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We consider periodic-review perishable inventory systems with a fixed product lifetime. Unsatisfied demand

can be either lost or backlogged. The objective is to minimize the long-run average holding, penalty, and

outdating cost. The optimal policy for these systems is notoriously complex and computationally intractable

due to the curse of dimensionality. Hence, various heuristic replenishment policies have been proposed in

the literature, including the base-stock policy which raises the total inventory level to a constant in each

review period. While various studies have shown near-optimal numerical performances of base-stock policies

in the classic system with zero replenishment lead time and a first-in-first-out (FIFO) issuance policy, the

results on their theoretical performances are very limited. In this paper, we first focus on this classic system

and show that a simple base-stock policy is asymptotically optimal when any one of the product lifetime,

demand population size, unit penalty cost, and unit outdating cost becomes large; moreover its optimality

gap converges to zero exponentially fast in the first two parameters. We then study two important extensions.

For a system under a last-in-first-out (LIFO) or even an arbitrary issuance policy, we prove that a simple

base-stock policy is asymptotically optimal with large lifetime, large unit penalty costs, and large unit

outdating costs; and for a backlogging system with positive lead times, we prove that our results continue to

hold with product lifetime, demand population size, and unit outdating cost. Finally, we provide a numerical

study to demonstrate the performances of base-stock policies in these systems.
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1. Introduction

In this paper, we consider periodic-review inventory systems for a perishable product with a fixed

product lifetime over an infinite planning horizon. The demands in different review periods are

independent and identically distributed (i.i.d.) random variables. In each review period, the firm

first makes an ordering decision, and receives the order immediately or after some positive lead
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times. Then, random demand for this review period is realized and satisfied by the on-hand inven-

tory as much as possible following some pre-specified issuance policy, e.g., first-in-first-out (FIFO)

or last-in-first-out (LIFO). Unsatisfied demand can be either lost or backlogged. Finally, leftover

inventory reaching the end of its lifetime perishes and is removed, and the rest inventories are car-

ried to the next period. The firm’s objective is to minimize the long-run average holding, penalty

and outdating cost.

Perishable inventory systems with a fixed product lifetime are a fundamental class of inventory

systems that have been studied extensively since the 1960’s (see, e.g., Veinott 1960, Van Zyl 1964).

The optimal policy for these systems is notoriously complex. This is because one needs to keep

track of the inventory level of each age group due to the fixed product lifetime, which leads to a

multi-dimensional system state. It has been shown that the optimal policy depends on the entire

system state and does not have a simple structure (see, e.g., Nahmias 1975, Cohen and Pekelman

1978), and that computing the optimal order quantities using dynamic programming is intractable

due to the curse of dimensionality even if the lifetime is at a moderate size (e.g., four) and the

replenishment lead time is zero. See Karaesmen et al. (2011) or Nahmias (2011) for a comprehensive

review of perishable inventory systems.

Given the complexity of the optimal policy, researchers have quickly switched their efforts to

develop effective heuristic replenishment policies for these systems since the 1960’s, such as base-

stock policies, constant-order policies, and approximation algorithms. We refer to §1.2 for a review

on different heuristics. A majority of the literature have considered the classic perishable inventory

system with zero lead time and the FIFO issuance policy (i.e., the oldest inventory is used first

to satisfy demand). Among these studies, the base-stock (or order-up-to/critical-number/target

inventory position) policy, which raises the total inventory level to a constant in each review

period, has received the most attention. Through extensive numerical studies, previous studies have

shown that base-stock policies perform close to optimal in the classic system. For example, after

numerically comparing base-stock policies with the optimal policy, Cooper (2001) concludes that

“the performance of the critical-number policies was nearly as good as that of an optimal policy

in the classic perishable system, thereby supporting the assertion that, in the absence of significant

fixed-charge order costs, critical-number policies provide a simple and effective means for managing

inventories of a perishable product.”

However, there is little theory on the near-optimality of base-stock policies for the classic perish-

able inventory system. To our best knowledge, Zhang et al. (2020) is the only study that analyzes

theoretical performances of base-stock policies for perishable inventory systems. Under a discounted

profit criterion, they focus on two heuristic base-stock policies which ignore perishability and ana-

lyze their asymptotic properties when the market size is large. In this paper, we consider the classic



3

infinite-horizon average-cost system under general i.i.d. demands, and establish a variety of asymp-

totic optimality results for a different base-stock policy by considering four asymptotic regimes of

system parameters: (i) large product lifetime; (ii) large demand population sizes; (iii) large unit

penalty costs; and (iv) large unit outdating costs. Needless to say, perishability is crucial and has

to be included in the construction of our base-stock policy. Please refer to §1.2 for a more detailed

comparison between this paper and Zhang et al. (2020).

We further extend most of these results for the classic system to a perishable system under the

LIFO or general issuance policy and a backlogging perishable system with positive replenishment

lead times. In brick-and-mortar retailing, customers can observe the expiration dates of perishable

items and decide by themselves which items to purchase. In this context, the LIFO issuance policy

(i.e., the youngest inventory is used first to satisfy demands) or a more general issuance policy

(i.e., a general issuance sequence is followed) may better fit into the practice. This inspires us

to consider the first extension. Besides, inventory replenishment usually takes time. However, the

studies on perishable inventory systems with positive lead times are very limited, due to the

additional complexity arising from pipeline inventories. This motivates us to consider the second

extension.

1.1. Main Results and Contributions

We summarize the main results and contributions of this paper as follows.

First, we focus on the classic system with zero lead time and the FIFO issuance policy. We

construct a simple base-stock policy for this system, and establish its asymptotic optimality in four

parameters regimes. i) We prove that its optimality gap (i.e., the difference between its long-run

average cost and the optimal cost) decays to zero exponentially fast in the product lifetime. ii)

When the number of customers in one period follows a renewal process with arrival rate n (referred

to as the demand population size) and different customers request i.i.d. units of the product, we

show that its optimality gap decays to zero exponentially fast in the demand population size.

iii) We consider the regime of large unit penalty costs, motivated by high service levels typically

required in practice, and prove that its optimality gap converges to zero as the unit penalty cost

goes to infinity. The convergence rate, however, depends on the class of demand distributions, and

we characterize the convergence rate of the optimality gap for four classes of continuous demands.

iv) Finally, we consider the regime of large unit outdating costs, inspired by high disposal costs

for many perishable products in practice, and prove that its optimality gap also converges to zero

as the unit outdating cost goes to infinity. These results provide a solid theoretical foundation for

the near-optimal numerical performances of base-stock policies in the classic perishable inventory

system which have been widely reported in the literature.
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Second, we construct another simple base-stock policy for a perishable system under the LIFO

or general issuance policy, and establish its asymptotic performances in three parameter regimes.

Specifically, we prove the following results. i) Its optimality gap converges to zero in the product

lifetime, at a rate at least in the order of reciprocal of lifetime. ii) When demand is unbounded,

the relative gap between its long-run average cost and the optimal cost converges to zero when the

unit penalty cost goes to infinity. iii) When the demand lower support is zero, its optimality gap

converges to zero when the unit outdating cost goes to infinity. For the system under the LIFO

issuance policy, we also prove that when the demand lower support is positive, the best base-stock

policy is in general not asymptotically optimal with large unit outdating costs. These results, for

the first time, establish theoretical performances of base-stock policies in the system under the

LIFO or general issuance policy.

Third, we construct a simple base-stock policy for a backlogging perishable system with positive

lead times, and establish its asymptotic optimality in three parameter regimes. Specifically, we

prove that its optimality gap decays to zero exponentially fast in the lifetime and in the demand

population size, and it converges to zero when the unit outdating cost goes to infinity. We also

provide intuitive explanations on why the best base-stock policy is in general not asymptotically

optimal with large unit backlogging costs. These results, for the first time, establish theoretical

performances of base-stock policies in the backlogging system with positive lead times.

Finally, we conduct a numerical study to test the performances of base-stock policies in these

systems. For the classic system, the best base-stock policy, our simple base-stock policy, and a

base-stock policy proposed by Cooper (2001) all perform very well consistently under various

parameter settings. By contrast, a naive base-stock policy which ignores perishability performs

poorly under geometric demand. For the system under the LIFO issuance policy, base-stock policies

do not perform as well as they do in the classic FIFO system, especially when the unit outdating

cost is moderately large. For the backlogging system with positive lead times, for which no other

base-stock policy has been proposed in the literature, both the best and our simple base-stock

policies perform better as the lifetime or unit outdating cost increases, which is consistent with

our theoretical results, but worse as the unit backlogging cost or the lead time increases.

Highlights of methodology. To prove the various asymptotic optimality results, we construct

three lower bounds on the optimal costs, which, as a certain system parameter goes to infinity,

converge to the long-run average costs of our simple base-stock policies. See Propositions 2 to 4

in §6.1. The lower bounds in Proposition 2 and Proposition 4 hold true for the classic system

and the backlogging system (with positive lead times), respectively, under any inventory issuance

policy. We prove both bounds by a simple sample-path approach. Specifically, we employ a simple

lower bound on the cumulative outdating quantity in any duration of lifetime-long periods plus



5

lead-time-long periods, and apply the conditional Jensen’s inequality to prove these bounds. The

lower bound in Proposition 3 holds true for the classic system under bounded demand. The key

step in our proof is to establish a uniform lower bound on the order-up-to level under the optimal

policy in each review period. To this end, we apply a vanishing discount factor approach from Schäl

(1993) to translate an existing result in Nandakumar and Morton (1993) for the discounted-cost

perishable inventory system to our desired result for the average-cost system.

Besides, our proofs rely on various bounds on the long-run average costs of base-stock policies

in different systems. For the classic system, we borrow an upper bound from Cooper (2001) and

an upper bound and a lower bound from Chazan and Gal (1977) on the long-run average outdated

inventory (see Lemma 2 in §2.1). For the system under the LIFO issuance policy, we construct

an upper bound on the long-run average outdated inventory based on a simple observation on the

cumulative amount of outdates during any consecutive lifetime-long periods, and a lower bound

from a recursion on the outdating process (see Lemma 3 in §4.1). For the system under the general

issuance policy, we show that the long-run average cost of any given base-stock policy is bounded

from above by that under the LIFO issuance policy, and bounded from below by that under the

FIFO issuance policy (see Lemma 4 in §4.2). For the backlogging system with positive lead times,

we construct the upper and lower bounds on the long-run average cost of base-stock policies by

generalizing the corresponding bounds for the zero-lead-time system (see Lemma 5 in §5). All these
bounds are proved by a sample-path approach.

We end this subsection by providing Table 1 as a road map for the main asymptotic-optimality

results derived in this paper.

Table 1 Summary of main results for three perishable inventory systems

FIFO LIFO and general issuance policies FIFO
zero lead time zero lead time positive lead times

lost-sales (in §2 – §3) lost-sales (in §4) backorder (in §5)
Product Theorem 1 Theorem 5(a), Theorem 6 Theorem 7(a)
lifetime
Demand Theorem 2 N.A. Theorem 7(b)

population size
Unit Theorem 3 Theorem 5(b), Theorem 6 N.A.

penalty cost
Unit Theorem 4 Theorem 5(c), Proposition 1, Theorem 7(c)

outdating cost Theorem 6

1 The “N.A.” means that no result is derived for that system in the corresponding parameter regime.

1.2. Literature Review

This paper is related to two streams of literature: perishable inventory systems with a fixed product

lifetime, and asymptotic analysis of simple heuristic policies for complex inventory systems. In the

following, we briefly review each stream of literature.
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First, perishable inventory systems with a fixed product lifetime are a fundamental class of

inventory systems and have been studied extensively since the early studies by Veinott (1960) and

Van Zyl (1964). We refer to Karaesmen et al. (2011) and Nahmias (2011) for detailed reviews on

the earlier studies and Chao et al. (2018) for a review on recent studies. As mentioned, the optimal

policy for these systems is complex and computationally intractable in general. Thus, researchers

have switched to designing heuristic replenishment policies, such as base-stock policies, constant-

order policies (e.g., Deniz et al. 2010, Deniz et al. 2020), heuristics based on higher-order approx-

imations (e.g., Nahmias 1977a, Sun et al. 2016), and approximation algorithms (e.g., Chao et al.

2015, Chao et al. 2018, Zhang et al. 2021). We next provide a detailed review on the studies on

base-stock policies for perishable inventory systems with a fixed product lifetime, which are more

related to this paper.

Due to their simplicity and effectiveness, base-stock policies have been widely studied for the

classic perishable inventory system, under both average and discounted cost criteria. We first review

the studies under the average cost criterion. Van Zyl (1964) first studies the base-stock policy for a

system with two-period lifetime and derives an explicit expression for the steady-state distribution

of the inventory process. For the system with general lifetime, Cohen (1976) analyzes the steady-

state distribution of the inventory process under a base-stock policy, Chazan and Gal (1977) prove

that the long-run average outdating is convex in the base-stock level and derive its upper and

lower bounds, and Cooper and Tweedie (2002) introduce a technique to estimate the steady-state

distribution of the inventory process. Cooper (2001) constructs two heuristic base-stock levels by

approximating the long-run average outdating by the mid-points of its best upper and lower bounds

derived by himself and its upper and lower bounds derived by Chazan and Gal (1977), respectively.

He also conducts an extensive numerical study showing that base-stock policies perform close to

optimal under various parameter settings. We next review the studies under the discounted cost

criterion. Nahmias (1976) constructs a base-stock policy based on a myopic approximation and

a bound on the expected outdating cost. Nahmias (1977b) constructs two base-stock policies for

systems with random lifetimes using different approximations on the expected outdating cost.

Nandakumar and Morton (1993) construct a base-stock policy for an infinite-horizon system based

on the bounds for the order-up-to level of the optimal policy. These studies also show numerically

that base-stock policies perform close to optimal under various parameter settings. None of the

studies reviewed above analyze theoretical performances of base-stock policies.

By contrast, the studies on base-stock policies for the systems under the LIFO or a general

issuance policy or with positive lead times are very limited. We refer to Cohen and Pekelman

(1978) and Cohen and Prastacos (1981) for early studies on base-stock policies for the systems

under the LIFO issuance policy. We are not aware of any literature studying perishable inventory
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systems under a general issuance policy. As mentioned before, Zhang et al. (2020) analyze theo-

retical performances of two heuristic base-stock policies for perishable inventory systems. Different

from this paper, they focus on finite-horizon and discounted-profit systems under i.i.d. compound

Poisson demands, and both policies they propose ignore product perishability. They analyze the

asymptotic properties of both policies when the market size is large. Our paper is partly inspired

by theirs but is significantly different in three major aspects. First, we consider an infinite-horizon

average-cost system under general i.i.d. demands, which leads to a different methodology from

theirs. Second, we establish a variety of asymptotic optimality results of base-stock policies in

three perishable inventory systems in four parameter regimes. Finally, our base-stock policies take

product perishability into account and have better theoretical and numerical performances.

Second, this paper is related to the growing literature on asymptotic analysis of simple heuris-

tics for complex inventory systems. We refer to Goldberg et al. (2021) for a detailed review on

this topic. In particular, there have been extensive studies on lost-sales non-perishable inven-

tory systems with lead times, including asymptotic analysis of base-stock policies with large unit

penalty costs or high service-level requirements (Reiman 2004, Huh et al. 2009, Bijvank et al. 2014,

Arts et al. 2015, Wei et al. 2021), and constant-order or capped base-stock policies with large lead

times (Goldberg et al. 2016, Xin and Goldberg 2016, Bu et al. 2020, Xin 2021b). Other studies

on nonperishable inventory systems can be classified into the following categories: i) base-stock

policies for assemble-to-order systems with large lead times (Reiman and Wang 2015); ii) echelon

base-stock policies for series systems with large unit penalty costs (Huh et al. 2016); iii) tailored

base-surge policies for dual-sourcing systems with large lead-time differences (Xin and Goldberg

2018, Xin et al. 2018); iv) constant-order dynamic pricing policies for joint inventory and pricing

systems with large lead times (Chen et al. 2019); and v) constant-order (L,U) threshold pol-

icy for hybrid manufacturing/remanufacturing systems with large manufacturing lead times (Xin

2021a). For perishable inventory systems, Zhang et al. (2020) provide the first asymptotic analysis

of base-stock policies with large market sizes. Our paper contributes to this stream of literature

by establishing a variety of asymptotic optimality results of base-stock policies in three perishable

inventory systems in four parameter regimes.

1.3. Structure and Notation

The rest of this paper is organized as follows. In §2, we focus on the classic perishable inventory

system with zero lead time and the FIFO issuance policy, and construct a simple base-stock policy.

