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Abstract 
  Emergencies that pose potential threats to our health, life, and properties can happen 
anywhere and anytime and may result in huge losses if they are not handled timely and 
effectively. An immediate response to emergencies is the key to mitigate these threats 
and losses. As the response time is largely dependent on the number and location of 
emergency facilities, the problem of how to determine the optimal number of 
emergency facilities and their best locations is of great strategic importance and of great 
interest to researchers. One of the most common approaches for researchers to address 
the emergency facility location problem is to model it as a discrete coverage-based 
emergency facility location problem. This paper provides a comprehensive overview of 
this problem, including mathematical models and their extensions and applications. In 
addition, the commonly used solution methods and some promising future research 
questions based on covering models are discussed.  

Keywords: Emergency facility location, Emergency service, Covering problem, 
Mathematical modeling  

1. Introduction

The term emergency refers to an unexpected and dangerous situation that poses risks
to health, life, and properties and that must be dealt with immediately before it gets 
worse. Depending on the frequency and the scale, emergencies can range from incidents 
that affect a single person (such as some routine emergencies like heart attack, car crash, 
and residential fire) to events that affect a large group of people (such as natural 
disasters like floods, earthquake, hurricanes and human-caused disasters such as 
explosions and wars). For all kinds of emergency situations, saving life and properties 
as much as possible is always the most important goal of emergency rescue. How well 
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such a goal can be attained is significantly influenced by the response time of rescue. 
While the response time of a routine emergency is largely and directly affected by the 
number and location of facilities in a strategic level, that of a large-scale emergency is 
affected also by many other factors such as coordination in a large network, the 
multiplicity of objectives of different parties, etc. In this paper, to keep our focus we 
mainly survey research on facility location problem for routine emergency.  

Responses to routine emergencies usually involve police, fire services, and 
emergency medical services (EMS) departments (Zeng et al., 2021) and effective 
decisions require multi-disciplinary research efforts (Qu and Wang, 2021). When an 
emergency call comes, mobile servers (various types of vehicles) must depart from their 
bases and arrive at the emergency site as soon as possible or within certain time limits. 
The time interval between the reception of the call and the arrival at the incident is 
referred to as the response time, which, in a strategic level, is directly affected by the 
number and location of facilities. Not having enough number of facilities or placing 
them in wrong locations can significantly increase the response time, resulting in 
serious loss of life and properties. Thus, identifying the optimal number of emergency 
facilities and their best locations is the main topic of this research. 

In general, the emergency facility location problem can be divided into continuous 
and discrete location problem. For the former, facilities can be located anywhere in a 
continuous region, which involves integral when formulating the problem. This is 
computationally challenging and it is further complicated when the non-convexity of 
regions has to be considered in the model. Because of the limit of computation 
techniques, the continuous location problem has not been extensively explored. With 
the development of computer processing ability and geographic information systems 
(GIS), this problem gradually gains attention (Love, 1972; Okabe and Suzuki, 1997; 
Murray et al., 2008; Matisziw and Murray, 2009; Yao and Murray, 2014; Berman et al., 
2016; Blanquero et al., 2016; Fröhlich et al., 2020). For the discrete problem, facilities 
can be built only at a finite number of candidate locations. This could not only reduce 
the workload for data collection and processing, but also reduce the dimension of the 
problem. Therefore, the majority of location problems studied in the literature fall into 
the latter category. The discrete location problems can be divided into three groups: (i) 
p-center problem (also called ‘min-max’ problem), which aims to minimize the 
maximum service distance between candidate facilities and demand nodes (the traffic 
dynamics, e.g., Gu et al., 2020, Wu et al., 2020, Shi et al., 2021, are usually not 
considered); (ii) p-median problem (also called ‘min-sum’ problem), which aims to 
minimize the weighted total or average service distance. Both these two types of 
problems are first proposed by Hakimi (1964, 1965); (iii) covering problem, which 
seeks for optimal coverage of demand within response distance or time requirement. 
The covering problem is the most widely studied among the three groups and thus we 
focus on covering problem in this research. There are studies that use key performance 
indicators (KPIs) in different categories to evaluate the solutions obtained by discrete 
location models and interested readers can refer to Fadda et al. (2020, 2021). 
  This research serves three main purposes: first, to provide a comprehensive overview 
of the discrete coverage-based location models for routine emergency services as well 



as their extensions and applications; second, to outline the commonly used solution 
techniques; third, to propose some promising future research questions. Noting that 
there is already some review literature for discrete coverage-based location models, we 
first comment on these articles, pointing out the research gap, and then delineate the 
contributions of this research. ReVelle et al. (1970) analyses the similarities and 
differences between the private and public sector location models and discuss their 
applications and solution methods, respectively. ReVelle et al. (1977) first introduces 
simulation and queuing models used to address location and allocation problems in the 
background of EMS and then discusses three context-free models that could be applied 
to solve EMS problems, especially maximal covering location problem (MCLP) which 
could satisfy the demand of EMS policy makers. Daskin et al. (1988) reviews covering 
models considering the situation when the nearest vehicles are busy. ReVelle (1989) 
analyses several classical deterministic and probabilistic covering models for public 
facility location, proposes two models not covered by analyzed research, and predicts 
potential models that might be constructed in the future. Green and Kolesar (2004) 
provides comprehensive background information and history of the development of 
emergency response system since 1960s. It also analyses and summarizes all the 
relevant articles published in Management Science over the past few decades as well as 
identifies the potential challenges in implementing modeling and analysis to deal with 
emergency problems. Li et al. (2011) reviews covering problem for emergency response 
based on model types, which include classical models, their extensions, and prevailing 
models at that time, and introduces solving techniques. Simpson and Hancock (2017) 
describes the focuses of operational research in emergency response in different time 
periods and how they have changed over time. Bélanger et al. (2019) discusses recent 
advances in location, allocation, and vehicle dispatching in EMS. Most of the above 
articles are organized by “models”, which provide a clear reference for researchers to 
learn the distinctions between different models, while our paper is organized around 
“problems”. We review how new problems in practice leads to new models and how 
the consideration of new features in existing problems results in extensions of models. 
We use this problem-driven structure in hope of providing a review by which 
researchers can better know the evolution (and connection) of research in the topic and 
how the need of solving practical problems drives research development. 

Another contribution is that we summarize the commonly used solution methods for 
covering problem. The third contribution is that we propose several valuable promising 
future research questions that have been widely accepted as important and have been 
receiving increasing attention, but remain open questions until now. We have to mention 
that although this research focuses on routine emergencies, the models and solution 
methods discussed could also be applied to other topics, such as the location of charging 
stations for electric vehicles under deterministic or uncertain demand (Frade et al., 2011; 
Wang and Lin, 2013; Faridimehr et al., 2018; MirHassani et al., 2020).  
  At the end of the section, we briefly discuss the differences in planning locational 
decisions when emergencies are large scale and introduce some related research. Large-
scale emergencies, because of the low frequency and the tremendous resources demand 
in a short time, have distinctive characteristics that cannot be satisfactorily handled by 



the network of routine emergencies. For example, the suddenly overwhelm resources 
demand results in a more complicated network for large-scale emergencies, which have 
to simultaneously consider pre- and post-disaster processes. As a result, a multi-level 
network, including distribution centers used for pre-stocking and post-distributing relief 
resources, shelters used as transit stations for resource distribution and victim 
evacuation, medical centers, and emergency sites, have to be designed (Huang et al., 
2021). In contrast, routine emergencies, which are usually habitual requests, can be 
handled with a simpler network with less layers. In addition, the attributes associated 
with each demand point in the large-scale emergency are distinct, thus the definition 
for coverage involves different facility quantity and quality requirements for each 
demand point. This is just to name a few. Because of the different characteristics of 
these two types of emergencies and large number of studies on each type, they can be 
reviewed separately. Readers interested in large-scale emergencies can refer to Liu et 
al. (2019b), Zhang et al. (2019, 2021), Li et al. (2020), Zhong et al. (2020), Azizi et al. 
(2021), Monemi et al. (2021), Shu et al. (2021), Uichanco (2021), and Wang et al. 
(2021a, 2021b). 
  The remainder of this paper is organized as follows. In Section 2, we introduce the 
literature search strategy and result. In Section 3, we thoroughly explain the 
deterministic problems and their extensions and applications. The probabilistic and 
stochastic counterparts are illustrated in Section 4. In Section 5, we briefly review 
commonly used solution techniques for covering problem. The promising future 
research questions for covering problem are outlined in Section 6. Section 7 concludes 
this review. The commonly used abbreviations are listed in Table 1. 
 
Table 1. Commonly used abbreviation 

Abbreviation Meaning  
ALS advanced life support 
BLS basic life support 
DCM double coverage model 
DRO distributionally robust optimization 
EMS emergency medical services 
GIS geographic information systems 
HOSC hierarchical objective set covering model  
LSCP location set covering problem 
MALP maximum availability location problem 
MCLP maximal covering location problem 
MEXCLP maximum expected covering location problem 
RO robust optimization 
SP stochastic programming 

 
2. Survey Scope and Method 
 
  We used a computerized search. To avoid bias in the coverage, we searched three 
databases: Scopus, Google Scholar, and Science Citation Index. For each database, we 



searched for studies based on search keys related to emergency facility location, such 
as emergency (service) facility location, EMS location, ambulance location, fire station 
location, etc., and model type, such as LSCP, MCLP, queuing, SP, RO, DRO, etc., in 
title, abstract, and keywords. After initial search, we obtained literature that mainly 
explores discrete coverage-based models for emergency facility location. Then, we 
retrieved the studies cited in these papers and the studies citing them. In addition to the 
above-mentioned criteria, we used three other criteria. First, we confined the review to 
work published in English in refereed journals or edited volumes, except three 
conference proceedings that include studies having fundamental and significant 
influences on emergency facility location problem. Second, we excluded the papers that 
do not involve modeling approaches as this paper mainly focuses on mathematical 
models for emergency facility location. Third, we also dropped literature that advances 
in the aspect of solution algorithm but leaves the model unchanged as algorithm is not 
the main focus in this article. Finally, we found 87 related papers, of which 60 papers 
discuss classic coverage-based models and their extensions and applications, and the 
other 27 papers that consider richer realistic features and constraints are used for future 
research questions for covering problem. The number of publications is summed up 
every ten years and the results are shown in Table 2. We can see from this table that the 
number of publications is relatively stable. The largest number of fundamental studies 
were done during 1980s, as at that time, the success of the first manned lunar landing 
encouraged the implementation of computer models and mathematical analysis to 
tackle fundamental social problems. For example, the fire department, police 
department, and health services in New York City were keen to collaborate with 
research institutions and universities to tackle daily problems and find out the way to 
make daily operation more efficient (Green and Kolesar, 2004). Thus, a lot of research 
on location of fire stations, police stations and ambulances came out during that time. 
Another feature is that the research problems and models become more complicated 
over time, considering more realistic features and constraints, as the advances in 
computing techniques make the previously complex problems easier to solve. In the 
following, the development of covering problem of routine emergencies will be 
thoroughly discussed. 
 
