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Novel robotic job-shop scheduling models with deadlock and robot 

movement considerations 

Abstract: The robotic job-shop scheduling problem (RJSP) has become increasingly important due to 

the wide application of robots for material delivery in modern logistics and supply chain systems. With 

the common assumptions of negligible material transportation procedures and infinite machine buffers, 

the traditional job-shop scheduling problem (JSP) models can lead to system failures due to the potential 

deadlock for a robot-driven production line. In this study, we propose two novel robotic job-shop 

scheduling models with deadlock and robot movement considerations (RJSPDT). The proposed novel 

models simultaneously consider the scheduling of job operations and the movement of the robot, with 

the objective of minimizing makespan. In order to avoid deadlock, the machine blocking strategy is 

applied and a set of tight deadlock-avoidance constraints is proposed. Two modelling approaches are 

applied: the traditional position-based approach and the novel network-based approach which is 

inspired by aviation scheduling studies. Through numerical examples, it is illustrated that our proposed 

models can completely avoid system conflicts by considering deadlock and robot movement. Besides, 

through computational experiments, the network-based RJSPDT shows higher solution efficiency (e.g., 

reducing the computational time by 96%) owing to the smaller model size than the position-based 

RJSPDT. Moreover, we explore the impacts of job settings (e.g., number of jobs, number of operations 

in a job) and job entrance strategies (i.e., fixed entrance and flexible entrance) on model performances. 

Results show that the number of jobs imposes greater impacts than the number of operations in a job, 

while the fixed entrance strategy can reduce the average computational time by 60% with little impact 

on the makespan. 
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1. Introduction  

Through the coordination of diverse resources such as materials, machines, and labor, scheduling is 

crucial for the enhancement of operations efficiency as well as the reduction of overall operations costs 

in logistics and supply chain systems (Choi et al., 2019; Ma et al., 2019; Sun et al., 2020a). Due to the 

nature of NP-hard, the scheduling problem is well-known to be one of the most difficult optimization 

problems, while tremendous research efforts have been devoted to improving the related decision 

making during the past decade (Choi et al., 2018; Sun et al., 2018; Xi et al., 2020; Zhou et al., 2020). 

The workshop scheduling problem is generally divided into two major research streams: The flow-

shop scheduling problem (FSP) and the job-shop scheduling problem (JSP) (Özgüven et al., 2012; 

Mascis and Pacciarelli, 2002; Vital-Soto et al., 2020). The FSP usually deals with the production 

scheduling problem for homogeneous products with the same production flow on a series of machines, 

with the aim of enhancing production capacity. However, nowadays, manufacturers are challenged by 

dynamic market demands as well as the increasingly complicated production processes. The traditional 

FSP thus fails to characterize the scheduling problems in the modern production systems. On the other 

hand, the JSP is formulated to schedule a set of jobs that involve various operations which are required 

to be handled on specific machines in a particular sequence, with the objective of minimizing makespan 

or maximizing throughput (Liu et al., 2018). Therefore, the JSP has become increasingly popular in 

logistics and supply chain systems due to the high operations flexibility. 

Over the past decade, Industry 4.0 has greatly advanced business intelligence which is facilitated 

by the wide application of automated techniques in various industries like automotive, electronics, 

chemistry, and food (Khan et al., 2019a, 2019b; Ren et al., 2020; Wang, et al., 2020b). Among these 

disruptive technologies, mobile robots are commonly used for a variety of activities like material 

delivery in automated production lines (named as robotic cells) (Yan et al., 2018). Robots are 

advantageous over human beings in doing simple and repetitive jobs, with higher accuracy, stability, 

and flexibility, which enables manufacturers to adjust production capacity dynamically according to the 

fluctuating market demands. Besides, the utilization of robots in material transportation can achieve a 

remarkable cost saving as the traditional labor-intensive material handling system constitutes 30%-70% 

of the total production cost (Rahman and Nielsen, 2019). Therefore, the manufacturing industry has 

witnessed a rapid growth in the installation of robots. For example, Alibaba, the largest Chinese online 

retailer, has established an automated warehouse, where 700 robots are employed to replace humans in 

production delivery on the Singles Day1. Its competitor, JD.com, launches the first 5G-powered smart 

logistics park, which also enables automated supply chain solutions2. It is reported that the global robot 

installation increased by 6% to 422,271 units in 2018, which is worth of 16.6 billion US dollars 

                         
1 Detailed information is available at: https://www.cnbc.com/2018/10/30/alibaba-cainiao-chinas-biggest-robot-

warehouse-for-singles-day.html. 
2 Detailed information is available at: https://www.supplychaindigital.com/logistics/jd-logistics-enabling-smart-

supply-chain-solutions. 

https://www.cnbc.com/2018/10/30/alibaba-cainiao-chinas-biggest-robot-warehouse-for-singles-day.html
https://www.cnbc.com/2018/10/30/alibaba-cainiao-chinas-biggest-robot-warehouse-for-singles-day.html
https://www.supplychaindigital.com/logistics/jd-logistics-enabling-smart-supply-chain-solutions
https://www.supplychaindigital.com/logistics/jd-logistics-enabling-smart-supply-chain-solutions
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(International Federation of Robotic, 2019). Accordingly, with the wide application of robots in modern 

logistics and supply chain systems, the traditional JSP is extended to the robotic job-shop scheduling 

problem (RJSP) with the robot functions of material delivery. The advancements in RJSP studies are of 

great importance for the efficiency and productivity enhancement for modern logistics and supply chain 

systems, which further imposes great impacts on the economic development of the society (Gharehgozli 

and Zaerpour, 2020; Roy et al., 2019; Simoni et al., 2020). 