In §3, we present our asymptotic-optimality results for this policy in four parameter regimes. In

§4 and §5, we consider a system under the LIFO or a general issuance policy and a backlogging

system with positive lead times, respectively. In §6, we sketch the proofs of our main results. In §7,
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we present a numerical study. We conclude the paper in §8 with future research directions. In this

paper, we denote x+ =max{0, x} for real number x and denote , as “equal by definition”. For an

increasing function F (·), its inverse function is defined as F−1(x), inf{y ∈R : F (y)≥ x}.

2. Model Formulation and Base-Stock Policy

Consider a periodic-review inventory system of a perishable product over a planning horizon of

infinitely many periods, indexed by t = 1,2, . . .. The product has a fixed lifetime of m periods,

where m is a positive integer. That is, the items of the product perish (or outdate) after staying in

the system for m periods and then are removed from the system. The demands in periods 1,2, . . .,

denoted by D1,D2, . . ., are a sequence of i.i.d. non-negative random variables (r.v.’s) with the same

distribution as random variable D, with 0<E[D]<∞ and a cumulative distribution function F (·).

In each review period t, the firm decides on an order quantity qt (≥ 0). There is no ordering capacity

constraint. We assume zero replenishment lead time, which is an assumption widely adopted in the

literature (see, e.g., Karaesmen et al. 2011). We also assume unsatisfied demand in each period is

lost. Under the zero-lead-time assumption, all the results in §3 and §4 remain true when unsatisfied

demand is backlogged. We will consider a backlogging model with positive lead times in §5.

The sequence of events in each review period t is described as follows. First, the firm reviews the

system state xt , (xt,1, xt,2, . . . , xt,m−1), where xt,i denotes the inventory level of the items whose

remaining lifetimes are at most i periods, i= 1,2, . . . ,m− 1. Second, it places an order and raises

the total inventory level to xt,m , xt,m−1 + qt immediately, due to zero lead time. Third, random

demand Dt is realized and satisfied by the on-hand inventory to the maximum possible extent

through the FIFO issuance policy. The FIFO issuance policy is commonly adopted in the literature

(see, e.g., Karaesmen et al. 2011 and Nahmias 2011). The LIFO or a general issuance policy will

be considered in §4. Unsatisfied demand is lost, incurring a unit penalty cost p (> 0). Finally,

leftover inventory reaching the end of its lifetime perishes and is removed from the system, and the

rest inventories are carried to the next period, with their remaining lifetimes reduced by one. Let

ot denote the amount of outdated inventory in period t, i.e., ot , (xt,1 −Dt)
+. Then, the system

dynamics from period t to period t+1 are given by

xt+1,i = (xt,i+1 −Dt − ot)
+, i= 1,2, . . . ,m− 1. (1)

For simplicity, we assume the system is initially empty, i.e., x1,1 = x1,2 = · · ·= x1,m−1 = 0. Following

the tradition in the literature (see, e.g., Nahmias 1975 and Chao et al. 2015, 2018), all leftover

inventories incur a unit holding cost h (> 0), and the outdated inventory incurs an additional unit

outdating cost θ (≥ 0). The firm’s objective is to minimize the long-run average holding, penalty,

and outdating cost.
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We next define an admissible policy π. Following definitions in Huh et al. (2011) and Bu et al.

(2020), we call a policy π admissible if, for each review period t≥ 1, the order placed under policy

π is given by a non-negative measurable function φπ
t (xt). Thus, an admissible policy π can be

written as {φπ
t : t≥ 1}. Let Π denote the set of all admissible policies. Given an admissible policy

π ∈Π, the total cost incurred in period t is

Cπ
t , h(xπ

t,m −Dt)
+ + p(Dt −xπ

t,m)
+ + θoπt , (2)

where xπ
t,m and oπt denote the total inventory level and the amount of outdated inventory in

period t under policy π, respectively. The long-run average cost of policy π is defined as Cπ ,
limsupT→∞

1
T

∑T

t=1E[Cπ
t ]. The optimal long-run average cost (or simply, the optimal cost) over all

admissible policies is defined as OPT, infπ∈ΠCπ.

Remark 1. We assume zero ordering cost in this paper. All of our results remain true when

there is a positive unit ordering cost. This is because a perishable inventory system (regardless of

the issuance policy and order lead times) with positive unit ordering cost ĉ, unit holding cost ĥ,

unit penalty cost p̂, and unit outdating cost θ̂ can be transformed into an equivalent system with

cost parameters c= 0, h= ĥ, θ = θ̂+ ĉ, and p= p̂− ĉ (for the lost-sales system) or p= p̂ (for the

backlogging system), and the long-run average cost of any admissible policy in the former equals

that of the same policy in the latter plus ĉE[D] (see Chao et al. 2015, 2018).

2.1. Base-stock Policy

An admissible policy is called a base-stock policy with base-stock level S, denoted by πS, if it

places an order in each period t to raise the total inventory level to S. Under policy πS, the order

quantity qπS
t for period t is given by qπS

t = (S − xπS
t,m−1)

+,∀ t≥ 1. We denote the long-run average

cost under policy πS by C(S). The following lemma gives an expression of the function C(S).

Lemma 1. For any S ≥ 0, there exists a non-negative random variable O∞(S), independent of

initial system state x1, such that

C(S) = hE[(S−D)+] + pE[(D−S)+] + θE[O∞(S)]. (3)

Lemma 1 generalizes a similar result established by Chazan and Gal (1977) and Cooper (2001)

for discrete random demands to general random demands. We note that the Markov chain induced

by policy πS can be periodic when P(D < S/m) = 1 and under certain initial states x1. Thus, it

does not always have a steady-state distribution. Nevertheless, Lemma 1 shows that the long-run

average cost C(S) can always be expressed by the right-hand-side (RHS) of equation (3), regardless

of whether the steady-state distribution exists.

The next lemma provides a lower bound and two upper bounds on E[O∞(S)]. These bounds

come from Theorem 2 of Chazan and Gal (1977) and Proposition 3 of Cooper (2001), and they

will be useful in our analysis.
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Lemma 2. For any S ≥ 0, the following inequalities hold:

1

m
E
[(

S−
m∑
i=1

Di

)+]
≤E[O∞(S)]≤min

{
E
[(

S

m
−D

)+]
,E
[(

S−
m∑
i=1

Di

)+]}
.

Define S∗ as a minimizer of the function C(S) over [0,+∞). Then, policy πS∗ is the best base-

stock policy among the class of base-stock policies. Previous studies have shown that the func-

tion C(S) is convex in S on [0,+∞) (see Theorem 1 of Chazan and Gal 1977 and Theorem 1 of

Zhang et al. 2018). However, since the term E[O∞(S)] does not have an explicit expression and

needs to be evaluated numerically via simulating the perishable inventory system, computing S∗ is

time-consuming (see §7 for more discussions on its computational efficiency). Consequently, several

heuristic base-stock levels have been proposed in the literature based on different approximations

on E[O∞(S)]. However, few studies analyze the theoretical performance of base-stock policies com-

pared with the optimal policy, leaving it as an important open problem in the literature.

In this paper, we address this open problem by considering a heuristic base-stock level S̃. Here,

S̃ is a minimizer of the function C̃(S) over [0,+∞), where

C̃(S), hE[(S−D)+] + pE[(D−S)+] +
θ

m
E
[(

S−
m∑
i=1

Di

)+]
. (4)

That is, the heuristic base-stock level S̃ is constructed by approximating E[O∞(S)] with its lower

bound in Lemma 2. Clearly, C(S) ≥ C̃(S) for any S ≥ 0. One can easily verify that S̃ has the

following lower and upper bounds:

F−1
( p

p+h+ θ

)
≤ S̃ ≤ F−1

( p

p+h

)
. (5)

Since C̃(S) has an explicit form and is convex in S, the heuristic base-stock level S̃ can be com-

puted efficiently by Monte Carlo simulation and golden-section search within these bounds. For

convenience, we denote SNP , F−1( p
p+h

).

3. Asymptotic Optimality in Four Parameter Regimes

In this section, we analyze the optimality gap of base-stock policy πS̃ in the classic system, defined

by C(S̃) − OPT, in four parameter regimes. In §3.1, we characterize its rate of convergence to

zero in product lifetime and in demand population size. In §3.2 and §3.3, we show the asymptotic

optimality of policy πS̃ with large unit penalty costs and large unit outdating costs, respectively.

To highlight the dependency of relevant quantities on a specific parameter, whenever necessary, we

make the dependency explicit by including the parameter in their subscripts.
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3.1. Exponential Decay in Lifetime and in Demand Population Size

We first consider the regime of product lifetime m. The following theorem provides an upper bound

on the optimality gap of policy πS̃. The only requirement for Theorem 1 is that E[D]> 0, which

we have assumed.

Theorem 1. For any λ> 0 and m≥ 1, the following inequality holds:

Cm(S̃m)−OPTm ≤ (m− 1)θ

λme
eλS

NP

· (E[e−λD])m. (6)

Since E[e−λD]< 1 for any λ > 0, Theorem 1 shows that the optimality gap of policy πS̃ decays

to zero exponentially fast in the lifetime m. We explain this result intuitively as follows. As m

increases, the product can stay in the system for longer time, and so the long-run average outdated

inventory under the optimal policy decreases and the perishable inventory system behaves closer

to its non-perishable counterpart. For the latter system, base-stock policy πSNP is known to be

optimal (see, e.g., Scarf 1960, Esmaili et al. 2019). Thus, policy πSNP is asymptotically optimal

with large lifetime in the perishable inventory system. Further, under the FIFO issuance policy,

from Lemma 2, E[O∞(S)] is bounded from above by E[(S −
∑m

i=1Di)
+], implying that E[O∞(S)]

under any base-stock policy πS and the optimality gap of πSNP decay to zero exponentially fast

in the lifetime m. The above results also hold for policy πS̃ because, by design, base-stock level S̃

converges to SNP when m→∞ and the term E[(S−
∑m

i=1Di)
+]/m for constructing C̃(S) decays

to zero exponentially fast in m for any fixed S.

Next, we consider the regime of demand population size n, defined as follows. For any positive

integer n, suppose that the generic one-period demand D takes the form

D=

N(n)∑
j=1

D̂j, (7)

where {D̂j : j ≥ 1} are i.i.d. non-negative r.v.’s with finite mean and variance, and N(n), sup{N ∈

N :
∑N

k=1Xk/n ≤ 1}. Here, {Xk : k ≥ 1} are i.i.d. non-negative r.v.’s with mean one and finite

variance, and independent of {D̂j : j ≥ 1}. Note that N(n) is the random number of arrivals during

one unit of time in a renewal process with inter-arrival times {Xk/n : k≥ 1}. We refer to n as the

demand population size, since N(n)≡ n when Xk ≡ 1, and limn→∞E[N(n)]/n= 1 by Elementary

Renewal Theorem when Xk follows a general distribution. The demand form (7) can be interpreted

as follows: there are N(n) customers in each period, with customer j independently requesting D̂j

units of the product, so the total demand D in a period is given by (7). For technical reasons, we

assume that there exists some constant s > 0 such that E[esX1 ] <∞. This is a mild assumption

and satisfied by many distributions used in the literature.
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Two special cases of demand form (7) are as follows: i) D is the sum of n i.i.d. non-negative

r.v.’s (by letting Xk ≡ 1), and ii) D is a compound Poisson random variable with E[N(n)] = n (by

letting Xk be exponentially distributed). As mentioned in §1.2, Zhang et al. (2020) consider the

latter for a finite-horizon perishable inventory system under the discounted-profit criterion.

Theorem 2. Suppose the generic demand D takes form (7). There exist two positive constants

K1 and K2 such that Cn(S̃n)−OPTn ≤K1 · e−K2n when n is sufficiently large.

We explain Theorem 2 intuitively as follows. Similar to Theorem 1, Theorem 2 holds because

under the FIFO issuance policy, the upper bound E[(S̃n −
∑m

i=1Dn,i)
+] on the long-run average

outdated inventory E[O(S̃n)] from Lemma 2 decays to zero exponentially fast in the demand pop-

ulation size n. This result holds under the assumption of Theorem 2, since when n is sufficiently

large, base-stock level S̃n approximately equals nE[D̂1] (≈E[D]) (since the effect of demand varia-

tion is at a lower order), while the term E[
∑m

i=1Dn,i] approximately equals mnE[D̂1]. When m≥ 2

and n is sufficiently large, their difference (m−1)nE[D̂1] increases linearly in n, which leads to the

exponential decay of E[(S̃n −
∑m

i=1Dn,i)
+] to zero in n.

Finally, we shed some insights on the numerical performance of policy πS̃ with different product

lifetimes and demand population sizes. To this end, we compute the following upper bound of the

relative optimality gap of policy πS̃:

C(S̃)−OPT

OPT
≤ (m− 1)θ

mC̃(S̃)
E
[(

S̃−
m∑
i=1

Di

)+
]
× 100%, (8)

which follows from Proposition 2 and inequality (21) to be derived in §6. Suppose Di =
∑n

j=1 D̂i,j,

i= 1, . . . ,m, where {D̂i,j : 1≤ i≤m, 1≤ j ≤ n} are i.i.d. r.v.’s. Table 2 reports the values of the

RHS of (8) under different m, n and distributions of D̂i,j, with h= 1, p= 6, θ= 3, E[D̂i,j] = 5, and

for normal demand, Var[D̂i,j] = 1.52. It shows that the upper bound in (8) is very close to zero under

Poisson and normal demands, and decays to zero drastically as m or n increases under geometric

and exponential demands. It is important to note that the results in Table 2 are upper bounds

of the relative optimality gap; the true optimality gaps are smaller (or at least no larger). Table

2 also shows that the marginal improvement in the upper bound decreases in both m and n. For

example, for geometric demand with fixed m= 3, the marginal improvement is 13.36% (=17.39%-

4.03%) when n increases from 1 to 3, and decreases to 3.08% (=4.03%-0.95%) when n increases

from 3 to 5. A similar pattern can be observed when n is fixed and m increases. This indicates

that some minimal effort in lifetime expansion for perishable goods (e.g., by better preservation of

food products) or in boosting its demand (e.g., by means of advertisement or promotion) can have

a significant impact on the firm’s cost.
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Table 2 RHS of (8) under different m, n and demand distributions

Distribution m= 3 m= 4 m= 5

of D̂ij n= 1 n= 3 n= 5 n= 1 n= 3 n= 5 n= 1 n= 3 n= 5

Poisson 0.60% 0.00% 0.00% 0.02% 0.00% 0.00% 0.00% 0.00% 0.00%
Normal 0.04% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Geometric 17.39% 4.03% 0.95% 11.32% 0.57% 0.02% 4.74% 0.04% 0.00%
Exponential 13.18% 2.32% 0.32% 6.42% 0.15% 0.00% 2.27% 0.00% 0.00%

3.2. Asymptotic Optimality with Large Unit Penalty Costs

In this subsection, we consider the regime of large unit penalty cost p. In practice, the unit penalty

cost p of a perishable product is often much larger than the unit holding cost h. Many firms,

especially those in the manufacturing and retailing industries, often require a high service level to

reduce stock-out frequencies and guarantee customer satisfaction (see, e.g., Huh et al. 2009 and

Wei et al. 2021). This translates to a much larger unit penalty cost than the unit holding cost in

our cost-based inventory model.

Our next theorem shows that base-stock policy πS̃ is asymptotically optimal with large unit

penalty costs.

Theorem 3. limp→∞
(
Cp(S̃p)−OPTp

)
= 0.

We explain this result intuitively as follows. First, suppose the generic one-period demand D is

bounded (i.e., D̄ , sup{x : F (x) < 1} <∞). As the unit penalty cost p becomes large, both the

order-up-to level under the optimal policy and base-stock level S̃ should converge to D̄ to achieve

zero long-run average lost-sales penalty cost. In this case, policy πS̃ is asymptotically optimal with

large p. Now suppose demand D is unbounded. Intuitively, the order-up-to level under the optimal

policy has a steady-state distribution and we denote it by random variable X ∗
m. Consider base-stock

policy with base-stock level E[X ∗
m]. By the conditional Jensen’s inequality, we have

hE[(X ∗
m −D)+] + pE[(D−X ∗

m)
+]≥ hE[(E[X ∗

m]−D)+] + pE[(D−E[X ∗
m])

+].