Table 2. The number of publications 

 Deterministic Location Problem Probabilistic and Stochastic Location Problem Future 

Research 

Questions 

Total 

 Resource 

Minimization 

Coverage 

Maximization 

Multi-

performance 

Probabilistic 

Optimization 

Queuing 

Theory 

Chance 

Constraint 

Stochastic 

Programming 

Robust 

Optimization 

1970s 4 2   2    2 10 

1980s 1 4 3 8 3     19 

1990s  2  2 3    3 10 

2000s  5  1 3 1 1  5 16 

2010s  2  3 1 2 2 2 13 25 

2020s       2 1 4 7 

Total 5 15 3 14 12 3 5 3 27  

 



3. Deterministic Location Problem 
 

The emergency facility location problem has been studied since 1970s. In the very 
beginning when not much research had been conducted, it is urgent for people to 
understand the first-moment performance (e.g., average resources, coverage, etc.) of a 
system. Therefore, various deterministic models based on simple settings were 
developed at that time. According to the performance measures, the problem could be 
divided into three categories: resource minimization, coverage maximization, and 
multi-performance problem. In the following subsections, these three types will be 
explained in detail. 
 
3.1. Resource Minimization Problem 
 
Table 3. A brief overview of research on resource minimization problem 

Model Objectives Decisions Solution techniques References 

LSCP Minimize the number of fire stations Location Linear Programming 

with Cut Constraint 

Toregas et al. (1971) 

LSCP Maximize the number of tower ladder Location Heuristic Algorithm Walker (1974) 

LSCP Minimize the number of fire stations 

Maximize the number of existing 

stations 

Location Cutting Plane Integer 

Programming 

Plane and Hendrick 

(1977) 

Four-stage 

model 

Minimize demands uncovered Location 

Assignment  

Heuristic Algorithm Kolesar and Walker 

(1974) 

LSCP Minimize the number of fire stations Location 

Assignment 

Lagrangian Relaxation 

Boolean Method 

Schreuder (1981) 

Note: (i) Location means whether to locate the station in the potential facility site and the decision variable can only be 0 or 1. (ii) 

Assignment means which site should the vehicle be assigned and the decision variable usually is 0 or 1.  

 

Table 4. Notations for resource minimization problem 
Notations Explanation of notations 
Sets 
𝐼𝐼 the set of demand nodes (indexed by 𝑖𝑖) 
𝐽𝐽 the set of candidate facility sites (indexed by 𝑗𝑗) 
𝑁𝑁𝑖𝑖 the coverage set of demand node 𝑖𝑖 , i.e., the set of facility sites that can cover 

demand node 𝑖𝑖 (𝑁𝑁𝑖𝑖 = �𝑗𝑗 ∈ 𝐽𝐽:𝑑𝑑𝑖𝑖𝑖𝑖 ≤ 𝑆𝑆�) 
Deterministic parameters 
𝑑𝑑𝑖𝑖𝑖𝑖 the shortest distance between demand node 𝑖𝑖 and facility site 𝑗𝑗 
𝑆𝑆 the response distance limit for coverage, e.g., a demand node 𝑖𝑖 is covered if and 

only if 𝑑𝑑𝑖𝑖𝑖𝑖 ≤ 𝑆𝑆 
Decision variables 
𝑥𝑥𝑖𝑖  1 if a facility is located at site 𝑗𝑗, 0 otherwise 

 

The resource minimization problem mainly focuses on satisfying demands with the 
minimum number of resources. All the references and notations are briefly summarized 



in Table 3 and Table 4, respectively. The very first study in this area is done by Toregas 
et al. (1971), which proposes location set covering problem (LSCP). It identifies the 
minimum number of fire stations under the constraints that all demands have to be 
covered. The LSCP model is as follows: 

  (1) 

subject to 
  (2) 

 . (3) 

The objective (1) is to find the minimum number of total facilities required. 
Constraints (2) require that each demand is covered by at least one facility within 
distance requirement. Constraints (3) define the domains of 𝑥𝑥𝑖𝑖. Walker (1974) deals 
with the situation where a number of existing conventional aerial ladders in the fire 
stations have to be replaced by new tower ladders. This replacement problem is 
formulated as an LSCP, aiming at minimizing the number of fire stations needed to be 
filled with a tower ladder when each pair of neighboring fire stations has to be assigned 
one tower ladder, and then solved in a very little computation time by a heuristic method 
that contains three reduction procedures reducing the problem size. Plane and Hendrick 
(1977) helps fire department to reduce the number of fire stations while maintaining 
current service level, which is done in two steps: first, to identify the minimum number 
of fire stations that cover all focal points by closing mis-located stations and opening 
new ones; second, to keep as many existing stations as possible. A hierarchical objective 
set covering model with a weight factor to differentiate between the new stations and 
the existing ones is formulated with the objective function shown as follows: 

  (4) 

where 𝑤𝑤 ∈ [0, 1 𝑛𝑛]⁄  and 𝑙𝑙 represents the number of exiting fire stations. The number 
of fire stations satisfying coverage requirement is first calculated and then the solution 
with maximum number of existing stations is chosen because of establishing costs of 
new fire companies. This model, coupled with empirical judgement from fire chief and 
officers, saves fire service company 2.8 million dollar over a 6-year period. Kolesar and 
Walker (1974) helps design response network for fire department, using LSCP to 
minimize the relocation of fire ladders and engines separately from outside the region 
when all three closest engines or two closest ladders to a fire alarm box are busy fighting 
other fires. Schreuder (1981) determines the minimum number of fire stations for fire 
department in Rotterdam. The region is divided into two categories: 𝐼𝐼1 denotes a set 
of districts covered only once within standard response time, 𝐼𝐼2 the districts where 
double coverage is required. The objective is to establish the minimum number of fire 
stations that could satisfy the coverage requirements. 

 
3.2. Coverage Maximization Problem 



 
Table 5. A brief overview of research on coverage maximization problem 

Model Objectives Decisions Solution techniques References 

MCLP Maximize coverage Coverage Greedy Adding 

Greedy Adding with 

Substitution 

Linear Programming 

Branch and Bound 

Church and ReVelle 

(1974) 

Weighted 

MCLP 

Maximize population and 

property coverage 

Location 

Coverage 

- Schilling et al. (1980) 

Weighted LSCP 

MCLP 

Minimize the number of fire 

stations 

Maximize coverage 

Location ArcGIS 

CPLEX 

Aktaş et al. (2013) 

FLEET Maximize coverage by two 

types of equipment 

Location 

Coverage 

Linear Programming Schilling et al. (1979) 

Weighted 

MCLP 

Maximize the weighted sum 

of eight demand surrogates 

Location 

Coverage 

Linear Programming Eaton et al. (1985) 

Extension of 

MCLP 

Maximize once coverage and 

multiple coverage 

Location 

Once coverage 

Additional coverage 

Goal Programming Storbeck (1982) 

DCM Maximize the demand 

covered by two ambulances 

within smaller radius 

Location 

Once coverage 

Double coverage 

Tabu Search Gendreau et al. (1997) 

Extension of 

DCM 

Minimize total cost Location 

Once coverage 

Double coverage 

Ant Colony 

Optimization 

Su et al. (2015) 

Generalized 

MCLP 

Maximizes total weighted 

coverage 

Location 

Coverage 

Branch and Bound Church and Roberts 

(1983) 

Generalized 

MCLP 

Maximizes total weighted 

coverage 

Location 

Coverage 

Greedy Heuristic Berman and Krass 

(2002) 

Capacitated 

MCLP 

Maximizes total weighted 

coverage 

Location 

Coverage 

Lagrangian Relaxation Pirkul and Schilling 

(1991) 

Gradual 

covering 

problem 

Minimize noncoverage cost 

related to distance 

Location 

Coverage 

Branch and Bound Drezner et al. (2004) 

Generalized 

MCLP 

Maximizes total weighted 

coverage 

Location 

Coverage 

Greedy Heuristic 

Linear Programming 

Branch and Bound 

Berman et al. (2003) 

MCLP Maximizes the coverage 

level within the maximum 

critical distance 

Location 

Coverage 

Lagrangian Relaxation Karasakal and 

Karasakal (2004) 

Cooperative 

LSCP 

Cooperative 

Minimize the number of 

facilities 

Maximizes total weighted 

Location Big-Triangle Small-

Triangle global 

optimization technique 

Berman et al. (2009) 



MCLP coverage 

Note: Coverage means whether the demand node is covered within the required response standards.  

