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Abstract 

Purpose – This study is a systematic literature review of the application of Artificial Intelligence (AI) in 

safety-critical systems. The authors aim to present the current application status according to different AI 

techniques and propose some research directions and insights to promote its wider application. 

Design/methodology/approach – A total of 92 articles were selected for this review through a systematic 

literature review along with a thematic analysis.  

Findings – The literature is divided into three themes: interpretable method, explain model behaviour and safe 

learning. Among AI techniques, the most widely used are Bayesian networks and deep neural networks. In 

addition, given the huge potential in this field, four future research directions were also proposed. 

Practical implications – This study is of vital interest to industry practitioners and regulators in safety-critical 

domain, as it provided a clear picture of the current status and pointed out that some AI techniques have great 

application potential. For those are inherently appropriate for use in safety-critical systems, regulators can conduct 

in-depth studies to validate and encourages their use in the industry. 

Originality/value – This is the first review of the application of AI in safety-critical systems in the literature. It 

marks the first step towards advancing AI in safety-critical domain. The paper has potential values to promote the 

use of the term “safety-critical” and to improve the phenomenon of literature fragmentation.  

Keywords - Artificial Intelligence, machine learning, safety-critical system, neural network, Bayesian, formal 

verification, adversarial examples 

Paper type – Literature review 

I. INTRODUCTION  

The rapid development of Artificial Intelligence (AI) in the past decades has greatly realized its huge potential. 

Several definitions of AI in [150][151][152][153], primarily refer to building intelligent machines that use computer 

programs to understand human intelligence and better perform human tasks in ways that are not limited to 

biologically observable methods. At the same time, machine learning (ML), as the core of data science, is the 

essence of modern AI, which involves the technology, method, and approach from big data [143][144] to 

intelligence. AI technology has matured to the point where it can provide practical benefits in many applications 

[1], including natural language processing [2], computer vision [3] and data mining [4]. Safety-critical system refers 

to a system failure that can have unacceptable consequences, such as significant loss of life and property or 

environmental damage [6]. Due to their high requirements for dependability, especially for safety, security and 

reliability, these systems are widely used in avionics [155], nuclear power plants [156], automotive [157], medical 

[158] and industrial control systems [159].  

In recent years, as the number of safety-critical systems increases, the application of AI in these systems will 
bring great benefits. Safety-critical systems require extremely high safety requirements as the system failure is a 
matter of life [164]. Therefore, such systems require certification [6][7] and strong safety guarantees [165]. 
However, despite its success, AI is not completely reliable, and the accident problem of AI-based systems [5] 
makes them untrustworthy. For example, cases of AI failure [154], casualties caused by AI-based autonomous 
vehicles [8][9], and the AI bias for discrimination [166][167]. In addition, most AI-based systems are generally 
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considered opaque [18] due to their “black-box” nature. An AI “black-box” means that for an AI-based tool, there 
is no view of how it works for the input and output seen, one example is deep neural network (DNN), which has 
been criticized for being vulnerable [19]. The risk of trusting “black-box” autonomy algorithms makes AI and ML 
less acceptable in safety-critical domain [162]. These deficiencies of AI post challenges to the widespread 
application of AI in safety-critical systems.  

In the literature, research on AI safety has been conducted from different angles. From the perspective of ethics: 

non-maleficence requires safety and security to avoid foreseeable or unintentional harm [12]; ethical governance is 

the key in building trust [11]. From the perspective of formal methods, AI can be used to design strong, ideally 

provable and correctness guarantees for mathematically specified requirements [14]. Considering AI safety from a 

multidisciplinary perspective will provide a basis for understanding that can be transferred to safety-critical systems 

with a higher level of responsibility [16]. From the perspective of society and economy, the maximization of 

robustness and beneficial aspects of AI safety research will bring unprecedented benefits to human society [13]. In 

fact, almost all of these AI safety researches point to the need for AI-based system verification and validation 

(V&V) in the safety-critical system. In software engineering, V&V is a method consisting of a series of analysis 

and testing activities that software analysts use to detect bugs or false assumptions in order to gain trust [160]. 

Conventional V&V approaches for safety-critical systems are testing and model checking [161]. Testing is to use 

test cases to test the embedded system until it is assumed that all failures have been detected and all tests generated 

have been passed [17]. Model checking is more through than testing, using an exhaustive search of the system state 

space to trace logical errors in the specifications [163]. However, both V&V approaches cannot be directly applied 

to modern safety-critical systems with embedded AI, because such a system is very complex, requires continuous 

and dynamic interaction with the physical environment. Nevertheless, these V&V approaches generally assume that 

the system being verified is static, thus the verification is likely to be invalid after the system has learned [13]. 

Research on “black-box” problem of AI focuses on explainable AI (XAI) and interpretable AI. XAI is defined as a 

production detail or reason makes the functioning of AI easily understood by the audience [20]. Explainable models 

can summarize the reasons for neural network behaviour, gain users trust, and generate insights into the reasons for 

decisions [23]. This academic whirlwind has led toward the concept of responsible AI, further led to legal 

governance on the explanation of algorithmic decision-making [24]. Interpretability, as the ability to explain or 

present in a human-understandable manner [23], will be the first step towards creating an explanation mechanism 

that are necessary for safety-critical tasks [21], especially for high stakes decision-making [22]. It can also confirm 

other important desiderata of AI systems, such as fairness, reliability, robustness, causality and so on [23]. From a 

safety perspective, interpretability helps to understand the retrospective and prospective aspects of the AI system 

[25].  

As abovementioned, applying AI to safety-critical systems is fraught with challenges. A comprehensive and 

in-depth understanding of the current state of applications will allow us to understand why AI is encountering 

limitations and develop a roadmap to address them. Currently, this field is still in the stage of prudent and 

exploratory. International standard IEC61508 [26] does not recommend the use of AI technology for electrical, 

electronic and programmable electronic safety related systems [27]. Besides, the development history of AI is 

cyclical, it has experienced peaks and troughs, the troughs are called “AI winter”, which is due to overestimation of 

the ability of AI. The above deficiencies of AI may lead to significant distrust [29] and will limit the AI 

development process, thereby increasing concerns about the next “AI winter” [28][30][31]. Therefore, to avoid this 

possible outcome and benefit the safety-critical domain, it is necessary to understand where we are in the 

development of applying AI in safety-critical systems. This paper aims to provide a holistic overview in the 

literature, and to give academia, practitioners and regulators a clear picture. To the best of our knowledge, this 

review is the first in the literature that focuses on the current state of AI development in safety-critical systems. 

The remaining part of this paper is organized as follows. Section 2 presents the methodology of the literature 

review. Section 3 discusses the existing survey paper on ML assurance in safety-critical systems. Section 4 provides 

the findings including a detailed review of the three themes. Section 5 discusses the future directions on the 

application of AI in the safety-critical domain and Section 6 concludes the paper. 