However, the integration of the mobile robot into the manufacturing system remarkably increases 

the problem complexity and the computational difficulty due to the involvement of robotic 

transportation (Nouri et al., 2016). In fact, the proper coordination of the sequencing and time allocation 

of the required resources in the robotic job-shop scheduling problem is one of the most difficult 

operational problems (Caumond et al., 2009). The two sub-problems of the RJSP (the job scheduling 

and the robot routing planning) are traditionally treated independently and each component is NP-hard 

(Nouri et al., 2016). However, these two sub-problems are inherently interrelated, and the integration 

brings challenges in terms of modelling and algorithm complexity (Deroussi et al., 2008; Zheng et al., 

2014). In traditional JSP studies, a typical assumption is that the material transportation time between 

two machines is negligible or could be incorporated into the processing time of an operation. Therefore, 

the material transportation process is not considered in the traditional JSP research (Soukhal and 

Martineau, 2005). Accordingly, the capacity and availability of the material transportation tool are 

ignored. However, with the application of the mobile robot, the material transportation process becomes 

a crucial consideration in the job-shop scheduling problem. It is thus essential to consider the movement 

procedures and the robot capacity in a robot-driven production line. The robot capacity represents the 

number of products that a robot can carry, which depends on the configuration of the robot. In our 

problem setting, we adopt a single mobile robot with the capacity of 1 (the robot can hold one product 

each time) because such robot is common and cost-saving. 

Another commonly seen assumption in the traditional JSP studies is that machines have infinite 

buffers (Soukhal and Martineau, 2005). According to the JSP literature, buffers are storage spaces in 

machines where items stay and wait for delivery after the processing of operations (Mascis and 

Pacciarelli, 2002). Under the infinite buffer assumption, the traditional JSP studies allow machines to 

continue the next operation (i.e., other jobs can be transported to the machine) as long as they become 

idle without checking the availability of machine buffers. Although this assumption is common in the 

traditional JSP studies, it makes the RJSP solutions impractical as most equipment in real operations 

has no buffer or a limited buffer due to technique requirements and machine capabilities (Liu et al., 

2018). In this paper, we investigate the machines with no-buffer constraints (i.e. no intermediate buffers 

between machines) or blocking restrictions. The blocking implies a period that a product remains on 

the processing machine between the time point of the completion of the operation and the time point to 

be removed. During such periods, the machine cannot perform other jobs due to the blocking of the 

current job. In fact, such a situation is common and practical in real-world productions. For example, 
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in the chemical industry, a product may need blocking on the processing machine to keep a certain 

temperature before the next movement (Liu et al., 2018).  

With the machine no-buffer constraint and the robot capacity restriction, the robot is not allowed 

to deliver a job to its destination machine when that machine is occupied by another job. Otherwise, a 

deadlock situation happens, which is the conflicted and unsolvable situation that leads to the robot 

movement failure. In such circumstances, the system suffers from an emergent suspension and may 

need assistance of manual operators, which highly impairs the automation level of robotic 

manufacturing (Caumond et al., 2009). Figure 1 uses an example to demonstrate a deadlock situation. 

It can be seen that when job 1 has been processed by Machine 1, the robot attempts to deliver job 1 to 

the next processing machine (i.e., Machine 2). However, Machine 2 is occupied by job 2, which needs 

to be transported to Machine 3 after the execution. In this circumstance, the system suffers from a 

deadlock situation since the robot cannot move successfully (job 1 cannot be loaded to Machine 2 and 

job 2 cannot be unloaded from the same machine). On the other hand, Figure 2 presents a deadlock-free 

movement, where job 2 has been removed from Machine 2 and been delivered to Machine 3 before the 

delivery of job 1 to Machine 2. 

 

Figure 1. An example of a deadlock situation. 

 

 

Figure 2. An example of a deadlock-free movement. 

 

Therefore, the machine buffer and robot capacity restrictions are pivotal for the scheduling 

problem of a robot-driven production line (Brucker, et al., 2012b). However, how to characterize the 

features of deadlocks in the modelling process and describe the deadlock-avoidance strategy with 

mathematical formulations are very challenging. To be specific, diverse scenarios in the transportation 

process may lead to a deadlock situation. For example, the most straightforward deadlock happens when 

the robot attempts to place an item on an occupied machine. Besides, potential conflicts might occur 

even if the previous operations are normal and smooth, which makes the deadlock unforeseeable. 
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Moreover, the different features of the first operation and the last stock operation from other 

intermediate operations require different modelling methods for avoiding deadlock for these two 

operation types, which further increases the difficulty of deadlock modelling. Therefore, deadlock 

avoidance strategies are seldom modelled as constraints mathematically in the existing literature.  

Motivated by the significance towards modern automated logistics and supply chain systems and 

real challenges revealed from the robot-driven production lines, in this work, we study a robotic job-

shop scheduling problem with deadlock and robot movement considerations (RJSPDT). To be specific, 

we consider the job-shop scheduling in a robotic cell, where a robot with the capacity of 1 is responsible 

for the delivery of jobs among a series of machines with no-buffer constraints. Our problem setting is 

based on the following considerations: (i) such a robotic cell is common in real productions since this 

configuration could simplify the systematic control or perform as a component for more complex 

systems (Caumond et al., 2009); and (ii) a large body of related studies solve similar problems with 

heuristic approaches (e.g. Liu and Kozan, 2017), but rare attention has been paid to the mathematical 

modelling of the problems due to the high complexity (Hurink and Knust, 2001). 

We propose two novel models simultaneously consider the schedules of operations in jobs, as well 

as the movement procedures of the robot. Our objective is to minimize the makespan (i.e., the 

completion time of the last operation for the system) with the considerations of machine blocking and 

deadlock. Our models face with the following two major challenges. First of all, the robot movement 

process should be determined with the job-shop scheduling at the same time in order to achieve the 

optimal coordination of jobs, machines, and the robot. Second, the deadlock dilemma which is caused 

by the no-buffer restriction, as well as the machine blocking strategy should be considered in the 

decision framework. 