 

Table 6. Notations for coverage maximization problem 
Notations Explanation of notations 
Sets 
𝑁𝑁𝑖𝑖
𝑝𝑝 the coverage set of demand node 𝑖𝑖 for primary equipment 

𝑁𝑁𝑖𝑖𝑠𝑠 the coverage set of demand node 𝑖𝑖 for special equipment 
𝐽𝐽𝑁𝑁 the set of potential new facility locations 
𝑁𝑁𝑖𝑖𝑠𝑠 𝑁𝑁𝑖𝑖𝑠𝑠 = {𝑗𝑗 ∈ 𝐽𝐽:𝑑𝑑𝑖𝑖𝑖𝑖 ≤ 𝑠𝑠} 
𝑁𝑁𝑖𝑖𝑡𝑡 𝑁𝑁𝑖𝑖𝑡𝑡 = {𝑗𝑗 ∈ 𝐽𝐽: 𝑠𝑠 < 𝑑𝑑𝑖𝑖𝑖𝑖 ≤ 𝑡𝑡} 
𝑁𝑁𝑖𝑖𝑟𝑟 𝑁𝑁𝑖𝑖𝑟𝑟 = {𝑗𝑗 ∈ 𝐽𝐽: 𝑡𝑡 < 𝑑𝑑𝑖𝑖𝑖𝑖 ≤ 𝑟𝑟} 
Deterministic parameters 
𝑎𝑎𝑖𝑖 the population to be served at demand node 𝑖𝑖 
𝑝𝑝 the number of facilities to be located 
𝑝𝑝𝑝𝑝 the number of primary equipment units available 
𝑝𝑝𝑠𝑠 the number of special equipment units available 
𝑝𝑝𝑧𝑧 the number of new facilities to be built 
𝑀𝑀 a non-Archimedean weight 
𝜂𝜂 the proportion of the total demand that must be covered by an ambulance within 

𝑟𝑟1 
𝛾𝛾𝑖𝑖𝑖𝑖  1 if demand node 𝑖𝑖 is covered by 𝑗𝑗 within the small radius 𝑟𝑟1, 0 otherwise 
𝛿𝛿𝑖𝑖𝑖𝑖 1 if demand node 𝑖𝑖 is covered by 𝑗𝑗 within the large radius 𝑟𝑟2, 0 otherwise 
𝑟𝑟1(𝑟𝑟2) two response distance limits for coverage where 𝑟𝑟1 < 𝑟𝑟2 
𝑠𝑠/𝑡𝑡/𝑟𝑟 the response distance limit for gradual coverage, where 𝑠𝑠 ≤ 𝑡𝑡 ≤ 𝑟𝑟 
𝑤𝑤𝑠𝑠 the weight attached to the coverage between distance 0– 𝑠𝑠 
𝑤𝑤𝑡𝑡 the weight attached to the coverage between distance 𝑠𝑠– 𝑡𝑡 
𝑤𝑤𝑟𝑟 the weight attached to the coverage between distance 𝑡𝑡– 𝑟𝑟 
Decision variables 
𝑥𝑥𝑖𝑖
𝑝𝑝 1 if primary equipment is located at node 𝑗𝑗, 0 otherwise 
𝑥𝑥𝑖𝑖𝑠𝑠  1 if special equipment is located at node 𝑗𝑗, 0 otherwise 
𝑦𝑦𝑖𝑖 1 if a demand point 𝑖𝑖 is covered, 0 otherwise 
𝑦𝑦𝑖𝑖+  the number of additional coverage for demand node 𝑖𝑖 within 𝑆𝑆 
𝑦𝑦𝑖𝑖− 1 if demand node 𝑖𝑖 is not covered within distance 𝑆𝑆, 0 otherwise 
𝑦𝑦𝑖𝑖𝑘𝑘 1 if demand node 𝑖𝑖 is covered 𝑘𝑘 (𝑘𝑘 = 1 or 2) times within the small radius 𝑟𝑟1, 

0 otherwise 
𝑦𝑦𝑖𝑖𝑠𝑠 1 if a demand point 𝑖𝑖 is covered at a distance between 0– 𝑠𝑠, 0 otherwise 
𝑦𝑦𝑖𝑖𝑡𝑡 1 if a demand point 𝑖𝑖 is covered at a distance between 𝑠𝑠– 𝑡𝑡, 0 otherwise 
𝑦𝑦𝑖𝑖𝑟𝑟 1 if a demand point 𝑖𝑖 is covered at a distance between 𝑡𝑡– 𝑟𝑟, 0 otherwise 

 
  Coverage maximization problem aims at maximizing the people, property, or other 
surrogate measures covered under the limited resources. All the references and 
additional notations are briefly summarized in Table 5 and Table 6, respectively. The 
pioneering research in this area is Church and ReVelle (1974), which proposes maximal 



covering location problem (MCLP) as follows: 
  (5) 

subject to 
  (6) 

  (7) 

  (8) 

 . (9) 
The objective (5) maximizes the population covered. Constraints (6) state that demand 
node 𝑖𝑖 is covered only if there is at least one facility in the coverage set 𝑁𝑁𝑖𝑖 . Constraint 
(7) sets the limitation on the total number of facilities that can be built. Constraints (8) 
and (9) define the domains of 𝑥𝑥𝑖𝑖 and 𝑦𝑦𝑖𝑖. This problem is solved by heuristic methods 
and linear programming relaxation (i.e., relax the zero-one restriction on 𝑥𝑥𝑖𝑖 and 𝑦𝑦𝑖𝑖 
and only require nonnegativity on two variables), the fractional results of which are 
tackled by branch and bound. Schilling et al. (1980) replaces population in MCLP with 
other surrogate measures when dealing with real-world decision-making situation. 
Aktaş et al. (2013) helps Istanbul Metropolitan Municipality in configuring fire stations 
to respond to residences and historic sites as quickly as possible. It formulates 10 what-
if scenarios, such as constructing new fire stations on the basis of the existing ones, 
building all fire stations from scratch, or configurating fire stations under budget 
restriction. These scenarios are calculated in CPLEX and the solution finally chosen 
increases the coverage by more than 27%. 

  The above problems only require single coverage. There are situations that 
multiple vehicle types are required or the closest emergency resource is unavailable. To 
address these problems, multiple coverage is proposed. Schilling et al. (1979) is the 
first to consider two different types of equipment (i.e., pumper and ladder vehicles) 
when design fire protection system. The definition of coverage changes a little bit under 
this situation. Demand is covered only when it is simultaneously within distance 
standard of two types of equipment, resulting in a model called FLEET, which deals 
with a general problem setting where a fixed number of facilities with limited capacities 
for two equipment types are located to maximize the demand covered by both types 
within their respective distance. The FLEET model is given by: 

  (10) 

subject to 
  (11) 

  (12) 

  (13) 



  (14) 

  (15) 

  (16) 

  (17) 

  (18) 

  (19) 

 . (20) 

Constraints (11) and (12) require that the demand should be covered. Limitations on the 
number of equipment and new facilities are stated by constraints (13)–(15). Constraints 
(16) and (17) guarantee the placement of equipment at nodes where facility is located. 
Eaton et al. (1985) designs a two-tiered (advanced and basic life support) EMS response 
system to maximize the total weighted coverage of eight demand surrogates (i.e., 
critical, noncritical and total calls, total population, Black, Hispanic, and Anglo 
population, and elderly citizens). Storbeck (1982) uses goal programming method to 
formulate multiple coverage within the framework of maximal coverage as follows: 

  (21) 

subject to 
  (22) 

  (23) 

  (24) 

  integer, . (25) 
Objective (21) is to optimize the problem in two-step process: it first minimizes 

uncovered demand and then maximizes multiple coverage. Constraints (22) put both 
possible deviations above (additional coverage) and under goal (first coverage) into the 
coverage expression of each demand node. Gendreau et al. (1997) proposes double 
coverage model (DCM) where all demands are required to be covered within the larger 
radius 𝑟𝑟2, which ensures that there is at least one ambulance located within 𝑟𝑟2 of each 
demand, while a proportion, denoted by 𝜂𝜂, of demands are covered within the smaller 
radius 𝑟𝑟1. The objective is to maximize the demand doubly covered within the shorter 
distance 𝑟𝑟1 under the limited number of ambulances. The model can be formulated as: 

  (26) 

subject to 



  (27) 

  (28) 

  (29) 

  (30) 

  (31) 

  (32) 

  (33) 

  integer, . (34) 

In this model, objective (26) is to maximize total demand doubly covered within 𝑟𝑟1. 
Constraints (27) require a mandatory coverage within 𝑟𝑟2. Constraint (28) requires that 
at least a proportion of 𝛼𝛼 demand is covered at least once within 𝑟𝑟1. Constraints (29) 
state that the number of times the demand is covered within 𝑟𝑟1 cannot exceed the total 
number of ambulances located within the same distance. Constraint (30) requires that 
demand has to be at least covered once before it is doubly covered. Constraint (31) 
limits total number of ambulances and Constraints (32) limit the number of ambulances 

at each facility site. Constraints (33) and (34) set domains of 𝑦𝑦𝑖𝑖𝑘𝑘 and 𝑦𝑦𝑖𝑖 respectively. 

Su et al. (2015) extends DCM by replacing the maximal coverage with minimal total 
cost in the objective function. Total cost is composed of expected cost for delayed 
emergency service and operational cost for ambulances and stations. The expected 
delay cost is the product of delay time and average delay cost per minute. Delay time 
is calculated according to the following rule: (i) demand node doubly covered within 
shorter distance 𝑟𝑟1 can be viewed as fully covered and thus does not incur a delay cost; 
(ii) since DCM requires a mandatory coverage within a larger distance 𝑟𝑟2, even if the 
ambulance within 𝑟𝑟1 fails to respond to demand immediately, the demand can at least 
be covered by ambulance within 𝑟𝑟2, which means the expected delay time could be 
approximated as the difference between response time of 𝑟𝑟2 and 𝑟𝑟1 (i.e., 𝑡𝑡𝑟𝑟2 − 𝑡𝑡𝑟𝑟1). 
If the demand node is covered only once within 𝑟𝑟1, a probability 𝑝𝑝𝑜𝑜𝑜𝑜𝑡𝑡 that the nearest 
ambulance is out should be considered in delay time calculation (i.e., 𝑝𝑝𝑜𝑜𝑜𝑜𝑡𝑡(𝑡𝑡𝑟𝑟2 − 𝑡𝑡𝑟𝑟1)). 
(iii) if demand node is not covered within 𝑟𝑟1, the expected delay time is 𝑡𝑡𝑟𝑟2 − 𝑡𝑡𝑟𝑟1. A 
trade-off between delay cost and operational cost is considered when optimizing the 
location. 