Since D is unbounded, when p is large, the steady-state order-up-to level X ∗
m and its mean E[X ∗

m]

are also large in order to reduce lost sales, and so, inventory outdating should occur with a high

probability in each period under both the optimal policy and base-stock policy πE[X∗
m]. Under

the FIFO issuance policy, it follows from the system dynamics in (1) that ot+m−1 > 0 implies∑t+m−1

i=t oi = xt,m −
∑t+m−1

i=t Di for any period t. Thus, when p is large, the difference between the

long-run average outdated inventory under the optimal policy (approximately E[X ∗
m−

∑m

i=1Di]/m)

and that under πE[X∗
m] (approximately E[E[X ∗

m]−
∑m

i=1Di]/m) is small. Altogether, the optimality

gap of policy πE[X∗
m] is small when p is large, and it converges to zero as p→∞. Further, we can
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prove that the gap between C(S̃) and C(E[X ∗
m]) converges to zero as p→∞. As a result, policy

πS̃ is asymptotically optimal with large p when D is unbounded.

Huh et al. (2009) prove that, for lost-sales non-perishable inventory systems with positive lead

times, the relative optimality gap of certain base-stock policies converges to zero as the unit penalty

cost grows. Theorem 3 for the classic perishable inventory system is stronger than their result,

since it shows that the absolute optimality gap of policy πS̃ converges to zero as the unit penalty

cost grows. On methodology, the analysis in Huh et al. (2009) is built on the similarity between

the lost-sales system and the counterpart backlogging system when the unit penalty cost is large

(where the stock-out probabilities in both systems are small) and that the base-stock policy is

optimal for the latter. Their analysis based on this analogy does not work in perishable inventory

systems because base-stock policies are sub-optimal under both lost sales and backlogging settings.

Partly inspired by our above intuitive explanations for Theorem 3, we develop two lower bounds on

the optimal cost (see Propositions 2 and 3 in §6.1) and prove Theorem 3 by considering bounded

and unbounded demands separately.

In contrast to the results in §3.1 that the optimality gap always converges to zero exponentially

fast in the product lifetime and in the demand population size, the convergence rate on the opti-

mality gap of policy πS̃ in the unit penalty cost p differs for different demand distributions. We

can characterize it for various classes of demand distributions, and present our results for four

classes of continuous distributions, two for unbounded demands and two for bounded demands, in

Appendix F for interested readers.

3.3. Asymptotic Optimality with Large Unit Outdating Costs

Finally, we consider the regime of large unit outdating cost θ. In practice, the unit outdating cost

θ can be much larger than the unit holding cost h for two major reasons. First, many perishable

products are expensive (e.g., those in blood supply chains) and their outdating results in a sig-

nificant cost for firms and even for the society. For example, Slonim et al. (2014) report that the

cost of the components of each unit of blood sold to hospitals in the U.S. is approximately $570,

and hospitals transfuse this blood at estimated costs of between $522 and $1,183 per unit in the

United States and Europe. Second, it can be very costly to dispose outdated products. For example,

supermarkets have to pay their employees overtime wages to dispose outdated vegetables, bakery

items, and packaged meats. Also, due to safety concerns, it often requires professional processing

before disposing outdated blood products, which can be very costly.

Our next theorem shows that base-stock policy πS̃ is asymptotically optimal with large unit

outdating costs.

Theorem 4. limθ→∞
(
Cθ(S̃θ)−OPTθ

)
= 0.
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We offer an intuitive explanation on Theorem 4. As the unit outdating cost θ grows large, the

optimal policy should asymptotically reduce the long-run average outdated inventory to zero. To

this end, the order-up-to level under the optimal policy must be asymptotically no more than mD

with probability one, where D , inf{x : F (x) > 0}. This is because otherwise, under the FIFO

issuance policy, the optimal policy would incur a positive long-run average outdated inventory and

thus an asymptotically infinite long-run average outdating cost, leading to a contradiction. Define

S̃∞ = argmin
0≤S≤mD

{
hE[(S−D)+] + pE[(D−S)+]

}
. (9)

Since the order-up-to level under the optimal policy is no more than mD, intuitively the optimal

cost would be hE[(S̃∞ −D)+] + pE[(D− S̃∞)+] asymptotically, because the latter gives the mini-

mum expected single-period holding and penalty cost when restricting the order-up-to level within

[0,mD]. On the other hand, since S̃∞ ≤mD, it follows from Lemma 2 that base-stock policy πS̃∞

incurs zero outdating cost and long-run average cost hE[(S̃∞ −D)+] + pE[(D − S̃∞)+]. Noticing

that S̃θ converges to S̃∞ as θ→∞, it follows that base-stock policy πS̃θ
is asymptotically optimal

with large unit outdating cost θ.

Remark 2. We consider the heuristic base-stock policy πS̃, because it is asymptotically optimal

in all four parameter regimes. It also performs very well numerically, when compared with the best

base-stock and other heuristic base-stock policies. See §7.1 for details. In Appendix G, we construct

a class of heuristic base-stock policies {πS̃α,β : α≥ 0, β ≥ 0} by defining S̃α,β as a minimizer of the

function C̃α,β(S) over [0,∞), where

C̃α,β(S), hE[(S−D)+] + pE[(D−S)+] +
α

m
E
[(

S−
m∑
i=1

Di

)+]
+βE

[( S
m

−D
)+]

. (10)

Note that S̃ = S̃1,0 and SNP = S̃0,0. For this class of policies, we identify conditions on parameters

(α,β) under which Theorems 1 to 4 hold. For example, for policy πSNP , Theorems 1 and 2 hold

while Theorems 3 and 4 fail (except for a few special cases). In §7.1, we will also show that policy

πSNP performs much worse than policy πS̃ numerically under geometric demand.

4. LIFO and General Issuance Policies

In §2 and §3, we assume that demands are satisfied by the on-hand inventory through the FIFO

issuance policy. In brick-and-mortar retailing, e.g., milk selling, customers can observe the expi-

ration dates of the perishable items, and decide by themselves the consumption sequence. In this

context, the LIFO issuance policy, which assumes that the youngest inventories are consumed first,

or a general issuance policy, which does not make any assumption on the consumption sequence,

might better capture the real-world scenario than the FIFO issuance policy. In this section, we

study the asymptotic properties of base-stock policies in the perishable inventory systems under

LIFO and general issuance policies in §4.1 and §4.2, respectively.
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4.1. LIFO Issuance Policy

Under the LIFO issuance policy, the model formulation remains almost the same as that in §2

except that the system dynamics in (1) need to be modified to

xt+1,i =min
{
(xt,m −Dt)

+, xt,i+1

}
− ot, ∀i= 1,2, . . . ,m− 1,

where ot = min{(xt,m −Dt)
+, xt,1}. The definitions of an admissible policy π and its long-run

average cost Cπ, the optimal cost OPT, a base-stock policy πS and its long-run average cost C(S),

and the best base-stock level S∗ all remain the same. To highlight the dependency on the LIFO

issuance policy, whenever necessary, we add “LIFO” in the superscripts of relevant quantities.

Recall that Lemma 2 implies three bounds on the long-run average cost of policy πS in the FIFO

system. In the LIFO system, the following lemma provides a lower bound and an upper bound on

the long-run average cost of policy πS.

Lemma 3. For any S ≥ 0, we have ĈL(S)≤CLIFO(S)≤ ĈU(S), where

ĈL(S), hE[(S−D)+] + pE[(D−S)+] +
θ

m
E[(S−max{D1,D2, . . . ,Dm})+]; (11)

ĈU(S),
(
h+

θ

m

)
E[(S−D)+] + pE[(D−S)+]. (12)

The lower bound ĈL(S) is derived from a recursion on the outdating process under the LIFO

issuance policy. The upper bound ĈU(S) is derived from the following simple observation under any

issuance policy:
∑t+m−1

j=t oπS
j ≤ (S−Dt)

+ for any period t and demand sample path. Thus, it is also

an upper bound on the long-run average cost of policy πS in the system under any issuance policy.

Define Ŝ as a minimizer of the function (ĈL(S) + ĈU(S))/2 over [0,∞). The following theorem

presents our asymptotic-optimality results for policy πŜ in the LIFO system.

Theorem 5. (a) CLIFO(Ŝ)−OPTLIFO ≤ 3θE[(SNP −D)+]/(2m);

(b) If demand D is unbounded, then limp→∞(CLIFO
p (Ŝp)−OPTLIFO

p )/OPTLIFO
p = 0;

(c) If the demand lower support D= 0, then limθ→∞(CLIFO
θ (Ŝθ)−OPTLIFO

θ ) = 0.

Part (a) of Theorem 5 shows that as the lifetime m increases, the optimality gap of policy πŜ

converges to zero at a rate at least in the order of 1/m. This result is weaker than the exponential-

rate result established in Theorem 1 for the FIFO system. This is because from Lemma 3, the

long-run average outdated inventory under policy πS is bounded from above by E[(S −D)+]/m

in the LIFO system, which converges to zero in the order of 1/m. By contrast, from Lemma 2,

it is bounded from above by E[(S −
∑m

i=1Di)
+] in the FIFO system, which converges to zero

exponentially fast in m. It remains unknown whether the optimality gap of policy πŜ in the LIFO

system converges to zero exponentially fast in m.
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Part (b) shows that when demand D is unbounded, policy πŜ is asymptotically optimal (in the

relative sense) in the LIFO system with large unit penalty cost p. This result is weaker than Theo-

rem 3 for the FIFO system (which is in the absolute sense). Intuitively, the best base-stock policy

may also be asymptotically optimal with large p in the absolute sense in the LIFO system. This is

because in the LIFO system, ot+m > 0 implies
∑t+m−1

i=t oi = (xt,m−Dt)
+ for any period t, and thus

when p is large, the long-run average outdated inventory under the optimal policy is approximately

E[(X ∗
m −D)+]/m, and that under base-stock policy πE[X∗

m] is approximately E[(E[X ∗
m]−D)+]/m.

Thus, the optimality gap of policy πE[X∗
m] should be small when p is large, and converge to zero

as p→∞. When demand D is bounded, it remains unknown whether policy πŜ or the best base-

stock policy is asymptotically optimal with large p in the LIFO system. By contrast, Theorem 3

shows the asymptotic optimality of policy πS̃ in the FIFO system. Intuitively, policy πŜ or the best

base-stock policy may also be asymptotically optimal with large values of p in the LIFO system,

since both the order-up-to level under the optimal policy in the LIFO system and base-stock level

Ŝ should converge to D̄ to achieve zero long-run average lost-sales penalty as p grows. We leave

both unresolved issues for future research.

Finally, part (c) shows that policy πŜ is asymptotically optimal with large unit outdating cost θ

when D = 0. Intuitively, as θ goes to infinity, both the order-up-to level under the optimal policy

and base-stock level Ŝ would converge to zero to achieve zero long-run average outdating cost.

However, this result is only true when D= 0 and two other trivial cases when m= 1 or SNP ≤D

where πŜ is the optimal policy. Otherwise, the following result shows that the best base-stock policy

is not asymptotically optimal with large values of θ in the LIFO system.

Proposition 1. If m≥ 2 and SNP >D> 0, then limθ→∞(CLIFO
θ (SLIFO,∗

θ )−OPTLIFO
θ )> 0.

We describe the main ideas for proving Proposition 1 and leave the detailed proof in Appendix

C.3. First, we prove that limθ→∞CLIFO
θ (SLIFO,∗

θ ) = p(E[D]−D). This is intuitive, since to achieve

zero outdating under the LIFO issuance policy, one would expect SLIFO,∗
θ to converge to D as

θ→∞. Second, we construct the following admissible policy: order min{SNP ,mD} units in periods

1, m+1, 2m+1, . . ., and use the base-stock policy with level D in all other periods. Under this

policy, we verify that there is no inventory outdating, and that the expected holding and penalty

cost is strictly less than p(E[D]−D) in each of the periods 1, m+1, 2m+1, . . . when m≥ 2 and

SNP >D> 0, and it is at most p(E[D]−D) in each of all other periods. As a result, the long-run

average cost under this policy is strictly less than p(E[D]−D) and independent of θ. Combining

the above two results and the definition of OPTLIFO leads to the result in Proposition 1.

Similar to the FIFO system, we can construct a class of base-stock policies {πŜα,β : α≥ 0, β ≥ 0}

by approximating CLIFO(S) through a non-negative linear combination of its upper and lower
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bounds in Lemma 3. Then, we can partly extend the results in Theorem 5 to this class of policies

as follows: part (a) (after a minor modification) holds for any α≥ 0 and β ≥ 0; part (b) holds for

any α+β = 1; and part (c) holds for any β > 0. We leave the details to interested readers.

Finally, we comment on the performance of base-stock policies with large demand population

sizes in the LIFO system. First, our proof of Theorem 2 fails in the LIFO system, because it is

built on the inequality E[O∞(S)]≤E[(S−
∑m

i=1Di)
+] from Lemma 2 for the FIFO system (also see

our discussions after Theorem 2), which cannot be implied from the inequality CLIFO(S)≤ ĈU(S)

in Lemma 3. Second, our numerical results in §7.2 show that for most instances tested under the

LIFO system, a larger demand population size worsens the performances of the best base-stock

policy and policy πŜ. So, in the LIFO system, the best base-stock policy may not be asymptotically

optimal with large values of n.

4.2. General Issuance Policy

In this subsection, we consider the perishable system under a general issuance policy. In this case,

the model formulation again remains the same as that of the FIFO system in §2, except that the
state dynamics become more complicated and need to be specified by the given issuance policy.

We omit the details here due to page limit. The definitions and notations of the relevant quantities

are similar to those in §2, and we impose “GI” in their superscripts to highlight the dependency

on a general issuance policy.

The following lemma shows that the long-run average cost of base-stock policy πS under a general

issuance policy is bounded from above by that under the LIFO policy and from below by that

under the FIFO policy.

Lemma 4. For any S ≥ 0, CFIFO(S)≤CGI(S)≤CLIFO(S).

This result can be explained as follows. First, since policy πS always maintains the total inventory

level at S in each period, its long-run average holding and penalty cost equals hE[(S −D)+] +

pE[(D − S)+], regardless of the inventory issuance policy. Second, for any demand sample path

D1, . . . ,Dt, one can verify that the total amount of outdated inventories in periods 1, . . . , t of policy

πS under a general issuance policy is at least that under the FIFO issuance policy and at most

that under the LIFO issuance policy. Then, the long-run average outdating cost of policy πS under

a general issuance policy is at least that under the FIFO issuance policy and at most that under

the LIFO issuance policy. Thus, the results in Lemma 4 hold.

Lemma 4 implies that policy πS incurs less long-run average cost under a general issuance policy

than under the LIFO issuance policy. As will be seen from Proposition 2 in §6.1, the lower bound

C̃(S̃) on OPTLIFO which we establish for proving Theorem 5 is also a lower bound on OPTGI .

Consequently, all the results in Theorem 5 established for policy πŜ under the LIFO issuance policy

also hold under a general issuance policy. We formalize this claim in the following theorem.
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Theorem 6. All the results established for base-stock policy πŜ under the LIFO issuance policy

in Theorem 5 hold under a general issuance policy.

5. Backlogging System with Positive Lead Times

So far, we have considered the systems with zero replenishment lead time, where unsatisfied demand

can be either lost or backlogged. In this section, we extend most of the results in the earlier sections

to a backlogging system with positive lead times of L periods, where L is an arbitrary positive

integer.

For the backlogging system with lead times L, the sequence of events in each review period t is

described as follows. First, the order placed in period t−L arrives and is used to satisfy backorders,

if any, as much as possible. Second, the firm reviews the system state xt , (xt,1, . . . , xt,m+L−1). For

1≤ i≤m, xt,i denotes the amount of on-hand inventories whose remaining lifetimes are at most

i periods minus the amount of backorders if the firm orders nothing after period t+ i−m− L;

and for m+ 1≤ i≤m+L− 1, xt,i equals xt,i−1 plus the amounts of pipeline inventory that will

arrive in period t+ i−m. Third, the firm makes the order decision qt (≥ 0) and raises the inventory

position to xt,m+L , xt,m+L−1 + qt. Fourth, random demand Dt is realized and satisfied from the

on-hand inventory as much as possible following the FIFO issuance policy. Unsatisfied demand is

backlogged, incurring backlogging cost b per unit per period. Same as before, all leftover inventory

incurs a unit holding cost h and the outdated inventory incurs an additional unit outdating cost θ.

We assume θ≥ hL, which can be mostly satisfied in practice since θ is typically much larger than

h and the lead times L for perishable products are typically short. Finally, the system proceeds to

the next period, with the system dynamics given by xt+1,i = xt,i+1−Dt−ot, ∀i= 1,2, . . . ,m+L−1,

where, same as before, ot denotes the outdated quantity in period t.