II. LITERATURE REVIEW METHODOLOGY 

Systematic literature review is a well-established and rigorous method of evaluating and reviewing research 
literature based on reproducible, scientific and transparent process, which is a key tool for building an evidence 
base and reducing bias [10][15]. This review follows the guidelines of [124][168] and consists of four stages: 
planning, selection, extraction and execution, as shown in Figure 1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Literature review process 

2.1  Planning 

The purpose of this study is to systematically review the existing literature, analyze the application status of AI 

in safety-critical systems, and point out the future research direction. At this stage, prior the start of the review, the 

review protocol was developed and agreed upon by the authors to carry out the following review. 

2.2  Selection 

In this stage, the literature was first explored and screened, which provided a preliminary understanding of the 
literature. Based on the findings in the preliminary literature exploration, we established the practical screen criteria 
for the following literature retrieval activities. More discussions of this stage are given below. 

2.2.1 Apply practical screen 

A preliminary literature exploration was carried out on Google Scholar, where the query string was combined 

with “Artificial Intelligence”, “Machine learning” and “Safety-critical system”. Some of the findings are: (1) fewer 
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articles are obtained from searching strings “Artificial Intelligence” “Safety-critical system”, and most do not 

directly correspond to the intent of this paper. Instead, more articles can be found by “Machine learning” 

“Safety-critical system”, but most papers are about specific ML and AI techniques, such as neural networks and 

Bayesian networks (BNs). (2) Some articles concerning process plants, process systems, subsea blowout preventer 

control systems are safety-critical, but there is no mention of “safety-critical” either in the article or in the title; 

instead, some use “critical system”, “system safety” or even just “system”. (3) Some articles do not explicitly 

mention “safety-critical” but focus on the “dependability” of safety-critical systems and its basic attributes – “safety” 

and “reliability”. (4) A significant number of ML articles on safety-critical systems and applications are conference 

papers and conference proceedings. (5) Some of the relatively highly cited articles were preprints from arXiv. In 

computer science, arXiv is a free public server repository for electronic e-prints of research, which is hosted by 

Cornell University [122]. 

Based on the above findings, the authors recognize that the literature on the use of AI in safety-critical systems 
is fragmented. To cover a more comprehensive and objective perspective, some practical screening criteria have 
been developed: (1) this paper does not limit the sources of literature to specific publishers, journals or conferences, 
but covers a variety of scientific research media, including major conferences, journal articles sponsored by 
different publishers, and widely cited arXiv preprints were also included through careful review of relevance, 
citations, and quality. (2) Papers selected in this review cover a time span of the last three decades in order to have a 
comprehensive coverage. (3) The content of the paper must be relevant to the purpose of this review. (4) Articles 
that match the query string but do not meet the objective of this review, work-in-progress reports, as well as articles 
that are not in English were discarded. (5) The academic fields were limited to computer science, engineering and 
technology, mathematics and systems science.  

2.2.2 Search for literature 

During paper identification, Google Scholar and the Web of Science were selected as retrieval facilities. Table 1 

shows all the query strings in three categories: Category 1 are all AI-related, Category 2 are attributes related to 

safety-critical systems, and Category 3 are various descriptions of safety-critical systems. The search sentence 

pattern takes the form of a random iterative combination of Category 1 plus Category 2 plus Category 3, with one 

query string from each category at a time (for example, “Machine learning” “Safety” “Critical System”). The 

sentences pattern search iterates until most of the combination forms are combined. After this process, a total of 

3,087 papers were included. 

No. Category 1 Category 2 Category 3 

1 Artificial Intelligence Dependability Safety-critical system 

2 Machine learning Safety Safety-critical 

3 Neural network Reliability Critical system 

4 Bayesian Verification & Validation System safety 

Table 1 Query strings during paper identification 

2.3  Extraction 

For each article found in the previous process, the title, abstract, introduction and conclusion sections were read 

by the authors to determine their relevance, followed by another round of quality checking. Articles that are 

completely related to computer science but do not about AI application to safety-critical systems were discarded. 

After this process, 92 articles were selected in this review for intensive reading. Among them, there were 36 journal 

papers, 44 conference proceedings papers, 11 arXiv preprints, and one technical report paper. As shown in Figure 2, 

the application of AI in safety-critical systems is a promising research field and has received great attention since 

2015.  



 

Figure 2 Distribution of papers over time 

2.4  Execution 

In the process of research synthesis, thematic analysis [145] was adopted, which is a qualitative context analysis 
method to identify themes. There are five steps to this process: (1) familiarize with the data by reading; (2) 
decompose the data into small chunks and generate initial codes; (3) through examining the codes and search for 
broader themes characterized by its significance; (4) review, modify and develop preliminary themes; (5) define 
themes. For the 92 papers selected in the extraction stage, the authors summarized the content of each paper. 
Among them, there is one survey paper on ML assurance in safety-critical systems, which is discussed in Section 3. 
The authors then extracted small chunks from the remaining 91 papers as initial codes and classified them 
according to five AI techniques: decision tree and random forest, Bayesian network, artificial neural network, deep 
neural network and reinforcement learning. After a careful study of the codes and the contents of the article on these 
five AI techniques, the authors realized that papers on the use of decision tree and random forest as well as 
Bayesian network in safety-critical systems focused on interpretable methods, as these AI techniques are 
transparent in nature. However, due to the “black-box” problem of neural networks, papers on artificial neural 
network and deep neural network are focused on explaining their model behaviour. In addition, papers on 
reinforcement learning are focused on safe learning. On this basis, three themes were determined: interpretable 
method; explain model behaviour and safe learning. Figure 3 shows the three themes and the chunks they contain, 
including the number of articles reviewed in this paper. These three themes are discussed in detail in Section 4. 

III. SURVEY PAPER ON MACHINE LEARNING ASSURANCE IN SAFETY-CRITICAL SYSTEMS 

Ashmore et al. [121] conducted the first comprehensive and state-of-the-art survey of safety-critical systems 

from a ML assurance perspective, covering the desiderate, methods and challenges to achieve such assurance across 

the entire ML lifecycle. The data management phase must ensure the relevance, completeness, balanced and 

accurate datasets. During model learning, interpretable ML models are critical for safety-critical systems to aid 

assurance and to ensure models are reusable and interpretable by providing evidence. Model verification is essential, 

and formal verification can be used to determine the suitability of ML models before integrated into safety-critical 

systems. During model deployment, the broader system must be able to tolerate the occasional erroneous output of 

ML models and its output must be explainable. Extending the applicability of ML to safety-critical applications 

required a higher level of assurance than current ML applications. The key is to generate evidence that is fit for 

purpose and can be fully integrated into the system to gain trust and demonstrate the safety of ML component.  