In terms of the modelling approach, we explore two distinct ideas for the novel RJSPDT, namely 

the position-based approach and the network-based approach. The two proposed models are thus named 

as the Position-RJSPDT and the Network-RJSPDT, respectively. In the following sections, we first 

develop the Position-RJSPDT with the typical position-based modelling approach, which has been 

widely applied in the JSP literature (Roshanaei et al., 2013; Demir et al. 2013; Meng et al. 2020). Then, 

we propose the model Network-RJSPDT based on the novel network modelling idea. The adoption of 

the network modelling idea is mainly based on the following two reasons. On one hand, the network 

modelling idea has a number of advantages: (i) Wang et al. (2020a) show that the network flow based 

models are superior than the traditional mixed integer programming modelling approaches in terms of 

computational time and optimality; (ii) Liang et al. (2011) suggest that models based on the network 

modelling idea are scalable and have a better nature of extension, which implies that the number of 

constraints increases much slightly along with the growth in problem sizes (e.g. the number of jobs and 

the number of operations in a job) compared with other modelling ideas. On the other hand, the network 

modelling idea has been widely adopted in aviation-related optimization problems (e.g., the aircraft 

routing problem and the crew scheduling problem) since the various components in the aviation system 
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(like aircraft, crew members) are inter-connected and affect each other, which can be represented by a 

network (Chung et al., 2020; Khan et al., 2019c; Qin et al., 2018, 2020a, 2020b). Similar to the aviation 

optimization problems, the connection and interaction of different resources in the RJSP (e.g., job 

operations are completed in a sequenced manner (i.e., nodes), and the robot moves from one machine 

to another to deliver job operations (i.e., paths)) provide a great opportunity for the application of the 

network modelling idea in the RJSP (Özgüven et al., 2012). But differently, as operations and machines 

are coordinated by only one robot, a return arc is needed for picking up the job before the next delivery, 

which brings modelling challenges for this problem. 

To the best of our knowledge, our proposed Network-RJSPDT is the first mathematical model 

applying the network-based approach to formulate the RJSP with the considerations of deadlock and 

robot movement in the literature. The logic behind the network-based approach is to transform the 

production line which is featured by a set of machines, the input depot, and the output depot into a 

network flow model, while the operations of jobs act as the nodes in the network and the routes of 

robots are formulated as paths in the network. Furthermore, a set of deadlock-avoidance strategies (i.e., 

for machine blocking) is developed to deal with the deadlock dilemma by considering all the four 

scenarios with possible occurrence of deadlock. Therefore, a set of novel tight deadlock-avoidance 

constraints is proposed, which is shown to efficiently avoid system conflicts in the scheduling process. 

Through experiments, several important insights are generated as follows. First of all, through the 

comparison with a benchmark case where the deadlock dilemma is not considered, it is illustrated that 

our proposed models can completely avoid the conflicts among machines, robots, and materials. The 

significance of the proposed tight deadlock-avoidance constraints is thus verified. Second, comparing 

the Network-RJSPDT and the Position-RJSPDT, it is found that the Network-RJSPDT can achieve 

higher solution efficiency owing to the smaller model size (i.e., fewer constraints and decision variables) 

than the Position-RJSPDT. Accordingly, for small-scale problems, the Network-RJSPDT spends 96% 

less computational time than the Position-RJSPDT averagely, while for most of the instances with large 

scales, the Network-RJSPDT is able to identify solutions within reasonable computational time while 

the Position-RJSPDT fails. Third, through sensitivity analysis, it is demonstrated that the number of 

jobs imposes greater impact on the performances of the two models than the number of operations in a 

job. Last, the exploration on different job entrance strategies (i.e., fixed entrance and flexible entrance) 

shows that the adoption of the fixed entrance strategy can reduce the average computational time by 

60% with little impact on the makespan.  

Contributions & Paper Structure 

By integrating the deadlock and robot movement considerations into the decision framework, this study 

contributes to the JSP literature by proposing two novel and practical mathematical models which can 

better capture the distinctive characteristics of a robot-driven production line. Besides, to the best of our 

knowledge, this research is the first study applying the network-based modelling approach which is 

widely applied in aviation scheduling problems with the considerations of deadlock and robot 
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movement in the JSP literature, thus providing a new modelling idea for the domain. Moreover, a set 

of novel deadlock-avoidance constraints is developed which is shown to be capable to greatly enhance 

the system efficiency. 

The rest of this paper is organized as follows. Section 2 reviews the related literature. Section 3 

gives problem description. Then, the Position-RJSPDT and the Network-RJSPDT are established in 

Section 4 and Section 5, respectively. Next, Section 6 demonstrates the significance of the proposed 

tight deadlock-avoidance constraints through a numerical example. In Section 7, computational 

experiments are carried out to evaluate the performances of the two proposed models. Last, Section 8 

concludes for this work. 

 

2. Literature Review 

In this section, we review the existing literature from three perspectives: (i) JSP, (ii) RJSP, and (iii) the 

existing modelling approaches for scheduling problems (e.g., JSP and aviation-related problems). 

2.1 Job-shop Scheduling Problem (JSP) 

In recent years, the studies in the FSP and the JSP have proposed diverse variants for the ever-changing 

manufacturing industry, in order to meet the practical requirements arising from the real production 

environment. For example, the FSP in a cyclic manner is proposed to minimize the cycle time for 

repetitive works in Crama et al. (2000). Besides, many studies extend the JSP to flexible JSP (FJSP) 

with the aim of maximizing the flexibility of the manufacturing system. Based on the FJSP, the dynamic 

FJSP is further developed to consider the impact of the arrival of new jobs on the existing system (Yan 

et al., 2018; Shahgholi et al., 2019). Moreover, some research even explores the flexible shop scheduling 

and super shop scheduling problems (Abreu et al., 2020; Koulamas and Panwalkar, 2019). 

With the rapid evolution of JSP variants, an increasing number of new constraints are proposed to 

better capture the characteristics of the practical manufacturing system, such as the buffer limitations, 

material pickup operations, setup times, and machine availabilities. Buffer limitation is a crucial 

consideration which depends on machine capacity. Liu et al. (2018) study a generalized JSP problem 

with a combination of four buffering constraints (i.e., no-wait, no-buffer, limited-buffer and infinite-

buffer constraints). Buffer management strategy is highly related to material pickup operations (i.e., the 

free-pickup strategy and the no-wait strategy). The free-pickup strategy allows blocking in machines. 

