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Abstract
Eye movements have been examined as an index of attention and comprehension during reading in the literature for over 
30 years. Although eye-movement measurements are acknowledged as reliable indicators of readers’ comprehension skill, 
few studies have analyzed eye-movement patterns using network science. In this study, we offer a new approach to analyze 
eye-movement data. Specifically, we recorded visual scanpaths when participants were reading expository science text, and 
used these to construct scanpath networks that reflect readers’ processing of the text. Results showed that low ability and 
high ability readers’ scanpath networks exhibited distinctive properties, which are reflected in different network metrics 
including density, centrality, small-worldness, transitivity, and global efficiency. Such patterns provide a new way to show 
how skilled readers, as compared with less skilled readers, process information more efficiently. Implications of our analyses 
are discussed in light of current theories of reading comprehension.
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Introduction

A significant amount of knowledge in both formal and 
informal settings is acquired through reading. In school, 

learners’ ability to efficiently integrate and obtain information 
during reading of scientific texts contributes significantly to 
their learning outcomes. The processes of reading include 
letter identification, lexical access, syntactic processing, and 
semantic integration (Perfetti & Stafura, 2014). The abilities 
involved in carrying out these processes constitute reading 
competency, often referred to as reading skill (Perfetti, 
2001). In school settings, students’ reading skill is commonly 
assessed by post-reading comprehension questions. However, 
a single score derived this way is often insufficient to provide 
an accurate evaluation of the student’s reading skill (Dixon 
et al., 1988; Hasbrouck & Tindal, 2006; Perfetti, 1985). 
Readers differ from one another in terms of the order of 
reading, specifically the path, course, or trajectory during 
reading; for example, how they jump forward over some 
words or backtrack to others. In order to understand such 
individual differences during reading, and to promote reading 
competency, it is necessary for us to consider the trajectory 
during reading and its relationship with reading outcomes.

Situation model and reading comprehension

The classical theory has viewed text reading as a process of 
building up or constructing a “situation model,” which refers 
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to a reader’s mental representation of encoded information 
(Kintsch, 2005; Tapiero, 2007; Zwaan & Radvansky, 1998). 
Specifically, this situation model is constructed while a 
reader’s understanding of words, clauses, and sentences 
converges into a mental state of affairs described in the text. 
Information captured during reading can be theoretically 
viewed as key concepts and relations among them, and 
successful comprehension is achieved by establishing proper 
connections between concepts that make up a meaningful and 
coherent situation model. From this viewpoint, skilled readers 
can be defined as those who are capable of constructing 
situation models effectively and accurately (August et al., 
1984; Zwaan & Brown, 1996). Besides reading skills, one’s 
background knowledge also plays an important role because 
the construction of situation models requires the reader to link 
and integrate newly acquired information to prior knowledge 
(Kendeou & van den Broek, 2007; Ozuru et al., 2009; van 
den Broek et al., 1999). This view is often referred to as the 
“construction-integration” model of text reading (Kintsch, 
1988). Such integration is especially important for reading 
scientific text on a specific topic, as one’s background 
knowledge and familiarity with the subject can greatly 
promote interpretation and incorporation of information 
acquired during reading.

Reading comprehension also varies across text types; 
for example, reading of expository texts differs from that 
of narrative texts in many significant ways (for a review, 
see van den Broek, 2010). Because narrative texts tend to 
focus on temporal sequences of events, the reader tends to 
identify the change of events, and to engage in the process 
of constructive mental simulations of events and perspective-
taking (Berman & Slobin, 1994; Best et al., 2008; Hickmann, 
2003). Expository texts, by contrast, involve abstract concepts, 
often having no plot or storyline, and the reader’s task is not 
to engage in mental simulation of events, but to identify the 
different possible relationships among the concepts. These 
relationships can come in the form of sequential, logical, or 
hierarchical connections among concepts, rather than just 
sequential unfolding of events as in narrative texts (Britton, 
1994; Meyer et al., 1980; van den Broek, 2010). Therefore, 
successful expository text comprehension requires not only 
accurate understanding of word meaning, but also fundamental 
world knowledge and the ability to construct and integrate 
intended connections among concepts. These characteristics 
make comprehending expository texts more challenging 
than reading narrative stories and require more integration of 
background knowledge from the reader.

Whether readers can efficiently construct a structured 
mental representation of the complex relationships among 
concepts is highly indicative of their depth of understand-
ing of an expository text. Successful reading comprehension 
can be reflected by a mental representation that captures the 
intended meaning of a text. In this study, we are interested 

in how eye-movement patterns can reflect the overall process 
of constructing mental representations. Eye gaze patterns 
can potentially provide a significant amount of information 
on the reader’s attention allocation and semantic integra-
tion, both of which allow us to investigate how the situation 
model is built in a reader’s mind during knowledge acquisi-
tion via reading. Furthermore, these gaze patterns may also 
provide insights into how newly acquired information is 
eventually structured in the reader’s mental representation.

Eye movements and visual scanpath

Starting from the early 1970s, eye gaze patterns have been 
acknowledged as a reflection of the involvement of men-
tal information processing. The rapid increase in the use 
of eye-tracking methodology has been based on the “eye-
mind assumption” that posits a tight link between human 
eye gaze and the focus of attention (Just & Carpenter, 1980). 
However, this assumption has been challenged by several 
studies in the literature (e.g., Kliegl et al., 2006; Mitchell 
et al., 2008; Schindler & Lilienthal, 2019), although the 
exact nature of the eye-mind relationship remains debat-
able (Pulido, 2021; Sharafi et al., 2020; Strohmaier et al., 
2020). Previous eye-tracking studies of text reading (Rayner, 
1978, 1998) have established a number of informative eye-
movement features, including fixation (50–1500 ms pause 
of visual gaze on a segment), saccade (quick movement 
between two phases of fixations in the same direction), and 
regression (backward saccade to a previously visited seg-
ment). In the past decades, many studies of reading com-
prehension used eye-movement features as a moment-to-
moment indicator of information processing. For instance, 
a number of eye-movement studies have investigated readers 
with various levels of reading skill. These studies showed 
that compared with average readers, highly skilled readers, 
as compared with less skilled readers, tend to exhibit shorter 
fixations, higher skip rate, and fewer regressions (e.g., Ashby 
et al., 2005; Chace et al., 2005). Readers’ eye movements 
also reflect the relative difficulty of the text, showing that as 
text becomes more difficult, readers make longer fixations, 
fewer skips, and exhibit more regressions (e.g., Jacobson & 
Dodwell, 1979).

It was not uncommon for earlier reading studies to treat 
the text material as a single entity or to rely on eye movement 
features that do not reflect text characteristics. However, in 
recent years more fruitful approaches have been brought into 
the field as researchers started to consider text characteris-
tics and to use more eye movement features. For example, 
Yeari et al. (2017) specifically investigated the effect of 
highlighting when it comes to reading central vs. peripheral 
information in expository texts. Results of the study sug-
gested that both text highlighting and concept centrality can 
affect readers’ reinspection time but not initial processing 
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time. For central information in the text, highlighting did not 
seem to affect readers’ processing and recall performance. 
By contrast, peripheral information tended to receive more 
revisits when highlighted. Based on these patterns, Yeari 
et al. (2017) inferred that skilled readers tended to prioritize 
the encoding of central information regardless of text high-
lighting. Thus, skilled readers distinguish between central 
and peripheral concepts while reading, perhaps because they 
could use prior knowledge and consider text structure. Ariasi 
et al. (2017) later examined the effect of text type (i.e., refu-
tation text that challenges commonly held misconceptions) 
and sentence type on readers’ eye fixation measures. They 
further showed that refutation text could trigger reinspection 
for potential settlement of conceptual conflicts and therefore 
longer look-back duration. Sentence type also affected eye 
movements in that topic-introducing and topic-final sen-
tences led to longer fixation time compared to topic-medial 
sentences, given that the former are usually the central con-
cepts in the text. These studies advanced the field by exam-
ining text characteristics and treating text material not as a 
single entity, as was done in earlier studies, but as a complex 
domain involving multiple interconnected concepts.

Eye-movement features have also been applied to the 
study of reading to characterize reading strategy. Hyönä 
et al. (2002) focused specifically on fixation patterns and 
identified four different types of readers based on their read-
ing strategies. These groups used different strategies that 
included (a) fast linear readers who have little regression, 
with fast processing speed, (b) slow linear readers who also 
have little reprocessing but with relatively slower speed, 
(c) nonselective readers who make many regressions, and 
(d) topic structure readers who make a significant amount 
of reinspection to headings, paying close attention to the 
text’s topic rather than to other less relevant peripheral 
terms. Hyönä et al. (2002) found that the topic structure 
readers performed the best on the reading comprehension 
task. This finding points to the importance of examining 
eye-movement trajectory based on reader characteristics and 
individual differences in reading strategies, other than meas-
uring the overall eye-movement properties.

