep Feature Extraction Net-

work 

Fig. 7 shows the CNN architecture used for deep feature 

extraction from the view of the time-frequency domain, which 

includes a total of 4 three-dimensional convolutional layers 

and 3 fully connected layers. The initial features of the mul-

ti-channel EEG signals in the time-frequency domain can be 

represented as a three-dimensional matrix of time, number of 

channels and number of frequencies. In Fig. 7, the input of the 

network is a three-dimensional matrix with the size of 256 * 

23 * 14, i.e., the number of sampling points in time is 256, the 

number of channels is 23 and the number of frequencies is 14. 

The operations of each layer in the CNN is also similar to that 
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of the time domain deep feature extraction network described 

above. Since the input is a three-dimensional matrix, the con-

volution kernel used is also three dimensional. The 

three-dimensional convolution operation is an extension of the 

two-dimensional operation in three-dimensional space. The 

operation is the same as that of the two-dimensional convolu-

tion operation. 

In Figs. 5-7, the tanh function is used in the three CNNs as 

the activation function to implement nonlinear transformation. 
The tanh function is given by 

( )tanh
e e

e e

−

−

−
=

+

x x

x x
x . 

Since ( )tanh x [ 1 1], −  and the mean value of the tanh func-

tion is 0, it is more suitable for practical applications than the 

sigmoid function.  
The CNNs adopt the softmax cross entropy as the loss func-

tion, which is defined as follows. 

jkz

1

softmax =
jiz

ji K

k

e
a

e
=


：

 

1 1

1
loss = log

N K

ji ji

j i

L y a
N = =
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The softmax function calculates the probability 

ji
a  that 

the jth sample belongs to the ith class, z
ji

 is the output of 

the jth sample at the ith output node. ={ | 1 }
j ji

y i , ,K=y  is 

the true label of the jth sample, K  is the total number of 

classes, N  is the total number of samples, and L  is the 

total average cross entropy loss of the N  samples. 

D. Classifier Training based on Multi-View Learning 

In the previous sections, we have focused on the construc-

tion of deep multi-view features using deep learning tech-

niques. In order to exploit the potential of integrating deep 

feature learning and multi-view learning, we need to train a 

multi-view classifier based on the multi-view deep features. 

Multi-view-learning based classification methods have been 

effectively used for EEG signal recognition [14, 21]. One ex-

ample is the Multi-view TSK Fuzzy system (MV-TSK-FS) 

[14], which is proposed to generate multi-view classifier for 

EEG-based epilepsy detection by using the traditional shallow 

multi-view features to train TSK fuzzy systems. 

In practice, any multi-view-learning based classifiers can be 

adopted to implement EEG-based epilepsy detection based on 

the multi-view deep features constructed by the abovemen-

tioned strategy. In this work, MV-TSK-FS [14, 47] is adopted 

due to its distinctive characteristics of good interpretability 

and uncertainty knowledge representation ability, which are 

inherited from fuzzy rules and fuzzy logic inference. Note that 

as a component of the proposed multi-view deep fea-

tures-based epilepsy detection method, MV-TSK-FS is only a 

feasible choice. It can be replaced with other multi-view clas-

sification methods in the future to enhance the effectiveness. 

Details of MV-TSK-FS can be found in Part I of the Supple-

mentary Materials section. Meanwhile, the algorithm of the 

proposed seizure detection is detailed in Table S1 of Part II in 

that section. 

IV. EXPERIMENTAL STUDIES 

This section presents the experiemnts conducted in this 

study and is arranged as follows:  

1) Subsection IV-A gives the specific details of the dataset, 

discusses the oversampling method used to cope with data 

imbalance, and describes the performance indices.  

2) Subsection IV-B reports the performance of the proposed 

algorithm and makes comparison with the related methods. 

The sliding window and cross-validation strategy adopted are 

also analyzed. 

3）Subsection IV-C compares the effect of the deep feature 

extraction method with that of the traditional shallow feature 

extraction methods in order to demonstrate the advantages of 

the former.  

4) Subsection IV-D presents the experiments conducted to 

verify that the method using the multi-view deep features are 

advantageous over the methods that only use single-view deep 

features. 

5) Subsection IV-E presents the experiments conducted to 

demonstate the effectiveness of the proposed method from the 

perspective of detection delay. 