A base-stock policy πS for this system is defined as the policy that raises the inventory position

to a constant S in each review period. That is, qπS
t = (S − xt,m+L−1)

+ for each period t≥ 1. The

notations and definitions of different policies and long-run average costs are similar to those in §2,
and thus omitted. To highlight the dependency on the lead times L, whenever necessary, we make

the dependency explicit by adding “L” in the superscript.

The following lemma provides an upper bound and a lower bound on the long-run average cost

of base-stock policies. Note that this lemma also holds when L= 0 (i.e., for the backlogging system

with zero lead time).

Lemma 5. For any L≥ 0 and S ≥ 0, the following inequalities hold:

CL(S)≤ hE
[(

S−
L+1∑
i=1

Di

)+]
+ bE

[( L+1∑
i=1

Di −S
)+]

+(θ+ bL)E
[(

S−
m+L∑
i=1

Di

)+]
, (13)

CL(S)≥ C̃L(S), hE
[(

S−
L+1∑
i=1

Di

)+]
+ bE

[( L+1∑
i=1

Di −S
)+]

+
θ−hL

m+L
E
[(

S−
m+L∑
i=1

Di

)+
]
. (14)
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Since θ ≥ hL, the function C̃L(S) is convex in S on [0,∞). Define S̃L as a minimizer of C̃L(S)

over [0,∞). The following theorem presents our asymptotic-optimality results for policy πS̃L .

Theorem 7. For the backlogging system with positive lead times L and under the FIFO issuance

policy, the following results hold:

(a) The optimality gap of policy πS̃L converges to zero exponentially fast in the lifetime m;

(b) Under the assumption in Theorem 2, the optimality gap of policy πS̃L converges to zero

exponentially fast in the demand population size n;

(c) The optimality gap of policy πS̃L converges to zero as the unit outdating cost θ goes to infinity.

Parts (a) and (b) of Theorem 7 can be explained similarly to Theorems 1 and 2 for the system

with zero lead time, because the best base-stock policy is optimal for the backlogging non-perishable

inventory system with positive lead times (see, e.g., Karlin and Scarf 1958). Part (c) can also be

explained similarly to that of Theorem 4, except that the quantity S̃∞ defined there needs to be

generalized to

S̃L
∞ , argmin

0≤S≤(m+L)D

{
hE
[(

S−
L+1∑
i=1

Di

)+]
+ bE

[( L+1∑
i=1

Di −S
)+]}

.

Theorem 7 does not address the asymptotic performance of policy πS̃L or the best base-stock

policy with large unit backlogging cost b. When the lead time is positive, our intuitions for Theorem

3 become invalid. In this case, a base-stock policy maintains a constant inventory position, which

is different from maintaining a constant total on-hand inventory level. When the unit backlogging

cost b is large, this difference is amplified because the best base-stock policy maintains a high

inventory position to reduce backorders and results in large outdated inventories. Thus, the best

base-stock policy is likely not asymptotically optimal with large b for the backlogging system with

positive lead times. In §7.3, we will show numerically that both policy πS̃L and the best base-stock

policy perform worse when the unit backlogging cost b or the lead times L increases.

Similar to the system with zero lead time, we can extend most of the results in Theorem 7 to a

class of base-stock policies by approximating CL(S) through a non-negative linear combination of

its upper and lower bounds in Lemma 5. Besides, we can extend the results in Lemma 3 and parts

(a) and (c) of Theorem 5 to a backlogging system with positive lead times under the LIFO or a

general issuance policy. We leave the details to interested readers.

6. Sketched Proofs of Main Results

In this section, we provide sketched proofs of Theorems 1 to 7 in §3 to §5. The common strategy

for proving each of these results is to construct a tight upper bound on the long-run average cost

of a certain base-stock policy and a tight lower bound on the optimal cost, and then prove that
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their absolute or relative gap approaches zero as a certain system parameter goes to infinity. In

Lemmas 2 to 5, we have constructed various upper bounds on the long-run average costs of base-

stock policies in different systems. In this section, we first construct three important lower bounds

on the optimal costs in §6.1 and then sketch the proofs of Theorems 1 to 7 in §6.2.

6.1. Three Lower Bounds on the Optimal Cost

First, we present a lower bound on the optimal cost for the lost-sales system with zero lead time.

This bound will be used extensively in the proofs of Theorems 1 to 6.

Proposition 2. Under any issuance policy, the optimal cost for the lost-sales system with zero

lead time is bounded from below by C̃(S̃). That is, OPT≥ C̃(S̃) under any issuance policy.

We prove Proposition 2 below by a simple sample-path approach. For any admissible policy

π ∈Π and under any issuance policy, the following inequality

t+m−1∑
i=t

oπi ≥
(
xπ
t,m −

t+m−1∑
i=t

Di

)+

(15)

holds for any period t≥ 1 under any demand sample path. To see this, note that the total inventory

xπ
t,m in period t, regardless of the issuance policy, either satisfies demands or outdates in periods t

to t+m− 1. Since it can satisfy at most min{xπ
t,m,

∑t+m−1

i=t Di} units of demands in those periods,

the cumulative outdated quantity in periods t to t+m−1 is at least (xπ
t,m−

∑t+m−1

i=t Di)
+. For any

T ≥ 1, it follows from inequality (15) that

T+m−1∑
t=1

oπt ≥
1

m

T∑
t=1

t+m−1∑
i=t

oπi ≥
1

m

T∑
t=1

(xπ
t,m −

t+m−1∑
i=t

Di)
+. (16)

From the definition of Cπ
t in (2), we have

T+m−1∑
t=1

E[Cπ
t ]≥

T∑
t=1

E
[
h(E[xπ

t,m]−Dt)
+ + p(Dt −E[xπ

t,m])
+ +

θ

m
(E[xπ

t,m]−
t+m−1∑

i=t

Di)
+
]

≥ TC̃(S̃), (17)

where the first inequality follows from (16), the independence between xπ
t,m and (Dt, . . . ,Dt+m−1)

for each period t and the conditional Jensen’s inequality, and the second inequality follows from

the definition of C̃(·) and S̃. Then, it follows from the definitions of Cπ and inequality (17) that

Cπ = limsup
T→∞

1

T +m− 1

T+m−1∑
t=1

E[Cπ
t ]≥ C̃(S̃).

Since the above inequality holds for any admissible policy π ∈ Π and under any issuance policy,

the proof of Proposition 2 is complete.

Next, we present a lower bound on the optimal cost for the lost-sales system with zero lead time

under bounded demand and FIFO issuance policy. This bound is crucial to the proof of Theorem

3 for the case of bounded demand.
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Proposition 3. Suppose that demand D is bounded. Then,

OPTFIFO ≥ hE[(S−D)+] + θE[O∞(S)], (18)

where S , argminS≥0{hE[(S−D)+] + pE[(D−S)+] + θS}.

The proof of Proposition 3 is based on the following lemma, which characterizes a uniform lower

bound on the order-up-to level under the optimal policy.

Lemma 6. Suppose that demand D is bounded. Then, there exists an optimal policy for the lost-

sales system with zero lead time and under the FIFO issuance policy, denoted by πFIFO,∗, such that

xπFIFO,∗
t,m ≥ S for any period t≥ 1 and under any demand sample path.

We describe the main ideas of proving Lemma 6 below. Proposition 3 of Nandakumar and Morton

(1993) shows that the order-up-to level under the optimal policy for the counterpart system under

the discounted-cost criterion with discount factor α∈ (0,1) is uniformly bounded from below by

Sα , argmin
S≥0

{hE[(S−D)+] + pE[(D−S)+] +αm−1θS}.

Since Sα ≥ S for all α ∈ (0,1), Lemma 6 holds under the discounted-cost criterion. To prove that

it also holds under the average-cost criterion, we apply a vanishing discount factor approach from

Schäl (1993). Specifically, by verifying all the conditions in Theorem 3.8 of Schäl (1993), we prove

that when demand D is bounded, there exist an optimal policy for the average-cost system and

a sequence of discount factors approaching one such that the discounted optimal policy converges

to the average optimal policy when the discount factor in that sequence approaches one. Through

this, we complete the proof of Lemma 6.

We now prove Proposition 3. From the system dynamics in (1), we have the following recursion

for any admissible policy π under any demand sample path:

oπt+m−1 =
(
xπ
t,m −

t+m−1∑
i=t

Di −
t+m−2∑
j=t

oπi

)+

, ∀t≥ 1. (19)

By applying (19) and Lemma 6, one can easily prove by induction on T the following inequality

under any demand sample path:

T∑
t=1

oπ
FIFO,∗

t ≥
T∑

t=1

o
πS

t , ∀ T ≥ 1. (20)

Then, it follows from Lemma 1, Lemma 6, and (20) that

OPTFIFO ≥ limsup
T→∞

1

T

T∑
t=1

(hE[(xπFIFO,∗

t,m −D)+] + θE[oπ
FIFO,∗

t ])≥ hE[(S−D)+] + θE[O∞(S)].

This completes the proof of Proposition 3.

Finally, we present a lower bound on the optimal cost for the backlogging system with positive

lead times. This bound is crucial to the proof of Theorem 7.
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Proposition 4. Under any issuance policy, the optimal cost for the backlogging system with

positive lead times L is bounded from below by C̃L(S̃L). That is, OPTL ≥ C̃L(S̃L) for any L≥ 1

under any issuance policy.

Similar to Proposition 2, we prove Proposition 4 by a simple sample-path approach. Generally

speaking, we can establish a similar inequality to (16) through a similar inequality to (15) after

incorporating the effect of lead times L, and then apply similar arguments to establish a similar

inequality to (17). For brevity, we leave the detailed proof to Appendix E.2.

6.2. Sketched Proofs of Theorems 1 to 7

In this subsection, we sketch the proofs of Theorems 1 to 7. For brevity, we will focus on the

key upper bounds on the optimality gaps of our simple base-stock policies, which are obtained by

applying the lower bounds on the optimal costs established in §6.1 and various upper bounds on

the long-run average costs of base-stock policies established in §2.1, §4 and §5. The missing details

can be found in the appendices.

Sketched Proofs of Theorems 1 to 4. First, the proofs of Theorems 1, 2 and 4 are all based

on the following upper bound on the optimality gap of policy πS̃:

C(S̃)−OPT≤ (m− 1)θ

m
E
[(

S̃−
m∑
i=1

Di

)+]
, (21)

which follows from Lemmas 1 and 2, and Proposition 2.

Since x+ ≤ ex−1 for any x ∈R (see, e.g., Lemma 1 in Kingman 1962), {Di : 1≤ i≤m} are i.i.d.

r.v.’s, and S̃ ≤ SNP from inequality (5), it follows from (21) that for any λ> 0,

C(S̃)−OPT≤ (m− 1)θ

λme
·E
[
eλ(S̃−

∑m
i=1 Di)

]
≤ (m− 1)θ

λme
· eλS

NP

(E[e−λD])m. (22)

This completes the proof of Theorem 1.

To prove Theorem 2, after plugging D=
∑N(n)

j=1 D̂j into the RHS of (22), we obtain

C(S̃)−OPT≤ (m− 1)θ

λme

(
e

1
mλSNP

n E[e−λ
∑N(n)

j=1 D̂j ]
)m

, ∀λ> 0. (23)

To proceed, we construct an upper bound on SNP
n by applying a classic result from Scarf (1958) for

a robust newsvendor problem, and an upper bound on the E[e−λ
∑N(n)

j=1 D̂j ] by employing Bernstein’s

inequality (see, e.g., Theorem 1.13 in Rigollet and Hütter 2015). We leave the rest of the proof to

Appendix B.1.

Based on inequality (21), Theorem 4 is implied by the following identity:

lim
θ→∞

θE
[(

S̃θ −
m∑
i=1

Di

)+]
= 0. (24)



24

Recall that S̃θ is a minimizer of the function C̃θ(S) over [0,∞), defined in (4). We leave the proof

of identity (24) to Appendix B.3.

Second, the proof of Theorem 3 is based on the following two upper bounds on the optimality

gap of policy πS̃:

C(S̃)−OPT≤ θ
(
E
[(

D− S̃

m

)+]
−E

[( 1

m

m∑
i=1

Di −
S̃

m

)+])
, (25)

and when D̄= sup{x : F (x)< 1}<∞,

C(S̃)−OPT≤ (h+ θ)(D̄−S). (26)

Inequality (25) follows from Lemma 2 and Proposition 2, and inequality (26) follows from Proposi-

tion 3. Theorem 3 follows directly from these bounds by considering the cases D̄=∞ and D̄ <∞

separately. We leave the proofs of inequalities (25) and (26) to Appendix B.2.

Sketched Proofs of Theorems 5 and 6. The proof of Theorem 5 is built on inequalities

CLIFO(S)≤ ĈU(S) and OPTLIFO ≥ C̃(S̃) from Lemma 3 and Proposition 2. First, they imply the

following upper bound on the optimality gap of policy πŜ:

CLIFO(Ŝ)−OPTLIFO ≤ θ

2m

(
E[(Ŝ−D)+] +E[(S̃−D)+]−E[(Ŝ−max{D1, . . . ,Dm})+]

+E[(S̃−max{D1, . . . ,Dm})+]− 2E[(S̃−
m∑
i=1

Di)
+]
)
, (27)

which follows from ĈL(Ŝ)+ ĈU(Ŝ)≤ ĈL(S̃)+ ĈU(S̃) by the definition of Ŝ, and the definitions of

ĈL(·), ĈU(·) and C̃(·). Parts (a) and (b) follow from inequality (27). Second, they, together with

a similar proof to Theorem 4, imply part (c). We leave the detailed proof to Appendix C.2. From

Lemmas 3 and 4 and Proposition 2, inequalities CGI(S)≤ ĈU(S) and OPTGI ≥ C̃(S̃) hold under

a general issuance policy. Therefore, Theorem 6 holds.

Sketched Proof of Theorem 7. The proofs of parts (a) to (c) in Theorem 7 are based on the

following upper bound on the optimality gap of policy πS̃L :

CL(S̃L)−OPTL ≤ (m− 1)θ+(b(m+L)+h+ θ)L

m+L
·E
[(

S̃L −
m+L∑
i=1

Di

)+]
, (28)

which follows from Lemma 5 and Proposition 4. The rest of the proofs of parts (a) to (c) follow

similar arguments to those for Theorems 1, 2 and 4, respectively. We omit the details for brevity.

7. Numerical Study

In this section, we conduct a numerical study to test the performances of our base-stock policies

under three perishable inventory systems. In §7.1 and §7.2, we consider lost-sales systems with
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zero lead time under the FIFO and LIFO issuance policies, respectively. In §7.3, we consider the

backlogging system with positive lead times. The performance of base-stock policy πS is measured

by its relative optimality gap, defined as ∆(S), (C(S)−OPT)/OPT× 100%.

In our study, the optimal policy is computed by a relative value iteration method (see, e.g.,

Bertsekas et al. 2000), and the best base-stock policy is computed by simulating the inventory

system under different integer base-stock levels. Our simple base-stock levels proposed in §2 to §5,

and other heuristic base-stock levels tested are solved by minimizing some convex functions with

closed-form expressions, and their long-run average costs are evaluated by simulating the inventory

systems. Over all the instances tested in this section, the average computation times for the long-

run average costs of the optimal policy, the best base-stock policy, and heuristic base-stock policies

are around 2.7 hours, 1.6 hours, and 4.2 minutes, respectively. All computations were done using

Matlab R2020a on a laptop with an Intel Core i7-8705G, 3.10GHz CPU.

7.1. Lost-sales System under FIFO Issuance Policy

In this subsection, we investigate the performances of four base-stock policies in the classic FIFO

system: πS∗ , πS̃, πSCCG and πSNP . The superscript “CCG” in πSCCG stands for Cooper-Chazan-

Gal, as base-stock level SCCG was proposed in Cooper (2001) by approximating E[O∞(S)] with

the mid-point of its upper and lower bounds provided in Chazan and Gal (1977) (see Lemma 2).

We employ πSCCG as a benchmark, since previous studies show that it performs very well in the

classic perishable inventory system (see, e.g., Nahmias 2011). To examine the effect of unit ordering

cost, we also incorporate it into our system and denote the unit ordering, holding, penalty, and

outdating costs by ĉ, ĥ, p̂, and θ̂, respectively. For fixed m = 3 and ĥ = 1, Table 3 reports the

optimal cost and the relative optimality gaps of the four base-stock policies under different (ĉ, p̂, θ̂)

combinations, and Poisson and geometric distributions with mean 5.