In this study we have adopted the “visual scanpath” as a 
useful measurement to understand the relationships between 
eye-movement patterns and text characteristics on one 
hand, and eye-movement trajectories and individual reading 
differences on the other. Visual scanpath refers to the record 
of the eye-movement trajectories when viewing and analyzing 
a visual stimulus, which consists of sequential fixations and 
saccades (Toh et al., 2011). We built visual scanpaths for 
this project based on real-time word-level fixation onsets, 
reflecting the actual reading input for each reader, specifically 
regarding which words their perceptual window is fixated on, 
and when. Based on the time point when a word is fixated, 
words in the original sentence will be alternately organized 

following one’s actual reading scanpath. For example, in 
reading “Could humans live on Mars some day?” the reader’s 
visual scanpath may be: “Could humans live Mars day Could 
humans.” This fixation-based word sequence may seem quite 
different from a complete sentence, but it reflects the actual 
word order that is fixated by the reader and thus where the 
reader’s attention is allocated over time.

Compared with well-investigated eye-movement features 
like average fixation duration, regression rate, skip rate, and 
so on, the use of scanpath as a useful cognitive indicator has 
only been recent (Luo et al., 2015; von der Malsburg et al., 
2015). This is potentially due to the difficulty of quantifying 
an input in text format. In contrast to easily quantifiable gen-
eral eye-movement features counting for ratio, count, angle, 
and time length in numeric format, scanpath data consist of 
essentially a collection of words. However, this collection of 
words contains rich structure and reflects mental processes 
that are not easily observable in other eye-movement fea-
tures. In other research domains, visual scanpath has nev-
ertheless been used, for example, in investigating students’ 
information processing during geometric text-figure inte-
gration (Lee & Wu, 2018), examining syntactic reanalysis 
of garden-path sentences (von der Malsburg & Vasishth, 
2011), predicting participants’ performance on the Raven's 
advanced progressive matrices test (Hayes et al., 2011), and 
identifying expertise levels of dental students (Castner et al., 
2018) and radiologists (Gandomkar et al., 2018) on X-ray 
reading, and predicting participants’ risk-taking behaviors 
(Zhou et al., 2016). These various studies have indicated 
the effectiveness and validity of visual scanpath as an index 
of information processing. To align reading research with 
advances in other domains, the current study makes use 
of the features in the scanpath data by adopting a network 
science approach, specifically to convert individual visual 
scanpaths into scanpath networks, which enables us to cap-
ture the rich structures embedded in visual scanpaths for 
individual readers.

Scanpath networks of eye‑tracking data

In recent years, network science has been applied to many 
fields, including cognitive science, as a tool to extract 
higher-order structures from large-scale data. Castro and 
Siew (2020) suggested that network science could model the 
structure of cognitive systems and dynamic processes within 
the systems by estimating the relationships among elements 
in the system such as words and concepts in memory. The 
networks that are derived from graph-theoretical analyses 
of big data suggest that the typology of nodes and edges, 
distance of nodes, communal structures, and general small-
worldness can effectively capture social, linguistic, and 
developmental characteristics of human behavior. In addi-
tion, network measurements could reflect the structure of 
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network representations at different levels (i.e., microscopic, 
mesoscopic, and macroscopic), providing more perspectives 
to explore the mechanisms behind human cognition (Siew 
et al., 2019).

The network science metrics could be applied to construct 
diverse cognitive networks in different research areas, such 
as semantic networks, form similarity networks, syntactic 
networks, and social networks (Siew et al., 2019). In these 
networks, definitions of nodes depicting representations and 
edges defining the relationship between these representations 
will depend on the specific cognitive phenomena being 
examined. For example, in the form similarity network, nodes 
are defined as words, and edges are defined as phonological or 
orthographic similarity between words. A higher coefficient 
indicates that more phonological or orthographic neighbors 
of a given word are also neighbors of each other, and 
longer reaction time and lower accuracy were observed for 
words with a high clustering coefficient than words with a 
low clustering coefficient in spoken word recognition task 
(Chan & Vitevitch, 2009). In semantic networks, nodes 
can be defined as words and edges as strengths of semantic 
similarity/connections among these words; a higher clustering 

coefficient indicates that more semantically similar words are 
clustered around a given node and therefore compete with 
one another during language production (e.g., less likely to 
be code-switches; Xu et al., 2021).

Despite the utility of the network science approach, few 
studies have applied network metrics to analyze eye-move-
ment data. One recent pilot study by Zhu and Feng (2015) 
combined these two to investigate mathematical problem-
solving, and performed between-group comparison on an 
individual network level. The authors collected students’ 
gaze patterns when solving a math problem. They divided 
different screen areas into areas of interest (AOIs) based 
on where students’ eye gazes landed, and then constructed 
transition networks from their visual scanpaths by applying 
social network analytic methods (Fig. 1 illustrates how a 
network visualization may be constructed out of scanpath 
data). Inferences of participants’ problem-solving strategies 
were then made based on transition patterns in the networks: 
high-performing students exhibited more strategic fixation 
transitions, suggesting better abilities at connecting multiple 
information sources to solve complex problems, whereas 
low-performing students tended to consider information in 

Fig. 1  Example of visualization of one student’s transition network 
in Zhu & Feng’s study (2015). Nodes in the network represent AOIs, 
edges represent fixation transitions, and size of the nodes represent 

time spent in the AOI (bigger means longer). * Permission of image 
reproduction granted by both authors 
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an isolated manner or direct their attention idiosyncratically 
from one source to others without connecting them.

In studies of reading comprehension, a popular approach 
is to capture text content through analyses of text structure, 
an important aspect of expository text as discussed earlier. 
To do so, previous research has used concept maps (Kinchin 
et al., 2000; Kintsch & van Dijk, 1978), the landscape model 
(van den Broek et al., 1999), and knowledge structure (Clari-
ana & Wallace, 2007; Li & Clariana, 2019). These methods 
are aimed at describing not just the text characteristics, but 
the reader’s or learner’s mental representation of acquired 
knowledge after reading. A concept map is a simple visu-
alization to sketch out information around a topic. It reflects 
how readers integrate text information into their existing 
understanding of a topic. Different from concept maps, the 
landscape model is a computational method to model how 
the text elements (which are likely to be conceptually linked 
together) are activated, along with modeling the reader’s 
attention and working memory as reading unfolds. Fluctua-
tion of these activations along reading gradually evolves into 
a landscape, which reflects a reader’s mental representation 
of a given text. Finally, knowledge structure uses analyses 
that resemble the network science approach, albeit in a sim-
pler form, in that they can be visualized in the form of a 
network with nodes (representing concepts) linked through 
edges (indicating relationships). Knowledge structure can 
reflect the interaction between a reader and a given text: dur-
ing the reading process, knowledge components are trans-
mitted from the author to the reader, and as a result, the 
reader eventually develops a mental representation of the 
newly acquired knowledge referred to as knowledge struc-
ture (Clariana, 2010; Jonassen et al., 1993).

Concept maps, landscape models, and knowledge struc-
tures can be mathematically described through network 
metrics. Hence, application of network analytic approaches 
such as those piloted by Zhu and Feng (2015) can advance 
eye-tracking research in reading by providing a context-
based visualization of the reader’s attention allocation dur-
ing information intake. By transforming visual scanpaths 
into a network where fixations are represented by nodes and 
saccades by edges, such a graph representation can lead to 
an increased understanding of individual differences along 
the process of reading. Quantification for comparing the dif-
ferent visualizations can then be enabled by detailed graph 
metrics.

Several network metrics have been considered in previ-
ous language-related literature. These metrics are designed 
to provide information about the structural properties of the 
network being examined. Zhu and Feng (2015) specifically 
suggested metrics like density, centrality, and clustering 
measures to be used when it comes to analyzing eye-tracking 
data. Below we provide a brief description of a few metrics 
that have been widely used in network science research and 

that are relevant to the analyses of eye-movement data (see 
discussion below and under Method).

Network metrics

Density Graph density represents the proportion of actu-
ally connected edges among all possible connections (links 
that could potentially exist between two random nodes). For 
instance, network 2B in Fig. 2 would have a higher density 
score compared to network 2A. The range of graph density 
goes from 0 to 1, with 0 being the least dense, and 1 being 
the densest network (Coleman & Moré, 1983). In a densely 
connected graph, the number of edges will be close to the 
maximal possible number of edges. Density is one of the 
most widely used network metrics as a holistic measurement 
of transactions among nodes in a network. When it comes to 
eye movement data, if a reader’s network is high in density, it 
suggests that a great deal of fixations and saccades are made 
going through a text with a small number of skips.