A. Dataset, Data Preprocessing and Performance Indices  

The CHB_MIT dataset provided by the Boston Children's 

Hospital is adopted for the experiments. The dataset contains 

EEG signals collected from 23 patients. The data are orga-

nized into 24 groups, each group comprising of EEG signals 

acquired from a patient for more than 12 consecutive hours. 

Note that the 21st group of the data is the records of the first 

patient collected a few years later. The EEG data used in our 

experiments were collected with an 18-channel EEG device by 

the Boston Children's Hospital. Based on the data, the hospital 

generated multi-channel data with 23 channels, which are 

open and have been used extensively for research [1,4,5]. Fig. 

8 shows the raw data of the CHB-MIT dataset over a certain 

period of time in a data group. It contains continuous signals 

of the 23 channels, where each of these channels is derived 

from the difference between two channels of the original sig-

nals. 

Since the data are highly imbalanced, i.e., the ratio of the 

number of seizure samples to that of non-seizure samples is 

1:100, the evaluation would suffer from serious over-fitting 

problem if all the data are used directly. To reduce the imbal-

ance between the non-seizure and seizure data, part of the 

non-seizure data is abandoned, as performed in [3-5]. Fur-

thermore, over-sampling is applied to the seizure data, where 

sliding window is used to capture the data segment. The in-

terval between two samples is less than the width of one slid-

ing window. Since there is a repetition segment between two 

adjacent samples, the number of epileptic data segments is 

also increased. In our experiments, the EEG signals are split 

into multiple signal segments of 1s in length, each containing 

256 sample points. The data are shown in Table S2 of Part III 

in the Supplementary Materials section.  
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Three common performance indices are used here for ex-

perimental analysis, i.e., accuracy, sensitivity and specificity 

[48, 49]. They are defined as follows, 

Accuracy=(TN +TP) / (TP+TN + FP+ FN)
, 

Sensitivity = TP / (TP+ FN)
, 

Specificity = TN / (TN + FP)
, 

where TP , denoting true positive, is the number of seizure 

segments detected with seizure segments; FN , denoting false 

negative, is the number of non-seizure segments detected with 

seizure segments; FP , denoting false positive, is the number 

of seizure segments detected with non-seizure segments, and 

TN , denoting true negative, is the number of non-seizure 

segments detected with non-seizure segments. Accuracy is the 

proportion of correctly classified of seizure and non-seizure 

segments. Sensitivity is the proportion of correctly classified 

seizure segments. A classifier with high sensitivity has out-

standing performance in identifying seizure segments. Con-

versely, specificity is the proportion of correctly classified 

non-seizure segments. A classifier with high specificity is 

good at identifying non-seizure segments. 

B. Epilepsy Detection Performance 

In our experiments, the proposed method is evaluated by 

conducting the experiments on each group of data using k-fold 

cross-validation strategy, where the data are divided into k 

subsets of the same size to ensure consistent data distribution. 

Validation is repeated k times such that at each time, one of 

the subsets is taken as the testing set while the rest are used as 

the training set. The final validation result is given by the 

mean of the results in each individual validation. This strategy 

is effective in avoiding sampling bias and thus obtaining more 

convincing experimental results. In this paper, five-fold 

cross-validation strategy is adopted. The data of each patient 

are evenly divided into five parts, each containing the same 

amount of seizure and non-seizure data. Four of the five parts 

are used as the training set, and the part left behind is used as 

the validation set. The above procedure is repeated five times 

to obtain the mean and standard deviation of the results. 

Table I shows the average results of the experiments ob-

tained by performing five-fold cross-validation on the 24 

groups of data, in terms of the three indices described above. 

The average accuracy, sensitivity and specificity over all the 

data groups are 98.33±0.18%, 96.66±0.14% and 99.14±0.14% 

respectively, indicating that the performance indices of the 

proposed method are all above 90%, except the 12th group. 

Furthermore, among the 24 data groups, the accuracy, sensi-

tivity and specificity of the proposed method exceed 99% in 

12, 7 and 19 groups respectively, showing that the perfor-

mance is particularly outstanding from the perspectives of 

accuracy and specificity. 