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

* Note: The numbers in brackets indicate the numbers of articles reviewed by this paper under that category 

 

Figure 3 Three themes and chunks in the literature  
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IV. FINDINGS 

This section consists of four parts. Section 4.1 explains the literature reviewed. Section 4.2 to 4.4 discuss the 

literature on interpretable method; explain model behaviour and safe learning, respectively.   

4.1   Distribution of Literature  

Figure 4 shows the application of different AI techniques in the literature over time. The past decade has seen an 
explosion in the application of ML in this field, particularly DNNs. The authors found that research on DNN mostly 
focused on image classification in safety-critical applications, which deserves to be discussed separately. Therefore, 
DNN and Artificial neural network (ANN) are classified respectively in this paper. In addition to DNNs, the 
application of ANNs in safety-critical systems has seen a significant decline in attention in the past decade, whereas 
other ML algorithms and techniques such as reinforcement learning, decision tree and random forest have emerged. 
In contrast, the application development of the BN in safety-critical systems is relatively stable. All the articles 
selected in this review paper are shown in Table 2. 

 

 

Figure 4 Distribution of papers on AI techniques over time 

4.2   Interpretable Method  

Interpretable AI is an algorithm or model that can clearly explain its decision-making process. Interpretable 
method is further divided into two categories, Decision Tree & Random Forest and BN. Both of these AI 
techniques are transparent in nature [32]. At present, the application of decision tree in safety-critical systems is still 
in its preliminary stage, and the focus of the literature is on formal verification. Unlike decision trees, BNs have a 
relatively long history of application in system safety and reliability, most of the research focuses on system 
analysis.  

4.2.1  Decision Tree and Random Forest 

Decision tree is a ML algorithm which is “naturally” explainable, the input data can be clearly traced passing 

through the model. It has been widely used in exploratory data analysis and predictive modelling applications [123]. 

Random forest is used to solve the overfitting problem of decision trees, it adopts the idea of ensemble learning, 

which integrates multiple random decision trees together and aggregates their predictions by means of averaging. It 

shows excellent performance in settings where the number of variables is far greater than the observations and 

extends the ability of decision trees to solve large-scale problems [125].  

 

  



Papers No. of 

papers 

Classification 

Formal Verification: Törnblom and Nadjm-Tehrani (2018) [33]; Törnblom and 

Nadjm-Tehrani (2019) [35]; Törnblom and Nadjm-Tehrani (2019) [34] 

 

3 

 

Decision Tree & 

Random Forest 

Dependability: Neil et al. (1996) [55]; Fenton et al. (1998) [56]; Kang and Golay (1999) 

[57]; Bobbio et al. (2001) [58]; Montani et al. (2005) [59] 

Reliability: (Reliability Analysis) Torres-Toledano and Sucar (1998) [36]; Langseth and 

Portinale (2007) [37]; Simon et al. (2007) [39]; Montani et al. (2008) [40]; Simon et al. 

(2008) [38]; Cai et al. (2012) [46]; (Reliability Modelling) Weber and Jouffe (2003) [42]; 

Boudali and Dugan (2005) [44]; Weber and Jouffe (2006) [43]; Doguc and 

Ramirez-Marquez (2009) [45]; Amrin et al. (2018) [41]; Liu and Liu (2019) [47]; (Fault 

Diagnosis) Chiremsel et al. (2016)[148]; Yang et al. (2008) [48]; Cai et al. (2017) [49]; 

Cai et al. (2017) [146] 

Availability: Amin et al. (2018) [60]; Wang et al. (2020) [147] 

Safety: Bouissou et al. (1999) [61]; Gran (2002) [53]; Khakzad et al. (2011) [50]; 

Khakzad et al. (2013) [51]; Prabhakaran et al. (2016) [54] 

Verification & Validation: Schietekat et al. (2016) [149]; Douthwaite and Kelly (2017) 

[64] 
Other applications: Kannan (2007) [65]; Naderpour et al. (2014) [62]; Naderpour et al. 

(2015) [63]  
Review Paper: Weber et al. (2012) [66]; Kabir and Papadopoulos (2019) [67] 

 

35 Bayesian 

Network 

Verification & Validation: Andrews et al. (1995) [81]; Hull et al. (2002) [83]; Taylor et 

al. (2003) [80]; Darrah et al. (2004) [85]; Taylor and Darrah (2005) [82]; Darrah et al. 

(2005) [84] 

Development for Safety-critical Systems: 
Certification requirements: Bedford et al. (1996) [78] 
Safety lifecycle: Rodvold (1999) [71]; Weaver et al. (2002) [72]; Kurd and Kelly (2003) 

[68]; Kurd and Kelly (2003) [73]; Kelly (2004) [70]; Kurd and Kelly (2005) [77]; Kurd et 

al. (2007) [69]; Ward and Habli (2020) [74] 
Constraint artificial neural network: Wen et al. (1996) [75]; Kurd and Kelly (2007) [76] 
 

17 Artificial Neural 

Network 

Adversarial Examples: 
Testing: Pei et al. (2017) [88]; Tian et al. (2018) [9]; Ma et al. (2018) [86]; Ma et al. 

(2018) [87]; Sun et al. (2018) [89]; Sun et al. (2018) [90]; Zhang et al. (2020) [92] 
Verification: Pulina and Tacchella (2010) [95]; Huang et al. (2017) [93]; Pei et al. (2017) 

[103]; Xiang et al. (2017) [99]; Katz et al. (2017) [94]; Cheng et al. (2017) [96]; Carlini et 

al. (2017) [100]; Bunel et al. (2018) [97]; Wang et al. (2018) [98]; Xiang et al. (2018) 

[101]; Wicker et al. (2018) [91] 
Robustness Guarantee: Hein and Andriushchenko (2017) [108]; Gopinath et al. (2017) 

[109]; Gehr et al. (2018) [102]; Hendrycks and Dietterich (2019) [105]; Hein et al. (2019) 

[106]; Croce et al. (2019) [107]  
Other countermeasures: Wang et al. (2019) [104]; Papernot and McDaniel (2018) [110]; 
Yuan et al. (2019) [111] 

Rule Extraction: Hailesilassie (2016) [112] 

 

28 Deep Neural 

Network 

Control theory: Berkenkamp et al. (2016) [115]; Berkenkamp et al. (2017) [114]; 

Richards et al. (2018) [113] 
Model predictive control: Kahn et al. (2017) [120]; Koller et al. (2018) [116] 

Reachability-based safe learning: Akametalu et al. (2014) [117] 

Assured reinforcement learning: Mason et al. (2017) [119] 

Verification challenges: Wesel and Goodloe (2017) [118] 

 

8 Reinforcement 

Learning 

 

* Note: The underlined words in the table represent the third level chunks in Figure 3 

 

  

Table 2 Papers reviewed in this study 



4.2.1.1 Formal Verification 

One of the constraints of AI utilizing ML algorithms in safety-critical systems is the lack of verification methods 

and the difficulty of interpretation with large datasets. Formal verification can be adopted in the early process of 

system development, which provides methods and techniques for mathematically proving the correctness of a 

system [126], it has mainly used in safety-critical domains, such as military [128] and aerospace [127]. The 

functional safety standard IEC61508 allows for the first time the use of formal verification methods during the 

certification process [129]. However, when verifiability is critical, decision trees are more appropriate to address 

this challenge in terms of their simplicity. In addition, decision trees and random forests are easier to analyze 

systematically. However, a major limitation is combinatorial explosions in large models.  