Centrality Freeman’s calculation of maximum betweenness 
centrality (Freeman, 1978) provides a global measurement 
of how much variation there is in the node degree among all 

Network 2A Network 2B 

Network 2C Network 2D 

Nework 2E: T = 0 Network 2F: T = 0.5 Network 2G: T = 1

Network 2H Network 2I 

Fig. 2  Illustrations of network types: 2A & 2B (density); 2C & 2D 
(centrality); 2E, 2F & 2G (transitivity); 2H & 2I (small-worldness)
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nodes in a network, where node degree captures the relative 
importance of a given node. More specifically, the degree of 
node i can be calculated as CD(i) = deg (i), with deg count-
ing for the number of edges attached to node i. The value of 
graph centrality according to Freeman’s calculation ranges 
from 0 to 1, with 0 referring to a chain-like structure, and 1 
referring to a spoke-like structure.

Freeman’s graph centrality metric can reflect structural 
characteristics of the input material, at least for small 
networks. It is also considered as one of the most basic and 
efficient metrics to reflect a network’s form. Previous studies 
focusing on network centrality have demonstrated that as one 
node increasingly develops direct connections with other 
nodes in a network, this node will become more central in 
the network (i.e., the principle of preferential attachment) 
with a concomitant increase of the global centrality score as 
well (Clariana et al., 2013; Mak & Twitchell, 2020). Network 
2D as shown in Fig. 2, for example, exhibits higher centrality 
compared to network 2C. Clariana et al. (2011) defined a 
conceptual topology using Freeman’s graph centrality to 
characterize network structures, with 0–0.2 representing 
a “linear” form, 0.2–0.4 a “hierarchical” form, 0.4–0.6 a 
“network” form, and 0.6–1 a “star” form (see Fig. 3 for 
an illustration of the topology). The centrality metric can 
potentially reflect a reader’s tendency to either focus more 
on the central topic or distribute relatively equal attention 
to all contents. Therefore, the centrality metric can provide 
insights on how readers handle repetitive words and function 
words that could serve as potential “hubs” in a network. This 
metric is also sensitive to the structure of the text itself—
if we simply sew up all words in a text sequentially into 
a network, the network of an expository text will usually 
be more centralized than one of a narrative text. This is 
because scientific texts usually aim to illustrate a specific 
topic by drawing relative descriptions, whereas narrative 

texts generally follow a timeline that leads to a more linear 
structure (Clariana et al., 2014). Thus, the centrality metric 
is a good example of applying network metrics to capture 
the structure of a text.

Transitivity Transitivity (also known as global cluster-
ing coefficient) is essentially a measure of triplet structure 
counting for the fraction of all possible triangles contained 
in a network. It represents the likelihood for two nodes to 
be connected if they share a mutual neighbor (Newman & 
Park, 2003). Its value T goes from 0 to 1 as shown in Fig. 2 
networks 2E–2G : A network (2G) with T = 1 has all pos-
sible edges with the given nodes. The transitivity metric can 
be specifically useful to study regressive fixations in eye 
movements—if a reader’s network possesses high transitiv-
ity value, then there is likely a large amount of regression 
going on along the reading process. This is because the tran-
sitivity metric essentially measures the number of closed 
triangles in a network, which would be formed by regressive 
saccades.

Global efficiency Global efficiency measures the average 
inverse shortest path lengths (i.e., the number of edges link-
ing two different nodes in a shortest path) among all possible 
pairs of different nodes in a network (Ek et al., 2015; Latora 
& Marchiori, 2001). It is typically used as a measure of the 
capacity for parallel information transferring in a network, 
as this measure is estimated based on all pairs of nodes in the 
network. A network with high global efficiency is supposed 
to be more efficient as information exchange can happen 
simultaneously and quickly on multiple paths. The value of 
global efficiency goes from 0 to 1: A network with a value 
of 0 indicates that no edge exists between nodes and it is a 
disconnected network; a network with a value of 1 indicates 
that there is an edge between every pair of nodes in this 

Goal-Oriented Expertise Naiveté

Linear                             Hierarchical                      Network                         Star
C=0.1                              C=0.4                                C=0.6                            C=1.0
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Fig. 3  Graph centrality of different concept maps. Low centrality shows goal-oriented learners’ linear organization; medium centrality indicates 
expert learners’ hierarchical organization; high centrality represents naiveté learners’ star-like organization (Clariana et al., 2011)
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network and it has the maximum global efficiency (Ek et al., 
2015; Latora & Marchiori, 2001). Networks derived from 
visual scanpaths that contain repetitive fixations on various 
words should exhibit a higher global efficiency score, since 
repetitive fixations can lead to “hub” nodes (i.e., the impor-
tant central terms) that provide alternative shortcuts among 
nodes. Therefore, the global efficiency metric can be highly 
relevant to reading comprehension, given previous studies 
suggesting the number of fixations, skips, and regressive 
fixations to be tightly linked with the reader’s comprehen-
sion ability.

Small‑worldness Small-world networks are expected to 
exhibit both high segregation and integration (Rubinov & 
Sporns, 2010). They are defined as highly clustered networks 
with approximately the same path length of an equivalent 
random network (Watts & Strogatz, 1998). Measurement 
of small-worldness takes both clustering coefficient and 
average path length into account. As illustrated in Fig. 2, 
network 2I possesses a small-world property whereas 
network 2H does not. Humphries and Gurney (2008) 
established a precise measurement of small-worldness 
that evaluates clustering and path length simultaneously. 
According to their quantitative definition, a network with 
an S value >1 can be counted as a small-world network. 
Such a network possesses more interconnected clusters 
and shorter averaged path lengths compared to a matched 
random network. The S value can range from 0 to over 
1000. The real-world internet system, for instance, has an 
S value of 1093. Gao et al. (2014) compared six different 
languages including Arabic, Chinese, English, French, 
Russian, and Spanish to see the differences and similarities 
shared in human language. Interestingly, the co-occurrence 
networks of all languages being examined exhibited small-
world properties. With respect to reading comprehension, 
the small-worldness metric can capture whether readers tend 
to land their fixations on reoccurring (repetitive) function 
words—the number of fixations on these function words (as 
opposed to less repetitive content words) suggests the degree 
of balance between a network’s global and local connections 
in a visual scanpath network.

How the above network metrics can be leveraged for the 
understanding of reading comprehension based on visual 
scanpaths will be examined in the current study, as we dis-
cuss below.

The current study

Given the network metrics discussed above, the application 
of quantitative network analyses on eye-movement data 
from text reading becomes possible and useful. Different 
network metrics reflect different higher-order structure and 

characteristics of a given network, and may reveal important 
information processing strategies during the reading of texts. 
As has been piloted by Zhu and Feng (2015) using a simple 
between-group network comparison approach to examine 
math problem-solving ability, network metrics can also be 
applied to investigate individual differences during reading 
comprehension, especially in examining differences between 
skilled readers and less skilled readers.

Previous studies have not applied network-based analyses 
on readers’ eye-movement data obtained from text reading. 
Our study is aimed at understanding readers’ information 
processing in the context of both the structure of the read-
ing material and characteristics of the reader, and providing 
an intuitive visualization of the process during which the 
reader constructs mental representations of the knowledge 
acquired from reading. In terms of text material, we tar-
geted expository text in the context of scientific text reading. 
Eason et al. (2012), among others (see van den Broek, 2010 
for a review), have suggested that reading comprehension 
can significantly vary along with text type. As discussed 
earlier, expository text imposes a higher demand on readers 
to organize and integrate target information in a structured 
fashion.

The current study applies a network science approach 
to a set of data collected from students’ reading of exposi-
tory science text (see Method for details of the data). In 
the first step, each reader’s word-level scanpaths during 
reading were extracted and aggregated into an individual 
knowledge scanpath network. In constructing the scanpath 
network, we treated words that received fixations as nodes, 
and between-fixation saccades as edges. In the second step, 
metrics based on the visual scanpath data were computed 
as quantitative descriptions of the network, which include 
density, centrality, transitivity, global efficiency, and small-
worldness. Through these two steps, we aimed to address 
the following questions: (1) Could scanpath networks serve 
as an informative and reliable representation of the reader’s 
comprehension process? (2) What can scanpath networks tell 
us about the individual differences in reading comprehension 
between skilled readers and less skilled readers?