For instance, Mati et al. (2011) model an FJSP that takes blocking into account and solve the problem 

with Genetic Algorithm (GA). On the other hand, the no-wait strategy forbids delays between two 

successive operations in a job. For instance, both wait and no-wait strategies are considered in a mixed 

flow-shop problem proposed by Wang et al. (2017) which is solved by a heuristic greedy algorithm. In 

terms of the setup times, Bektur and Saraç (2019) model it as a crucial restriction for an unrelated 

parallel machine scheduling problem which is solved by a tabu-search and simulated annealing 
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algorithm. Moreover, the machine availability constraint is formulated in Hasan et al. (2011), in which 

disruptions like machine breakdown are considered to enhance the system robustness. 

Various objectives are considered in the existing JSP studies. For example, Arroyo and Armentano 

(2005) pursue makespan minimization and tardiness minimization in a flow-shop scheduling problem 

which is solved by a genetic local search algorithm, while Zhang and Chiong (2016) study a bi-objective 

energy-efficient JSP which minimizes the weighted tardiness and energy consumption.  

2.2 Robotic Job-shop Scheduling Problem (RJSP) 

The introduction of robots for material transportation further complicates the job-shop scheduling 

problem as the transportation process should be incorporated into the decision framework (Deroussi et 

al., 2008; Zheng et al., 2014). In fact, a two-machine flowshop scheduling problem with transportation 

considerations and a single robot is NP-hard (Hurink and Knust, 2001). In the literature, traditional 

studies divide the job-shop scheduling problem with transportation considerations into two stages in 

which the job scheduling and the transportation routing are determined sequentially (Egbelu and 

Tanchoco, 1984; Hurink and Knust, 2005; Nouri et al., 2016). Few scholars treat the two sub-problems 

as an integrated system, where the job scheduling and the robot routing are considered simultaneously. 

Besides, most previous research attentions are paid to the flowshop robotic scheduling problem due to 

the natural relationship between automation and mass production (Crama et al., 2000; Soukhal and 

Martineau, 2005; Zhou et al., 2012). Dawande et al. (2005) carry out a survey on the research 

development of robotic flowshop cells consisting of one or more robots and develop a comprehensive 

classification scheme from three characters, namely machine environments, processing restrictions, and 

objective functions. However, few research efforts have dealt with the robotic job-shop scheduling 

problems. 

In addition, meta-heuristic algorithms are developed to solve the related robotic scheduling 

problems. For example, Liu and Kozan (2017) define a blocking job shop scheduling problem with 

robotic transportation (BJSSRT) and solve it with a meta-heuristic local search algorithm. Besides, Li 

et al. (2019) investigate a JSP in a robotic cell with time window constraints which aims to minimize 

the total earliness and tardiness. A metaheuristic approach that combines a memetic algorithm and local 

search is proposed to solve the problem (Li et al., 2019). However, although such intelligent algorithms 

can solve large instances within reasonable time limits, they fail to guarantee the solution optimality 

(Nouri et al., 2016). Only a few attentions have been paid to the optimization theories of the RJSP. Ham 

(2020) solves a robotic JSP by a constraint programming methodology, while Dai et al. (2019) present 

an optimization model for an FJSP with transportation and energy saving considerations. Quinton et al. 

(2020) apply the Benders decomposition technique together with a heuristic algorithm to solve a 

sequence-based cyclic FJSP model with the application of robotic technologies. 

Furthermore, the research of machine buffers (no-buffer or limited buffer) has received very 

limited attention. Liu et al. (2018) study the different buffer management strategies. Drobouchevitch et 
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al. (2010) investigate a free-pickup FSP in a robotic cell where one transporter (i.e., robot) is involved, 

and reveal that the introduction of machine buffers for a single robot problem is not helpful for 

improving the system throughput, which helps justify the significance of our problem setting. However, 

failing to consider machine buffers and robot capacity might lead to deadlock. As pointed out by 

Soukhal and Martineau (2005), the RJSP studies without deadlock constraints are impractical and lack 

of real-world implementation values. General methodologies to deal with deadlock situations include 

deadlock detection & recovery and deadlock avoidance (Caumond et al. 2009). In this paper, we adopt 

the deadlock avoidance strategy. The research related to deadlock-avoidance strategies are briefed in 

the following. Caumond et al. (2009) regulate the maximum number of jobs that can be handled at the 

same time in a flexible manufacturing system (FMS). In a similar manner, Yan et al. (2018) divide the 

whole planning horizon into a set of time intervals and assign each transportation activity into those 

time intervals to avoid deadlock. Besides, Ham (2020) assigns machines with sufficient input/output 

buffer space to alleviate system conflicts. Different from these deadlock avoidance methods, we 

propose a set of deadlock-avoidance constraints mathematically, which avoids all possible systematic 

deadlocks from the source. 

In terms of the robot routing sub-problem, a related optimization research area is the vehicle 

routing problem (VRP), which is important to logistics and supply chain operations. The VRP 

investigates the efficient supply for distributed customers with diverse delivery requirements (Baker 

and Ayechew, 2003; Pillac et al., 2013; Pisinger and Ropke, 2007). Basically, a depot is established for 

each vehicle to pick up goods and the vehicle needs to return to the depot once the delivery is completed 

(Baker and Ayechew, 2003). Ng et al. (2017) investigate an extension of VRP and propose an Online 

Vehicle Routing Problem (OVRP) model, which integrates the real time traffic density estimation into 

the dynamic decision framework to alleviate the possible delivery delay. Similar to the VRP, the RJSP 

studied in this paper also needs to plan the route for the transporter (i.e., the robot). For the VRP, a 

transportation task finishes when the vehicle delivers goods to customers. However, differently, the 

problem studied in this paper has two distinctive components that need careful coordination: the 

scheduling of jobs (operations), and the scheduling and routing of the moving robot. Besides, a return 

action is required for the robot before the next movement. Therefore, the modelling process of the RJSP 

is different from the vehicle routing problem. 