We further analyze the proposed method by making com-

parison with the feature extraction methods proposed in recent 

studies [1-5,8,10,12] that exploit deep learning and use the 

same CHB-MIT dataset for seizure detection. Table II gives 

the feature extraction methods, experimental settings and the 

classification performance (in the table, NA meaning “not 

applicable”, indicating that the data is not used in the study). 

Note that the studies in [1-3] do not adopt cross-validation 

strategy, which precludes a clearer analysis of the performance 

of the seizure detection methods. A possible reason for this is 

due to the lack of seizure samples in the dataset that 

cross-validation would result in even fewer seizure samples 

for the validation set, thus creating large discrepancy between 

the test results and the real case. To avoid the problem, 25% of 

the samples are only used for training in [3-5]. In [8,10,12], 

different over-sampling methods have been adopted to in-

crease the number of seizure samples. As a result of data im-

balance, the accuracy and sensitivity of most of the algorithms 

under comparison are low. On the contrary, the proposed al-

gorithm exhibits better accuracy and sensitivity while main-

taining the same level of specificity, as indicated in Table II. 

The dataset of Patient 12 (the 12th group) corresponds to a 

special case that the dataset has been excluded from the ex-

periments in many previous studies [1-5]. In [8,10,12] and our 

study, among the 24 groups of data used in the experiments, 

the performance of this 12th group is found to be particularly 

inferior. This suggests that the EEG signals of the 12th group 

is highly unstable and irregular which introduces a lot of in-

terference to the learning process of the algorithms, thus lead-

ing to poor performance in most cases. 

In order to verify the effectiveness of using the strategy of 

sliding window to capture the seizure segments, we compare 

the sliding window method with the popular over-sampling 

method SMOTE [53]. Table III shows the average perfor-

mance of sliding window versus SMOTE for all the data 

groups. It can be seen that these two methods have similar 

performance, thus justifying that the sliding window strategy 

can be used effectively for over-sampling.  
Besides the five-fold cross validation strategy, we also use 

the strategy of percentage split to construct the training and 

testing sets. Table IV shows that the performance of using 

different percentage to split the testing set and the training set. 

It can be seen that the proposed algorithm is more stable when 

90% and 75% of the data are used respectively as the training 

set. When it is further reduced to 50%, the performance of the 

algorithm decreases slightly. 

C. Effectiveness of Deep Feature Extraction  

To evaluate the effectiveness of the proposed method in ex-

tracting deep features, comparison is made by using different 

feature extraction methods to extract the features and then 

applying the classifiers SVM, K-nearest neighbors (KNN), NB, 

DT and TSK-FS respectively to assess the performance of the 

feature extraction methods. The results are shown in Tables 

V-VII. For TSK-FS, the evaluation for the feature extraction 

method WPD is not conducted since the features obtained 

have high dimensionality. The results indicate that the deep 

features extracted from the frequency and time-frequency do-

main yield the best accuracy, specificity and sensitivity for all 

the classifiers. While the time domain deep features produce 

the best average sensitivity for all the classifiers, their effect 

on the enhancement of accuracy and specificity is moderate. It 
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can be concluded that the deep features obtained by using the 

deep feature extraction method are a better feature representa-

tion than those obtained by using the conventional methods 

from the three views, and therefore resulting in better classifi-

cation performance. 

D. Effectiveness of Multi-View Model Learning 

Table VIII compares the effect of different single-view 

classifiers and the proposed MV-TSK-FS multi-view learning 

classifier with the deep features extracted from the three views. 

The results show that adopted MV-TSK-FS classifier achieves 

the best results in terms of accuracy, sensitivity and specificity, 

indicating that the multi-view classifier MV-TSK-FS also 

plays a role in improving the classification performance of the 

proposed method. 

E. Performance on Detection Delay  

Detection delay reflects the real-time performance of EEG 

seizure detection algorithms [49]. Here, two indices are used 

to evaluate detection delay – the proportion of successful de-

tection S  and the average detection delay 
Latency

EO . S  is 

defined by 

1

1 sN

m

ms

S S
N =

=  , 

where 
s

N  is the total number of seizure records that are used 

for evaluation,  m
S  0，1  is used to indicate whether a 

record m is detected as a seizure record, with 1 and 0 specify-

ing respectively that seizure is detected or not. 
Latency

EO  is 

defined by  

Latency Latency,m

1

1
EO * EO

sN

m

m

S
K =

=  , 

where K  is the total number of seizure records that are suc-

cessfully detected and 
Latency,m

EO  is the detection delay of 

record m. 
Latency,m

EO  is calculated with the procedure below. 