With respect to the first question, we hypothesize that the 
visual scanpath network will represent the reader’s compre-
hension ability, with metrics including density, centrality, 
global efficiency, transitivity, and small-worldness signifi-
cantly correlated with participants’ reading comprehension 
outcomes. The second question asks if the network metrics 
may reveal individual differences during the reading process. 
Given that previous studies (e.g., Ashby et al., 2005; Chace 
et al., 2005) have indicated that skilled readers exhibited 
fewer fixations, more skips, and fewer regressions during 
reading, we hypothesize that the scanpath networks derived 
from eye-movement data may show higher centrality, lower 
density, lower small-worldness, lower global efficiency, and 
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lower transitivity for skilled readers, as compared with less 
skilled readers. These differences derived from network sci-
ence measures will lead to significant insights into individ-
ual differences in reading comprehension of expository texts.

Method

Participants

Fifty-two participants (24 men) aged between 18 and 40 
years (mean age ± SD = 22.85 ± 4.66 years) were recruited 
from Pennsylvania State University (PSU). Participants 
were all right-handed, native English speakers with normal 
or corrected-to-normal vision, and no past history of mental 
or neurological disorders. The study was approved by the 
PSU Institutional Review Board (IRB) and was performed 
in accordance with the ethical standards required by the IRB. 
Written informed consent was obtained from all participants 
before they took part in the study. 

Material

The study material included five expository science texts 
designed by Follmer et al. (2018), introducing the scientific 
concepts of Mars exploration, permutation versus combi-
nation (math concepts), the electrical circuit, Global Posi-
tioning System (GPS), and supertanker (ecology). The five 
expository texts can be found in Appendix A. Each text con-
tains 30 sentences and about 300 words on average, and all 
designed with a consistent wording style (see Appendix B 
for an overview of the psycholinguistic variables of texts).

Procedure

An EyeLink 1000 Plus long-range eye tracker (SR Research, 
2016) with a sampling rate of 1000 Hz was used to collect 
eye-movement data. Only the reader’s right eye was recorded 
for movements during reading. Before the reading task, a 
13-point calibration and validation adjustment were conducted 
for tracking precision. Eye-movement data in the current 
study were collected in the magnetic resonance imaging 
(MRI) scanner through a fixation-related functional MRI 
(fMRI) method (Henderson et al., 2016; Richlan et al., 2014) 
so that naturalistic reading could be performed in the scanner. 
Reading in the fixation-related fMRI was done through the 
presentation of materials on a reflection mirror inside the 
MRI, which could exacerbate eye drifting caused by multiple 
lines in the reading material. In light of this issue, previous 
studies using fixation-related fMRI typically presented the 
reading material word by word or sentence by sentence, or 

in very short paragraphs (Carter et al., 2019; Henderson 
et al., 2016; Schuster et al., 2020). Because our expository 
texts were generally longer (around 300 words) than those 
used in previous studies, to control for potential eye drifting 
while providing a natural reading experience, we presented 
the text to the participants in a sentence-by-sentence rather 
than whole-paragraph format. Previous empirical studies have 
confirmed that reading outcomes are comparable between 
sentence-by-sentence and whole-paragraph text formats in 
expository scientific text reading (Follmer et al., 2018).

E-Prime 2.0 (Schneider et al., 2002) was used to control the 
presentation of texts on the screen. Presenting screen size was 
35.7 cm × 57.2 cm, and the average word length on the screen 
was 3.08 cm. A reader’s visual angle when fixating on a word 
was about 1.14°. Figure 4 presents a flowchart of the entire 
reading task procedure. The eye-tracking data were extracted 
from a larger reading brain project, in which participants’ 
behavioral, eye-movement, functional and structural brain 
imaging data were simultaneously collected in the same study 
(see the fMRI data presented in Hsu et al., 2019, and the 
Methods for details).

Before the appearance of each sentence, a fixation cross 
was shown on the left side of the screen. Participants were 
instructed to focus on the cross while anticipating the presence 
of sentences. Time interval between appearance of the fixation 
cross and the next sentence was 500 ms, except for the first 
fixation cross that lasted for 6000 ms for participants to get 
prepared. To enable a natural reading experience, we set the 
reading to be self-paced. When finished with one sentence, 
subjects could press a button on the response box to advance to 
the next sentence; otherwise, the screen would automatically 
advance to the next sentence in 8000 ms. After the self-paced 
reading task, 10 multiple-choice assessment questions related 
to the text content were presented to participants to evaluate 
their comprehension of the text. All participants took part 
in a practice session before performing the real experiment.

The Gray Silent Reading Test (GSRT) was used to exam-
ine participants’ reading competence (Wiederholt & Blalock, 
2000). It is a standardized, age-based reading test (with vary-
ing levels of difficulty for readers of ages 7 to 25). The test 
materials contain 26 separate texts, with each text followed 
by five multiple-choice questions. Reading materials of the 
text are arranged into 13 levels based on difficulty. When a 
reader answers all five questions of a text correctly, a basal 
is triggered and all questions in the lower (easier) levels are 
automatically considered correct. When a reader answers 
three out of five questions incorrectly, a ceiling is established 
and all questions in the higher (harder) levels are automati-
cally considered incorrect. In this case (accuracy lower than 
40%), the test will stop and the final comprehension score 
will be generated. This developmentally sequenced reading 
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test provides a standardized and reliable measurement of 
readers’ comprehension ability.

Data analysis

In preparation for data analysis, participants’ reading com-
prehension ability was computed as a summed normalized 
score that includes their post-reading assessment ques-
tions, GSRT score, and total reading time. The total reading 
time refers to the average total time each participant spent 
reading a given text. All three scores were transferred into 
z-scores before the combination. This new combined score 
(which will be referred to as “comprehension ability score”) 
accounted for both participants’ reading performance (post-
reading assessment score + GSRT score) and reading speed 
(reversed score of total reading time = max − raw reading 
time). Through this combined score, we expect that readers 
who read more efficiently and accurately would receive a 
higher comprehension ability score. Note that we did not 
treat the three scores (i.e., assessment accuracy, GSRT score, 
reading time) separately to measure reading comprehension, 
as we had no independent evidence to believe that each score 
would be correlated separately with the network metrics in 
our study. Further, the use of a combined score as an index 
of reading comprehension was based on significant evidence 
from the literature that neither reading accuracy nor read-
ing speed alone could account for an individual’s reading 

comprehension ability (e.g., Hudson et al., 2008; O'Connor 
et al., 2010; Tijms, 2007).1

For eye-movement data collection, AOI was set to the 
word level. Due to fixation drifting caused by the declining 
accuracy of calibration over time, eye-movement data were 
readjusted as follows: for fixations shorter than 40 ms or 
longer than 1000 ms, they were excluded using the “clean” 
function in the Data Viewer™ software (Li et al., 2014; 
SR Research, 2016); for fixations falling outside (above or 
below) the range of predefined target regions where sen-
tences were presented, manual adjustment was performed 
using the Data Viewer™ software (SR Research, 2016). 
Instead of using auto-adjustment which brings all fixations 
onto one horizontal line, we performed trial-by-trial cor-
rection only along the y-axis (vertical adjustment) so as to 
protect readers’ original eye fixation patterns. Within our 
participant group, less than 10% of the data needed to be 
manually corrected in this fashion.

Individual scanpaths were first extracted based on real-
time word-level fixation onsets, reflecting the actual read-
ing intake for each reader. Visual scanpaths do not easily 

Fig. 4  Data collection overview. The ≤ 8 s time duration for text presentation reflects the self-paced reading setting. Once text presentation is 
finished, participants responded to 10 multiple-choice assessment questions, one by one

1 The use of a single score for reading comprehension is less reliable 
as an index because reading skill consists of multiple components 
including speed and accuracy (Gough & Tunmer, 1986). So far, dif-
ferent criteria have been used to divide participants into subgroups 
according to their reading performance (with reading time being an 
important one), but there are no consistent and well-accepted single 
criteria.
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render themselves to quantifiable comparisons across indi-
vidual readers or texts. To quantify the visual scanpaths, we 
converted the scanpaths of each participant going through 
the entire text to a network, where each fixated word was 
encoded as a node and each saccade between fixations as 
an edge. Reoccurring words in the text were merged as one 
node. In other words, each graph was made up of all words 
that the participant had fixated on and all the transitions 
across these words. The weights of the edges indicated the 
number of saccades being made between two words and their 
directions indicated the saccade directions. The graphs were 
computed in the form of adjacency matrices (see Table 1), 
with rows and columns representing words that received 
fixations (i.e., where saccades started and ended), and cell 
values of each entry representing the number of transitions/
saccades between two corresponding words, regardless of 
directions. In computing the actual networks, the directions 
of saccades were included in the edges so as to differentiate 
between forward saccades and backward regressions.