The coverage defined in single and multiple coverage models is binary, that is, a 
certain demand is either fully covered if there is at least one facility located within the 
coverage distance standard or not covered at all if the facility is located slightly further 
than requirement. This assumption may not be reasonable in some situations. Therefore, 
the gradual coverage models which formulate the coverage level by functions of 



distance come into being to relax the assumption. There are mainly three types of 
gradual coverage models based on the coverage function: the first one is the stepwise 
function of coverage; the second one is the decreasing linear function of the distance; 
the third one is neither convex nor concave function (other than stepwise function). The 
first research to consider the stepwise function is Church and Roberts (1983) which 
models the decay of the coverage over distance with a stepwise function and replaces 
“all or nothing” coverage treatment in original MCLP model with this new coverage 
function. The model is given as follows: 

  (35) 

subject to 

  (36) 

  (37) 

  (38) 

  (39) 
  (40) 

  (41) 

  (42) 
  Objective (35) maximizes total weighted coverage, which is a function of distance. 
Constraints (36)–(38) define the coverage under different distances. Constraints (39) 
ensure that the demand is only covered by one distance range. Constraint (40) limits 
the total number of facilities. Berman and Krass (2002) follows the footstep of Church 
and Roberts (1983) and proposes generalized maximal cover location problem where a 
decreasing step function of the distance to the closest facility is used to describe the 
coverage level with each level corresponding to a coverage radius. Pirkul and Schilling 
(1991) is the early research that uses linear function to express coverage level. The 
purpose is to simultaneously maximize coverage and improve service level of 
uncovered nodes, which is measured by a linear function of the distances between 
facilities and uncovered demands: the smaller the value, the better the result. The linear 
function is also used by Drezner et al. (2004) to model the coverage when the distance 
is between the upper and lower bounds. When the distance is below the lower bounds 
or beyond the upper bound, the demand point is fully or not covered, respectively. 
Berman et al. (2003) and Karasakal and Karasakal (2004) introduce coverage decay 
functions which could be neither convex or concave between lower and upper distance 
standards. The coverage level of a demand node in the above models is assumed to 
depend only on its distance to the closet facility. Relaxing this assumption, Berman et 
al. (2009) assumes that every facility could provide a certain degree of coverage (the 
effect of which decays with distance) for a demand node. The coverage effects from all 
(nearby) locations could be aggregated. The coverage status of each demand node 



depends on whether the summation exceeds a certain threshold. 
The idea of gradual coverage not only is applicable for emergency response system, 

but also has practical value for problems in other areas. Drezner and Drezner (2014) 
locates multiple cell phone towers to maximize the minimum cover of demand nodes. 
Karatas and Eriskin (2021) investigates the location, number, and size of undesirable 
facilities. Fadda et al. (2020) discusses multipath traveling salesman problem under the 
assumption that the path cost is an increasing function of the actual flow of traffic. 
 
3.3. Multi-performance Problem 
 
Table 7. A brief overview of research on multi-performance problem 

Model Objectives Decisions Solution techniques References 

HOSC Minimize the number of ambulances 

Maximize the number of additional 

ambulances for multiple coverage 

Location 

Number of 

additional 

ambulances 

Linear Programming Daskin and Stern 

(1981) 

Weighted 

combination of 

LSCP and 

MCLP 

Minimize the number of facilities 

Maximize multiple coverage 

Location 

Number of 

additional 

ambulances 

Heuristic Algorithm Eaton et al. (1986) 

BACOP1 

BACOP2 

Minimize the number of facilities 

Maximize backup coverage 

Maximize both once and double 

coverage 

Location 

Once 

coverage 

Double 

coverage 

Linear Programming Hogan and ReVelle 

(1986) 

 
Even though single-performance models can solve many problems, in some cases, 

multiple performance measures must be considered together. Therefore, multi-
performance problem, which integrates several performance measures into a single 
model, comes into focus. All the references are briefly summarized in Table 7. Daskin 
and Stern (1981) proposes a hierarchical objective set covering model (HOSC) where 
it first identifies the minimum number of ambulances needed for a complete coverage 
(i.e., each demand zone is covered by at least one ambulance) and then selects from 
alternative optimum that maximizes the number of additional ambulances for multiple 
coverage of each zone. The model is formulated as follows: 

  (43) 

subject to 
  (44) 

  (45) 

 . (46) 
where 𝑊𝑊 is some positive weight and 𝐴𝐴𝑖𝑖 is the number of additional ambulances that 
could respond to demand 𝑖𝑖 within distance requirement. Eaton et al. (1986) extends 



Daskin and Stern (1981) by multiplying demand to additional coverage when designing 
EMS system in urban area, which simultaneously minimizes the number of facilities 
and maximizes multiple demand coverage. Due to limitation of computational capacity, 
this paper develops a multi-objective heuristic to solve the problem. Hogan and ReVelle 
(1986) proposes two hierarchical models, BACOP1 and BACOP2, to model backup 
coverage in different settings. BACOP1 is a combination of LSCP and MCLP, which 
means mandatory coverage is still required. The model is given as follows: 

  (47) 

  (48) 

subject to 
  (49) 

  (50) 

  (51) 

 . (52) 
It uses two response distances, 𝑆𝑆 and 𝑆𝑆′ where 𝑆𝑆 > 𝑆𝑆′. The full coverage is achieved 
in a stricter distance standard 𝑆𝑆′, indicating higher priority for the first coverage, and 
then the maximum demand doubly covered within a larger distance 𝑆𝑆 can be used to 
distinguish between a set of alternate optima. BACOP2 simultaneously optimizes first 
and backup coverage without a mandatory coverage requirement. An instance with 30 
demand nodes is used to test the model and the results suggest that with the same 
number of facilities, more backup coverage can be achieved. 
 
4. Probabilistic and Stochastic Location Problem 
 

The above deterministic location models can obtain optimality or near-optimality in 
simplified assumptions of the real-life practices. As researchers have deeper 
understanding about the problems under these simple settings, more complicated 
problems with secondary features (e.g., covering probabilities, service level, etc.) are 
taken into account, leading to the development of models considering uncertainties, 
such as uncertain resource availability, demand, traffic condition, cost, etc. Among 
these uncertainties, availability and demand are the most frequently discussed and thus 
in this section, we mainly focus on these two types of uncertainties. 
 
4.1. Location Problem with Uncertain Availability 
 
  To simplify the problem, most research assumes that closest emergency resource will 
always be available to emergency calls and will never be busy. However, in practice, 
we have the situation that resource is engaged in other calls at a time a new call arrives 
and this newly generated call has to be served by a more remoted resource or wait in 



queue. Probabilistic optimization and queuing theory are the most commonly used 
methods to address this problem. The former considers the assumption of independence 
between servers, while the latter relaxes this assumption. 
 
4.1.1. Probabilistic Optimization 
 

Probabilistic optimization usually defines event probability and puts it either in the 
objective function to obtain the expected value or in the constraints to satisfy the 
required reliability level. All the references and additional notations are briefly 
summarized in Table 8 and Table 9, respectively. 

 
Table 8. A brief overview of research on probabilistic optimization 

Model Objectives Decisions Solution techniques References 

MEXCLP Maximize expected 

coverage 

Deployment  

Coverage 

Linear Programming Daskin (1982, 1983) 

Extension of 

MEXCLP 

Maximize expected 

coverage 

Deployment  

Coverage 

Linear Programming Saydam and 

McKnew (1985) 

MEXCLP Formulate a new demand 

deployment policy 

Deployment  

Coverage 

Heuristic Algorithm 

Simulation 

Fujiwara et al. 

(1987) 

A combination of 

MEXCLP and 

FLEET 

Minimize the number of 

people not covered within 

response standard 

Location 

Deployment  

The number of 

vehicles needed for 

full coverage 

LINDO Bianchi and Church 

(1988) 

PLSCP Minimize the number of 

vehicles under the 

reliability requirement 

Location Linear programming 

with a branch-and-

bound 

ReVelle and Hogan 

(1988) 

MALP Maximize coverage with 

reliability 

Location 

Coverage 

Linear programming 

with a branch-and-

bound 

ReVelle and Hogan 

(1989a) 

MALP 

𝛼𝛼-reliable p-center 

 

Maximize coverage with 

reliability 

Minimize the maximum 

time 

Location 

Coverage 

- ReVelle and Hogan 

(1989b) 

A combination of 

MALP and 

FLEET 

Maximize coverage with 

reliability 

 

Location (considering 

vehicle type) 

Coverage (considering 

vehicle type) 

MPSX ReVelle and 

Marianov (1991) 

Probabilistic DSM Maximize coverage with 

reliability within tighter 

response standard 

Deployment 

(considering vehicle 

type) 

Coverage (considering 

vehicle type, response 

standards) 

Genetic Algorithm Liu et al. (2016) 



A combination of 

MEXCLP and 

MALP 

Maximize coverage with 

reliability 

Location 

Coverage 

CPLEX Sorensen and 

Church (2010) 

A combination of 

MEXCLP and 

MALP 

Maximize expected 

coverage 

Minimize expected cost 

Coverage 

Deployment 

- El Itani et al. (2019) 

Integer program 

with reliability 

constraints 

Minimize total cost Deployment Linear programming 

with a branch-and-

bound 

Ball and Lin (1993) 

LSCP with 

reliability 

constraints 

Minimize the number of 

vehicles  

Deployment Simulation Borrás and Pastor 

(2002) 

Note: (i) Allocation means whether the demand point is allocated to this facility and the decision variable usually is binary. (ii) 

Deployment means how many vehicles are deployed at each facility to serve the assigned demands. 