We make the following observations from Table 3. First, policies πS∗ , πS̃ and πSCCG perform

consistently close to optimal under Poisson demand, and slightly worse but still very well under

geometric demand. By contrast, policy πSNP performs well only under Poisson demand, but much

worse than the other three policies under geometric demand. This is expected since πSNP ignores

product perishability and its consequence becomes more serious under more variable geometric

demand. Second, policy πSCCG performs consistently very close to the best base-stock policy πS∗ ,

and πS̃ performs slightly worse than πSCCG in several instances. This indicates that approximating

E[O∞(S)] by the mid-point of its upper and lower bounds is numerically more effective than by its

lower bound. Third, as θ̂ increases, πS∗ , πS̃ and πSCCG perform worse when θ̂ is moderate while they

perform better when θ̂ is very small or very large. This is expected, because all the three policies are

optimal when θ̂= 0 and asymptotically optimal when θ̂ is large (see part (d) of Proposition EC.2).
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Table 3 Performances of base-stock policies in the lost-sales system under FIFO issuance policy

(p̂, θ̂)

ĉ= 0 ĉ= 5

OPT ∆(S∗) ∆(S̃) ∆(SCCG) ∆(SNP ) OPT ∆(S∗) ∆(S̃) ∆(SCCG) ∆(SNP )

Poisson Demand
(8,3) 4.16 0.08% 0.08% 0.08% 0.08% 28.01 0.00% 0.00% 0.00% 0.00%
(8,6) 4.23 0.06% 0.06% 0.06% 0.06% 28.02 0.00% 0.00% 0.00% 0.00%
(8,8) 4.28 0.03% 0.03% 0.03% 0.03% 28.03 0.00% 0.00% 0.00% 0.00%
(20,8) 5.50 0.28% 0.28% 0.28% 0.28% 30.26 0.00% 0.00% 0.00% 0.75%
(40,8) 6.56 0.48% 0.97% 0.48% 0.48% 31.57 0.01% 0.01% 0.01% 1.26%

Geometric Demand
(8,3) 14.24 0.75% 0.75% 0.75% 6.00% 34.14 0.05% 0.05% 0.05% 2.62%
(8,6) 15.81 1.09% 1.21% 1.21% 14.84% 34.48 0.20% 0.28% 0.20% 4.30%
(8,8) 16.75 0.40% 2.11% 0.40% 21.08% 34.66 0.14% 0.54% 0.14% 5.53%
(20,8) 26.58 1.37% 1.47% 1.47% 17.82% 51.34 0.55% 1.11% 0.55% 19.25%
(40,8) 35.55 1.88% 1.92% 1.92% 19.35% 64.87 0.97% 1.05% 1.05% 19.79%

Finally, as ĉ increases, the four base-stock policies in general perform better except for πSNP under

several instances. This is because any admissible policy incurs the same long-run average ordering

cost ĉE[D], and as ĉ increases, this policy-independent cost constitutes a larger proportion in the

overall long-run average costs of the optimal policy and base-stock policies, leading to improved

performances.

Table 3 also shows that as p̂ increases from 8 to 40, all three policies πS∗ , πS̃ and πSCCG perform

worse in most of the instances we tested. Considering that they are asymptotically optimal with

large p̂ (see Theorem 3 and part (c) of Proposition EC.2), we further investigate how their perfor-

mances depend on a wider range of values of p̂. In Figure EC.1 of Appendix H, for fixed m= 3,

ĥ= 1, ĉ= 0 and θ̂= 8, we plot the relative optimality gaps of πS∗ , πS̃ and πSCCG , where p̂ ranges

from 8 to 150 (or the service level p̂/(p̂+ ĥ)× 100% ranging from 88.89% to 99.34%), with mean

demand 5. From that figure, the relative optimality gaps are non-monotone in p̂, but they tend

to increase in p̂ when p̂ is small while decrease in p̂ when p̂ is large. This is expected, because all

three base-stock policies are optimal when p̂= 0 and asymptotically optimal when p̂ is sufficiently

large. That figure also shows that when p̂≥ 120 (or when the service level exceeds 99.17%), all the

three policies are almost optimal under Poisson demand, and close to optimal with the relative

optimality gap less than 1% under geometric demand.

7.2. Lost-sales System under LIFO Issuance Policy

In this subsection, we investigate the performances of three base-stock policies in the LIFO system:

πS∗ , πŜ, and πSCCG . To examine the effect of the demand population size n, we consider the generic

one-period demand D =
∑n

j=1 D̂j, where each D̂j follows i.i.d. Poisson or geometric distribution

with mean 5. Table 4 reports the results for m= 3 and h= 1 under different (p, θ,n) combinations

and demand distributions.
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Table 4 Performances of base-stock policies in the lost-sales system under LIFO issuance policy

n= 1 n= 2 n= 3

(p, θ) OPT ∆(S∗) ∆(Ŝ) ∆(SCCG) OPT ∆(S∗) ∆(Ŝ) ∆(SCCG) OPT ∆(S∗) ∆(Ŝ) ∆(SCCG)

Poisson Component Demand
(8,3) 5.44 1.51% 1.51% 13.08% 7.58 2.06% 2.06% 10.07% 9.20 2.22% 3.45% 11.35%
(8,6) 6.24 6.35% 8.00% 31.49% 8.68 4.52% 4.52% 26.68% 10.56 5.51% 5.51% 28.50%
(8,8) 6.59 6.69% 6.69% 45.27% 9.21 6.83% 6.83% 38.65% 11.24 6.31% 6.31% 40.47%
(20,8) 10.08 5.43% 9.46% 30.65% 13.95 5.07% 7.64% 20.09% 16.89 4.74% 4.74% 33.91%
(40,8) 12.98 3.84% 3.84% 9.75% 17.84 5.08% 5.44% 29.77% 21.60 4.52% 4.93% 22.90%

Geometric Component Demand
(8,3) 15.58 1.75% 1.75% 3.65% 21.15 2.32% 2.32% 5.28% 25.30 2.50% 2.55% 7.80%
(8,6) 17.67 2.92% 2.92% 7.36% 23.94 4.82% 4.82% 12.24% 28.64 5.37% 5.37% 13.26%
(8,8) 18.68 3.85% 3.85% 6.83% 25.30 6.11% 6.11% 13.84% 30.23 7.04% 7.04% 21.07%
(20,8) 31.19 3.58% 3.58% 7.43% 40.94 5.55% 5.55% 12.05% 48.20 6.15% 6.15% 18.04%
(40,8) 42.84 3.34% 3.34% 5.80% 55.08 4.91% 4.91% 10.03% 64.25 5.23% 5.54% 12.96%

The first observation is that, compared with the results in Table 3, the best base-stock policy

performs worse in the LIFO system than in the FIFO system. This is likely because the best

base-stock policy in the LIFO system results in more outdated units than those in the FIFO

system. Second, πŜ performs very close to πS∗ in most cases, demonstrating its effectiveness as a

simple heuristic. By contrast, πSCCG performs much worse than πS∗ and πŜ, albeit its near-optimal

performances in the FIFO system. This indicates that the LIFO system is different from the FIFO

system, and an effective heuristic policy in the FIFO system can perform very poorly in the LIFO

system. Third, when p increases, πS∗ and πŜ perform better in most of the instances we have tested.

This observation is consistent with our theoretical result in Theorem 5(b). Fourth, as demand

population size n increases, πS∗ and πŜ perform worse in most of the instances, especially under

geometric demand. This is in sharp contrast with our findings for the FIFO system (see Theorem

2 and Table 2). This shows that the effect of the demand population size on the performances of

base-stock policies in the LIFO system is complex and we leave its investigation for future research.

Table 4 also reveals that policies πS∗ and πŜ perform very well when θ is small (e.g., θ= 3), but

perform worse when θ increases. Considering that both policies are asymptotically optimal with

large values of θ under Poisson and geometric demands (see Theorem 5(c)), we further explore

how their performances depend on a wider range of values of θ. In Figure EC.2 of Appendix H,

for fixed m= 3, n= 1, h= 1 and p= 8, we plot the relative optimality gaps of πS∗ and πŜ, where

θ ranges from 3 to 400, with mean demand 5. From that figure, we observe that a very large value

of θ is required to ensure near-optimal performances of policies πS∗ and πŜ under both Poisson

and geometric distributions. In particular, under Poisson demand, the relative optimality gaps for

both policies are over 50% when θ is as large as 400. This, together with Proposition 1, indicates

that base-stock policies in general do not perform very well when θ is reasonably large.
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7.3. Backlogging System with Positive Lead Times

In this subsection, we investigate the performances of πSL,∗ and πS̃L in the backlogging system with

positive lead times L. For fixed h= 1, Table 5 reports the results under different (b, θ,m,L) combi-

nations, and Poisson and geometric demands with mean 5. Due to the computational intractability

of the optimal cost, we only test the scenarios where m+L≤ 3.

Table 5 Performances of base-stock policies in the backlogging system with positive lead times

(b, θ)

(m,L) = (1,1) (m,L) = (2,1) (m,L) = (1,2)

OPT ∆(SL,∗) ∆(S̃L) OPT ∆(SL,∗) ∆(S̃L) OPT ∆(SL,∗) ∆(S̃L)

Poisson Demand
(8,3) 11.19 6.51% 6.51% 6.75 2.12% 2.12% 11.56 11.58% 14.57%
(8,6) 15.47 6.70% 7.04% 7.85 1.69% 1.69% 16.26 11.02% 11.02%
(8,8) 17.81 5.01% 5.01% 8.46 2.98% 2.98% 18.73 10.75% 10.75%
(20,8) 26.19 6.95% 6.95% 11.69 3.01% 3.01% 26.58 12.89% 18.35%
(40,8) 32.89 7.32% 11.01% 14.25 4.26% 4.26% 33.30 12.77% 21.55%

Geometric Demand
(8,3) 29.50 7.15% 7.20% 22.19 4.88% 4.88% 31.49 12.52% 13.05%
(8,6) 38.33 5.58% 5.58% 27.24 4.73% 4.92% 42.15 10.34% 10.34%
(8,8) 42.49 4.73% 5.20% 29.89 4.51% 4.87% 47.48 9.15% 9.32%
(20,8) 69.93 7.35% 7.35% 46.14 6.24% 6.24% 74.04 13.09% 13.83%
(40,8) 94.57 8.96% 10.33% 60.09 7.06% 7.81% 97.41 15.33% 21.43%

First, for a fixed lead time L= 1, both πSL,∗ and πS̃L perform significantly better as the lifetimem

increases from one to two, which is consistent with our theoretical result in Theorem 7(a). Second,

for fixed lifetime m= 1, both policies perform significantly worse as the lead time L increases from

one to two, and the relative optimality gaps when L = 2 are over 9% in all problem instances.

This observation is expected, since it is harder for base-stock policies (which maintain a constant

inventory position) to control the total on-hand inventory level under a larger L. Third, when θ

increases, both policies perform better in general, which is in alignment with our theoretical result in

Theorem 7(c). Finally, both πSL,∗ and πS̃L perform significantly worse as the unit backlogging cost

b increases. This observation matches our intuition that base-stock policies are not asymptotically

optimal with large unit backlogging costs as explained in §5.

8. Conclusion

In this paper, we conduct an in-depth study on the theoretical performances of base-stock policies

for perishable inventory systems over an infinite planning horizon. For the classic system with zero

lead time and the FIFO issuance policy, we construct a simple base-stock policy and show that its

optimality gap decays to zero exponentially fast in the lifetime and in demand population size, and

it converges to zero as the unit penalty or outdating cost goes to infinity. We further extend most
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of these results to a system under the LIFO or a general issuance policy and a backlogging system

with positive lead times. We conduct a numerical study to investigate the performances of base-

stock policies in these systems, and offer observations and insights based on our numerical results.

This paper contributes to the literature by providing theoretical justifications for the near-optimal

numerical performances of base-stock policies in the classic perishable inventory system reported

in the literature, and establishing the first theoretical results of base-stock policies for the other

two perishable inventory systems.

We conclude this paper by mentioning several directions for future research. First, it is worthwhile

to further study the perishable inventory system under the LIFO or a general issuance policy

considered in §4. For this system, among others, it remains unknown whether the best base-stock

policy is asymptotically optimal with large unit penalty costs under bounded demand. Moreover,

§7.2 shows that base-stock policies do not always perform well in the LIFO system. Thus, it is

desirable to design more effective heuristic replenishment policies for this system. Second, it is

important to develop effective heuristic policies for backlogging and lost-sales perishable inventory

systems with positive lead times. For the backlogging system, §7.3 shows that base-stock policies

perform poorly with large unit backlogging costs or lead times; hence more effective heuristic

replenishment policies need to be developed for both asymptotic regimes. Third, it is valuable

to develop effective and asymptotically optimal heuristic policies for perishable inventory systems

with fixed ordering cost. For these systems, Nahmias (1978) shows that the class of (s,S) policies

(which raises the total inventory level to S whenever it drops below s) performs close to optimal. It

is helpful to explore their asymptotic optimality property. Finally, it is also valuable to consider the

systems under the discounted cost criterion over a finite/infinite planning horizon. In particular, it

will be interesting to investigate to what extent the results established for the systems under the

average cost criterion can be extended to systems under discounted cost criterion.
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“Asymptotic Optimality of Base-Stock Policies for Perishable
Inventory Systems”

Jinzhi Bu, Xiting Gong, Xiuli Chao

Appendix A. Proof of Lemma 1 in Section 2

We prove the lemma by considering the case when P(D ≥ S/m) > 0 and the case when P(D ≥

S/m) = 0 separately. For convenience, we denote the state space under base-stock policy πS as

X = {(x1, x2, . . . , xm−1) : 0≤ x1 ≤ x2 ≤ . . .≤ xm−1 ≤ S}.

Case 1: P(D≥ S/m)> 0. In this case, similar to the proof of Theorem 3 in Huh et al. (2009),

we first prove that the Markov chain {Xt(S) := (xπS
t,1 , x

πS
t,2 , . . . , x

πS
t,m−1) : t ≥ 1} converges to some

random vector X∞(S) = (xπS
∞,1, x

πS
∞,2, . . . , x

πS
∞,m−1) in distribution. Applying this result, we can prove

Lemma 1 as follows. Since Xt(S) converges in distribution to X∞(S), one can verify that
(
xπS
t,1 ,Dt

)
converges in distribution to

(
xπS
∞,1,D

)
, where D is independent of X∞(S). Since the function (x1−

d)+ is continuous in 0≤ x1 ≤ S, d≥ 0, and bounded from above by S, by applying Theorem 3.2.3

in Durrett (2010), we obtain

lim
t→∞

E[(xπS
t,1 −Dt)

+] =E[(xπS
∞,1 −D)+].

Therefore, Lemma 1 is established by letting O∞(S) =d (xπS
∞,1 −D)+, where =d denotes “equal in

distribution”.

We now prove that the stationary distribution of the Markov chain {Xt(S) : t≥ 1} exists, which

is also the limiting distribution that {Xt(S) : t≥ 1} converges to. By applying Theorem 16.0.2 of

Meyn and Tweedie (1993), we only need to construct a measurable subset U ⊆ X , a nontrivial

measure ν(·) (i.e., ν(X )> 0), and a positive integer t∗ ≥ 1, such that

P(Xt∗(S)∈B|X1(S) = x1)≥ ν(B) (EC.1)

for any x1 ∈U and any measurable subset B ⊆X .

Let U = X , t∗ = 2m − 1, and the measure ν(·) be defined as follows: for any measurable set

B ⊆X ,

ν(B), P
(
Dt ≥

S

m
,∀1≤ t≤ 2m− 2,

(
(S−

2m−2∑
t=m

Dt)
+, (S−

2m−2∑
t=m+1

Dt)
+, . . . , (S−D2m−2)

+
)
∈B

)
.
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It is easy to verify that ν(·) is a measure. In addition, since ν(X ) = (P(D ≥ S/m))2m−2 > 0, it is

nontrivial.

To complete the proof, it remains to verify inequality (EC.1). Note that

P(X2m−1(S)∈B|X1(S) = x1)

≥ P
(
X2m−1(S)∈B,Dt ≥

S

m
,∀1≤ t≤ 2m− 2|X1(S) = x1

)
= P

(
X2m−1(S)∈B|Dt ≥

S

m
,∀1≤ t≤ 2m− 2,X1(S) = x1

)
P
(
Dt ≥

S

m
,∀1≤ t≤ 2m− 2

)
= P

((
(S−

2m−2∑
t=m

Dt)
+, . . . , (S−D2m−2)

+
)
∈B|Dt ≥

S

m
,∀1≤ t≤ 2m− 2,X1(S) = x1

)
P
(
Dt ≥

S

m
,∀1≤ t≤ 2m− 2

)
= P

((
(S−

2m−2∑
t=m

Dt)
+, . . . , (S−D2m−2)

+
)
∈B|Dt ≥

S

m
,∀1≤ t≤ 2m− 2

)
P
(
Dt ≥

S

m
,∀1≤ t≤ 2m− 2

)
= ν(B), (EC.2)

where the first equality follows from the conditional probability formula and the independence

between (D1,D2, . . . ,D2m−2) and the initial state X1(S), the second equality follows from Corollary

2 of Cooper and Tweedie (2002), which states that if Dt ≥ S/m for any 1 ≤ t ≤ 2m − 2, then

xπS
2m−1,i = (S−

∑2m−2

t=m+i−1Dt)
+ for any 1≤ i≤m−1 regardless of the initial state, the third equality

follows from the independence between (D1,D2, . . . ,D2m−2) andX1(S), and the last equality follows

from the definition of ν(·). The proof of Lemma 1 for Case 1 is complete.