To visualize the different reading behaviors of skilled 
and less skilled readers, we averaged the adjacency matrices 
of 10 participants with the highest comprehension ability 
scores and 10 with the lowest scores respectively, and visu-
alized the resulting graphs with NetworkX (Hagberg et al., 
2008). Moreover, in order to maximize informativeness and 
intuitiveness of these averaged graphs so as to focus on the 
most fixated terms, we applied a mask to the two networks 
filtering out nodes and edges with low representativeness: 
We only included nodes with degrees greater than five and 
edges with weights greater than 0.3. The degree of a node 
is defined as the sum of weights of all its connected edges. 
In the context of eye movements, it is equivalent to the 
total number of saccades that landed on and departed from 
a given word. This masking procedure effectively served 
to reduce noise in the data caused by network aggregation 
across multiple individuals.

To facilitate quantitative inference of individual com-
prehension outcome based on eye-movement patterns, we 

further carried out in-depth computations of graph metrics 
for each scanpath network. Selection of the specific met-
rics was inspired by work on network measures applied to 
cognitive studies (e.g., Rubinov & Sporns, 2010). Based 
on metric relevancy in the context of eye-movement pat-
terns, the following metrics were included in our data 
analyses (see also a conceptual discussion of the metrics 
in the Introduction):

Density measures the wiring cost of a network, which 
is defined as the sum of weights of the edges in the graph 
divided by the number of possible edges. For a directed 
weighted graph G=(V, E), where V denotes its nodes and 
E denotes its edges, its density is

where N is the number of nodes and wij is the weight of 
the edge from node i to node j.

Centrality, when measured at a single-node level, quanti-
fies the number of times a node acts as a bridge along the 
shortest path between two other nodes. When measured at a 
global level, centrality reflects how important its most cen-
tral node is in relation to all the other nodes in a network. 
Freeman’s maximal betweenness centrality is one of the 
well-established global centrality metrics that measures the 
variation of the node degree scores (Cd(i) = deg(i)/(n − 1)) 
among nodes. Let Ci be the degree of the node i and Cmax be 
the maximum degree of all nodes in a graph, the maximal 
betweenness centrality is calculated as:

Transitivity measures graph segregation, which is defined 
as the relative number of triangles in the graph divided by 

D =

∑

i∈N,j∈N,i≠j wij

N ∙ (N − 1)

C =

∑

i∈N

�

Cmax − Ci

�

(N − 1)(N − 2)

Table 1  Example of network matrix*

* Words in the rows and columns indicate the words that received fixations (example from subject #2). Cell values indicate the number of transi-
tions/saccades between two corresponding words, regardless of directions.

Could human on mars day scientist this question

could ⎻ 1 0 0 0 0 0 0
human 0 ⎻ 1 1 0 1 0 0
on 0 0 ⎻ 1 0 0 0 0
mars 0 1 0 ⎻ 3 0 0 0
day 0 0 0 3 ⎻ 0 0 0
scientist 0 0 0 0 0 ⎻ 1 0
this 0 0 0 0 0 0 ⎻ 1
question 0 0 0 0 0 0 0 ⎻
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total number of connected triples of nodes. In the current 
study, computation of this metric was implemented as:

where ki is the degree of the node i (i.e., sum of weights 
of its edges) and ti is the number of directed triangles around 
the node i: ti =

1

2

∑

j,h∈N

�

wij + wji

��

wih + whi

��

wjh + whj

�

.
Global efficiency measures graph integration, which is 

the sum of inverse shortest distance between every possi-
ble pair of nodes, with the distance of two connected nodes 
defined as the inverse of the edge weight. The global effi-
ciency of an individual network was computed as:

where dij denotes the shortest distance between node i and 
node j.

Small-worldness measures both segregation and integra-
tion. A small-world network is both highly segregated and 
integrated. It can be computed as a clustering coefficient of 
the graph normalized by that of a randomized graph with 
the same number of nodes and edges divided by its charac-
teristic path length normalized by that of the randomized 
graph. In short, small-worldness in the current study was 
calculated as

where the clustering coefficient of the network is 
C =

1

n

∑

i∈N

2ti

ki(ki−1)
 and the characteristic path length of the 

network is L =
1

n

∑

i∈N

∑

j∈N,j≠i d
−1
ij

n−1
.

Results

Prior to data analysis, a summary of descriptive statistics 
based on the network metrics as described above is presented 
in Table 2. Metrics including density, centrality, transitivity, 
global efficiency, and small-worldness were calculated for 
each scanpath network. Subsequently, each metric obtained 
from the five texts was averaged for each participant. Finally, 
average metrics were used for the relevant statistical analyses 
as reported below. To answer the first research question of 
whether visual scanpath can be used as a valid indicator of 
readers’ comprehension outcomes, we focused our analyses 
on the relationship between readers’ comprehension ability 

T =

∑

i∈N ti
∑

i∈N

�

ki
�

ki − 1
�

− 2
∑

j∈N wijwji

�

E =
1

N

�

i∈N

∑

j∈N,j≠i

�

dij
�−1

N − 1

S =
C∕L

Crand∕Lrand

score and their scanpath network metrics. Pearson correlation 
coefficients were calculated among all related variables (see 
Table 3). The correlation analysis showed several significant 
associations between an individual’s reading comprehension 
outcome and their scanpath network metrics of density (r(50) 
= −.39, p < .01), centrality (r(50) = .45, p < .001), small-
worldness (r(50) = −.12, p = .41), global efficiency (r(50) = 
−.33, p < .05), and transitivity (r(50) = −.51, p < .001). These 
correlations indicated that the scanpath networks reflect dif-
ferent degrees of skillfulness in reading: the more skilled the 
readers were, the more efficiently they read, and the higher/
lower the corresponding network metrics became (with the 
exception of small-worldness; see discussion below).

To further examine individual differences, a between-group 
comparison was performed, with participants divided into 
skilled readers (top half 26 readers) and less skilled readers 
(bottom half 26 readers) based on their comprehension ability 
score. An independent samples t-test showed that skilled read-
ers and less skilled readers’ average scanpath networks differed 
significantly in density  (Mskilled = .024,  Mless-skilled = .025, t 
(50) = −2.73, p < .01, Cohen’s d = .76), transitivity  (Mskilled = 
.067,  Mless-skilled = .081, t(50) = −3.56, p < .001, Cohen’s d = 
.99), global efficiency  (Mskilled = .341,  Mless-skilled = .349, t(50) 
= −2.66, p < .05, Cohen’s d = .74), small-worldness  (Mskilled 
= 1.544,  Mless-skilled = 1.635, t(50) = −2.51, p < .05, Cohen’s d 
= .70), and centrality  (Mskilled = .004,  Mless-skilled = .003, t(50) 
= 2.53, p < .05, Cohen’s d = .70).

These overall significant between-group differences 
led us to further visually examine the scanpath networks 
of the Mars Exploration text for highly skilled readers (top 
10 performers of the participants) and much less skilled 
readers (lowest 10 performers of the participants) ranked 
by comprehension ability score. Figure 5 provides a clear 
visualization of the differences, with larger nodes indicating 
higher values of node degree/density, and thicker edges more 
transitions/saccades between nodes. The two topic words in 

Table 2  Descriptive statistics of the network metrics and related vari-
ables

N = 52. Unit of readers’ total reading time is measured in millisec-
onds.

Minimum Maximum Mean Std. deviation

Density .019 .030 .024 .002
Small-worldness 1.300 1.890 1.590 .137
Centrality .0026 .0048 .0035 .0004
Transitivity .039 .108 .074 .016
Global efficiency .324 .374 .345 .011
Comprehension abil-

ity score
−2.647 3.471 1.088 1.472
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the text—“Mars” and “Earth” —serve as hubs in both net-
works. As larger nodes represent the keywords of the text, it 
is natural that they would receive more repetitive fixations in 
the less skilled readers’ network compared with those in the 
more skilled readers. Less skilled readers also spent more 
time on functional words (41.46%) as compared with more 
skilled readers (29.63%).