First, the seizure segment of the first second is used for testing. 

If seizure is not detected, then the seizure segment in the next 

second is tested. The above process is repeated until seizure is 

detected, or when the segments in the first ten seconds are 

tested. If seizure is detected with the segment in the ith second, 

Latency,m
EO = i . Otherwise, a large constant value is assigned to 

Latency,m
EO  to indicate that seizure is not successfully detected 

with all the segments in the first ten seconds. 

The experimental results are shown in Table Ⅸ. It can be 

seen that the average detection delay is only 1.0431s, showing 

that the proposed method has a low detection delay. Besides, 

the proportion of successful detection is 99.95%, indicating 

that almost all epileptic events can be successfully detected 

within 10 seconds. 

V. CONCLUSIONS 

This study proposes a deep multi-view feature learning ap-

proach to develop epileptic seizure detection method with 

EEG signals. Multi-view classifier is used to integrate deep 

features from different views to further enhance the detection 

performance. The study demonstrates that the deep feature 

extraction method and the introduction of multi-view learning 

are instrumental for epilepsy detection with EEG signals. Ex-

perimental studies show that the deep features concerned in 

this study can increase the detection performance when com-

pared with traditional feature extraction methods. 

Despite the promising results, there exist issues that deserve 

further study. For example, the present study only concerns 

feature from the time, frequency and time-frequency domains, 

while EEG signals also contain other useful features such as 

statistical features and nonlinear features, which can be ex-

ploited to enhance seizure detection performance. How to 

make effective use of these features is an interesting work. 

Although the multi-view classifier MV-TSK-FS adopted in the 

proposed epilepsy detection method exhibits better perfor-

mance than single-view classifiers, there is still room for im-

provement, e.g. further improving the multi-view classifier by 

using more effective multi-view learning mechanism. In addi-

tion, while the focus of the study is to detect epileptic seizure, 

it can indeed be extended to the prediction of epileptic seizure. 

In-depth investigations will be conducted along these research 

directions. The codes are released and downloadable from 

https://github.com/Txiaobin/deep-multi-view-feature-learning. 
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Fig. 2 Time domain features of EEG signals 
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Fig 5 Deep feature extraction network with time domain features 
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Fig 6 Deep feature extraction network with frequency domain features 
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Classifier 
Time Domain Frequency Domain Time-Frequency Domain 

Time PCA LDA Deep features FFT FFT-PCA Deep features WPD WPD-PCA Deep features 

SVM 70.93±1.37 86.47±1.28 83.35±1.33 75.82±1.1 97.87±0.08 97.83±0.05 97.47±0.37 91.88±0.08 91.87±0.05 92.95±0.81 

KNN 67.81±2.72 83.50±2.72 81.92±1.49 75.79±1.23 97.38±0.26 97.35±0.48 98.16±0.21 91.55±0.06 91.60±0.48 93.31±0.63 

NB 84.49±0.19 84.04±0.86 79.71±1.21 76.23±1.09 87.84±0.59 89.43±0.49 97.08±0.48 77.80±0.25 73.91±0.49 92.56±0.62 

DT 84.78±0.41 89.93±1.11 83.08±1.39 72.13±1.64 95.49±0.82 95.47±0.05 95.58±0.32 77.87±0.23 87.63±0.05 91.66±0.94 

TSK-FS 81.15±0.23 71.47±0.68 71.33±1.49 78.70±0.99 94.61± 0.22 98.38±0.08 97.82±0.23 N. A.  91.89±0.35 93.41±0.59 

average 77.00±0.98 85.99±1.33 81.71±1.38 74.99±1.21 94.67±0.39 95.02±0.23 97.07±0.32 84.78±0.15 86.25±0.28 92.62±0.72 

 

TABLE V Accuracy of different feature extraction methods 

Fig. 8 The original multi-channel EEG signals 

Over-sampling method accuracy sensitivity specificity 

Sliding window 98.33±0.18  96.66±0.14  99.14±0.14  

SMOTE 98.91±0.24 97.97±0.12 99.38±0.18 

 