 
Table 9. Additional notations for probabilistic optimization 

Notations Explanation of notations 
Sets 
𝑀𝑀𝑖𝑖 the set of demand nodes whose distances to demand node 𝑖𝑖  do not exceed 𝑆𝑆 

(𝑀𝑀𝑖𝑖 = {𝑘𝑘 ∈ 𝐼𝐼:𝑑𝑑𝑘𝑘𝑖𝑖 ≤ 𝑆𝑆}) 
𝐵𝐵𝑖𝑖 the set of demand nodes whose distances to facility site 𝑗𝑗 do not exceed 𝑆𝑆 (𝐵𝐵𝑖𝑖 =

{𝑖𝑖:𝑑𝑑𝑖𝑖𝑖𝑖 ≤ 𝑆𝑆,∀𝑗𝑗 ∈ 𝑁𝑁𝑖𝑖}) 
Deterministic parameters 
𝑞𝑞 the busy fraction of each server, i.e., the probability that the facility is not working 
𝑛𝑛𝑖𝑖 the number of facility sites in 𝑁𝑁𝑖𝑖 
𝑊𝑊𝑖𝑖𝑘𝑘 the cost of housing 𝑘𝑘 vehicles at station 𝑗𝑗 
𝐷𝐷(𝑗𝑗) the number of calls that has to be served by station 𝑗𝑗 
𝛼𝛼 service reliability level 
𝐿𝐿 the maximum number of vehicles available for any station 
Decision variables 
𝑥𝑥𝑖𝑖𝑘𝑘 1 if there are 𝑘𝑘 vehicles at station 𝑗𝑗 
𝑦𝑦𝑖𝑖𝑘𝑘 1 if a demand point 𝑖𝑖 is covered by at least 𝑘𝑘 facilities, 0 otherwise 
𝑧𝑧𝑖𝑖  the number of facilities located at 𝑗𝑗 
𝑚𝑚𝑖𝑖 the number of vehicles the station 𝑗𝑗 holds 

 
The pioneering works that consider probability in the objective function are Daskin 

(1982, 1983), which adopt the concept of system-wide busy fraction, i.e., the 
probability that the server cannot respond to the demand as it is serving other demand, 
to original MCLP to maximize the expected number of demands covered and this model 
is called the maximum expected covering location problem (MEXCLP). The model can 
be presented as: 

  (53) 

subject to 



  (54) 

  (55) 

  (56) 

 . (57) 

Constraints (54) guarantee that the sum of coverage cannot exceed the number of 
facilities located in 𝑁𝑁𝑖𝑖. Constraint (55) restricts that facilities to be built cannot exceed 

𝑝𝑝 . Constraints (56) and (57) define the domains of 𝑦𝑦𝑖𝑖𝑘𝑘  and 𝑧𝑧𝑖𝑖 . This large integer 

programming problem is solved by a heuristic algorithm called single node 
substitutions. To solve this problem to optimality, Saydam and McKnew (1985) rewrite 
MEXCLP to a separable programming problem as follows: 

  (58) 

subject to 
  (59) 

  (60) 

  (61) 

  (62) 

  integer,  . (63) 

where  represents the number of facilities in the coverage set of demand 

node 𝑖𝑖. Constraints (61) and (62) state that only one weighting factor 𝑤𝑤𝑖𝑖𝑖𝑖 equals 1 for 
each demand node 𝑖𝑖 and the rest is 0. This new model guarantees an optimal solution 
and generates solutions fast even in large size problems. More importantly, this model 
is flexible to be extended to generate optimal solutions under different requirements. 

For example, by adjusting the lower bound of 𝑣𝑣, i.e., , this model could 

guarantee that at least 𝑐𝑐 facilities could cover each demand node. Fujiwara et al. (1987) 
applies MEXCLP to explore the best way to deploy ambulances in Bangkok 
considering demand increasing after advertising for free ambulance services. The 
deployment policies generated are put into a simulation model, the results of which 



show that the recommended plan can save 29% of the ambulance needed while 
maintaining the same service level. Bianchi and Church (1988) combines MEXCLP 
with FLEET to simultaneously locate stations and allocate ambulances. The results of 
a numerical example show that the coverage level could still remain high even with a 
40% reduction in facilities. 

Another type of probabilistic optimization puts probability in the constraints, 
resulting in a problem called chance constrained facility location problem. Chapman 
and White (1974) defines a system-wide busy fraction 𝑞𝑞  and puts it in the chance 
constraints to calculate the lower bound for the number of servers needed to reach a 
certain service level. Chance constraint is the requirement that the probability of the 
demand being responded by at least one server is no less than a reliability level 𝛼𝛼, 
which can be expressed as: 

  (64) 

After transformation, it can be written as: 

  (65) 

where  ,   denotes the smallest integer greater than or equal to 𝑎𝑎 . 

This constraint is incorporated into LSCP to get the minimum number of emergency 
vehicles. ReVelle and Hogan (1988) extends the busy fraction to be area-specific, which 
means the busy fraction of servers is identical in the same demand area, but could vary 
from area to area. It can be expressed as: 

  (66) 

where 𝑀𝑀𝑖𝑖 represents the set of demand nodes whose distances to demand node 𝑖𝑖 do 
not exceed 𝑆𝑆  (  ); 𝑎𝑎𝑘𝑘   is the number of calls per day originated 
from demand node 𝑘𝑘 ; 𝑡𝑡  is the average duration of a single call (in hours). The 
numerator and denominator represent the total daily service time needed and available 
in the area around demand node 𝑖𝑖, respectively. The chance constraints can be rewritten 
as: 

  (67) 
where 𝑏𝑏𝑖𝑖 is the smallest integer satisfying: 

  (68) 

where . ReVelle and Hogan (1988) incorporates the chance constraints 

into LSCP to get the minimum number of vehicles under the reliability requirement, 
resulting in a model called probabilistic location set covering problem (PLSCP). 
ReVelle and Hogan (1989a, 1989b) incorporate both system-wide and area-specific 
busy fraction into MCLP and propose maximum availability location problem (MALP). 
Two models, MALP I and MALP II, which have the same objective to maximize the 



population covered with 𝛼𝛼  reliability, but use different types of busy fraction are 
proposed. MALP I utilizes a system-wide busy fraction: 

  (69) 

where 𝑡𝑡 is the average duration of a call. The numerator and denominator represent 
the total daily service time needed and available, respectively. MALP II uses an area-
specific busy fraction, the same as Eq. (66). The chance constraint for system-wide and 
area-specific busy fraction is the same as expression (65) and (67) respectively. The 
general formulation for both MALP I and MALP II can be expressed as: 

   (70) 

subject to 

  (71) 

  (72) 
  (73) 

where 𝐵𝐵 can be replaced by 𝑏𝑏 and 𝑏𝑏𝑖𝑖, respectively. 𝑦𝑦𝑖𝑖𝐵𝐵 equals 1 if demand node 𝑖𝑖 
is covered by 𝐵𝐵 servers with reliability 𝛼𝛼. 𝑦𝑦𝑖𝑖𝑘𝑘 is 1 if demand node 𝑖𝑖 is covered 𝑘𝑘 
times within distance standard. The second constraints require sequence of coverage. 
When applying MALP to fire department where more than one type of equipment is 
needed, ReVelle and Marianov (1991) extends the model to consider two types of 
equipment, which formulates a combined model of MALP and FLEET by introducing 
busy fraction and chance constraint for each equipment separately. Both MALP and this 
combined model only maximize the coverage of demand nodes with sufficient number 
of servers available and the coverage that does not meet reliability requirement is not 
counted in the objective function, which leads to some demand nodes uncovered. This 
drawback is addressed by Liu et al. (2016) which combines local reliability with double 
standard model. Like DSM, two distance standards are considered: a tighter radius (or 
a primary distance standard) 𝑟𝑟1 for a proportion of coverage that reaches guaranteed 
service reliability and a looser radius (or a secondary distance standard) 𝑟𝑟2 for full 
coverage. This extended model maximizes coverage of demand at guaranteed service 
reliability in a primary distance standard and at the same time ensures a full coverage 
in a secondary distance standard. Sorensen and Church (2010) combines the expression 
of local reliability of MALP and maximum expected coverage of MEXCLP in one 
model and compares this new model with the two original models in a range of test 
problems and simulation model. The results show that the incorporation of local 
reliability into MEXCLP can improve the total coverage and MEXCLP is more suitable 
than MALP when the goal is to maximize total coverage instead of the coverage above 
a required service level. El Itani et al. (2019) also considers the combination of 
MEXCLP and MALP and proposes a bi-objective model to simultaneously maximize 
expected coverage and minimize expected cost when paying for the external 



ambulances is allowed. Ball and Lin (1993) extends the busy fraction to a more realistic 
site-specific one, which means the busy fraction could be different for each server. This 
research aims to minimize the total cost incurred when holding vehicles at stations, 
which can be expressed as:  

  (74) 

subject to 

  (75) 

  (76) 

  (77) 

where 𝑊𝑊𝑖𝑖𝑘𝑘 is the cost of housing 𝑘𝑘 vehicles at station 𝑗𝑗; 𝑥𝑥𝑖𝑖𝑘𝑘 equals 1 if there are 𝑘𝑘 
vehicles at station 𝑗𝑗; 𝐷𝐷(𝑗𝑗) is the number of calls that has to be served by station 𝑗𝑗; 𝐿𝐿 
is the maximum number of vehicles available for any station. The expression 

 in constraints (75) represents busy fraction of station 𝑗𝑗, which is the 

probability that total demand in the coverage area of the station 𝑗𝑗 is no less than the 
vehicles supplied at this station and the left side of constraint (75) is the probability that 
demand originated from node 𝑖𝑖 cannot be responded by any vehicle located within 
distance requirement of demand node 𝑖𝑖 . Borrás and Pastor (2002) keeps the 
multiplication structure of chance constraint in Ball and Lin (1993) but replace the busy 
fraction of a station with the expression below: 

  (78) 

where  and 𝑚𝑚𝑖𝑖 is the number of vehicles the station 𝑗𝑗 holds. 

The numerator and the denominator of (78) represent the total daily service time 
required by the demand sites assigned to 𝑗𝑗 and the daily available service time at 𝑗𝑗, 
respectively. 
 