Törnblom and Nadjm-Tehrani [33] first proposed a formal method to verify the properties of random forest, 

which divides the input domain of the decision tree into disjoint sets and explores all path combinations to offset the 

combinatorial path explosion. The method is implemented through an automated computing tool for enumerating 

and verifying equivalence classes. Further, Törnblom and Nadjm-Tehrani [35] generalized the above method to 

gradient boosting machines and proposed a formal verification method of tree ensembles implemented through an 

update tool. It extracts equivalence classes from decision trees and tree ensembles, and uses formal verification to 

prove that their input-output mappings met the requirements. However, the above two methods struggle with 

combinatorial explosions on high-dimensional data. Thus, Törnblom and Nadjm-Tehrani [34] proposed a formal 

iterative abstraction-refinement method, which made it possible to formal verify tree ensemble for 

high-dimensional data training. The results showed that the performance of the improved by several orders of 

magnitude. 

4.2.2  Bayesian Network 

BN was originated in the field of AI and has become a robust and effective framework for uncertain knowledge 
reasoning. To improve safety, it is necessary to learn from the past, BN has the features of updating, inference and 
diagnosis, it can reduce uncertainty so as to improve the cognition and understanding of the complex system [130]. 
As a powerful decision supporting tool, BNs have been widely used in the practical applications of predicting the 
performance of safety-critical systems [131]. Figure 5 summarizes the development timeline of the various 
applications of BNs in safety-critical systems.  

4.2.2.1 Dependability  

Traditional approach to dependability assessment relies on expert judgement, however, this is generally 

considered to be uncertain and an ad-hoc procedure. Neil et al. [55] were among the earliest advocates of the 

transformation from ad-hoc assessment to argumentation with the usage of BN. Later, a project named DATUM 

presented in Fenton et al. [56] was the first application of BNs in the dependability assessment of 

software-intensive safety-critical system. The methods and techniques of uncertainty modelling were firstly studied 

in-depth and BN was selected as the most appropriate modelling method. Kang and Golay [57] first applied BN to 

dependability analysis of a complex nuclear power plant through a BN-based diagnostic advisory system 

framework to improve its operational availability. In addition, some studies have compared BNs to fault trees, 

which is one of the most commonly used and popular techniques for dependability analysis of large-scale 

safety-critical systems. Bobbio et al. [58] proposed a conversion algorithm to convert the fault tree into BN and 

further pointed out that any fault tree can mapped to BN directly. Dynamic fault tree (DFT) improves fault tree 

modelling power by introducing new primitive gates that can accommodate complex dependencies. Dynamic 

Bayesian network (DBN) adopts a discrete time approach and has the advantage of providing a unified framework 

in which both static and dynamic components can be analyzed. Montani et al. [59] provided a translation of DFT 

into corresponding DBN, by characterizing dynamic gates in the DBN framework. 

4.2.2.2 Reliability 

Reliability is one of the most important dependability attributes in systems engineering, it refers to the 

probability that equipment satisfactorily performs its expected function and has no failure within a certain mission 

time under specific design and environmental conditions. Safety-critical systems of complex industrial plants and 

critical application equipment require high reliability, but it is almost impossible to model the entire system as these 

systems becoming more complex. An early study by Torres-Toledano and Sucar [36] suggested a BN-based 

computational method to conduct reliability analysis by explicitly clarifying dependency between failure, including 

the effects of maintenance. It has also presented a general methodology to reliability modelling of complex systems. 

Langseth and Portinale [37] comprehensively discussed the applicability and proposed BN as a reliability analysis 

framework. One of the key attractions of BN is its ability to combine information from different sources and 

provide a global safety assessment.  



 

 

Figure 5 Timeline of applications of Bayesian networks for safety-critical systems 

 

Some studies have proposed to combine BN with evidence theory for under epistemic uncertainty, which 

resolves incomplete data in reliability context and inconsistency between system model and reliability model. 

Simon et al. [39] proposed an evidential network generation method integrating evidence theory with the BN, 

during the allocation process, new attributes can be obtained to manage epistemic uncertainty in reliability analysis. 

Later, Simon et al. [38] proposed the use of uncensored data and applied the Dempster Shafer theory to BN tools to 

extract as much information as possible from the available data. Furthermore, Montani et al. [40] extended 

reliability analysis to the use of DBN and proposed a software tool RADBAN which implements a modular 

algorithm automatically translating a DFT into its corresponding DBN and deduces it using the classical algorithm. 

BN application in reliability evaluation of safety-critical system was presented by Cai et al. [46], it has been applied 

to reliability evaluation of redundant system of a subsea blowout preventer (BOP) control system.  

Markov chain used to be a popular tool to model the reliability of systems, but it encounters state combination 

explosions as system become complex. Weber and Jouffe [42] introduced DBN as the equivalent model of the 

Markov chain and further present a methodology for developing DBNs to formalise complex dynamic models. A 

novel reliability analysis and modelling framework based on discrete time BN is proposed by Boudali and Dugan 

[44] to cope with the increasingly complex systems. In addition, using BNs to model systems with many variables 

often results in complex models, but object oriented Bayesian networks (OOBNs) are ideal and useful for the 

process modelling of industrial systems. Weber and Jouffe [43] proposed a powerful tool for maintenance 

decision-making based on the dynamic object oriented Bayesian networks (DOOBNs) model. The model 

decomposes the global network into a hierarchical structure and can easily model the temporal behaviour of 

complex system state probability by designing a DOOBN structure. 

However, the use of BN to estimate the reliability of system must be known a priori, which relies heavily on 

experts. Such experts are limited and are not always available, and human intervention may lead discrepancies. The 

first study by Doguc and Ramirez-Marquez [45] introduced the automatic construction of a BN model for 

estimating the system reliability without the involvement of human experts. In addition, there is no defined 

semantics to guide the model formation of BN in reliability modelling, one solution is to use semantic method. 