2.3 Modelling Approaches for Scheduling Problems 

In the JSP literature, many classical modelling approaches are applied, among which the position-based 

idea proposed by Wagner (1959) is a typical and widely adopted modeling method (Roshanaei et al., 

2013; Demir et al. 2013; Meng et al. 2020). For example, Hsu and Yang (2016) propose a position-

based mixed integer linear programming optimization model to schedule the production of an automatic 

manufacturing factory. Özgüven et al. (2010) and Naderi and Azab (2014) address extended job-shop 

scheduling problems mainly based on the position-based modelling approach. Besides, Karimi et al. 
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(2017) characterize the movement of robots by combining the position- and sequence- based modelling 

approaches. Yan et al. (2018) apply the time interval modelling idea to solve a dynamic FJSP with a 

robot. Some scholars consider the comparisons among different modelling ideas. For instance, Demir 

et al. (2013) construct five FJSPs and Meng et al. (2020) deal with the FSP by eight models involving 

various modelling ideas. Different models are characterized by various decision variables which capture 

the relationships among operations and machines from different perspectives. Furthermore, different 

modelling approaches lead to the discrepancy in model sizes (e.g., the numbers of constraints and 

decision variables), thus affecting the computational times. Although plenty of attention has been paid 

to the modelling of JSP, to the best of our knowledge, the research on mathematical formulations of 

RJSP is very limited. The related literature is discussed in the following. Brucker et al. (2012a) 

formulate a cyclic JSP with robot movement and blocking considerations with a sequence-based 

modelling approach. Besides, Zhou et al. (2012) use a similar modelling idea to address a cyclic RFSP 

considering processing time windows, robot capacity, and machine availability.  

The network-based modelling approach has achieved wide application, especially in the domain 

of aviation-related scheduling problems, in which the decision variables can be related to paths, nodes, 

or arcs in the generated network. For example, Wen et al. (2020) state that a network derived from a 

flight schedule is able to characterize the specific features of the scheduling problem in the domain of 

airline crew planning. Similarly, Sun et al. (2020b) apply a duty-based flight network to capture the 

operational risks caused by flight delays for a robust air crew scheduling problem. Focusing on the 

aircraft routing problem, Basdere and Bilge (2014) employ a modified connection network 

representation to provide maintenance-feasible aircraft routes with the objective of fleet utilization 

maximization in a quick manner. In a similar study, Liang et al. (2011) develop a modified time-space 

network presentation for the aircraft maintenance routing problem and suggest that the size of their 

developed network can remain small even for realistic problems. 

Research gaps 

From the above discussions, several important research gaps can be revealed. First of all, despite the 

abundant studies on the JSP, the research on the RJSP with robot movement considerations is very 

limited. However, with the fast development of the robotic technology, the robot-driven logistics and 

supply chain systems become increasingly popular, which deserves more research attention.  Second, 

the deadlock problem can greatly impair the overall production efficiency of the system and thus should 

be avoided. Although different deadlock solutions have been proposed in the literature, none of these 

approaches mathematically develops efficient and tight deadlock-avoidance constraints and integrate 

them into the modelling process, which can help prevent the possible deadlock from the source. Third, 

even though the network-based modelling approach has great potential to be applied for the robot-driven 

job-shop scheduling problems, its application in the related area has not been fully explored. In 

conclusion, the JSP literature will be greatly benefited by bridging these crucial research gaps. 
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3. Problem Description 

The robotic job-shop scheduling problem with deadlock and robot movement considerations (RJSPDT) 

studied in this paper is described as follows. A robotic cell is a unit (e.g., a job shop) that consists of 

|𝑀| linearly placed stationary machines (the set of machines is denoted by 𝑀) and a robot for delivering 

materials among machines. For a job assignment consisting of a set of jobs (𝑖 ∈ 𝐼), each job i involves 

a set of operations 𝐽𝑖 = {Oi1, Oi2, …, Oi|Ji|} which should be completed in a specific sequence (known as 

operation sequence). Each machine in the robotic cell could execute a particular type of operation. 

Besides, each operation is a nonstop process that will be processed by a designated machine Mij with a 

certain processing time denoted by PTij. One machine can only execute one operation at any time and 

pre-emption is not allowed. Each job will enter the production process through an input depot D. Then, 

jobs (materials) will be processed on and transported among machines for the execution of operations. 

Finally, a finished job will be delivered to an output depot S for stocking. The RJSPDT aims to finish 

all the operations involved in this assignment by using the minimum makespan. 

Although operations within a job should be performed in a certain order, there is no sequence 

restriction for operations from different jobs, which means that the robot can move to an operation from 

any job as long as each operation sequence is not violated. Once the route of the robot is determined, 

the sequence of the operations assigned to each machine can be decided (known as machine sequence). 

The robotic cell specified in this context is depicted in Figure 3. 

The machine buffer and robot movement considerations in the robotic cell context are highlighted 

as follows. The machines have no buffer and the single mobile robot has a capacity to hold one product 

at each time (i.e., the robot also has no buffer), and there is no other space to stock intermediates within 

the robotic cell. Consequently, the robot or each machine can only be occupied by one job at any time. 

Since machines are linearly placed, the travelling times between any pair of machines are symmetric 

and determined by the absolute distance between their locations. Moreover, the robotic cell obeys the 

free-pick up criteria, which means that a job can be blocked on a machine until the robot comes for 

unloading (i.e., the so-called machine blocking). Thus, there are two types of movements in the process 

of transportation, namely the loaded movements and empty movements. A loaded movement occurs 

when the robot moves with carrying a product, while an empty movement refers to the case when the 

robot moves without carrying any product. In addition, in the RJSPDT, the predecessors or successors 

for an operation can be classified into three categories, namely the same-job (the predecessors or 

successors are the operations involved in the same job), the same-machine (the predecessors or 

successors are the operations assigned to the same machine), and the robot-routing (the predecessors or 

successors are the operations assigned in the robot route) ones.  
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Figure 3. A typical robotic cell. 