4.1.2. Queuing Theory 
 

  In practice, different facilities sometimes cooperate with each other when there is 
a shortage of servers responding to demand in an area. The most commonly used 
technique to capture this feature is queuing theory. All the references are briefly 
summarized in Table 10. 

 
Table 10. A brief overview of research on queuing theory 

Model Objectives Decisions Solution techniques References 



Hypercube queuing 

model 

Develop tools to evaluate system 

performance measures 

- - Larson (1974) 

Approximation 

procedure 

Approximation procedure for 

hypercube queuing model 

- - Larson (1975), 

Jarvis (1985), 

Brandeau and 

Larson (1986) 

A combination of 

MEXCLP with 

hypercube queuing 

model 

Maximize expected coverage Coverage Heuristic Algorithm Batta et al. (1989) 

MEXCLP Maximize expected coverage Coverage Fixed Point Iterative 

Method 

Goldberg et al. 

(1990) 

MEXCLP Maximize expected coverage Deployment 

Coverage 

Hypercube-embedded 

Genetic Algorithm 

Saydam and Aytuğ 

(2003) 

MEXCLP2 Maximize the expected number 

of Priority 1 calls 

Deployment 

Coverage 

CPLEX McLay (2009) 

Queuing PLSCP Minimize the number of servers Location Linear programming 

with a branch-and-

bound 

Marianov and 

ReVelle (1994) 

Queuing PLSCP Minimize the total number of 

allocated ambulances 

Location 

Deployment 

Coverage 

Allocation 

Iterative Optimization 

Algorithm 

Kim and Lee (2016) 

Queuing MALP Maximize coverage with 

reliability 

Location 

Coverage 

Linear programming 

with a branch-and-

bound 

Marianov and 

ReVelle (1996) 

A combination of 

MEXCLP with MALP 

Maximize coverage with 

reliability 

Location 

Coverage 

Simulated Annealing Galvão et al. (2005) 

 
The earliest research applying queuing theory in emergency service planning is 

Larson (1974) which proposes the hypercube queuing model to evaluate performance 
measures, such as busy fraction and mean travel time, of a multi-server system with 
distinguishable servers under various strategies influencing the deployment of 
resources. As the model will become computationally intensive with the increase of 
servers, Larson (1975) proposes an approximation procedure, which assumes: (i) there 
is a preferred sequence of servers dispatched to the emergency call in each region and 
the most preferred one is dispatched if available; (ii) probability of dispatching 𝑗𝑗 th 
preferred unit to a call is proportional to multiplication of busy fraction of (𝑗𝑗 − 1)th 
server and probability of availability of 𝑗𝑗 th server; (iii) when server identity is not 
considered, 𝑗𝑗  servers could be regarded as the result of random selection without 
replacement from an 𝑀𝑀/𝑀𝑀/𝑝𝑝 system. By making these assumptions, the probability 
that first available server is the 𝑘𝑘th server is given by: 

  (79) 
where 



  (80) 

If servers are independent, the probability that first available server is the 𝑘𝑘th server 
selected is 𝑞𝑞𝑘𝑘−1(1 − 𝑞𝑞). 𝑄𝑄(𝑝𝑝, 𝑞𝑞, 𝑘𝑘 − 1) is called the correction factor that indicates 
how much deviation of the result of independence assumption from exact results should 
be corrected. Jarvis (1985) extends the approximation procedure to a generalized form 
where the service time distribution depends on both server and customer. Brandeau and 
Larson (1986) improves the approximation of the hypercube model by incorporating 
three travel time patterns and applies the improved models to deploy the ambulance in 
Boston, resulting in remarkable cost savings.  

The hypercube queuing model and approximation procedure have been incorporated 
into many types of location models to account for the dependency between servers. 
Batta et al. (1989) relaxes the assumptions of MEXCLP by embedding a hypercube 
queuing model in a single node substitution heuristic method to compute expected 
demand coverage iteratively. During each iteration, the problem could be solved more 
efficiently by an approximation procedure. This paper also proposes an adjusted 
MEXCLP model that uses correction factor proposed by Larson (1975) to account for 
the dependency between facilities. Three models, MEXCLP, hypercube queuing model, 
and adjusted MEXCLP, are compared using a test problem and a gap between expected 
coverage obtained by MEXCLP and hypercube queuing model is observed, especially 
when 𝑞𝑞  goes bigger, because MEXCLP ignores facility cooperation. The adjusted 
MEXCLP model yields better agreement on expected coverage with hypercube queuing 
model and still keep the same overall quality for location as those generated by 
MEXCLP. Goldberg et al. (1990) extends MEXCLP using the approximation procedure 
proposed by Jarvis (1985). The goal is to maximize the expected number of customers 
responded within eight minutes. Saydam and Aytuğ (2003) also combines MEXCLP 
with hypercube queuing model. To increase the accuracy of the estimated coverage, a 
genetic algorithm (GA) is proposed and proved to yield better solution than corrected 
MEXCLP. McLay (2009) extends MEXCLP into considering two types of vehicles, 
multiple customer types, and dependency between servers, resulting in a model called 
MEXCLP2. The dependency is formulated based on the model proposed by Jarvis 
(1985). The goal is to maximize the expected number of Priority 1 calls, which is life-
threatening and the survivalbility is highly related to the repsonse time, served in a 
given amount of time.  

Another type of model that is frequently combined with queuing theory is chance 
constrained model where the busy fraction is expressed by the steady state probability. 
Marianov and ReVelle (1994) proposes queuing probabilistic location set covering 
problem (Q-PLSCP), which extends the PLSCP proposed by ReVelle and Hogan (1988) 
by incorporating queuing theory. It divides the whole region into several neighborhoods 
and in each neighborhood, the service system is regarded as an M/M/s/s queuing system. 
The minimum number of servers 𝑏𝑏𝑖𝑖 needed to reach a reliability level 𝛼𝛼 in Eq. (67) is 
derived through the steady state probability. The probability of all servers 𝑠𝑠 being busy 
at steady state can be expressed as: 



  (81) 

where  is the utilization ratio; 𝜆𝜆𝑖𝑖 and 𝜇𝜇𝑖𝑖 are the arrival rate and service rate in 

the neighborhood. The chance constraint in this problem can be reformulated as 
. As 𝑞𝑞𝑠𝑠 is decreasing function of 𝑠𝑠, we can always find the minimum number 

of servers 𝑏𝑏𝑖𝑖 ( ), which satisfies the following constraint: 

  (82) 

Kim and Lee (2016) uses hypercube queuing model to calculate the steady state 
probability used in the chance constraint of PLSCP. Transition is only allowed between 
‘neighboring’ states (i.e., states can only differ in one server while the states of the other 
servers are the same). Marianov and ReVelle (1996) treats the call-to-service system in 
a more general way that the service time is not exponentially distributed but generally 
distributed. Thus, the service system in each neighborhood is regarded as an M/G/s/s 
queueing system. The whole region is divided into several neighborhoods under the 
assumption that the demand rate in different neighborhoods does not differ significantly. 
Objective function and constraints stay the same as those in MALP except the 
calculation of busy fraction, which is the same as Eq. (81). Galvão et al. (2005) applies 
hypercube model to account for dependency in MALP, which uses busy fraction for 
each server and define 𝑦𝑦𝑖𝑖𝑘𝑘  such that 𝑦𝑦𝑖𝑖𝑘𝑘 = 1  if server 𝑘𝑘  is located at 𝑗𝑗 , 𝑦𝑦𝑖𝑖𝑘𝑘 = 0 
otherwise to identify exact location of each server. The chance constraint in the original 
model is replaced by one incorporating Larson’s correction factor as follows: 

  (83) 

where 𝑦𝑦𝑖𝑖  equals 1 if demand 𝑖𝑖  is covered with 𝛼𝛼  reliability, 0 otherwise; 𝑞𝑞𝑘𝑘 
denotes busy fraction for server 𝑘𝑘. This problem is solved by simulated annealing.  
 
4.2. Location Problem with Uncertain Demand 
 
  Emergency demand changes every day. The early models usually use average 
demand, while last twenty years, researchers focus more on models addressing the 
uncertain nature of the demand. The most commonly used methods to formulate the 
problem are chance constraint, stochastic programming (SP), and robust optimization 
(RO). We will introduce the research using these methods in this section. Readers that 
are interested in other methods could refer to Yang et al. (2019). All the references and 
additional notations are briefly summarized in Table 11 and Table 12, respectively. 
 

Table 11. A brief overview of research on location problem with uncertain demand 
Model Objectives Decisions Solution techniques References 

SP with joint chance Minimizes total cost Location CPLEX Beraldi et al. (2004) 



constraints Deployment 

SP with integrated chance 

constraints 

SP with stochastic 

dominance constraints 

Minimizes total cost Location 

Deployment 

Heuristic Algorithm Noyan (2010) 

SP with individual chance 

constraints 

Minimizes total cost Location 

Deployment  

Allocation 

Branch-and-Cut Zhang and Li (2015) 

Two-stage SP with joint 

chance constraints 

Minimizes total cost Location 

Deployment  

Allocation 

Branch-and-Cut 

Heuristic Algorithm 

Beraldi and Bruni (2009) 

Scenario-based two-stage 

SP 

Minimizes total cost Location 

Deployment  

Allocation 

Sampling Approach Nickel et al. (2016) 

Two-stage SP considering 

vehicle and demand type 

Minimizes total cost Location 

Deployment  

Allocation 

Number of 

unsatisfied 

demand 

Sample Average 

Approximation 

Boujemaa et al. (2017) 

Two-stage SP considering 

vehicle type 

Maximize expected 

coverage 

Location 

Deployment  

Allocation 

Coverage 

Sample Average 

Approximation 

Nelas and Dias (2020) 

Two-stage SP considering 

vehicle and demand type 

Maximize coverage 

Minimize lost calls 

Location 

Coverage 

Allocation 

Lost calls 

Branch-and-Benders-Cut Yoon et al. (2021) 