Case 2: P(D≥ S/m) = 0. In this case, the Markov chain {Xt(S) : t ≥ 1} may not have a sta-

tionary distribution, since one can construct a cyclic Markov chain similar to that in §3.2 of Huh

et al. (2009). So, we prove limT→∞
1
T

∑T

t=1E[(x
πS
t,1 −Dt)

+] = S/m−E[D] directly by showing that

lim inf
T→∞

1

T

T∑
t=1

E[(xπS
t,1 −Dt)

+]≥ S

m
−E[D]≥ limsup

T→∞

1

T

T∑
t=1

E[(xπS
t,1 −Dt)

+]. (EC.3)

By letting O∞(S) =d S/m−D, we prove Lemma 1 under Case 2.

We first prove the first inequality in (EC.3). From the recursion (19), one can verify that

t∑
i=t−m+1

E[oπS
i ]≥ S−mE[D], ∀t≥m. (EC.4)

Suppose T = km+ l, where k≥ 1 and 1≤ l <m. Then, we have

1

T

T∑
t=1

E[oπS
t ]≥ 1

km+ l

k−1∑
s=0

(s+1)m∑
t=sm+1

E[oπS
t ]≥ k

km+ l
(S−mE[D]),

where the second inequality follows from (EC.4). By taking lim infT→∞ on both sides of the above

inequalities, we obtain the first inequality in (EC.3).

We next prove the second inequality in (EC.3). For any vector x= (x1, . . . , xm−1) ∈X , consider

the following three systems under the same base-stock policy πS: System 1 starts with the initial
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state x1
1 = x; System 2 starts with x2

1 = (xm−1, xm−1, . . . , xm−1); and System 3 starts with x3
1 =

(S/m,2S/m, . . . , (m− 1)S/m). For 1≤ k≤ 3, let xk
t and okt denote the system state and the amount

of outdates in System k in period t, respectively. Then, we have

T∑
t=1

o1t ≤
T∑

t=1

o2t ≤ o21 +
T∑

t=2

o3t , ∀T ≥ 2, (EC.5)

under any given demand sample path. Note that x1
1,i ≤ x2

1,i for all 1≤ i≤m−1 and x1
t,m = x2

t,m = S

for any t≥ 1. In addition, System 2 will be empty at the beginning of period 2 (i.e., x2 = 0). Then,

x2
2,i ≤ x3

2,i for all 1 ≤ i ≤ m− 1 and x2
t,m = x3

t,m = S for any t ≥ 2. Then, the two inequalities in

(EC.5) can be proven by using the recursion (19) and induction.

Since Dt <S/m for any t≥ 1, one can verify that

x3
t =

(
S

m
,
2S

m
, . . . ,

(m− 1)S

m

)
and o3t = S/m−Dt for any t≥ 1. Applying (EC.5), we obtain

limsup
T→∞

1

T

T∑
t=1

E[o1t ]≤ limsup
T→∞

{ 1

T
E[o21] +

1

T

T∑
t=2

E[o3t ]
}
=

S

m
−E[D].

Thus, the second inequality in (EC.3) is also satisfied. The proof of Lemma 1 under Case 2 is then

complete. Q.E.D.

Appendix B. Proofs of Theorems 2 to 4 in Section 3

B.1. Proof of Theorem 2

For convenience, let µ,E[D̂1], σ,
√

Var[D̂1] and σX ,
√

Var[X1] (recall the definitions of D̂1 and

X1 from §3.1). To highlight the dependence on n, we use the functional form D(n) to represent the

single-period demand. We only consider the case σX > 0, and similar arguments apply to the case

σX = 0, i.e., when X1 is deterministic. We divide the proof of Theorem 2 into three major steps.

First, we prove that for any fixed k > 1, there exists n1(k) > 0 such that SNP
n ≤ kµn, for any

n≥ n1(k). To this end, we first prove the following inequality:

SNP
n ≤E[D(n)]+

√
pVar[D(n)]/h. (EC.6)

Let M be the following set of distributions: M=
{
F̃ is a cdf of D : EF̃ [D] = E[D(n)],VarF̃ [D] =

Var[D(n)]
}
, where EF̃ [·] denotes the expectation taken with respect to cdf F̃ (·). Then

h(SNP
n −E[D(n)])≤ (h+ p)E[(D(n)−SNP

n )+] +h
(
SNP
n −E[D(n)]

)
=min

S≥0

{
hE[(S−D(n))+] + pE[(D(n)−S)+]

}
≤min

S≥0
max
F̃∈M

{
hEF̃ [(S−D)+] + pEF̃ [(D−S)+]

}
=
√

phVar[D(n)],
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where the last equality follows from Scarf (1958). The above inequality directly implies (EC.6).

Recall that D̂j’s are independent of N(n). From Wald’s equation and the law of total variance,

E[D(n)] = µE[N(n)], and Var[D(n)] = σ2E[N(n)]+µ2Var[N(n)]. (EC.7)

Moreover, from the classic central limit theorem for the renewal process (see e.g., Theorem 4.3.2

in Gallager 2012), we have the random variable

N(n)− 1
E[X1/n]√

Var[X1/n] ·
√

1
(E[X1/n])3

converges in distribution to the standard normal random variable when n→∞. Since E[X1] = 1

and Var[X1] = σ2
X , it follows from the convergence properties that

lim
n→∞

E[N(n)]

n
= 1, and lim

n→∞

Var[N(n)]

n
= σ2

X .

Then, it follows from (EC.6) and (EC.7) that limsupn→∞SNP
n /n≤ µ. As a result, for any k > 1,

there exists some n1(k) such that SNP
n ≤ kµn when n≥ n1(k).

Second, we prove that there exists some constant ν > 0, which only depends on the distribution

of X1, such that for any fixed 0< δ < ν and n≥ 2(1+ δ)/δ,

E
[
exp

(
−λ

N(n)∑
j=1

D̂j

)]
≤ exp

(
− δ2n

8(1+ δ)2ν2

)
+
(
E[e−λD̂1 ]

) n
1+δ . (EC.8)

For any δ > 0, we first note that

E
[
exp

(
−λ

N(n)∑
j=1

D̂j

)]
=E

[
exp

(
−λ

N(n)∑
j=1

D̂j

)∣∣∣N(n)< ⌈ n

1+ δ
⌉
]
P
(
N(n)< ⌈ n

1+ δ
⌉
)

+E
[
exp

(
−λ

N(n)∑
j=1

D̂j

)∣∣∣N(n)≥ ⌈ n

1+ δ
⌉
]
P
(
N(n)≥ ⌈ n

1+ δ
⌉
)

≤ P
(
N(n)< ⌈ n

1+ δ
⌉
)
+E

[
exp

(
−λ

⌈ n
1+δ ⌉∑
j=1

D̂j

)]
≤ P
(
N(n)<

n

1+ δ

)
+
(
E[e−λD̂1 ]

) n
1+δ . (EC.9)

To show (EC.8), it suffices to bound P
(
N(n)< n

1+δ

)
from above by exp(− δ2n

8(1+δ)2ν2
). For conve-

nience, let k(n, δ) = ⌈ n
1+δ

⌉. Note that

P
(
N(n)<

n

1+ δ

)
= P

(
N(n)<k(n, δ)

)
= P

( k(n,δ)∑
i=1

Xi >n
)
, (EC.10)

where the second equality follows from the definition of N(n). Since X1 is a nonnegative r.v.

and E[esX1 ] < ∞ for some s > 0 by our assumption, X1 − E[X1] is a sub-exponential r.v. (see
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Proposition 2.7.1 of Vershynin (2018) for equivalent definitions of a sub-exponential r.v.). Then,

we apply Bernstein’s inequality for sub-exponential random variables (see e.g., Theorem 1.13 in

Rigollet and Hütter 2015) to obtain the following result: there exists some constant ν > 0 (which

only depends on the distribution of X1) such that when δ < ν and n≥ 2(1+ δ)/δ,

P
( k(n,δ)∑

i=1

Xi >n
)
= P

( 1

k(n, δ)

k(n,δ)∑
i=1

(Xi − 1)>
n

k(n, δ)
− 1
)

≤ exp
(
− k(n, δ)

2

(
(

n
k(n,δ)

− 1

ν
)2 ∧

n
k(n,δ)

− 1

ν

))
= exp

(
− (n− k(n, δ))2

2k(n, δ)ν2

)
≤ exp

(
− δ2n

8(1+ δ)2ν2

)
, (EC.11)

where the first inequality follows from Bernstein’s inequality and n≥ n
1+δ

+1>k(n, δ), the second

equality holds since n
k(n,δ)

− 1≤ 1+ δ− 1< ν when δ < ν, and the second inequality holds since

(n− k(n, δ))2

k(n, δ)
>

(n− ( n
1+δ

+1))2

n
1+δ

+1
=

(δn− (1+ δ))2

(1+ δ)(n+(1+ δ))
≥ δ2n

4(1+ δ)2
,

where the last inequality holds since 1+ δ≤ nδ/2. Then, (EC.8) follows from (EC.9), (EC.10) and

(EC.11).

Finally, we bound the RHS of inequality (23). Combining the results established in the previous

two steps, we obtain that for any k > 1, 0< δ < ν and n≥ n1(k)∨ (2(1+ δ)/δ),

e
1
mλSNP

n E[e−λ
∑N(n)

j=1 D̂j ]≤ ef1(λ)n + ef2(λ)n,

where f1(λ) and f2(λ) are defined as

f1(λ),
λkµ

m
− δ2

8(1+ δ)2ν2
, and f2(λ),

λkµ

m
+

1

1+ δ
log(E[e−λD̂1 ]).

Note that f1(λ)< 0 when λ is sufficiently small. When m≥ 2 (otherwise the RHS of (23) equals

zero), f ′
2(0) = (k/m − 1/(1 + δ))µ < 0 when 1 < k < 2/(1 + δ) and 0 < δ < 1. Since f2(0) = 0,

there exists some λ0(k, δ) > 0 such that f2(λ) < 0 when 0 < λ < λ0(k, δ). Thus, by choosing δ, k

and λ satisfying the following three conditions: (i) 0 < δ < 1 ∧ ν; (ii) 1 < k < 2/(1 + δ); and (iii)

0<λ<λ0(k, δ)∧ [δ2m/(8kµ(1+ δ)2ν2)], we have

Cn(S̃n)−OPTn ≤K1e
−K2n, ∀n≥ n1(k)∨ 2(1+ δ)/δ,

where K1 = 2m(m− 1)θ/(λme)≥ 0 and K2 =−max{f1(λ), f2(λ)}m> 0. Q.E.D.
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B.2. Proof of Theorem 3

From the sketched proof of Theorem 3 in §6.2, it suffices to prove inequalities (25) and (26).

We first prove inequality (25). Note that

C(S̃)−OPT≤ θ
(
E
[( S̃

m
−D

)+]
−E

[( S̃
m

− 1

m

m∑
i=1

Di

)+])
= θ
(
E
[(

D− S̃

m

)+]
−E

[( 1

m

m∑
i=1

Di −
S̃

m

)+])
, (EC.12)

where the inequality follows from Lemmas 1 and 2 and Proposition 2, and the equality follows

from x+ = x+(−x)+ and E[D] =E[ 1
m

∑m

i=1Di]. Thus, inequality (25) holds.

We next prove inequality (26). We first provide an upper bound on C(S̃). Note that

pE[(D− S̃)+] = pE[(D− S̃) · 1{D>S̃}]≤ p
(
D̄− S̃

)
·P(D> S̃)≤ (h+ θ)

(
D̄− S̃

)
, (EC.13)

where the first inequality follows from D≤ D̄, a.s., and the second one follows from inequality (5).

Since S̃ ≥ S, we have

C(S̃)≤ hE
[
(S̃−D)+

]
+ θE

[
O∞(S̃)

]
+(h+ θ)

(
D̄− S̃

)
≤ hE

[
(S−D)+

]
+ θE

[
O∞(S)

]
+(h+ θ)

(
D̄−S

)
, (EC.14)

where the first inequality follows from (EC.13), and the second one follows from a+−b+ ≤ (a−b)+,

and the following inequality: for any 0≤ S1 ≤ S2,

E[O∞(S2)]≤E[O∞(S1)]+S2 −S1. (EC.15)

The inequality (EC.15) can be proved as follows. First, by using the system dynamics, we can prove

by induction that x
πS1
t,1 ≤ x

πS2
t,1 for any t≥ 1. Second, note that for any t≥ 1, xπS

t+1,i = (xπS
t,i+1−xπS

t,1 ∨
Dt)

+ for 1≤ i≤m− 1 and xπS
t,m = S. We can prove by induction that x

πS2
t,i ≤ x

πS1
t,i +S2−S1 for any

t≥ 1 and 1≤ i≤m. Then, by the definition of oπt , we obtain o
πS2
t ≤ o

πS1
t + S2 − S1 for any t≥ 1.

Finally, the inequality (EC.15) follows by applying the definition of E[O∞(S)]. Thus, inequality

(26) holds. Q.E.D.

B.3. Proof of Theorem 4

From the sketched proof of Theorem 4 in §6.2, it suffices to prove equality (24). Recall that S̃θ is

the minimizer of C̃θ(S) over [0,∞). One can easily show that S̃θ decreases in θ. Thus, the limit

limθ→∞ S̃θ exists and we denote it by S̃∞. Next, we show that S̃∞ ≤ S0, where S0 , sup{S ≥ 0 :

E[(S −
∑m

i=1Di)
+] = 0}. One can verify that S0 =mD (recall that D = inf{x : F (x)> 0}). By the

definition of C̃θ(S) in (4), for any θ≥ 0, we have

C̃θ(S̃θ) = hE[(S̃θ −D)+] + pE[(D− S̃θ)
+] +

θ

m
E
[(

S̃θ −
m∑
i=1

Di

)+]
≤ min

0≤S≤mD
C̃θ(S) = min

0≤S≤mD

{
hE[(S−D)+] + pE[(D−S)+]

}
. (EC.16)
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Note that inequality (EC.16) holds for all θ, and its RHS is a constant. This implies S̃∞ ≤ S0.

Thus,

lim
θ→∞

{
hE[(S̃θ −D)+] + pE[(D− S̃θ)

+]
}
=hE[(S̃∞ −D)+] + pE[(D− S̃∞)+]

≥ min
0≤S≤mD

{
hE[(S−D)+] + pE[(D−S)+]

}
. (EC.17)

After combining inequalities (EC.16) and (EC.17), we obtain equality (24). Q.E.D.

Appendix C. Proofs of Statements in Section 4

C.1. Proof of Lemma 3

First, we prove that CLIFO(S)≥ ĈL(S). From the system dynamics under the LIFO issuance policy

described in §4.1, we have the following recursion on the outdating process under base-stock policy

πS: under any demand sample path,

oπS
t+m−1 = min

i∈{0,...,m−1}

{
(S−Dt+i)

+ −
t+m−2∑
j=t+i

oπS
j

}
, ∀t≥ 1. (EC.18)

Then, it follows that

t+m−1∑
j=t

oπS
j ≥ min

i∈{0,...,m−1}
{(S−Dt+i)

+}= (S−max{Dt,Dt+1, . . . ,Dt+m−1})+, ∀t≥ 1.

After taking the expectation on both sides of the above inequality, we obtain

t+m−1∑
j=t

E[oπS
j ]≥E[(S−max{D1,D2, . . . ,Dm})+], ∀t≥ 1. (EC.19)

By the definition of CLIFO(S), we have

CLIFO(S) = limsup
T→∞

1

T

T∑
t=1

E[CπS
t ] = hE[(S−D)+] + pE[(D−S)+] + limsup

T→∞

θ

mT

mT∑
t=1

E[oπS
t ]

≥ hE[(S−D)+] + pE[(D−S)+] +
θ

m
E[(S−max{D1,D2, . . . ,Dm})+],

where the inequality follows from inequality (EC.19). By the definition of ĈL(S), we conclude that

CLIFO(S)≥ ĈL(S).