Amrin et al. [41] proposed a novel method through an “Idea Algebra” framework automatically generates BN for 

reliability analysis directly from the system description. A method of constructing an equivalent BN based on GO 

model was proposed by Liu and Liu [47], which has been further applied to reliability assessment of a subsea BOP 

control system.  

With the rapid development of modern industrial systems, fault diagnosis must be fully leveraged to quickly 

detect process anomalies and component faults to locate the root cause of failures. BN is a powerful risk analysis 



tool for fault diagnosis through backward analysis. Chiremsel et al. [148] proposed a hybrid probabilistic fault 

diagnosis method for safety instrumented systems in the oil and gas industry based on fault tree analysis and the 

equivalent BN. Cai et al. [49] reviewed the application of BNs in fault diagnosis of engineering systems in the past 

decade with the general procedure of fault diagnosis modelling. However, one disadvantage of BN is it requires too 

much prior probability information so it is beneficial to combine fuzzy logic with Bayesian reasoning. Cai et al. 

[146] proposed a DBN-based fault diagnosis method for transient and intermittent faults of industrial safety-critical 

systems. This method takes into account the dynamic behaviour of the system and identify fault components and 

distinguish fault types. Yang et al. [48] proposed a Failure mode and effects analysis (FMEA) tool that is fuzzy 

rule-based Bayesian reasoning, which can support safety decision making in the case of subjective data.  

4.2.2.3 Availability 

Availability refers to the ability to operate and maintain an item in a specified manner to perform its specific 

functions within a given amount of time. Amin et al. [60] proposed a dynamic availability assessment technique 

based on DBN and further applied to two safety-critical systems. This methodology takes into account the 

dependence and independence among the failure cause factors and can help identify the most critical failure causes. 

Wang et al. [147] established the fault tree of subsea Xmas tree system used in offshore oil and gas development 

under fault mode and transformed it into DBN and further analyzed the reliability and availability of subsea tree 

system under different repair states. 

4.2.2.4 Safety 

The concept of safety software development has been put forward along with the increasing applications of 

programmable devices in safety-critical systems. However, the characteristics of software make it difficult to assess 

its reliability as the preliminary failure is usually due to design fault which is difficult to predict. Therefore, the 

assessment of a software-based safety-critical system can only be qualitative. One way to license such a system is to 

build a “safety case” or “safety argument”, a collection of various pieces of evidence related to the development 

process and the final product. The SERENE European project was aimed at building a method and tools that can 

facilitate the availability of such high-level safety argument to improve the repeatability and ease of understanding 

of safety assessments. Bouissou et al. [61] presented the result of this project performed at Électricité de France to 

helped assessors building safety arguments by a BN safety assessment model appropriately weighing various 

sources of evidence to arrive at a final judgement. On this basis, Gran [53] combined BN and software safety 

standard (DO-178B) to conduct safety assessment of the software-based system.  

Proper operation of safety-critical systems is critical, safety analysis of safety-critical process facilities can 

ensure safety and reliability. Khakzad et al. [50] comparing fault tree with BN in process facility safety analysis and 

proved that BN is superior and has a flexible structure that can be adopted to a variety of accident scenarios. 

Bow-tie as a popular process system safety analysis technique cannot be used in dynamic safety analysis due to its 

static structure. Khakzad et al. [51] presented a dynamic safety analysis method by mapping the bow-tie to BN. 

Prabhakaran et al. [54] proposed a safety assessment approach for an unmanned aerial vehicle (UAV) safety-critical 

system to appropriate monitoring the safety-critical outputs. This enabled the use of BNs to secure the system and 

to ensure its fully successful performance.  

4.2.2.5 Verification & Validation 

Assurance of safety-critical autonomous systems and their driving technologies is a major research challenge.  

Schietekat et al. [149] proposed a V&V methodology for an BN-based aircraft vulnerability system. It first defines 

the reality, then develops, computerized and exercised a BN-based conceptual model. Throughout the process, 

V&V continues at each step and evidence is recorded. However, this study is conceptual in nature as it has not been 

applied to real-world models. The first step to develop a rigorous V&V approach was presented by Douthwaite and 

Kelly [64], the study proposed a reference model to support the comprehensive description and modelling of 

BN-based safety-critical systems and further proposed a method for developing generic and system-specific V&V 

objectives.  

4.2.2.6 Other Applications 

Kannan [65] discussed the suitability of using BN as a “live” model during the design phase of safety 

instrumented systems. For human operations in safety-critical systems, situation awareness (SA) is the key factor to 

improve performance and reduce errors. Naderpour et al. [62] proposed the first situational network modelling 

process with the establishment of a situational assessment model based on DBN and risk indicator. On this basis, 

Naderpour et al. [63] further proposed an abnormal situation modelling method with the specific capabilities of 

BNs and fuzzy logic systems to determine abnormal situations. 



4.2.2.7 Review Paper 

BNs have been widely used in the area of system safety and reliability. Weber et al. [66] conducted a 

bibliographical review of 200 specific literatures on applications in dependability, risk analysis and maintenance. 

The study concluded that the use of BN is a trend due to its benefits compared with other classical methods, but its 

shortcoming lies in the lack of concrete semantics to guide model development to ensure coherence. The authors 

further advocated to transform the classical dependability model into BN and to define a new model development 

method. This review covered a wide range on complex industrial systems. Another comprehensive review was 

conducted by Kabir and Papadopoulos [67] on the use of BNs and Petri nets to assess safety, reliability, and risks. 

The authors believe that these attributes of the system ensure the dependability of safety-critical systems must be 

performed throughout the lifecycle of the system.  

4.3   Explain Model Behaviour  

Explaining model behaviour focuses on neural networks, subdivided into the ANN and DNN. ANNs have been 

criticized as “black-box” which makes them difficult to conduct system analysis and defect detection for 

safety-critical applications. The current research direction is mainly focused on ways to explain its behaviour. 

Research on V&V shows that rule extraction can extend ANN to safety-critical systems, another research direction 

on the construction of a hybrid ANN with transparency and interpretability. On the other hand, DNNs have been 

widely used in computer vision-based safety-critical autonomous systems, such as image classification, but a 

common problem is that DNNs are considered vulnerable in the face of adversarial examples.   

4.3.1Artificial Neural Network 

ANNs are highly parameterized nonlinear models composed of processing neurons, which can be used to 

approximate the relationship between the input and output signal of complex systems [52]. It can approximate any 

continuous function, but the immediate structure of the fitting model prevents it from providing insight into the 

relative importance, underlying relationship, and model structure to the outcome [132]. Developers of ANN have 

been cautious in extending it to applications in safety-critical systems [80], where the reliability requirements takes 

precedence over capability [133].  