TABLE III The effect of over-sampling method on the performance 

Authors Feature Extraction Methods Groups Channels acc-sen-spe 

Rafiuddin et.al. [1]  Energy and coefficient of wavelet coefficients and statistical feature 23 23 80.16-NA-NA 

Khan et.al. [2] Relative energy and normalized coefficients of wavelet coefficients 5 NA 91.8-83.6-100 

Kiranyaz et.al. [3] 
Time domain, frequency domain, time-frequency domain and 

non-linear features. 
21 18 NA-89.0-94.7 

Zabihi et.al. [4] Seven features extracted from intersection sequence 23 23 94.6-89.1-94.8 

Samiee et.al. [5] Multivariate textural features extracted by GLCM 23 23 NA-70.1-97.7 

Xinghua Yao[8] Using independent RNN to extract feature 24 17 87-87.3-86.7 

Xinghua Yao[10] 
An attention mechanism and a bidirectional long short-term memory 
model exploiting both spatially and temporally discriminating features 

24 17 83.9-83.7-84.1 

Hengjin Ke[12] Using a Lightweight VGGNet to extract feature 24 19 98.1-98.9-97.4 

Proposed 
Time domain, frequency domain, time-frequency domain feature ex-

tracted using CNN 
24 23 98.3- 96.7 -99.1 

 

TABLE II Performance of existing seizure detection methods on the CHB-MIT dataset 

TABLE I Accuracy, sensitivity and specificity of the proposed method on 

the CHB-MIT dataset 

group accuracy sensitivity specificity 

1 99.57±0.15 99.37±0.16 99.67±0.13 

2 99.71±0.21 99.13±0.19 100±0.15 

3 99.09±0.19 98.02±0.2 99.57±0.16 

4 99.11±0.2 98.59±0.17 99.36±0.11 

5 99.35±0.17 98.28±0.1 99.87±0.12 

6 98.85±0.26 97.06±0.13 99.7±0.15 

7 99.28±0.13 99.31±0.12 99.28±0.14 

8 98.16±0.19 96.54±0.17 98.94±0.14 

9 99.64±0.13 99.26±0.15 99.8±0.16 

10 98.79±0.17 96.76±0.16 99.81±0.13 

11 99.35±0.2 98.35±0.11 99.85±0.11 

12 88.07±0.37 81.01±0.2 91.58±0.23 

13 98.69±0.24 96.19±0.14 99.92±0.13 

14 97.15±0.23 94.17±0.14 98.51±0.12 

15 98.39±0.18 96.27±0.16 99.44±0.13 

16 99.31±0.12 98.48±0.1 99.68±0.14 

17 97.19±0.18 93.8±0.11 98.77±0.18 

18 99.79±0.09 99.92±0.02 99.62±0.16 

19 99.63±0.13 99.26±0.09 99.8±0.11 

20 98.48±0.15 96.9±0.13 99.2±0.1 

21 96.61±0.19 92.71±0.21 98.61±0.15 

22 99.73±0.06 99.38±0.11 99.89±0.18 

23 98.72±0.14 97.63±0.15 99.27±0.13 

24 97.24±0.19 93.51±0.12 99.12±0.17 

average 98.33±0.18 96.66±0.14 99.14±0.14 

 

Percentage of train data accuracy sensitivity specificity 

90% 98.43±0.21  96.51±0.15  98.95±0.14  

75% 98.33±0.18  96.66±0.14  99.14±0.14  

50% 97.16±0.31 94.68±0.21 98.40±0.18 

 

TABLE IV The performance of different division percentage 

Classifier 
Time Domain Frequency Domain Time-Frequency Domain 

time PCA LDA Deep features FFT FFT-PCA Deep features WPD WPD-PCA Deep features 

SVM 44.84±3.10 29.53±3.21 34.97±2.43 56.92±1.75 88.37±0.15 87.43±0.16 96.11±0.68 62.74±0.23 62.77±0.16 88.91±1.35 

KNN 21.54±6.04 17.52±6.04 37.31±3.56 54.35±1.25 82.07±0.74 82.37±1.32 96.12±0.37 47.45±0.68 47.92±1.32 89.87±1.34 

NB 84.75±0.56 82.22±1.35 29.87±5.73 64.27±0.86 89.60±0.35 82.41±0.61 96.18±0.49 69.52±0.31 75.68±0.61 92.40±0.9 

DT 76.28±1.38 56.13±2.53 36.88±4.76 55.62±2.88 79.98±0.77 78.83±0.96 93.04±0.78 69.82±0.34 50.38±0.96 87.07±1.42 

TSK-FS 58.72±2.36 48.98±2.28 46.57±3.39 56.70±1.89 85.43±0.29 97.25±0.12 96.56±0.43 N. A. 84.99±0.53 90.92±1.25 

Average 56.85±2.68 46.35±3.08 34.76±3.97 57.79±1.73 85.01±0.46 82.76±0.63 95.36±0.55 62.38±0.39 59.19±0.71 89.56±1.25 