Next, we prove that CLIFO(S) ≤ ĈU(S). Under policy πS, the total leftover inventory in each

period t after satisfying demand Dt is (S −Dt)
+. Note that the outdated inventories in periods

t, t+1, . . . , t+m− 1 are part of this inventory. Then, we obtain

t+m−1∑
j=t

oπS
j ≤ (S−Dt)

+, ∀t≥ 1.

The rest of the proof is similar to that of the first part and we omit it for brevity. Q.E.D.
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C.2. Proof of Theorem 5

First, we prove part (a). Since S̃ ≤ SNP and Ŝ ≤ SNP , it follows from inequality (27) that

CLIFO(Ŝ)−OPTLIFO ≤ 3θ

2m
E[(SNP −D)+].

Thus, part (a) holds.

Next, we prove part (b). From inequality (27), we also have

CLIFO(Ŝ)−OPTLIFO ≤ θ

2m

(
2(m− 1)E[D] +E[(D− Ŝ)+] +E[(D− S̃)+]−E[(max{D1, . . . ,Dm}− Ŝ)+]

+E[(max{D1, . . . ,Dm}− S̃)+]− 2E[(
m∑
i=1

Di − S̃)+]
)

≤(m− 1)θ

m
E[D], (EC.20)

where the two inequalities follow from x+ = x+ (−x)+ for any x and that D1, . . . ,Dm and D are

i.i.d. r.v.’s. When demand D is unbounded, one can easily verify that limp→∞ C̃p(S̃p) =∞. Since

OPTLIFO ≥ C̃(S̃) by Proposition 2, it follows that limp→∞OPTLIFO
p =∞. Combining this with

inequality (EC.20), we obtain part (b).

Finally, we prove part (c). From Proposition 2 and the proof of Theorem 4, we have

lim
θ→∞

OPTLIFO
θ ≥ lim

θ→∞
C̃θ(S̃θ) = min

0≤S≤mD
{hE[(S−D)+] + pE[(D−S)+]}. (EC.21)

By a similar proof to that of Theorem 4, we can also prove that limθ→∞ Ŝθ =D and

lim
θ→∞

θ(E[(Ŝθ −D)+] +E[(Ŝθ −max{D1, . . . ,Dm})+]) = 0.

Since CLIFO(S)≤ ĈU(S) for any S ≥ 0 by Lemma 3, it follows that

limsup
θ→∞

CLIFO
θ (Ŝθ)≤ limsup

θ→∞
ĈU,θ(Ŝθ) = p(E[D]−D)+

1

m
lim
θ→∞

(θE[(Ŝθ −D)+]) = p(E[D]−D).

(EC.22)

When D = 0, after combining inequalities (EC.21) and (EC.22), we obtain limθ→∞(CLIFO
θ (Ŝθ)−

OPTLIFO
θ ) = 0. Thus, part (c) holds. Q.E.D.

C.3. Proof of Proposition 1

From Lemma 3, we have CLIFO(SLIFO,∗)≥minS≥0 ĈL(S). In addition, by a similar proof to that

of Theorem 4, we can prove that limθ→∞
(
minS≥0 ĈL,θ(S)

)
= p(E[D]−D). Combining these results

with inequality (EC.22) and the definition of SLIFO,∗, we obtain limθ→∞Cθ(S
LIFO,∗
θ ) = p(E[D]−D).

Next, we construct an admissible policy and show that its long-run average cost is strictly

less than p(E[D] − D) and independent of θ when m ≥ 2 and SNP > D > 0. Without loss of

generality, suppose that the system is initially empty. Consider the following admissible policy:
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order min{SNP ,mD} units in periods 1, m+1, 2m+1, . . ., whereas use the base-stock policy with

level D in all other periods. One can easily check that 1) there is no inventory outdating under

this policy; 2) the expected holding and penalty cost in each of periods 1, m+1, 2m+1, . . . is

hE[(min{SNP ,mD}−D)+] + pE[(D−min{SNP ,mD})+],

which is strictly less than p(E[D]−D) when m ≥ 2 and SNP >D > 0 by the definition of SNP ;

and 3) the expected holding and penalty cost in each of all other periods is at most p(E[D]−D)

because by the definition of SNP , we have

hE[(S−D)+] + pE[(D−S)+]≤ p(E[D]−D), ∀S ∈ [D,min{SNP ,mD}].

Combining these results together, we conclude that the long-run average cost under this policy is

strictly less than p(E[D]−D) and independent of θ.

Finally, by the definition of OPTLIFO, we obtain limθ→∞OPTLIFO
θ < p(E[D]−D). As a result,

limθ→∞(CLIFO
θ (SLIFO,∗

θ )−OPTLIFO
θ )> 0. Q.E.D.

C.4. Proof of Lemma 4

Note that the long-run average holding and penalty cost under base-stock policy πS always equals

hE[(S −D)+] + pE[(D− S)+], regardless of the inventory issuance policy. From the definitions of

CFIFO(S), CLIFO(S) and CGI(S), it suffices to prove the following inequalities under any demand

sample path:

t∑
i=1

oFIFO,πS
i ≤

t∑
i=1

oGI,πS
i ≤

t∑
i=1

oLIFO,πS
i , ∀t≥ 1, (EC.23)

where oFIFO,πS
t , oGI,πS

t , and oLIFO,πS
t denote the amounts of outdates in period t under base-stock

policy πS, when the FIFO, general, and LIFO inventory issuance policies are adopted respectively.

Since the system is initially empty, oFIFO,πS
t = oGI,πS

t = oLIFO,πS
t = 0 for any t = 1, . . . ,m− 1.

Thus, the inequalities in (EC.23) hold when 1≤ t≤m− 1. Now consider a general period t≥m.

Suppose inductively that the inequalities in (EC.23) hold for each period s= 1,2, . . . , t− 1. In the

following, we prove that the inequalities in (EC.23) hold for period t. Then, by induction, the

inequalities in (EC.23) hold for any period t≥ 1.

First, we prove the following inequalities under a general issuance policy: for any t≥m:(
S−

t∑
i=t−m+1

Di −
t−1∑

i=t−m+1

oGI,πS
i

)+

≤ oGI,πS
t ≤ min

t−m+1≤i≤t

{
(S−Di)

+ −
t−1∑
j=i

oGI,πS
j

}
. (EC.24)

To see the first inequality in (EC.24), we note that the S units of total inventory at the beginning

of period t −m + 1 are either used to satisfy demands or outdated in periods t −m + 1, . . . , t.
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Since the total demand in periods t −m + 1, . . . , t is
∑t

i=t−m+1Di, we have
∑t

i=t−m+1 o
GI,πS
i ≥

(S−
∑t

i=t−m+1Di)
+, leading to the first inequality in (EC.24) due to oGI,πS

t ≥ 0. To see the second

inequality in (EC.24), we note that for each t−m+ 1≤ i≤ t, the outdated inventory in periods

i, i+1, . . . , t are part of the leftover inventory at the end of period i after satisfying demand in period

i, whose amount equals (S−Di)
+. Thus, for each t−m+1≤ i≤ t, we have

∑t

j=i o
GI,πS
j ≤ (S−Di)

+,

leading to the second inequality in (EC.24).

Applying the first inequality in (EC.24), we obtain

t∑
i=1

oGI,πS
i ≥max

{
S−

t∑
i=t−m+1

Di +
t−m∑
i=1

oGI,πS
i ,

t−1∑
i=1

oGI,πS
i

}

≥max

{
S−

t∑
i=t−m+1

Di +
t−m∑
i=1

oFIFO,πS
i ,

t−1∑
i=1

oFIFO,πS
i

}

=
t∑

i=1

oFIFO,πS
i , (EC.25)

where the second inequality follows from the inductive assumption and the identity follows from

the recursion for the outdated inventory under the FIFO issuance policy in equation (19). Similarly,

applying the second inequality in (EC.24), the inductive assumption and the recursion for the

outdated inventory under the LIFO issuance policy in equation (EC.18), we obtain
∑t

i=1 o
GI,πS
i ≤∑t

i=1 o
LIFO,πS
i , which, together with (EC.25), leads to (EC.23). Q.E.D.

Appendix D. Proof of Lemma 5 in Section 5

We first prove inequality (13). From the system dynamics under policy πS, one can easily verify

that for t≥m+L,

xπS
t,m = S−

t−1∑
i=t−L

Di −
t−1∑

i=t−L

oπS
i ,

oπS
t =

(
S−

t∑
i=t−m−L+1

Di −
t−1∑

i=t−m−L+1

oπi

)+

.

Since oπS
i is non-negative for any period i and {Dt : t≥ 1} are i.i.d. random variables, it follows

from the above two identities that, for t≥m+L,

E[(xπS
t,m −Dt)

+]≤E
[(

S−
L+1∑
i=1

Di

)+]
, (EC.26)

E[oπS
t ]≤E

[(
S−

m+L∑
i=1

Di

)+]
. (EC.27)
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In addition, for t≥m+2L, we have

E[(Dt −xπS
t,m)

+]≤E
[( L+1∑

i=1

Di −S
)+]

+
t−1∑

i=t−L

E[oπS
i ]

≤E
[( L+1∑

i=1

Di −S
)+]

+LE
[(

S−
m+L∑
i=1

Di

)+]
, (EC.28)

where the second inequality follows from inequality (EC.27).

Recall that CπS
t = h(xπS

t,m −Dt)
+ + b(Dt −xπS

t,m)
+ + θoπS

t . From the definition of CL(S), we have

CL(S) = limsup
T→∞

1

T

T∑
t=1

E[CπS
t ] = limsup

T→∞

1

T

T∑
t=m+2L

E[CπS
t ]

≤ hE
[(

S−
L+1∑
i=1

Di

)+]
+ bE

[( L+1∑
i=1

Di −S
)+]

+(θ+ bL)E
[(

S−
m+L∑
i=1

Di

)+]
,

where the inequality follows from inequalities (EC.26) to (EC.28). Therefore, inequality (13) holds.

We next prove inequality (14). For any admissible policy π ∈Π, one can easily verify that

xπ
t+L,m = xπ

t,m+L −
t+L−1∑
i=t

Di −
t+L−1∑
i=t

oπi , ∀t≥ 1, (EC.29)

t+m+L−1∑
i=t

oπi ≥
(
xπ
t,m+L −

t+m+L−1∑
i=t

Di

)+
, ∀t≥ 1. (EC.30)

For any t≥ 1, it follows from (EC.29) and (EC.30) that

h(xπ
t+L,m −Dt+L)

+ + b(Dt+L −xπ
t+L,m)

+

=h
(
xπ
t,m+L −

t+L∑
i=t

Di −
t+L−1∑
i=t

oπi
)+

+ b
( t+L∑

i=t

Di +
t+L−1∑
i=t

oπi −xπ
t,m+L

)+
≥h
(
xπ
t,m+L −

t+L∑
i=t

Di

)+
+ b
( t+L∑

i=t

Di −xπ
t,m+L

)+ −h
t+L−1∑
i=t

oπi , (EC.31)

and

(m+L)
T+m+L−1∑

t=1

oπt ≥
T∑

t=1

t+m+L−1∑
i=t

oπi ≥
T∑

t=1

(xπ
t,m+L −

t+m+L−1∑
i=t

Di)
+. (EC.32)

From the definition of Cπ
t , we further have

T+m+L∑
t=1

Cπ
t ≥

T+m∑
t=1

(h(xπ
t+L,m −Dt+L)

+ + b(Dt+L −xπ
t+L,m)

+)+ θ
T+m+L∑

t=1

oπt

≥
T+m∑
t=1

{
h
(
xπ
t,m+L −

t+L∑
i=t

Di

)+
+ b
( t+L∑

i=t

Di −xπ
t,m+L

)+}
+(θ−hL)

T+m+L−1∑
t=1

oπt

≥
T∑

t=1

{
h
(
xπ
t,m+L −

t+L∑
i=t

Di

)+
+ b
( t+L∑

i=t

Di −xπ
t,m+L

)+
+

θ−hL

m+L
(xπ

t,m+L −
t+m+L−1∑

i=t

Di)
+

}
,

(EC.33)
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where the first inequality is obtained from dropping the holding and backlogging costs in the first

L periods, the second one follows from inequality (EC.31) and the inequality
∑T+m

t=1

∑t+L−1

i=t oπi ≤

L
∑T+m+L−1

t=1 oπi , and the last inequality follows from θ≥ hL and inequality (EC.32).

Since xπS
t,m+L = S for each t≥ 1, inequality (14) follows directly after applying inequality (EC.33)

to policy πS. Q.E.D.

Appendix E. Proofs of Lemma 6 and Proposition 4 in Section 6

E.1. Proof of Lemma 6

Since the generic demand D has a finite upper support D̄, we can define the state space as

X = {x= (x1, x2, . . . , xm−1) : 0≤ x1 ≤ x2 ≤ . . .≤ xm−1 ≤ D̄}.

Based on the discussion after Lemma 6, it remains to prove that there exist an optimal policy,

denoted by π∗, for our system under the average-cost criterion, and a sequence of discount factors

{αn ∈ (0,1) : n≥ 1} converging to one such that

xπ∗

t,m(x) = lim
n→∞

xαn,∗
t,m (x), ∀x∈X , ∀t≥ 1,

where for any system state x∈X , xπ∗
t,m(x) is the order-up-to level in period t under policy π∗ and

xαn,∗
t,m (x) is the order-up-to level under the optimal policy in period t for the system under the

discounted-cost criterion with discount factor αn ∈ (0,1).

According to Theorem 3.8 in Schäl (1993), the above statement is proven once we verify a set

of three conditions (i.e., a general assumption, and conditions (S) and (B) stated in Schäl (1993))

for our perishable inventory system. For brevity, we omit their detailed statements. Among the

three conditions, the general assumption and condition (S) can be easily verified, and we omit the

details for brevity. To verify condition (B), we need to prove the following inequality:

sup
α<1

(
J∗
α(x)− inf

x′∈X
J∗
α(x

′)
)
<∞, ∀x∈X , (EC.34)

where J∗
α(x), infπ J

π
α (x) and Jπ

α (x) denotes the expected total discounted cost under an admissible

policy π with the initial state x and discount factor α∈ (0,1).

We now prove inequality (EC.34). For an initial state x′ ∈ X , let xα∗
m (x′) be the system state

in period m under the optimal policy for the system under the discounted-cost criterion with

discount factor α ∈ (0,1). From Theorem 1 in Nandakumar and Morton (1993), there exists a

simple, compact positive ordering region (P.O.R.) of the system state x including x= 0 such that

it is optimal not to order outside the P.O.R. and once the system enters the P.O.R., it can never
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leave it. Since the product has a fixed lifetime of m periods, xα∗
m (x′) must be in the P.O.R. under

any demand sample path regardless of the initial state x′. Then, we have

J∗
α(x

′)≥ αm−1E[J∗
α(x

α∗
m (x′))]≥ αm−1J∗

α(0), (EC.35)

where the first inequality follows from the definition of J∗
α(·), and the second one holds since J∗

α(x)

is increasing in x in the P.O.R. by Theorem 1 in Nandakumar and Morton (1993).

For any initial state x ∈ X , we define a feasible policy π as follows: it does not place any order

in the first m− 1 periods, and then orders optimally under the discounted-cost criterion with the

discount factor α∈ (0,1) from period m onwards. Then, we have

J∗
α(x)− inf

x′∈X
J∗
α(x

′)≤ Jπ
α (x)−αm−1J∗

α(0)

≤ (m− 1) ·
(
(h+ θ)xm−1 + pE[D]

)
,

where the first inequality follows from the definition of J∗
α(·) and (EC.35), and the second inequality

follows from the definition of policy π and the fact that the inventory levels in the first m− 1

periods under policy π do not exceed xm−1, and α < 1. Since J∗
α(x)− infx′∈X J∗

α(x
′) is uniformly

bounded for all α∈ (0,1), inequality (EC.34) holds. Q.E.D.

E.2. Proof of Proposition 4

Note that equation (EC.29) and inequality (EC.30) in the proof of Lemma 5 hold for any admissible

policy π under any issuance policy. Then, it follows that inequality (EC.33) holds for any admissible

policy π under any issuance policy. From the definition of Cπ
t in (2), we have

T+m+L∑
t=1

E[Cπ
t ]≥

T∑
t=1

{
h
(
E[xπ

t,m+L]−
t+L∑
i=t

Di

)+
+ b
( t+L∑

i=t

Di −E[xπ
t,m+L]

)+
+

θ−hL

m+L
(E[xπ

t,m+L]−
t+m+L−1∑

i=t

Di)
+
}

≥ TC̃L(S̃L), (EC.36)

where the first inequality follows from inequality (EC.33), the independence between xπ
t,m+L and

(Dt, . . . ,Dt+m+L−1) for each period t and the conditional Jensen’s inequality, and the second

inequality follows from the definition of C̃L(·) and S̃L. Then, it follows from the definition of Cπ

and inequality (EC.36) that

Cπ = limsup
T→∞

1

T +m+L

T+m+L∑
t=1

E[Cπ
t ]≥ C̃L(S̃L).