4.3.1.1 Verification & Validation 

Explanation capability is essential for ANN-based safety-critical applications. However, the lack of explanation 

capability limits the full realization of such ANN-based systems. Rule extraction from trained ANNs can provides 

user acceptance and extend such systems to safety-critical applications. It is a formal method that transforms a 

“black-box” system into a “white-box” system by translating the internal knowledge into a series of symbolic rules, 

which can be further used for V&V and certification of ANNs. A survey conducted by Andrews et al. [81] 

reviewed various algorithms for rule extraction and proposed a new classification scheme: decompositional, 

pedagogical and eclectic. Taylor and Darrah [82] identified several areas in which rule extraction can be used for 

the V&V of ANN. The authors considered rule initiation and rule insertion, as two methods of rule extraction, both 

of which can be used in V&V throughout the development lifecycle. 

Traditional training-validation-testing approach cannot assure ANN meet the rigorous requirements for 

safety-critical systems. Taylor et al. [80] discussed the trend and potential usefulness techniques for V&V of ANN, 

including improved testing, formal methods, run-time monitoring, cross validation, and visualization. The 

conclusion is that different methods can be applied to different stages of the ANN lifecycle, but there is a lack of 

methodology to provide V&V practitioners with the assurance of ANNs in safety-critical systems. 

There are some practical studies on validation of flight-critical systems. Hull et al. [83] proposed an analysis 

technique to replace the lookup table in various safety-critical control applications. It is based on using Lipschitz 

constants to offer guaranteed bounds and can be used as part of a polynomial neural networks (PNNs) verification 

procedure. For adaptive neural networks, an algorithm for extracting rules from dynamic cell structure (DCS) 

neural networks is proposed by Darrah et al. [85]. These rules extracted can be used to assist the V&V of neural 

networks in safety-critical applications. On this basis, a geometric algorithm for extracting deterministic rules is 

further proposed by Darrah et al. [84], which can extract the rules that are consistent with the neural network. 

4.3.1.2 Developing ANNs for Safety-critical Systems 

The application of ANNs in safety-critical systems is typically limited to advisory roles and do not have the final 
say in decision-making. It is important to conduct certification process prior to its application. Bedford et al. [78] 
discussed the requirements for a standard certification. The authors argued that the key problem with ANNs is its 
inability to analyze its behavior in a “white-box” way, due to the lack of a compelling safety argumentation. In the 



literature on safety-critical systems, there are two types of safety arguments: process-based and evidence-based. 
Rodvold [71] proposed a nested loop model of the software development process for process-based safety 
argumentation, which is specifically used for the network development of ANNs in safety-critical applications. 
Kelly [70] proposed a systematic safety case development method based on goal structuring notation (GSN), which 
is a graphical argumentation notation clearly and explicitly represent the various elements of a safety argument and 
their relationships. Process-based argument can be made through the proposed software development process. 
Weaver et al. [72] proposed an evidence-based framework for generating software product-based safety arguments 
represented by GSN. Product-based argument of the functional behavior of ANN is obtained by meeting safety 
criteria. Kurd and Kelly [68] and Kurd et al. [69] defined the minimum behavioral properties that must be enforced 
in safety-critical applications from a high-level perspective to generate potential “white-box” analysis. Kurd et al. 
[69] and Kurd and Kelly [73] proposed the safety lifecycle of artificial neural networks (SLANN) in safety-critical 
applications, which is a hybrid ANN combines symbolic and neural network paradigms of the “W” model. It can 
manage the behavior represented by ANN and providing acceptable form of safety assurance. This approach has 
great potential for providing “white-box” analysis through rule-extraction algorithms and offers the possibility of 
analyze using decomposition methods. When applying ML algorithms to safety-critical systems, interpretability is 
critical to understand how the algorithm works. Ward and Habli [74] proposed an argument pattern expressed in 
GSN to prove the sufficient interpretability of ML models in a wider assurance case.  

Some research into the combination of ANN with fuzzy logic to achieve “white-box” analysis and transparency 
for use in safety-critical applications. Wen et al. [75] proposed an iterative Neuralware engineering framework to 
maintain consistency between specification, model checking, and formal testing. It based on the design of a fuzzy 
neural network, which is a “hybrid” of ANN and fuzzy logic. Kurd and Kelly [76] proposed a “neuro-fuzzy” model 
named the safety critical artificial neural network (SCANN). It is a “hybrid” of ANN and fuzzy self-organizing map 
(FSOM) and can translates fuzzy rules into SCANN by inserting rules without affecting the fidelity. In order to test 
the practicality of SLANN and SCANN, Kurd and Kelly [77] evaluated their practicality in a real-world problem of 
Gas Turbine Aero-Engine Control. The SLANN based on decomposition and analytical approach provided the 
feasibility and effectiveness in the safety of the development process. Using safety constraints, the complete 
behavior of SCANN can be easily extracted and controlled. Both models demonstrate that the use of neural 
networks and fuzzy logic systems in safety-critical applications presents evidence-based safety arguments.  

4.3.2 Deep Neural Network 

DNN-based systems are increasingly being used in safety-critical autonomous systems, where the response 

behavior of the system to corner-case input is particularly important [88]. However, DNNs are thought to be 

vulnerable to adversarial examples by slightly perturbing the original examples [79]. In addition, adversarial 

examples with transferability also expose weakness in system robustness, posing a serious challenge [134]. Existing 

research to address this problem is mainly in providing testing, formal verification, robustness guarantee and other 

countermeasures. Figure 6 summarizes the development timeline of the various applications of DNNs in 

safety-critical systems.  

 

Figure 6 Timeline of applications of Deep neural networks for safety-critical systems 

 



4.3.2.1 Adversarial examples 

a. Testing 

A DNN-based safety-critical system must be systematically tested. Traditional testing approach is to divide the 

training and testing set randomly, thus the quality of the test set is key in gaining trust. However, in this case, DNNs 

only perform a portion of all rule learning, and it is difficult to build a robust safety-critical system using such a test 

set alone. For DNN testing, there has been some research on neuron coverage. Pei et al. [88] proposed DeepXplore, 

the first “white-box” framework to systematically test real-world DNN systems by introducing neuron coverage as 

a “white-box” testing metric allows automatic identification of erroneous behavior without the need for manual 

labeling. Tian et al. [9] proposed DeepTest, the first systematic and automated testing tool that systematically test 

the safety-critical erroneous behavior of DNN-based autonomous vehicles without providing any theoretical 

guarantee. Some studies have discussed the testing criteria for DNN systems. Ma et al. [86] proposed DeepGauge, a 

set of multi-granularity testing criteria inspired by the traditional MC/DC software testing criterion. Sun et al. [89] 

proposed a “white-box” testing method consisting of four testing criteria. This was the first study to capture and 

quantify the causal relationship that exists in the DNN. The above four studies are referred to as concrete execution. 