 

TABLE VI Sensitivity of different feature extraction methods 
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TABLE Ⅸ Detection delay of the proposed method 

Group (s) (%) 

1 1.0045 100 

2 1.0029 100 

3 1.0338 100 

4 1.0213 100 

5 1.0541 99.82 

6 1.0167 100 

7 1.0016 100 

8 1.0480 100 

9 1.0055 100 

10 1.0146 100 

11 1.0236 100 

12 1.3573 99.38 

13 1.0594 100 

14 1.0119 100 

15 1.1197 99.95 

16 1.0148 100 

17 1.0552 100 

18 1.0032 100 

19 1.0064 100 

20 1.0308 100 

21 1.0684 100 

22 1.0074 100 

23 1.0497 99.76 

24 1.0225 100 

Average 1.0431 99.95 

 

 Accuracy Sensitivity Specificity 

Time domain deep 
features 

SVM 75.82±1.10 56.92±1.75 84.93±0.84 

KNN 75.79±1.23 54.35±1.25 86.17±1.33 

NB 76.23±1.09 64.27±0.86 81.97±1.28 

DT 72.13±1.64 55.62±2.88 80.04±1.23 

TSK-FLS 78.70±0.99 56.70±1.89 89.29±0.81 

Frequency domain 

deep features 

SVM 97.47±0.37 96.11±0.68 98.13±0.31 

KNN 98.16±0.21 96.12±0.37 98.18±0.25 

NB 97.08±0.48 95.18±0.49 97.22±0.59 

DT 95.58±0.32 93.04±0.78 96.82±0.32 

TSK-FLS 97.82±0.23 96.56±0.43 98.44±0.22 

Time-frequency 

deep features 

SVM 92.95±0.81 88.91±1.35 84.90±0.85 

KNN 93.31±0.63 89.87±1.34 94.96±0.82 

NB 92.56±0.62 92.40±0.90 92.63±0.93 

DT 91.66±0.94 87.07±1.42 93.88±1.19 

TSK-FLS 92.41±0.59 90.92±1.25 94.61±0.92 

The proposed method 98.33±0.18 96.66±0.14 99.14±0.14 

 

TABLE VIII The effect of deep features on the classifiers. 

Classifier 
Time Domain Frequency Domain Time-Frequency Domain 

time PCA LDA Deep features FFT FFT-PCA Deep feature WPD WPD-PCA Deep features 

SVM 83.46±1.75 93.26±1.70 89.20±1.45 84.93±0.84 99.02±0.06 99.10±0.06 98.13±0.31 95.41±0.08 95.39±0.06 84.9±0.85 

KNN 90.11±0.06 91.48±8.72 87.28±2.35 86.17±1.33 99.23±0.06 99.17±0.06 98.18±0.25 96.92±0.08 96.93±0.06 94.96±0.82 

NB 84.36±0.36 84.26±1.18 85.74±3.31 81.97±1.28 87.61±0.79 90.28±0.49 97.22±0.59 78.78±0.56 73.68±0.49 92.63±0.93 

DT 88.90±0.58 93.93±1.14 87.30±2.21 80.04±1.23 97.48±0.80 97.50±0.41 96.82±0.32 78.81±0.53 92.13±0.41 93.88±1.19 

TSK-FS 91.83±0.11 82.24±0.53 83.26±2.53 89.29±0.81 99.10±0.32 98.93±0.08 98.44±0.22 N. A. 95.22±0.04 94.61±0.92 

Average 86.71±0.57 90.73±2.65 87.38±2.37 83.28±1.10 95.84±0.41 96.51±0.22 97.59±0.34 87.48±0.31 89.53±0.21 91.59±0.94 

 

TABLE VII Specificity of different feature extraction methods 