 

The assumptions of the studied RJSPDT are summarized as follows. 

1) All jobs and machines are available at time zero. 

2) The first job has been initialised at time zero. 

3) The processing time of each operation is fixed and known in advance.  

4) The processing time of initialization and stock activities is zero. 

5) The activities of loading or unloading spend no time. 

6) The operation immediately starts after the job is loaded onto the machine. 

7) Each stationary machine can only process one operation at any given time.  

8) Pre-emption is not allowed. 

9) Both the robot and machines can handle one job at each time. 

10) There is no other space for stocking within the robotic cell. 

For ease of presentation, the notations used in the following sections are listed in Table 1. The 

execution process of any Oij (j≠1) is introduced as follows. When the robot determines that the next 

step is to execute Oij, two possible scenarios can be derived. First, if the robot stays at Mij-1 (the machine 

that performs Oij’s same-job predecessor Oij-1), then the robot can conduct a direct loaded movement 

that delivers the part from Mij-1 to Mij. Second, if the robot is not at Mij-1, then, an empty movement back 

to Mij-1 is necessary to pick up the part before transporting it to Mij. Furthermore, in the second scenario, 

two sub-scenarios are needed to be considered: (i) Oij-1 has not been finished yet when the robot arrives. 

In this situation, the robot waits for the completion of Oij-1 and then pick up the job from the machine. 

(ii) Oij-1 has been finished in advance, so that the finished part will be blocked on that machine until the 

robot comes. The above described execution processes apply to the operations which are not the first 

operation in the corresponding job. Note that if Oij is the first operation of job i (other than job 1), then 

an empty movement to the input depot should be conducted to obtain the product before transporting it 

to Mi1.  
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Table 1. Notations. 

I The set for jobs (i.e. job assignment). 

|𝐼| The total number of jobs. 

𝑖, 𝑚 , ℎ The indexes for jobs, where 𝑖, 𝑚, ℎ ∈ 𝐼 = {1,2, … , |𝐼|}. 

𝐽𝑖 The set for the operations involved in job i. 

|𝐽
𝑖
|  The number of operations in job i. 

|𝐽𝑖| + 1 The dummy stock operation at the output depot for job i. 

𝑗, 𝑛, 𝑔 The index for operations in a job, where 𝑗 ∈ (1, |𝐽𝑖| + 1), 𝑛 ∈ (1, |𝐽𝑚| + 1), 𝑔 ∈ (1, |𝐽ℎ| + 1). 

𝑂𝑖𝑗 , 𝑂𝑚𝑛 , 𝑂ℎ𝑔 The index for the j-th, n-th, and g-th operation of job i, job m, and job h; 𝑂𝑖𝑗 ∈ 𝐽𝑖, 𝑂𝑚𝑛 ∈

𝐽𝑚, 𝑂ℎ𝑔 ∈ 𝐽ℎ. 

𝑁𝑜 The set for all operations in the assignment, including the dummy stock operations. 

|𝑁𝑜| The number of total operations in the assignment, including the dummy stock operations. 

𝑘, 𝑝 The k-th and p-th operations (the operations with priorities k, p) executed by the robot. 

𝑃𝑇𝑖𝑗  The processing time of 𝑂𝑖𝑗  on the designated stationary machine (𝑃𝑇𝑖,|𝐽𝑖|+1 = 0 as the 

processing time of the dummy stock operation is zero). 

𝑀 The set of machines. 

|M| The number of machines. 

D The input depot. 

S The output depot. 

𝑀𝑖𝑗 The index for the stationary machine assigned to execute 𝑂𝑖𝑗 . 

𝑃𝑀𝑖𝑗  The position of the machine assigned to 𝑂𝑖𝑗  (𝑃𝑀𝑖|𝐽𝑖|+1 =  |𝑀| + 1). 

𝑃𝑀𝐷 The position of the input depot, 𝑃𝑀𝐷 = 0. 

𝑡𝑢𝑖𝑗𝑚𝑛 The travelling time for an empty movement of the robot from 𝑀𝑖𝑗 to 𝑀𝑚𝑛. 

𝑡𝑙𝑖𝑗 The travelling time for a loaded movement of the robot from 𝑀𝑖𝑗−1 to 𝑀𝑖𝑗. 

𝛽 A large positive number. 

𝐹 A dummy sink node for the Network-RJSPDT. 

 

It is noticeable that machine blocking is unavoidable in case of a deadlock situation. A deadlock 

appears if the single robot delivers a product A to a destination machine while that machine is occupied 

by another product B. Since only one robot is available, the robot needs to unload product B from the 

machine before loading A to that machine. However, since product A is occupying the only space of the 

robot and no other transporter is available, system conflicts are thus inevitable. Given that the 

occurrence of deadlock would disturb the normal operations of the automated system, a set of deadlock-

avoidance constraints is demanded to avoid such a dilemma. Figure 4 depicts a feasible deadlock-free 

robot route with a simple example of two jobs (each with two operations). 

Next, we will first present the proposed Position-RJSPDT in Section 4, which is followed by the 

Network-RJSPDT as formulated in Section 5. 
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Figure 4. A deadlock-free robot route for two jobs and four operations. 

 

4. Position-RJSPDT 

The Position-RJSPDT is developed based on the position-based modelling idea widely used in the 

literature. This model is to establish the optimal execution sequence and the corresponding robot route 

with the objective of minimizing the makespan.  

 

Table 2. Decision variables of the Position-RJSPDT. 

Continuous Decision Variables 

𝐶𝑚𝑎𝑥 Total time needed to finish all the operations and deliver all jobs to the output 

depot. 

𝑆𝑀𝑖𝑗 The start time of 𝑂𝑖𝑗 on the assigned machine. 