Sun et al. [90] proposed DeepConcolic, the first concolic testing method and a hybrid software testing technique. It 

combines concrete execution with symbolic analysis. Mutation testing as a relatively mature testing technique in 

traditional software testing can systematically evaluate software quality and locate defects. Inspired by this, Ma et 

al. [87] proposed DeepMutation, the first mutation testing framework used to measure the quality of test data. In 

addition, Zhang et al. [92] conducted a comprehensive survey of 144 ML testing papers in different published fields 

and suggested future research directions of ML testing. 

b. Verification 

It is important to thoroughly validate safety assurance of the DNN output behavior. In the literature, studies have 

focused on formal verification. Researchers have attempted to extend and customize a theoretical solver in the 

context of Satisfiability Modulo Theory (SMT) to estimate decision boundaries with strong guarantees. Pulina and 

Tacchella [95] performed the first formal verification and proposed an abstraction-refinement method that verifies 

the safety of Multi-Layer Perceptrons (MLPs) by abstracting linear arithmetic constraints into Boolean 

combinations. Huang et al. [93] proposed a general framework for automatic safety verification of DNN 

classification decisions and proven the robustness of local adversarial and detect misclassification. Katz et al. [94] 

proposed a simplex based Reluplex algorithm to verify the properties of DNN containing a linear function and a 

Rectified linear unit (ReLU) activation function. The ReLU activation function has the advantages of faster training 

process avoiding gradient varnishing, and the piecewise linearity of the ReLU activation function allows the DNN 

to be generalized to previously unseen inputs. Xiang et al. [99] proposed a formal verification method for MLPs 

with ReLU activation function, the authors use a layer-by-layer approach to compute the output of the reachable set 

for safety verification, which relies on the ReLU functions reachability analysis in the form of a set of 

manipulations on the joint of polytopes. Xiang et al. [101] proposed another method for computing a reachable set 

based on simulation and develop automatic safety verification. Instead of targeting specific activation functions, the 

study formulated the problem as a set of optimization problems. Cheng et al. [96] proposed a formal verification 

approach by defining resilience properties of a tolerable DNN-based classifier based on mixed integer programming 

(MIP) to compute the maximum perturbation bound. Bunel et al. [97] proposed a unified framework and new 

benchmark dataset that contains a collection of previously published testcases. Carlini et al. [100] proposed a 

method of using formal verification to evaluate the effectiveness of an attack and defense against the adversarial 

example. The key idea is to use verification to construct an adversarial example with provably minimally distortion. 

Wang et al. [98] proposed an effective method for formal safety analysis based on symbolic linear relaxation and 

directed constraint refinement. 

There are some “black-box” verification methods. Pei et al. [103] proposed a generic framework explicitly 

models an attacker to evaluate the security and robustness of ML systems. Wicker et al. [91] proposed a 

feature-guided “black-box” method to test the resilience of an image classifier against the adversarial example. The 

method requires neither knowledge of the network nor extensive sampling of the network to train a new one. 

c. Robustness Guarantee 

Several approaches to improve the robustness guarantee of DNN models have been proposed. In terms of formal 

guarantee of the classifier robustness, Hein and Andriushchenko [108] proposed the Cross-Lipschitz regularization 

functional approach for the first time in kernel methods to improve the robustness of the classifier without losing its 

prediction performance. Gopinath et al. [109] proposed DeepSafe, a data-guided approach that automatically 



identifies safety regions of input space to make the network robust to adversarial perturbations. Gehr et al. [102] 

proposed AI², the first sound and scalable analyzer for DNNs that can automatically prove its robustness. 

Hendrycks and Dietterich [105] first introduced a comprehensive corruption and perturbation robustness 

benchmark. Hein et al. [106] proposed a robust optimization technique that enforces low confidence prediction 

away from the training data, which can significantly reduce the confidence of noise images. Croce et al. [107] 

proposed a regularization scheme to improve the robustness of the ReLU network classifier by maximizing the 

linear region and the distance from the decision boundary.  

d. Other Countermeasures 

Wang et al. [104] proposed a detection algorithm that integrates mutation and hypothesis testing to detect 

adversarial examples at runtime. The algorithm hypothesis in most cases the adversarial examples in the DNN 

model are more sensitive than normal samples. In terms of structure inspection, Papernot and McDaniel [110] 

proposed the DkNN algorithm to inspect the internal DNN during testing, combining the k-nearest neighbor 

algorithm and the data representation of DNN learning at each level to provide confidence, interpretability, and 

robustness. Yuan et al. [111] firstly reviewed the latest research findings of DNN adversarial examples from the 

perspective of deep learning and proposed a taxonomy of adversarial generation methods. The study argued that all 

defences are only effective against local attacks and some strong, unseen attacks are often ineffective, thus there is 

an urgent need to build new defences, especially for safety-critical systems.  

4.3.2.2  Rule Extraction for DNN 

Rule extraction has the potential to extend ANN into safety-critical applications. Hailesilassie [112] 

comprehensively reviewed various rule extraction algorithms in neural networks and analyzed their applicability in 

DNN and argued that research on DNN rule extraction algorithms is limited and needs attention. In addition, 

pedagogical approach seems to be promising as it is not affected by the number of hidden layers and does not 

depend on the architecture of the algorithm. 

4.4   Safe Learning  

Reinforcement learning algorithms interact with the environment through trial-and-error, which makes them a 

very powerful paradigm for learning optimal policies. However, agents often explore all possible actions to find the 

optimal policy, sometimes even choosing actions at random. From a safety point of view, this can have serious 

consequences and that could be potentially harmful to real-world safety-critical systems [119]. At present, research 

on safe reinforcement learning is mainly aimed at this problem, mainly based on control theory, model predictive 

control (MPC), Hamilton-Jacobi-Isaacs (HJI) reachability analysis and the Markov decision process. 

4.4.1 Control Theory 

In order to avoid safety problems, some studies on proposing algorithms for nonlinear, closed-loop systems 

considering their ability to recover safely from exploratory actions based on control theory. Region of attraction 

(ROA) is an important property of nonlinear systems, a typical method to quantify ROA is to use the level set of 

Lyapunov function. Gaussian processes (GPs) are used to learn the dynamics of nonlinear systems from data to 

obtain high probability safety guarantees. Berkenkamp et al. [115] proposed a reinforcement learning algorithm 

based on the initial approximation model and the corresponding Lyapunov function, which learns the ROA from 

experiments of real systems without leaving the true ROA. As a result, it does not run the risk of safety-critical 

failures. Berkenkamp et al. [114] proposed another learning algorithm that provides safety optimization policies in 

continuous state-action spaces to achieve high-probability safety guarantees.  Richards et al. [113] argued that safe 

learning should be guaranteed by verifying the safety certificate of a state prior to exploration. Based on this, the 

authors constructed a neural network Lyapunov function and further proposed a training algorithm adapted to the 

shape of the maximum safe region in the state space.  