RO Minimizes total cost 

Maximize coverage 

Location 

Deployment  

Allocation 

Branch-and-Cut Zhang and Jiang (2014) 

Two-stage DRO Minimizes total cost Location 

Deployment  

Allocation 

Outer Approximation 

Algorithm 

Liu et al. (2019a) 

Two-stage RO Minimize weighted 

travel time 

Edge flow 

location 

Regression 

Machine Learning 

Boutilier and Chan (2020) 

 
Table 12. Additional notations for location problem with uncertain demand 

Notations Explanation of notations 
Deterministic parameters 
𝑔𝑔𝑖𝑖 the per-unit capacity cost of facility site 𝑗𝑗 
𝑐𝑐𝑖𝑖𝑖𝑖 the service fulfilment cost of facility site 𝑗𝑗 dealing with the request at demand 

node 𝑖𝑖 
𝑓𝑓𝑖𝑖 the fixed cost of opening a facility at node 𝑗𝑗 



𝑞𝑞𝑖𝑖 the capacity constraint of facility site 𝑗𝑗 
Random parameters 
𝜉𝜉𝑖𝑖 the random service request generated at the demand node 𝑖𝑖 
𝑚𝑚𝑖𝑖 the maximum number of concurrent demands at the demand node 𝑖𝑖 
Decision variables 
𝑥𝑥𝑖𝑖𝑖𝑖 the number of vehicles located at 𝑗𝑗 that are used to cover the service requests at the 

demand node 𝑖𝑖 
𝑦𝑦𝑖𝑖𝑖𝑖 1 if the demand node 𝑖𝑖 is assigned to facility site 𝑗𝑗 
𝑧𝑧𝑖𝑖𝑖𝑖 the fraction of demand at demand node 𝑖𝑖 served by facility site 𝑗𝑗 

 
4.2.1. Chanced Constrained Location Problem 
 
  Due to the varying demand, chance constrained problem allows one or several 
constraints to be violated. Beraldi et al. (2004) is one of the first studies that use joint 
probabilistic constraints to formulate demand uncertainty when dealing with facility 
location and sizing problem for EMS. The joint probabilistic constraints are made on 
the entire geographical area rather than on individual demand points, ensuring that all 
demand points can be covered above a certain reliability level. The constraint is 
nonconvex and to make it more computationally tractable, it is reformulated to a linear 
inequality with one side being the corresponding p-efficient point of the marginal 
distribution of demand. The reformulated model is solved by the commercial solver 
CPLEX. The model is as follows: 

     (84) 

subject to 

    (85)  

   (86)  

  integer,  .   (87) 

  Objective (84) is to minimize total cost. Constraint (85) is a joint chance constraint 
that guarantees the reliability level of the entire geographical area is above a certain 
value. Constraints (86) limit the number of vehicles that can be hosted at each facility 
site. Noyan (2010) replaces computationally intractable probabilistic chance constraints 
used in the stochastic model with two alternatives. The purpose is to construct models 
that could solve problems with a large set of scenarios because the ability to handle a 
large set of scenarios is of great importance for modeling uncertainty in practice. The 
first one is integrated chance constraints which directly keep the expected number of 
unmet demand below certain target service level simultaneously for individual demand 
point and the whole system. The other is the stochastic dominance constraints, which 
compare total unmet demand with a reference random outcome based on the increasing 
convex order rule. Zhang and Li (2015) also uses probabilistic chance constraint to 



model demand uncertainty. It proposes a new random parameter, i.e., the maximum 
number of concurrent demands, and embeds it into the chance constraint, which sets a 
lower bound to the probability that the concurrent demands served by each station 
cannot exceed the number of vehicles stationed at this facility. To deal with the 
nonconvexity, Zhang and Li (2015) approximates it by second-order convex cone 
constraint and the original model is transformed into a conic quadratic mixed-integer 
program, which is solved efficiently by branch-and-cut method. 
 
4.2.2. Stochastic Programming 
 

When dealing with uncertainties in the facility location problem, a lot of research 
usually assumes that the decision makers have complete knowledge about the uncertain 
parameters because of the given probabilistic distribution, which is based on historical 
information. Under this assumption, a growing number of studies use stochastic 
programming to deal with the uncertainties, especially the two-stage stochastic 
programming, which formulates uncertainties in a two-step process: In the first stage, 
the nonanticipative decisions have to be made without knowing the realization of 
uncertain parameters; In the second stage, recourse decisions are made based on the 
realization of uncertain parameters and are conditional on the first-stage decisions.  
  The two-stage stochastic programming used to solve routine emergencies begins 
with the work by Beraldi and Bruni (2009), which extends Beraldi et al. (2004) by 
innovatively incorporating joint probabilistic chance constraints into the traditional 
two-stage stochastic programming model to explore base station location, fleet size, and 
ambulance allocation problem for EMS under demand uncertainty. The objective 
function is the sum of three costs: opening cost of stations, the cost of housing vehicles, 
and the expected cost of service fulfillment. In the first stage, the location and capacity 
of stations are determined. In the second stage, the uncertain demand is represented by 
a finite number of scenarios and the ambulances are allocated to demand accordingly. 
The stochastic system congestion constraint in the original model is replaced by a joint 
probabilistic counterpart that requires certain reliability level has to be satisfied for the 
entire demand area. This replacement allows the exploration of the influences of 
different reliability levels on solutions. The problem is solved by branch-and-cut and 
three heuristic approaches. The model is as follows: 
  (88) 

subject to 

  (89) 

  (90) 

  integer  (91) 

where 



  (92) 

  (93) 

  (94) 

  (95) 

  (96) 

  Objective (88) is to minimize two-stage expected total cost: opening cost of stations 
and the cost of housing vehicles of the first stage, and the expected cost of service 
fulfillment of the second stage. Constraints (89) require that the number of vehicles 
hosted in each station cannot exceed the capacity. Constraints (90) and (91) set domains 
for decision variables. Expression (92) defines the second-stage recourse cost. 
Constraints (93) and (94) are two joint probabilistic constraints. Constraints (95) ensure 
that the assignment can be successful only when there are vehicles at that facility. 
Nickel et al. (2016) applies scenario-based two-stage stochastic model to optimize the 
location and number of ambulances and their bases under demand uncertainty. Each 
scenario is a complete realization of demands of each demand node. With the 
probability associated to each scenario, the expected total cost can be calculated. As the 
number of scenarios would grow prohibitively large, making the problem intractable, a 
sampling approach, which approximates the optimal solution, is proposed to solve the 
problem efficiently. Boujemaa et al. (2017) extends the previous two-stage stochastic 
model by adding vehicle and demand type, each associated with different response 
standard. The objective is to minimize the sum of the first-stage opening and capacity 
cost of the ambulance stations and the second-stage expected traveling cost and penalty 
cost incurred by unmet demand. A sample average approximation (SAA) algorithm that 
makes a balance between tractability and the quality of solution is used to obtain 
solutions. Research also considering multi-type vehicles includes Nelas and Dias (2020) 
and Yoon et al. (2021). Nelas and Dias (2020) allows vehicle substitution among 
different vehicle types when the closest vehicles needed cannot respond. It also 
considers the episode overlapping and vehicle availability, which are characterized by 
incompatibility and availability matrix, respectively. The uncertainty about the 
occurrence of emergency episodes is formulated as a two-stage stochastic program with 
scenarios generated by Monte Carlo simulation. This problem is solved by sample 
average approximation method. Yoon et al. (2021) uses two-stage stochastic 
programming model to optimize the location and allocation of two types of ambulances 
considering the uncertain prioritized demand. The objective is to maximize the 
expected coverage, which is expressed by the gains obtained when demand is responded 
by the right ambulance type within the response standard minus penalty cost for lost 
demands. The model is then extended to consider nontransport vehicles, which can 



respond to demands faster but cannot transport patients to hospitals. These two models 
are relaxed to a more general model that the “all or nothing” coverage criteria is 
replaced by gradual coverage and the response by inappropriate ambulances is allowed. 
A match utility is added to measure the degree of match between demand and 
ambulance type. The problem of small size could be solved by SAA while the one of 
large size is solved by Branch-and-Benders-Cut method. 
 
4.2.3. Robust Optimization 
 

  The RO is relatively new research area, receiving a lot of attention only in the last 
decade. Therefore, only limited number of studies can be found in this area. The RO 
usually assumes that no distributional information is known about the uncertain 
parameters except for the support. To find a solution that performs well in all possible 
realization, RO optimizes the worst-case scenarios, resulting in over-conservative 
results. To make the results less conservative, another type of model called 
distributionally robust optimization (DRO) comes into being, which assumes that 
decision makers have partial knowledge about probability distribution of uncertainty.  
  Zhang and Jiang (2014) is the first to use RO to explore the bi-objective EMS system 
design under uncertain demand and maximal concurrent demand. The first objective is 
to minimize total cost comprised of station construction cost, vehicle operating cost, 
and transportation cost. The second objective is to maximize demand coverage. The 
decisions involved are station location, demand assignment, and vehicle placement. 
Due to the lack of the probabilistic information of uncertain parameters, a robust 
optimization model is used to formulate the problem where all the uncertain parameters 
are assumed to belong to ellipsoidal uncertainty sets. The formulated model is a conic 
quadratic mixed-integer program, which can be solved efficiently by branch-and-cut 
method in CPLEX. The robust optimization model is as follows: 

    (97) 

    (98) 

subject to 
    (99) 

    (100) 

    (101) 

    (102) 

  (103) 



    (104) 