Discussion

What scanpath networks reveal about reading 
comprehension and individual difference

The current study has been designed to examine the link 
between readers’ comprehension of expository scientific text 
and their eye-movement patterns during reading by using 
the analytic method from network science. To achieve this 
goal, we asked two research questions: (a) Would scanpath 
networks serve as a useful and reliable indicator of a reader’s 
comprehension process? (b) What can scanpath networks tell 
us about the processing differences in reading comprehension 
between skilled readers and less skilled readers? To answer 
these questions, we introduced network science metrics and 
analyses as they are applied to eye-movement patterns during 
text reading. Specifically, we transformed raw eye-tracking 
data first from word-level fixation onset times to visual scan-
paths. We then used the scanpaths to derive networks and cal-
culated the relevant network metrics. This approach enabled 
us to identify and visualize the relationship between readers’ 
eye-gaze patterns during reading and their comprehension 
outcomes. By utilizing network analysis, individual readers’ 
scanpaths could be quantified and further compared, regard-
less of the number of fixations that readers make in reading 

the same text.2 This enabled us to investigate the process of 
readers’ information encoding in a less rigid manner, without 
setting pre-defining keywords (as is typically done in other 
methods; see 1.3) that could constrain the variance among 
participants.

First, individual-level network analyses confirmed our 
hypothesis that network metrics are significantly correlated 
with reading comprehension through a combined reading 
score in our study. The graph metrics of centrality showed a 
positive correlation, whereas density, global efficiency, and 
transitivity showed negative correlations with readers’ com-
prehension ability. These results supported our assumption 
that scanpath networks constructed from visual scanpaths 
can capture the reader’s comprehension of scientific texts. 
Second, group-level network analyses between skilled and 
less skilled readers also supported our hypothesis that the 
scanpath network method can be a valid tool for investigat-
ing individual differences in reading comprehension. Our 
findings indicated that skilled readers’ scanpath networks 
exhibited higher centrality, lower density, lower global effi-
ciency, and lower transitivity. These patterns are consistent 
with previous eye-tracking studies suggesting that skilled 
readers make fewer fixations, more skips, and fewer regres-
sions during reading. For example, in previous eye-tracking 
studies, word skipping happens more often on short-length, 
high-frequency, and predictable words (Engbert et  al., 
2005; Kliegl et al., 2004; Rayner et al., 2011; Reichle et al., 
1998). If a skilled reader goes through a text skipping many 

Table 3  Correlation among related network metrics of reading

N = 52. CA Score stands for comprehension ability score.
** Correlation is significant at the 0.01 level (two-tailed). * Correlation is significant at the 0.05 level (two-tailed).

Density Small-worldness Centrality Transitivity Global efficiency

CA Score −.392** −.116 .446** −.505** −.329**
.004 .414 .001 .000 .017

Density - .426** −.453** .829** .849**
- .002 .001 .000 .000

Small-worldness - −.208 .516** .383**
- .139 .000 .005

Centrality - −.628** −.384**
- .000 .005

Transitivity - .753**
- .000

Global
efficiency

-
-

2 In our network science approach, we can use the same repeated 
words (nodes) and multiple saccades between words (edges) to col-
lectively estimate the connections among nodes and edges. In pre-
vious approaches (e.g., von der Malsburg & Vasishth, 2011), each 
fixation is regarded as a unit for estimating the reading patterns. See 
further discussion below.
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Fig. 5  Averaged scanpath networks of the Mars Exploration text for 
skilled readers (top) and less skilled readers (bottom). Nodes rep-
resent the words that received fixations (mask applied, repetition 

merged to enable readability), and edges represent weighted and 
directed saccade transitions (including forward saccades and regres-
sions).
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predictable, repetitive, and short-length function words 
with little checking on previously visited words, then the 
network constructed by this reader’s visual scanpath, as we 
have presented here, would be less dense as a result of fewer 
fixations and fewer overall transitions (both advancing and 
regressing).

As mentioned earlier, because a text has a specific struc-
ture, the centrality metric will be greatly influenced by the 
text structure itself. This is especially true given the way 
reading material was presented in the current study: Since 
participants read in a sentence-by-sentence manner, their vis-
ual scanpaths were first constructed on a sentence level, and 
then connected by fixations on repetitively appearing topic 
words and function words such as “Mars,” “Earth,” “super-
tanker,” “the,” and so on. In this case, the overall structure of 
readers’ scanpath networks was to some extent constrained 
by the text structure and the way text was presented. What 
differentiated the skilled readers from less skilled read-
ers could be the manner in which their scanpath networks 
branched out upon having only partially defined structure: 
skilled readers’ networks exhibited more sparsely clustered 
branches as a result of more focused scanpaths with fewer 
function words, short-length words, and irrelevant words. 
In contrast, less skilled readers’ networks grew out denser 
connected branches that diverged from the hub nodes, which 
led to a lower centrality value. Such topological structures 
reveal the different reading processes and reflect individual 
differences with a clear overall visualization.

Such tendency during the reading process can also lead 
the transitivity metric to become higher in less skilled read-
ers’ networks. The transitivity metric essentially measures 
the number of triplet nodes in a network. Along the read-
ing process, regressive fixations on previously visited words 
can increase the number of closed triplets in one’s scan-
path network. Repetitive fixations on function words and 
reoccurring topic words can also create more triplets in the 
network. Therefore, it is not surprising that the transitivity 
metric exhibited a negative correlation with readers’ com-
prehension in our study.

As for the global efficiency metric, it is an inverse meas-
urement of the shortest path length (the shorter, the more 
efficient), reflecting how efficiently a network exchanges 
information. This property ensures optimal informa-
tion exchange within a network given limited space and 
resources. Broadly speaking, it measures how “cost-effi-
cient” a given structure is. Many real-world structures such 
as subway systems, airline networks, and even neural net-
works in our brain exhibit high global efficiency properties 
(Bullmore & Sporns, 2009; Guimera et al., 2005; Latora 
& Marchiori, 2002; Li & Grant, 2016). On a global scale, 
the shorter the path length (number of edges) between any 
two random nodes, the higher a network’s global efficiency 

score. Since skilled readers tend to skip more words and 
make fewer transitions between words going through a sen-
tence, fewer edges would be built among nodes in their scan-
path networks. If a skilled reader is more likely to extract 
information from repetitive and short-length words (e.g., 
function words) through parafoveal preview without having 
to land an actual fixation on them (Blanchard et al., 1989; 
Wang et al., 2014), then there should be fewer surround-
ing nodes being directly connected to hub nodes in such a 
reader’s scanpath network. Given such a sparsely connected 
network, the average shortest path length between any two 
random nodes would be longer, therefore leading to a lower 
global efficiency score.3

Compared to other metrics, small-worldness is a more 
complex measurement since it captures both segregation and 
integration of a network. Humphries and Gurney (2008) pre-
cisely described how small-worldness changes as a function 
of network topology: as a measure of network clustering 
controlled for path length, it exhibits a U shape and peaks at 
the point where the trade-off between global clustering coef-
ficient and path length reaches maximum (for more details 
see Figure 1 in Humphries & Gurney, 2008). In other words, 
a network with small-world phenomenon should have local 
clusters around sub-hubs (high clustering coefficient), with 
these hubs then making global connections allowing for an 
efficient overall connection within the network (shortest 
path length), instead of having a large number of global con-
nections that will be resource costly. Such property (i.e., a 
non-monotonic curve) explains why the small-world metric 
did not show a significant linear correlation with readers’ 
comprehension ability in this study. This could be caused by 
skilled readers’ tendency to skip not only function words, but 
also those repetitive topic words when they occur frequently 
and are short in length (e.g., “Mars,” “GPS”). After repeti-
tive exposure to these topic words, the skilled readers are 
able to extract the semantic information without having to 
land a fixation on them. As a result, the number of sub-hubs 
and the amount of edges linking back to central hubs both 
decreased, canceling out the effect that could potentially be 
revealed by the small-worldness metric.

Results of the current study made it clear that through 
quantification of scanpath networks, graph metrics can serve 
as a useful and reliable index of a reader’s comprehension 
ability. By applying network science to eye-movement data, 
we were able to transform readers’ information intake pro-
cess into intuitive visualizations that also reveal underlying 

3 It is important to note that one should not directly correlate the 
high-vs.-low “efficiency score” with the literal meaning of high-vs.-
low efficiency: in this case, a lower global efficiency score actually 
reflects a more efficient processing strategy, as skilled readers tend to 
skip repetitive words and function words in deriving the meaning of 
the text.
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processing differences between skilled readers and less 
skilled readers. This contrasts with previous scanpath studies 
that were mostly focused on qualitative patterns of how read-
ers orchestrated sequential fixations. For example, von der 
Malsburg and Vasishth (2011) proposed an algorithm to esti-
mate scanpath similarity using eye movements and divided 
the reading patterns into different categories. This algorithm 
has been applied to reading patterns from readers at differ-
ent levels (e.g., fluent, intermediate, and beginner) (see also 
Parshina et al., 2021). However, this approach regards each 
fixation on each word as an individual unit, ignoring the cru-
cial relationships among words during reading comprehen-
sion. By contrast, the scanpath network in the current study 
counted the same word as a node and employed direction and 
strength of edges to collectively reflect connections among 
words. The latter approach is therefore more likely to capture 
the overall structure at a global rather than an individual word 
level. One of the key tasks for the reader is to build associa-
tions in structured or hierarchical relations among words (Li 
& Clariana, 2019), and the scanpath networks in the current 
study capture the overall structure of the reading process in 
terms of how words are connected by the reader as read-
ing unfolds. Our approach provides a new complementary 
method for eye movement studies of reading comprehension.