Binary Decision Variables 

𝑍𝑖𝑗ℎ𝑔 Binary decision variable. It equals 1 when both 𝑂𝑖𝑗 and 𝑂ℎ𝑔 are executed on the 

same machine, and 𝑂𝑖𝑗 precedes 𝑂ℎ𝑔 (not necessarily the immediate 

predecessor), and 0 otherwise. 

𝑋𝑖𝑗𝑘 Binary decision variable. It equals 1 when 𝑂𝑖𝑗 is scheduled as the k-th operation 

to be executed by the robot, and 0 otherwise. 

 

The traditional position-based modelling approach aims to grant each operation an executive 

position on the designated machine. In the context of RJSPDT, even though the operations assigned to 

a machine are sequenced, the robot routing cannot be determined simply according to this sequence due 

to the equipment availability limitation. Actually, the undetermined sequences of operations on different 

machines complicate the movement process of the robot. Therefore, in our study, the Position-RJSPDT 

transforms the robot into a (dummy) machine. In this way, the problem is transformed to assign each 

operation with an execution priority on the robot. An operation is assigned with priority k means that 

this operation is the k-th operation being executed by the robot. Consequently, the output of the model 

should include the position of each operation, the start time of each operation, and the operation 

sequence for each machine. The activities related to initialization and stocking operations are regarded 
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as dummy operations with zero processing times. Based on the above descriptions, the (continuous & 

binary) decision variables are defined in Table 2, while the proposed Position-RJSPDT is presented in 

Table 3. 

 

Table 3. The proposed Position-RJSPDT. 

Obj. Min 𝐶𝑚𝑎𝑥  (1.0) 

s.t.   

𝐶𝑚𝑎𝑥 ≥ 𝑆𝑀𝑖𝑗 ,  ∀𝑖, ∀𝑗 ∈ (1, |𝐽𝑖| + 1), (1.1) 

𝑆𝑀11 = |𝑃𝑀11 − 𝑃𝑀𝐷|δ,    (1.2) 

𝑋111 = 1,  (1.3) 

𝑆𝑀𝑖𝑗 + 𝑃𝑇𝑖𝑗 + 𝑡𝑙𝑖(𝑗+1) ≤  𝑆𝑀𝑖(𝑗+1), ∀𝑖, ∀𝑗 ∈ (1, |𝐽𝑖|), (1.4) 

∑ 𝑋𝑖𝑗𝑘𝑘 = 1;   ∀𝑖, ∀𝑗 ∈ (1, |𝐽𝑖| + 1), 𝑘 ∈ (1, |𝑁𝑜|), (1.5) 

∑ ∑ 𝑋𝑖𝑚𝑝𝑝𝑚 − (1 − 𝑋𝑖𝑗𝑘) ∗ 𝛽 ≤ 0;   ∀𝑖, ∀𝑗 ∈ (1, |𝐽𝑖| + 1), ∀𝑘 ∈ (1, |𝑁𝑜|), ∀𝑚 ∈ (j + 1, |𝐽𝑖| + 1), ∀p ∈ (1, 𝑘), (1.6) 

(𝑆𝑀𝑖𝑗 − 𝑆𝑀𝑚𝑛) ∗ (𝑘 − 𝑝) + (2 − 𝑋𝑖𝑗𝑘 − 𝑋𝑚𝑛𝑝) ∗ 𝛽 ≥ 0,   ∀𝑖, ∀𝑚, 𝑖! = 𝑚, ∀𝑗 ∈ (1, |𝐽𝑖| + 1), 𝑛 ∈ (1, |𝐽𝑛| + 1), ∀𝑘, p ∈ (1, |𝑁𝑜|),   (1.7) 

𝑆𝑀𝑖𝑗 + (2 − 𝑋𝑚𝑛(𝑘−1) − 𝑋𝑖𝑗𝑘) ∗ 𝛽 ≥ 𝑆𝑀𝑚𝑛 + 𝑡𝑢𝑚𝑛𝑖(𝑗−1) + 𝑡𝑙𝑖𝑗 ,  ∀𝑖, ∀𝑚, 𝑖! = 𝑚, ∀𝑗 ∈ (2, |𝐽𝑖| + 1), ∀𝑛 ∈ (1, |𝐽𝑚| + 1), ∀𝑘 ∈ (2, |𝑁𝑜|), (1.8) 

𝑆𝑀𝑖1 + (2 − 𝑋𝑖1𝑘 − 𝑋𝑚𝑛(𝑘−1)) ∗ 𝛽 ≥  𝑆𝑀𝑚𝑛 + 𝑡𝑢𝑚𝑛𝐷 + 𝑡𝑙𝑖1,   ∀𝑖, ∀𝑚, 𝑖! = 𝑚, 𝑖! = 1, 𝑛 ∈ (1, |𝐽𝑚| + 1), ∀𝑘 ∈ (2, |𝑁𝑜|), (1.9) 

𝑍𝑖𝑗ℎ𝑔 + 𝑍ℎ𝑔𝑖𝑗 = 1,    ∀𝑖, ∀ℎ, 𝑖! = ℎ, ∀𝑗 ∈ (1, |𝐽𝑖| + 1), 𝑔 ∈ (1, |𝐽ℎ| + 1), 𝑀𝑖𝑗 = 𝑀ℎ𝑔, (1.10) 

𝑆𝑀ℎ𝑔 ≥ 𝑆𝑀𝑖𝑗 + 𝑃𝑇𝑖𝑗 − (1 − 𝑍𝑖𝑗ℎ𝑔) ∗ 𝛽,   ∀𝑖, ∀ℎ, 𝑖! = ℎ, ∀𝑗 ∈ (1, |𝐽𝑖| + 1), 𝑔 ∈ (1, |𝐽ℎ| + 1), 𝑀𝑖𝑗 = 𝑀ℎ𝑔, (1.11) 

𝑆𝑀𝑖𝑗 ≥  𝑆𝑀ℎ𝑔 + 𝑃𝑇ℎ𝑔 − 𝑍𝑖𝑗ℎ𝑔 ∗ 𝛽,   ∀𝑖, ∀ℎ, 𝑖! = ℎ, ∀𝑗 ∈ (1, |𝐽𝑖| + 1), 𝑔 ∈ (1, |𝐽ℎ| + 1), 𝑀𝑖𝑗 = 𝑀ℎ𝑔, (1.12) 