    (105) 

where 𝜃𝜃 , 𝛾𝛾 , and 𝛿𝛿  are safety parameters; 𝜎𝜎𝑖𝑖𝑘𝑘  and 𝜓𝜓𝑖𝑖𝑘𝑘  are covariance between 
demands at node 𝑖𝑖 and 𝑘𝑘 and between the maximum number of concurrent demands 
at node 𝑖𝑖 and 𝑘𝑘, respectively. Expressions (97) and (98) are the bi-objective of this 
research. Objective (97) is to minimize the sum of station construction cost, vehicle 
operating cost, and expected transportation cost between demand nodes and facility 
sites. The third term in objective (98) is the weighted cost for demands not served in 
time. Constraints (99) ensure that all demands are served. Constraints (100) guarantee 
that demands can only be assigned to open facilities. Constraints (101)–(103) are robust 
expressions of the total distance to serve demand, of the constraint that the number of 
emergency vehicles at site  𝑗𝑗  is no less than the maximum number of concurrent 
demands assigned to it, and of the penalty cost for not serving demands in time, 
respectively. To decrease the overconservatism caused by RO, Liu et al. (2019a) 
proposes a two-stage distributionally robust model with joint chance constraints to 
location and sizing problem of EMS taking into consideration the same random 
parameters as those in Zhang and Jiang (2014). The objective is to minimize the 
supremum of the expected total cost when random demand and the maximal concurrent 
demand are restricted to certain distributional sets. A data-driven approach is used to 
derive the first moment of uncertain demand, with which the distributional set of 
demand can be constructed. The distribution function of the random maximal 
concurrent demand is constrained by ellipsoid set with known mean and covariance. 
With these distributional sets, the model is transformed into a parametric second-order 
cone program, which could be solved efficiently by an outer approximation algorithm. 
The model is presented as follows: 

    (106) 

subject to 

    (107) 

    (108) 

    (109) 

where     (110) 

    (111) 

    (112)  



    (113) 

    (114) 

where   is the distributional set of uncertain 
demand with estimated mean 𝜇𝜇 ∈ ℝ+  and covariance matrix Σ  0;

  is the distributional set 
of uncertain maximal concurrent demand with known mean and covariance matrix. 
Objective (106) is to minimize the supremum of the expected total cost comprised of 
station construction cost, vehicle operating cost, and transportation cost. Constraints 
(107) guarantee that ambulances can only be assigned to open facilities. Objective 
function (110) minimizes total transportation cost. Constraints (111) ensure that all 
demands are served. Constraints (112) illustrate that demands can only be assigned to 
open facilities. Constraint (113) is a joint chance constraint that ensures that the 
demands in the entire geographical area can be covered above a certain reliability level. 
Boutilier and Chan (2020) proposes two-stage robust optimization model to optimize 
location and routing of ambulances in low- and middle-income countries taking into 
consideration uncertain demand and travel time. The deterministic counterpart is 
equivalent to the shortest path problem where the length of the path is edge based and 
the location of ambulance stations depends on the route choice from station to demand 
points. As the lack of the historical data in low- and middle-income countries, the 
uncertainty set of demand is simulated based on the results obtained from census data 
and regression model. Travel time is modeled by interdiction-based uncertainty set 
where the baseline travel time for each edge is estimated by random forest model. 
 
5. Solution Techniques 
 

In this section, we outline the commonly used solution techniques for covering 
problem, which for ease of reference are listed in Table 13. There are mainly three types 
of techniques: exact methods, heuristic (approximation) algorithms, and simulation. 
Before the twenty-first century, the computing capacity was limited and the scale of the 
research problem was usually small. A lot of research solves the location problem by 
relaxing the integer constraints and for the non-integer results, the Branch-and-Bound 
and Cutting Plane are quite popular during that time period. As computing capacity 
improves, research on how to solve large problems in a reasonable amount of time gains 
popularity, giving rise to many heuristic algorithms, such as Tabu Search (TS), Genetic 
Algorithm (GA), Lagrangian Relaxation (LR), etc. TS is a local search method that 
iteratively replaces the current solution with the best non-visited solution in the 
neighborhood. To avoid being stuck in suboptimal regions, it uses tabu list to keep track 
of solutions that have already been visited. Another widely used method is GA, which 
is a random search algorithm that imitates the process of natural selection. Specifically, 
in the beginning, a set of solutions, which are called individuals, are evaluated for their 
fitness scores. The individuals with higher scores are more likely to be selected to breed 



a new generation after a series of genetic operations: crossover and mutation. Keep 
selecting and mating until the termination condition has been reached. LR is also a very 
popular method which relaxes some constraints that complicate the problem with 
Lagrangian multipliers, resulting in a simplified version of the problem. As the problem 
becomes more complicated with random parameters, heuristic algorithms still maintain 
their popularity though with a little sacrifice of the accuracy. However, to make the 
problem tractable without losing the accuracy, some exact methods, such as Branch-
and-Cut and Benders Decomposition, come into focus. Branch-and-Cut is a 
combination of Branch-and-Bound and Cutting Plane to tighten the linear programming. 
Benders Decomposition divides the original problem into a master problem and 
subproblems. By iteratively solving the master and sub problem, the algorithm 
terminates when the difference between upper and lower bounds is below a certain 
value. Besides exact methods and heuristic algorithms, simulation is also used. But 
most of the time, it works as a tool to evaluate the results obtained from other methods. 
 
Table 13. The solution techniques used to solve covering problem 

Solution Techniques References 

Linear Programming Toregas et al. (1971), Church and ReVelle (1974), Schilling et al. (1979), Daskin and 

Stern (1981), Daskin (1982, 1983), Saydam and McKnew (1985), Hogan and ReVelle 

(1986), Berman et al. (2003) 

Branch-and-Bound Church and ReVelle (1974), Church and Roberts (1983), ReVelle and Hogan (1988), 

ReVelle and Hogan (1989a), Ball and Lin (1993), Marianov and ReVelle (1994), 

Marianov and ReVelle (1996), Berman et al. (2003), Drezner et al. (2004) 

Cutting Plane Plane and Hendrick (1977) 

Greedy Heuristic Berman and Krass (2002), Berman et al. (2003) 

Lagrangian Relaxation Schreuder (1981), Pirkul and Schilling (1991), Karasakal and Karasakal (2004) 

Tabu Search Gendreau et al. (1997) 

Ant Colony Su et al. (2015) 

Genetic Algorithm Saydam and Aytuğ (2003), Liu et al. (2016) 

Simulated Annealing Galvão et al. (2005) 

Branch-and-Cut Beraldi and Bruni (2009), Zhang and Jiang (2014), Zhang and Li (2015), Yoon et al. 

(2021) 

Approximation Nickel et al. (2016), Boujemaa et al. (2017), Liu et al. (2019a), Nelas and Dias (2020), 

Yoon et al. (2021) 

Benders Decomposition Yoon et al. (2021) 

Machine Learning Boutilier and Chan (2020) 

Simulation Fujiwara et al. (1987), Borrás and Pastor (2002), Yoon et al. (2021) 

 
6. Future Research Questions 
 

Most of the research presented so far explores classic location models as well as their 
extensions and applications for emergency services. In this section, we outline some 
promising future research questions for covering problems.  
1) Maximal Survival Models. Although the ultimate goal of EMS is to save properties 



and lives as much as possible, few studies directly formulate the objective as a 
function of the properties and lives that have been saved. Instead, most studies 
regard response time or distance as the approximate alternative to evaluate the 
effectiveness and efficiency of the EMS network. One reason is that many 
regulations explicitly set response distance or time limits and to comply with the 
requirements, it is reasonable to utilize the limits in the models. Another reason is 
that it is not easy to formulate the general survival rates function for all EMS 
responses as different causes, such as cardiac arrest, fires, and traffic accident, may 
lead to different consequences. However, there still exist studies that use survival 
probability as the objective and are proved to be better suited for EMS location 
planning than those that only consider response time and distance as objectives 
(Erkut et al., 2008; McLay and Mayorga, 2010; Knight et al., 2012; Amorim et al., 
2020). 

2) Geometric Representation and GIS. The influence of geometric representation of 
the area where the candidate facilities and demands are located is often neglected 
in the facility location research. To avoid the curse of dimensionality and reduce the 
complexity, most of the covering models use the centroids of an area to represent 
the whole area, which could result in potential measurement errors (Hillsman and 
Rhoda, 1978; Goodchild, 1979; Current and Schilling, 1990; Miller, 1996; Murray 
and O'Kelly, 2002). A growing number of research is exploring ways to reduce the 
influence of these errors on location. GIS is a very prevalent and helpful tool to 
achieve this goal, which is of significant help in capturing, organizing, analyzing 
and visualizing geographic data (Murray, 2005; Alexandris and Giannikos, 2010; 
Yang et al., 2020).  

3) Multi-period Facility Location Problem. Most of the facility location problem is 
studied in a static environment. However, there are situations that the characteristics 
of the system vary significantly over a period, sometimes even over a day. Therefore, 
some research begins to explore the models that could capture the changing state of 
the system, resulting in multi-period models which could formulate the location 
problem dynamically (Repede and Bernardo,1994; Rajagopalan, Saydam and Xiao, 
2008; Schmid and Doerner, 2010; Başar, Çatay, and Ünlüyurt, 2011; Van den Berg 
and Aardal, 2015; Degel et al., 2015; Peng, 2020). 

4) Location and Dispatch. Location decisions are usually strategic while the dispatch 
decisions are operational. Most of the time, these two types of decisions are 
determined separately. However, as the dispatch decisions based on different 
dispatching policies would influence the availability of vehicles and thus the 
coverage results, more and more research combines these decisions together (Toro-
Díaz et al., 2013; Sung and Lee, 2018; Enayati et al., 2019; Bélanger et al., 2020). 

5) Location and Real-time Redeployment. The emergency response systems are 
designed to respond to demands within certain standards. With the increase of 
service demand, operational cost, and traffic burdens, relocation is regarded as an 
effective method to achieve the goal without too many side effects. Although 
redeployment differs from location in many aspects, the combination is proved to 
effectively improve the planning results (Gendreau et al., 2001; Naoum-Sawaya and 



Elhedhli, 2013; Saydam et al., 2013; Van Barneveld et al., 2018). 
 
7. Concluding Remarks 
 
  Facility location models for emergency service planning have been evolving with 
increasingly sophisticated features to address different emerging practical problems 
with complicated constraints. We review in this paper discrete coverage-based facility 
location models for emergency services, their extensions and applications, and the 
commonly used solution techniques. We also summarize some possible future research 
directions. 
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