Limitations and future directions

One potential limitation with our current study is that our 
participants read the text in a sentence-by-sentence manner, 
which is better than word-by-word reading but is still dif-
ferent from the naturalistic whole-paragraph reading expe-
rience. However, in a recent paper Follmer et al. (2018) 
showed that regardless of whether the same text was read in 
a sentence-by-sentence manner or paragraph-by-paragraph 
manner, the underlying knowledge structure derived (as 
assessed by Multidimensional Scaling or MDS) is actually 
similar. Of course, if whole paragraphs were presented to 
participants, readers would be given the flexibility to check 
across sentences, and a more robust connection between 
the network metrics and comprehension ability might have 
surfaced. Specifically, if forward and backward saccades 
are allowed to happen across sentences, connections among 
nodes (words) may include edges (saccades) both within 
and across sentences. In the current study, all the network 
metrics have been partially constrained by the format of 
text presentation, as earlier discussed.4 This constraint, 
on the other hand, could help reveal interesting patterns 

between skilled versus less skilled readers. For example, 
because readers cannot regress back across sentences, 
skilled readers may be able to hold information across 
sentence boundaries, due to their higher working memory 
(see Li & Clariana, 2019 for a review of text reading and 
working memory). Therefore, skilled and less skilled read-
ers would show different centrality and global efficiency 
scores. The relationship between working memory and 
executive control and network metrics for reading should 
be further pursued in future studies.

Previous eye-tracking studies have investigated reading 
comprehension mainly based on word-level or sentence-
level eye-movement features. The current study attempted 
to link eye movements with the text content. Compared 
with traditional measurements focusing on eye-movement 
properties like averaged fixation duration, skip rate, overall 
fixation count, and so on, the scanpath network approach 
allows us to bring in more precise information regarding 
each reader’s actual information processing, and reveal the 
overall underlying structure of eye movements dependent on 
text properties. The network approach adopted in the current 
study would therefore also have practical utility for research-
ers who would like to get a glance of the overall structure 
through visualization. In future studies, it would be impor-
tant to develop visualization tools to automatically conduct 
such analyses on eye-movement data to enable this inquiry.

Resources and tools

The network science approach to the study of reading com-
prehension is a relatively new approach, but we have dem-
onstrated here the utility and power of this approach to the 
understanding of reading patterns and individual differences 
in the context of comprehension of expository scientific text. 
Below we provide a few pointers to resources and tools that 
researchers can use to apply the methods presented in this 
paper.

To calculate scanpath networks from eye-movement 
patterns (see sections 1.3 and 2.4), one can use the EyeLink® 
Data Viewer Software from SR Research (the company that 
produces the EyeLink 1000 Plus eye tracker), in combination 
with data cleaning tools like SQL, Python, and Microsoft 
Excel. To calculate the network metrics used in this paper 
(see 2.4), one can use network analysis packages like 
NetworkX (Hagberg et al., 2008)—a collection of network 
manipulation and metric generation algorithms in Python. 
A variety of other network metrics and manipulation tools 
including boundary, d-separation, and dominance are also 
available in this package. Detailed source code and references 
can be found in Software for Complex Networks (2020).

4 The sentence-based presentation used in the current study was 
based on the consideration of a trade-off between freedom of eye 
movements and eye drifting, so that eye drifting can be better cor-
rected and controlled for. The flexibility of moving across the whole 
paragraph could lead to severe eye-drifting issues.
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Following the recent call of Behavior Research Methods 
on open access of data for research reliability and validity 
(Brysbaert et al., 2021), all data used in this article have 
been organized and uploaded onto the OpenNeuro platform 
under the dataset named “The Reading Brain Project L1 
Adults” (see https:// openn euro. org/ datas ets/ ds002 247/ versi 
ons/1. 0.0). We also provided very detailed documentation 
for the data acquisition and processing steps (see section 6 
of the Reading Brain Project: Methods for Data Collection 
(L1 Adults); https:// blclab. org/ wp- conte nt/ uploa ds/ 2019/ 
08/ Readi ng_ Brain_ Metho ds_ L1Adu lts. pdf), along with 
related information of behavioral and neuroimaging data 
collection and processing (sections 5 and 7), participant 
background and experiences (section 8), and appendices 
that contain instructions for the experiments and descrip-
tions of the eye-tracking data file (section 10). Readers 
interested in applying network analyses on eye movement 
data (or related behavioral and neuroimaging data) can 
download our dataset and the documentation either from 
the OpenNeuro website mentioned above or from https:// 
blclab. org/ readi ng_ brain/.

Finally, for general applications of the network science 
approach in cognition and language studies, one can con-
sult a recent volume edited by Vitevitch (2019), and recent 
reviews by Karuza et al. (2016), Bassett and Sporns (2017), 
and Zaharchuk and Karuza (2021).

Appendix A: Reading material

Mars exploration
Could humans live on Mars some day? Scientists ask 

this question because Earth and Mars are similar. Similar to 
Earth’s day, Mars’s day is about 24 hours long. Also, both 
planets are near the Sun in our solar system. Earth is the 
third planet and Mars the fourth planet from the Sun. Mars 
also has an axial tilt similar to Earth's axial tilt. An axial tilt 
gives both planets seasons with temperature changes. Just 
like Earth, Mars has cold winters and warmer summers. Like 
Earth, Mars has winds, weather, dust storms, and volcanoes. 
But in some ways, Earth and Mars are different. Differences 
include temperature, length of a year, and gravity. The aver-
age temperature is −81 °F on Mars, but 57 °F on Earth. 
A Martian year is almost twice as long as an Earth year. 
Earth’s gravity is almost three times stronger than Martian 
gravity. Given the similarities, can humans go to Mars and 
live there? NASA scientists want to answer this question. 
NASA oversees U.S. research on space exploration. NASA 
scientists send devices called spacecraft to explore Mars. 

The spacecraft carry rovers that can rove or move around. 
These wheeled rovers can explore characteristics of the 
planet. They can take pictures of mountains, plains, and dust 
storms on Mars. One of these NASA rovers is named Curi-
osity. Curiosity found evidence that soil on Mars contains 
2% water. NASA has planned a new mission called Mars 
2020. This mission will use a new car-sized rover to examine 
Mars. The new rover will contain additional instruments to 
study Mars. For example, one instrument will take images 
beneath Mars’s surface. Another instrument will attempt to 
make oxygen from carbon dioxide. Mars 2020 will help sci-
entists answer important questions. It will explore whether 
there has been life on Mars. It will also answer whether 
humans can live on Mars in the future.

Electrical circuit
Engineers design electrical circuits to power homes and 

buildings. Electrical circuits are closed paths that electric-
ity flows through. This means that the entire path must be 
connected like a loop. Imagine a simple circuit made with 
a battery and a piece of wire. Now connect each end of the 
wire to different ends of the battery. Your piece of wire and 
battery now make a circle or circular path. One end of the 
battery is positive and the other end negative. Electrons 
will flow across this circuit through the wire. You have just 
created a simple electrical circuit. Removing the wire from 
the battery will stop the flow of electrons. Now imagine 
that you want to connect the battery to a lightbulb. First 
the wire is cut in the middle and breaks the circuit. Then 
a lightbulb is inserted to reconnect the circuit. The elec-
trical circuit is complete again and electrons are flowing. 
Electricity now flows through the lightbulb, lighting it up. 
If the circuit is now broken, the lightbulb will go out. You 
can also add a switch in the circuit to break it or connect it. 
This allows you to turn on or turn off the lightbulb. A sim-
ple electrical circuit contains several parts. These include 
a source, a path, and a resistor. The source provides the 
energy to an electrical circuit. In our example above, the 
source is the battery. Batteries can have different electric 
potential called voltage. The path is the closed loop with 
wires that connect to the source. Electrons flow through 
the path as electric currents. Electric currents increase with 
increased voltage. The resistor is any device that reduces 
the electric current. It creates resistance or impedance in 
the electrical circuit. In our example above, the resistor 
is the lightbulb. Electric currents decrease with increased 
resistance.