4.4.2 Model Predictive Control 

MPC is a statistical modelling technique for estimating system uncertainty. Koller et al. [116] proposed a safety 

learning-based MPC framework to provide a high probability of safety guarantees throughout the learning process. 

Kahn et al. [120] proposed PLATO, which is a continuous, reset-free policy search algorithm that uses an adaptive 

training method to modify the MPC behavior to gradually match the learned policies and generate training samples.  

4.4.3 Reachability-based Safe Learning and Assured Reinforcement Learning 

Akametalu et al. [117] proposed a learning algorithm using GPs to learn system disturbance model and adopted 

a novel control strategy. Based on HJI reachability analysis, the algorithm determines and maintains a safe region in 



the state space by providing a control policy. For assured reinforcement learning, Mason et al. [119] proposed to 

modelling the uncertain environment as a high-level and abstract Markov decision process (AMDP), enabling an 

autonomous agent to solve decision making problems under constraints. 

4.4.4 Verification Challenges 

Wesel and Goodloe [118] discussed the challenges in the verification of ML algorithms and used a specific 

example to verify reinforcement learning algorithm. The author argued that there is no one-size-fit-all solution, 

different domains and algorithms allow different verification methods. 

V.  DISCUSSION OF FUTURE DIRECTIONS  

Based on the above findings, in this section, some potential future research directions are discussed, so as to 

promote the application and development of AI in safety-critical systems. 

5.1 Holistic Perspective 

Managing safety problems require a holistic view and concerning knowledge involving different disciplines 

[137]. The application of AI in the safety-critical domain is a multi-disciplinary field, which combines the AI 

community, safety-critical domain, computer science and software engineering. The future development of AI in 

safety-critical systems needs to be looked at from a holistic perspective. Thinking and solving the problem from a 

holistic perspective across different disciplines may lead to new ideas. In addition, survey in [121] discusses the ML 

assurance in safety-critical systems from the perspective of the entire ML lifecycle, covering from data 

management to model learning, model verification and model deployment. Furthermore, the safety lifecycle view 

was adopted in the ANN model development of safety-critical systems [68]. As a result, the future development of 

AI in safety-critical systems should also be taken with the holistic perspective of the whole lifecycle, such as AI 

lifecycle, safety lifecycle, system lifecycle, software lifecycle and others. This is particularly important when 

building an AI model for a safety-critical system. 

5.2 Verification & Validation 

In the literature, V&V for different AI techniques has been studied. For interpretable methods, formal 

verification [33][34][35] has been studied for the decision tree and random forest and there are only two papers on 

V&V for BN model [64]. In terms of the ANN and DNN, V&V has been made more effort. With regard to safe 

learning, only one technical report addressed the verification challenge [118] and no in-depth research was 

conducted. More research is needed on the V&V of AI application in safety-critical systems, especially for 

interpretable methods, because the structure is more intuitive and simpler. For neural networks, V&V of the DNN 

has been studied more than other AI techniques, but the current verification is only applicable to a limited class. 

However, studies have shown that most verifications are not robust and scalable [100], that is, such neural networks 

are vulnerable to future attacks, and current verification methods are limited by the network size. Some research on 

scalable V&V [135][136] may be a future direction of research. In addition, the existing DNN verification mainly 

focuses on adversarial examples, whereas future research can extend to a broader perspective.  

5.3 Formal Methods 

Formal methods have been widely discussed in the literature, including formal verification, safety analysis [98] 

and formal guarantee [108]. Formal methods can guarantee fault-free development of the system [138], which is a 

way to increase confidence and the unification and harmonization of engineering practices involved in building 

software-based safety-critical systems [139][141]. The use of formal methods in safety-critical systems will result 

in accurate, consist, and correctness of the proposed system [140]. Therefore, the future development of AI in 

safety-critical systems requires more formal methods plus the application of formal verification techniques. In 

addition, formal methods can be combined with the field of AI, and this holds a great potential for the use of AI in 

safety-critical systems. 

5.4 Awareness 

The usage of the term “safety-critical” in academia was not very active. The term often appeared in articles on 

autonomous vehicles or adversarial examples. Articles regarding the application of BN to safety-critical systems on 

process plants, process systems or subsea BOP systems are all safety-critical, the term was not used. This is 

particularly evident in articles prior to 2015. Raising awareness of its usage in the literature and establishing safety 

policies and objectives at the organizational level [142] can in term avoid the phenomenon of article fragmentation 

in the literature and further promote the development of the field.  



VI. CONCLUSIONS 

Safety-critical systems are receiving increasingly attention, one trend with ample potential is the adoption of AI. 

This paper conducted a systematic review of 92 papers and analyzed the application of AI in safety-critical systems, 

which lays a foundation for future research in this domain.  

The methodology use in this paper contains four stages: planning, selection, extraction and execution. Based on 

the thematic analysis, three themes were identified: interpretable method, explain model behaviour and safe 

learning. Interpretable method was further divided into two subcategories: decision tree & random forest and BN. 

Research on the former has just started and there have been only 3 papers on formal verification. There were total 

35 papers on BN applications in system dependability, reliability, availability and safety analysis, V&V, system 

design and abnormal situation management. Explaining model behaviour focused on ANNs and DNNs. Given that 

the DNN literature is based on the problem of adversarial examples, as an intense research topic it has been separate 

for discussion in this paper. There were total 17 papers on ANNs, covering V&V and model development. Research 

of V&V was mainly on the “black-box” problem, one solution is obtaining explanation capability through rule 

extraction. ANN model development was mainly focused on building ANN and fuzzy logic hybrid model using 

rule extraction to gain “white-box” analysis and transparency. For DNNs, there were a total of 28 papers on 

adversarial examples, from the aspects of testing, verification, robustness guarantee, structure inspection and 

detection algorithm. Among them, formal verification was the focus of the research. Safe learning is about using 

reinforcement learning, which has rarely been applied to safety-critical applications due to safety issues. There were 

8 papers in this category and concerning safe learning algorithms based on control theory, model predictive control 

(MPC), Hamilton-Jacobi-Isaacs (HJI) reachability analysis, and the Markov decision process. In addition, 1 survey 

paper regarding ML assurance of safety-critical systems has been discussed. 

Finally, on the basis of the literature review and analysis, the authors proposed four research directions for future 

development of AI in safety-critical systems. Future research needs to be from a holistic multi-disciplinary and 

lifecycle view and more research on V&V is needed, especially scalable V&V. Moreover, formal methods have a 

great potential in the application of AI in safety-critical systems, and the development of AI formal methods is 

promising. There is also a need to raise awareness of using the term “safety-critical”, which will contribute to 

promote the domain development. 
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