Since the above inequality holds for any admissible policy π ∈Π and under any issuance policy, we

obtain OPTL ≥ C̃L(S̃L) for any L≥ 1 under any issuance policy. Q.E.D.
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Appendix F. Asymptotic Convergence Rate in Large Penalty Costs

In this appendix, we characterize the convergence rate for the optimality gap of policy πS̃ in the

classic system with large unit penalty cost p under four classes of demands. The results are presented

in the following proposition, in which for non-negative functions f(x) and g(x), the notation f(x) =

O(g(x)) means that limsupx→∞ f(x)/g(x) <∞. These results show that the asymptotic rate at

which the optimality gap of policy πS̃ converges to zero in the unit penalty cost depends on the

specific demand distribution and differs for different demand distributions. Similar results can be

established for other classes of continuous demand distributions.

Proposition EC.1. Suppose that demand D is a continuous random variable with probability

density function f(·). Then, the following results hold:

(a) If D follows a Weibull distribution with shape parameter β > 0, then CFIFO
p (S̃p) −

OPTFIFO
p =O

(
p
− 1

mβ · (log p)
1
β−1
)
;

(b) If D follows a fat-tailed distribution with parameter α > 1, then CFIFO
p (S̃p)−OPTFIFO

p =

O(p−(1− 1
α ));

(c) If D is bounded and f(D̄)> 0, then CFIFO
p (S̃p)−OPTFIFO

p =O(p−1);

(d) If D follows a triangular distribution, then CFIFO
p (S̃p)−OPTFIFO

p =O(p−
1
2 ).

Proof of Proposition EC.1. The proofs of parts (a)-(b) are based on inequality (25) and the

proofs of parts (c)-(d) are based on inequality (26). For convenience, let F̄ (x) , 1− F (x) for a

c.d.f. F (·).

Proof of part (a). Since S̃p ≥ Sp and from inequality (25), it suffices to prove

E
[(
D− 1

m
Sp

)+]∼ p
− 1

mβ (log p)
1
β−1, (EC.37)

where the notation f(p)∼ g(p) represents the limit limp→∞ f(p)/g(p) exists and is positive. Since

both E[(D− 1
m
Sp)

+] and p
− 1

mβ (log p)
1
β−1 converge to zero as p→∞, by applying L’Hospital’s rule,

we obtain

lim
p→∞

E[(D− 1
m
Sp)

+]

p
− 1

mβ (log p)
1
β−1

= lim
p→∞

1
m
S′

pF̄ ( 1
m
Sp)

p
− 1

mβ −1
(log p)

1
β−1
(

1
mβ − ( 1

β
− 1)(log p)−1

) ,
where S′

p denotes the derivative of Sp with respect to p. Therefore, it suffices to derive the order

of S′
p and F̄ ( 1

m
Sp).

One can verify that Sp = α
(
log(p+h

h+θ
)
) 1

β under aWeibull distribution for F̄ (·) with scale parameter

α (> 0) and shape parameter β (> 0). By taking the derivative with respect to p, we obtain

S′
p =

α

β(p+h)

(
log
(p+h

h+ θ

)) 1
β−1

∼ p−1(log p)
1
β−1.
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In addition, it follows that F̄ ( 1
m
Sp) = (p+h

h+θ
)
− 1

mβ ∼ p
− 1

mβ . Therefore,

S′
pF̄ ( 1

m
Sp)

p
− 1

mβ −1
(log p)

1
β−1
(

1
mβ − ( 1

β
− 1)(log p)−1

) ∼ p−1(log p)
1
β−1p

− 1
mβ

p
− 1

mβ −1
(log p)

1
β−1
(

1
mβ − ( 1

β
− 1)(log p)−1

) ∼ 1,

which implies (EC.37).

Proof of part (b). Since S̃p ≥ Sp and from inequality (25), it suffices to prove

E
[(

D− 1

m
Sp

)+]
∼ p−(1− 1

α ). (EC.38)

Since both E
[
(D− 1

m
Sp)

+
]
and p−(1− 1

α ) converge to zero as p→∞, by applying L’Hospital’s rule,

we obtain

lim
p→∞

E[(D− 1
m
Sp)

+]

p−(1− 1
α )

= lim
p→∞

1
m
S′

pF̄ ( 1
m
Sp)

(1− 1
α
)p−(2− 1

α )
.

Hence again, we only need to derive the order of S′
p and F̄ ( 1

m
Sp).

By definition, the tail function of a fat-tailed distribution satisfies F̄ (x)∼ x−α for some α > 1.

Therefore, F̄ (Sp) = (h+ θ)/(p+h)∼ S−α
p , which implies that Sp ∼ p

1
α . From L’Hospital’s rule, we

obtain S′
p ∼ p

1
α−1. In addition, F̄ ( 1

m
Sp)∼ ( 1

m
Sp)

−α ∼ (Sp)
−α ∼ p−1. Therefore,

S′
pF̄ ( 1

m
Sp)

p−(2− 1
α )

∼ p
1
α−1p−1

p−(2− 1
α )

∼ 1,

which implies (EC.38).

Proof of part (c). From inequality (26), it suffices to prove that D̄ − Sp ∼ p−1. Since F (Sp) =

(p−θ)/(p+h), by taking the derivative with respect to p on both sides, we obtain S′
p ·f(Sp) =

h+θ
(p+h)2

.

Since f(D̄)> 0, we have

lim
p→∞

D̄−Sp

p−1
= lim

p→∞

S′
p

p−2
= lim

p→∞

(h+ θ)

p−2(p+h)2f(Sp)
=

h+ θ

f(D̄)
∈ (0,∞),

which implies that D̄−Sp ∼ p−1.

Proof of part (d). From inequality (26), it suffices to prove that D̄−Sp ∼ p−
1
2 . Let [D,D̄] be the

support of the triangular distribution and a be the mode. Then, the tail distribution function F̄ (·)

on [D,D̄] is given by

F̄ (x) =

{
1− (x−D)2

(D̄−D)(a−D)
, D≤ x≤ a;

(D̄−x)2

(D̄−D)(D̄−a)
, a≤ x≤ D̄.

When p is sufficiently large, (h+ θ)/(p+h) is very close to zero and therefore, Sp satisfies

F̄ (Sp) =
(D̄−Sp)

2

(D̄−D)(D̄− a)
=

h+ θ

p+h
.

Therefore, D̄−Sp ∼ p−
1
2 . Q.E.D.
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Appendix G. A Class of Asymptotically Optimal Base-Stock Policies

In this appendix, we consider a class of base-stock policies for the classic system under the FIFO

issuance policy, denoted as {πS̃α,β : α ≥ 0, β ≥ 0}, and extend some of our results established for

base-stock policy πS̃ in §3 to this class of policies. For any α ≥ 0 and β ≥ 0, we first define the

approximate cost function C̃α,β(S) as

C̃α,β(S), hE[(S−D)+] + pE[(D−S)+] + θULα,β(S), ∀S ≥ 0, (EC.39)

where

ULα,β(S), α

m
E
[(

S−
m∑
i=1

Di

)+
]
+βE

[( S
m

−D
)+
]
.

That is, we construct the approximate cost function C̃α,β(S) by approximating the term E[O∞(S)]

by a non-negative linear combination of its lower bound 1
m
E[(S−

∑m

i=1Di)
+] and its upper bound

E[( S
m
−D)+] (see Lemma 2). Then, we define S̃α,β as the minimizer of function C̃α,β(S), i.e.,

S̃α,β = inf argmin
S≥0

C̃α,β(S).

Similar to inequality (5), one can easily verify that

F−1
( p

p+h+ θ(α+β)

)
≤ S̃α,β ≤ F−1

( p

p+h

)
(EC.40)

The following proposition extends Theorem 1 to 4 to the class of base-stock policies {πS̃α,β : α≥

0, β ≥ 0} under certain conditions.

Proposition EC.2. (a) When β = 0, the optimality gap of policy πS̃α,0 converges to zero

exponentially fast in the lifetime m;

(b) Under the assumption of Theorem 2, the optimality gap of policy πS̃α,β converges to zero

exponentially fast in the demand population size n;

(c) When α+β = 1 or demand D is bounded, limp→∞(Cp(S̃
α,β
p )−OPTp) = 0;

(d) When α+β > 0, limθ→∞(Cθ(S̃
α,β
θ )−OPTθ) = 0.

Part (a) shows that Theorem 1 holds for policy πS̃α,β when β = 0. When β > 0, it remains

unknown whether the optimality gap of πS̃α,β converges to zero exponentially fast in the lifetime

m. Part (b) extends Theorem 2 to policy πS̃α,β with arbitrary α ≥ 0 and β ≥ 0. Part (c) reveals

two cases under which πS̃α,β is asymptotically optimal with large p. When α+β = 1, the difference

between ULα,β(S) and 1
m
E[(S −

∑m

i=1Di)
+] converges to zero when S →∞. Therefore, these two

approximations of E[O∞(S)] are roughly the same when p is large. On the other hand, when D

is bounded, both S̃ and S̃α,β converge to D̄. Thus, in both cases, πS̃α,β is asymptotically optimal

with large p. Part (d) can be explained as follows. When either α or β is positive, base-stock
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level S̃α,β converges to S̃∞ and the long-run average outdating costs under policy S̃α,β converges

to zero as θ →∞. Thus, from the discussion in §3.3, πS̃α,β is asymptotically optimal with large

unit outdating costs. Note that when α = β = 0, πSNP is asymptotically optimal with large unit

outdating costs only when SNP ≤mD. This is because SNP is independent of θ, and when SNP >

mD, by Lemma 2(b), the long-run average outdating cost under πS̃NP is positive and increases

linearly in θ. Thus, πS̃NP is not asymptotically optimal with large θ when SNP >mD.

Similar to Proposition EC.1, we can also characterize the convergence rate of the optimality gap

for base-stock policy πS̃α,β as p increases, and prove that πS̃α,β satisfies Proposition EC.1 (a)-(b)

when α+β = 1 and Proposition EC.1 (c)-(d), established for πS̃. The details are omitted.

Proof of Proposition EC.2. First, we prove parts (a) and (b). Similar to the proofs of Theorems

1 and 2, if we can establish the following upper bound on the optimality gap of policy πS̃α,β :

C(S̃α,β)−OPT≤ θ

(
m−α

m
E
[(

S̃α,β −
m∑
i=1

Di

)+
]
−βE

[( 1

m
S̃α,β −D

)+
]

+
α− 1

m
E
[(

S̃−
m∑
i=1

Di

)+
]
+βE

[( 1

m
S̃−D

)+
])

, (EC.41)

then the results in Proposition EC.2 can be proven easily using the similar arguments in the proofs

of Theorems 1 and 2.

Now, we show inequality (EC.41). From Proposition 2 and the optimality of S̃α,β, we obtain

C(S̃α,β)−OPT≤C(S̃α,β)− C̃α,β(S̃α,β)+ C̃α,β(S̃)− C̃(S̃). (EC.42)

From Lemma 2(a), and the definitions of C(·), C̃α,β(·) and ULα,β(·), we have

C(S̃α,β)− C̃α,β(S̃α,β)≤ θE
[(
S̃α,β −

m∑
i=1

Di

)+]− θULα,β(S̃α,β)

= θ
(
1− α

m

)
E
[(
S̃α,β −

m∑
i=1

Di

)+]− θβE
[( S̃α,β

m
−D

)+]
. (EC.43)

From the definitions of C̃α,β(·) and C̃(·), we also have

C̃α,β(S̃)− C̃(S̃) = θ
α− 1

m
E
[(
S̃−

m∑
i=1

Di

)+]
+ θβE

[( S̃
m

−D
)+]

. (EC.44)

Combining (EC.42)-(EC.44), we obtain inequality (EC.41).

Then, we prove part (c). First, we consider the case with α+β = 1 and unbounded demand. Fol-

lowing the proof of inequality (EC.41) while replacing the use of the upper bound from Lemma 2(a)

with that from Lemma 2(a) in inequality (EC.43), we can obtain the following inequality:

Cp(S̃
α,β
p )−OPTp ≤ θE

[( S̃α,β
p

m
−D

)+]
− θULα,β(S̃α,β

p )+ θULα,β(S̃p)−
θ

m
E
[(
S̃p −

m∑
i=1

Di

)+]
.
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Then, by the definition of ULα,β(·) and since β = 1− α and x+ = x+ (−x)+ for any x ∈ ℜ, after

some simple algebra we obtain that

Cp(S̃
α,β
p )−OPTp ≤αθ

(
E
[(

D−
S̃α,β
p

m

)+]
− 1

m
E
[( m∑

i=1

Di − S̃α,β
p

)+])
+(1−α)θ

(
E
[(

D− S̃p

m

)+]
− 1

m
E
[( m∑

i=1

Di − S̃p

)+])
. (EC.45)

When the demand D is unbounded, one can easily verify that limp→∞ S̃α,β
p = limp→∞ S̃p =∞, and

thus, the RHS of inequality (EC.45) converges to zero as p→∞. Therefore, limp→∞(Cp(S̃
α,β
p )−

OPTp) = 0 when α+β = 1 and demand D is unbounded.

Next, we consider the case with bounded demand (i.e., D̄ < ∞). In this case, we prove the

following inequality:

C(S̃α,β)−OPT≤ (h+ θ)(D̄−S)+ (h+ θ(α+β))(D̄− S̃α,β). (EC.46)

Together with limp→∞Sp = limp→∞ S̃α,β
p = D̄, this directly leads to limp→∞(C(S̃α,β

p )−OPTp) = 0.

The proof of inequality (EC.46) is analogous to that of inequality (26) for base-stock policy πS̃.

The following are the differences. First, since S̃α,β ≥ F−1( p
p+h+θ(α+β)

) from (EC.40), the inequality

pE[(D− S̃)+]≤ (h+ θ)
(
D̄− S̃

)
should be modified to pE[(D− S̃α,β)+]≤ (h+ θ(α+β))

(
D̄− S̃α,β

)
.

Based on the above inequality, S̃α,β ≤ D̄, and the fact that E[O∞(S)] increases in S (which can be

easily proven from the recursion (19)), inequality (EC.14) should be modified accordingly to

C(S̃α,β)≤ h(D̄−E[D])+ θE
[
O∞(D̄)

]
+(h+ θ(α+β))

(
D̄− S̃α,β

)
.

Combining this inequality with the inequality in Proposition 3 and since E[O∞(S)]−S is decreasing

in S, we obtain inequality (EC.46). The proof of part (c) is complete.

Finally, we prove part (d). Suppose α+ β > 0. By applying similar arguments to those in the

proof of Theorem 4, we can easily show that limθ→∞ θULα,β(S̃α,β
θ ) = 0 and

lim
θ→∞

hE[(S̃α,β
θ −D)+] + pE[(D− S̃α,β

θ )+] = min
0≤S≤mD

{hE[(S−D)+] + pE[(D−S)+]}. (EC.47)

Since E[O∞(S)] ≤ E[(S −
∑m

i=1Di)
+] by Lemma 2(a) and E[O∞(S)] ≤ E[(S/m − D)+] by

Lemma 2(b), it follows from limθ→∞ θULα,β(S̃α,β
θ ) = 0 that limθ→∞ θE[O∞(S̃α,β

θ )] = 0. Therefore,

lim
θ→∞

(Cθ(S̃
α,β
θ )−OPTθ) = lim

θ→∞
θE[O∞(S̃α,β

θ )] = 0,

where the first equality follows from Lemma 1, (EC.47), and the proof of Theorem 4. Q.E.D.
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Appendix H. Figures in Section 7
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Figure EC.1 Performances of base-stock policies in the lost-sales system under FIFO issuance policy and different

unit penalty costs p̂ ∈ {8,20,40,60,80,90,100,120,150}, or correspondingly, under different service

levels p̂/(p̂+ ĥ)× 100%∈ {88.89%,95.24%,97.56%,98.36%,98.77%,98.90%,99.01%,99.17%,99.34%}
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Figure EC.2 Performances of base-stock policies in the lost-sales system under LIFO issuance policy and different

unit outdating costs θ̂ ∈ {3,6,8,20,50,75,100,125,150,175,200,225,250,275,300,325,350,375,400}
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