Permutation vs. combination
Two important math concepts are combinations and 

permutations. Combinations and permutations are similar in 

https://openneuro.org/datasets/ds002247/versions/1.0.0
https://openneuro.org/datasets/ds002247/versions/1.0.0
https://blclab.org/wp-content/uploads/2019/08/Reading_Brain_Methods_L1Adults.pdf
https://blclab.org/wp-content/uploads/2019/08/Reading_Brain_Methods_L1Adults.pdf
https://blclab.org/reading_brain/
https://blclab.org/reading_brain/
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several ways. Both refer to sets of objects that you pick and 
arrange in order. A set could be the numbers 1 through 9, or 
available pizza toppings. For combinations and permutations, 
items are selected from a set. For example, we can select 1–3 
from the set 1–9 to count and order. However, combinations 
and permutations are calculated differently. When we 
compute a combination, the item order does not matter. 
A combination of 1, 2, 3 is the same as the combination 
of 3, 2, 1. Another example of a combination is picking 
pizza toppings. Suppose you pick three toppings: cheese, 
pepperoni, and sausage. You can also say that you pick 
sausage, pepperoni, and cheese. Here you have a combination 
of three things in two different orders. But the pizzas you 
get are the same because the order doesn’t matter. However, 
order does matter when we compute a permutation. 1,2,3 
and 3,2,1 are different permutations of these three numbers. 
In permutations, different orders of items have different 
meanings. Imagine you can pick only one for lunch: pizza, 
pasta, or rice. You say pizza is your favorite and rice is your 
least favorite. So your order of preference is (1) pizza, (2) 
pasta, and (3) rice. If pizza runs out, the waiter will give 
you pasta and not rice. But your friend may have a different 
order of preference. Your friend’s order could be (1) rice, (2) 
pasta, and (3) pizza. So two orders of the same items mean 
something quite different. Permutation allows us to count 
all the possible orders of items. Given three numbers 1,2,3, 
we can derive six permutations. These include 1,2,3 / 1,3,2 /  
2,1,3 / 2,3,1 / 3,1,2 / 3,2,1. These sequences in different 
orders are different permutations.

Supertanker
How can engineers help prevent spills of oil from super-

tankers? Supertankers are huge ships that carry oil over the 
oceans. A supertanker can contain about a half-million tons 
of oil. A supertanker is the size of about five football fields. 
A supertanker’s cargo area could hold the Empire State 
Building. Most of the world’s oil is transported by these 
supertankers. Disasters occur when wrecked supertankers 
spill oil into the ocean. As a result of these oil spills, the 
environment is damaged. In 1967, a supertanker crashed 
near the shores of England. This crash resulted in washing 
ashore 200,000 dead seabirds. In 1989, another supertanker 
spilled oil into Alaska’s coast. The spilled 11 million gallons 
of oil caused 1000 otters to die. Oil spills from supertankers 
also kill drifting microscopic plants. These plants provide 
food for sea life, such as whales and shrimp. The plants also 
produce 70 percent of the world's oxygen supply. Oil spills 
result partly from limitations in engineering. Supertankers 
lack double bottom hulls for extra protection. Supertankers 

lack extra power and steering equipment for safety. Super-
tankers also have only one boiler to provide the ship power. 
Supertankers have only one propeller to steer the huge ship. 
Lack of such backup components causes problems during 
emergencies. Emergencies for supertankers are ocean storms 
and coastal reefs. Solutions to problems with supertankers 
include three tactics. Supertankers must be built with added 
hulls, boilers, and propellers. These provide extra safety, 
control, and backup in emergencies. Also, officers need top 
training to run and maneuver their ships. Supertanker simu-
lators at some facilities provide top training. Finally, ground 
control stations should be installed near the shore. Ground 
control stations would act like airplane control towers. They 
would guide supertankers safely on the oceans along coasts. 
This ensures safety in shipping lanes and along dangerous 
coasts.

GPS
Global Positioning System (GPS) is a system that helps us 

navigate. GPS is a system of 24 or more satellites in space. 
These satellites orbit at about 12,000 miles above the Earth. 
Different satellites orbit the Earth in different locations. 
They circle the Earth along one of six orbits continuously. 
They send information to a GPS receiver on Earth. The 
information is transmitted across space via radio signals. 
Radio signals travel through space like sound waves through 
a canyon. Imagine you and your friend are at different sides 
of a canyon. You shout to your friend and she hears you 
after a short delay. This delay is the time that sound waves 
need to reach the other side. Similarly, the satellite in space 
sends a radio signal at one time. After a delay the radio 
signal arrives at the GPS receiver on Earth. The receiver 
records the precise time when the radio signal arrives. It then 
calculates the difference between these two times. This time 
difference is the travel time of the radio signal. The GPS uses 
this travel time to figure out how far the satellite is. It uses 
the formula “distance = time (T) × rate of transmission (C).” 
T is the travel time of the radio signal. C is the speed of light, 
more than 186,000 miles per second. T × C calculates the 
distance between the receiver and each satellite. Different 
satellites have different distances from the receiver. This 
information helps the receiver determine its location on 
Earth. The precise location is calculated based on geometry 
of distances. A GPS device that you carry in your car is a 
small receiver. Radio signals from the satellites are updated 
as the device moves. At least four satellites are involved to 
pinpoint the device’s location. GPS devices provide maps 
and directions that help people travel.
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Appendix B

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

Table 4  Statistics and psycholinguistic variables of texts*

*Note. Psycholinguistic variables of the text’s lexical properties (word frequency, word length,
from the English Lexicon Project (Balota et  al., 2007), the Kuperman age-of-acquisition (AoA) database (Kuperman et  al., 2012), the MRC 
Database (Coltheart, 1981), and the Brysbaert concreteness database (Brysbaert et al., 2014). Bootstrapped one-way analyses of variance (ANO-
VAs) revealed no significant difference between the average values across all five texts for the average number of syllables (NSyll, F = .05, p = 
.99), lexical decision time (LDT, F = 1.07, p = .38), log frequency (F = .25, p = .91), naming response time (NRT, F = 1.41, p = .23), ortho-
graphic neighborhood density (OLD, F = .04, p = .99), phonological neighborhood density (PLD, F = .34, p = .85), concreteness (F = .24, p = 
.91), and number of phonemes (NPhon, F = .02, p = .99). However, one-way ANOVAs for word length and AoA were significant at p < .05 (F 
= 3.27, F = 3.32, respectively), suggesting that the average length of words and age at which these words are acquired may differ across the five 
texts.

Text metrics Math GPS Mars Circuit Supertanker

No. words 308 307 310 304 302
No. characters (excluding spaces) 1491 1476 1528 1498 1676
No. characters (including spaces) 1798 1783 1838 1800 1978
No. paragraphs 1 1 1 1 1
No. sentences 28 28 31 30 31
Avg. words per sentence 10.7 11.3 10.3 10.0 9.7
Avg. characters per word 4.7 4.6 4.7 4.8 5.4
Avg. characters per sentence (excluding spaces) 53.25 52.71 49.29 49.93 54.06
Avg. characters per sentence (including spaces) 64.21 63.68 59.29 60.00 63.81
Passive sentences % 7.0% 10.0% 3.0% 10.0% 12.0%
Flesch reading ease 63.92% 65.35% 69.79% 61.85% 55.28%
Flesch–Kincaid grade level 6.94 6.78 6.05 7.13 8.00
Coh-Metrix L2 readability 21.09 26.07 26.12 18.47 22.48
Coh-Metrix narrativity 27.8% 18.9% 16.1% 15.4% 8.5%
Coh-Metrix syntactic simplicity 91.8% 78.8% 93.1% 96.8% 98.3%
Coh-Metrix word concreteness 15.4% 74.5% 88.9% 34.5% 90.7%
Coh-Metrix referential cohesion 77.9% 87.1% 82.4% 83.4% 46.0%
Coh-Metrix deep cohesion 50.8% 5.7% 24.5% 21.5% 75.8%
CELEX word frequency for content words, mean 2.08 2.14 2.19 2.02 1.90
CELEX log frequency for all words, mean 2.85 2.89 2.72 2.94 2.61
Age of acquisition for content words, mean 376.61 344.25 322.08 410.22 340.03
Familiarity for content words, mean 564.62 575.67 562.33 548.81 554.20
Concreteness for content words, mean 352.18 406.40 410.86 390.21 431.22
Imageability for content words, mean 361.26 444.50 438.33 419.93 460.06
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