𝑆𝑀ℎ𝑔 ≥ 𝑆𝑀𝑖(𝑗+1) + 𝑡𝑢𝑖(𝑗+1)ℎ(𝑔−1) + 𝑡𝑙ℎ𝑔 − (1 − 𝑍𝑖𝑗ℎ𝑔) ∗ 𝛽,   ∀𝑖, ∀ℎ, 𝑖! = ℎ, ∀𝑗 ∈ (1, |𝐽𝑖|), 𝑔 ∈ (2, |𝐽ℎ|), 𝑀𝑖𝑗 = 𝑀ℎ𝑔, (1.13) 

𝑆𝑀𝑖𝑗 ≥ 𝑆𝑀ℎ(𝑔+1) + 𝑡𝑢ℎ(𝑔+1)𝑖(𝑗−1) + 𝑡𝑙𝑖𝑗 − 𝑍𝑖𝑗ℎ𝑔 ∗ 𝛽,  ∀𝑖, ∀ℎ, 𝑖! = ℎ, ∀𝑗 ∈ (2, |𝐽𝑖|), 𝑔 ∈ (1, |𝐽ℎ|), 𝑀𝑖𝑗 = 𝑀ℎ𝑔, (1.14) 

𝑆𝑀ℎ1 ≥ 𝑆𝑀𝑖(𝑗+1) + 𝑡𝑢𝑖(𝑗+1)𝐷 + 𝑡𝑙ℎ1 − (1 − 𝑍𝑖𝑗ℎ1) ∗ 𝛽,   ∀𝑖, ∀ℎ, 𝑖! = ℎ, ∀𝑗 ∈ (1, |𝐽𝑖|), 𝑀𝑖𝑗 = 𝑀ℎ1, (1.15) 

𝑆𝑀𝑖1 ≥ 𝑆𝑀ℎ(𝑔+1) + 𝑡𝑢ℎ(𝑔+1)𝐷 +  𝑡𝑙𝑖1 − 𝑍𝑖1ℎ𝑔 ∗ 𝛽,   ∀𝑖, ∀ℎ, 𝑖! = ℎ, ∀𝑔 ∈ (1, |𝐽ℎ|), 𝑀𝑖1 = 𝑀ℎ𝑔, (1.16) 

𝑋𝑖𝐽𝑘 ∈ (0,1),  ∀𝑖, ∀𝑗 ∈ (1, |𝐽𝑖| + 1), 𝑘 ∈ (1, |𝑁𝑂|), (1.17) 

𝑍𝑖𝐽ℎ𝑔 ∈ (0,1),  ∀𝑖, ∀ℎ, 𝑖! = ℎ, ∀𝑗 ∈ (1, |𝐽𝑖| + 1), 𝑔 ∈ (1, |𝐽ℎ| + 1), (1.18) 

𝑆𝑀𝑖𝑗 > 0,   ∀𝑖, 𝑗 ∈ (1, |𝐽𝑖| + 1), (1.19) 

𝑡𝑢𝑖𝑗𝑚𝑛 = |𝑃𝑀𝑖𝑗 − 𝑃𝑀𝑚𝑛|δ,   ∀𝑖, 𝑚, 𝑗 ∈ (2, |𝐽𝑖| + 1), 𝑛 ∈ (1, |𝐽𝑚| + 1), (1.20) 

𝑡𝑙𝑖𝑗 = |𝑃𝑀𝑖𝑗 − 𝑃𝑀𝑖(𝑗−1)|δ,   ∀𝑖, 𝑗 ∈ (2, |𝐽𝑖| + 1), (1.21) 

𝑡𝑙𝑖1 = |𝑃𝑀𝑖1 − 𝑃𝑀𝐷|δ,   ∀𝑖, (1.22) 

𝑡𝑢𝑖𝑗𝐷 = |𝑃𝑀𝑖𝑗 − 𝑃𝑀𝐷|δ ∀𝑖, ∀𝑗 ∈ (1, |𝐽𝑖| + 1). (1.23) 

 

The objective function (1.0) is to minimize the makespan of the entire assignment. Constraints 

(1.1) ensure that the makespan covers all operations including the stocking operations of all jobs. 

Constraint (1.2) defines O11 as the entrance of the whole system. Therefore, the start time of O11 equals 

the travelling time from the input depot to M11. Accordingly, constraint (1.3) specifies that O11 has the 

highest priority and will be the first to be executed.  

Constraints (1.4) specify the operation sequence within a job. Job i has to be remained on Mij for 

at least a period of PTij before being transported to the next machine Mi(j+1). Constraints (1.5) and (1.6) 

mandate that each operation only has one priority, while each priority is related to only one operation. 
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As the operations with higher priorities should start earlier than the operations with lower priorities, 

constraints (1.7) link the priorities with the operation start times by mandating that if the priority of Oij 

(k) is higher than the priority of Omn (p) (i.e., k<p), then, the start time of Oij should be earlier than Omn.  

Constraints (1.8) regulate the relationship between two operations with successive priorities. If the 

robot plans to handle Oij after delivering Omn, the robot should conduct an empty move to Mi(j-1), pick 

up job i, and then transport it to Mij. If Oi(j-1) has not been completed when the robot arrives, the robot 

will wait until it is finished, which is restricted by constraints (1.4).  

Constraints (1.9) specify the start time of the first operation in each job i (except the first job). In 

the robot route, the immediate predecessor of Oi1 must be an operation from another job (including the 

final dummy stock operations). Thus, after that preceding job has been released to the designated 

machine, the robot should first go to the input depot to pick up the initialized job i before transporting 

it to Mi1.  

Since the machine can only process one operation at a time and the operations cannot be interrupted 

after starting, the operations executed by a machine are also sequenced. Therefore, Constraints (1.10) - 

(1.12) are needed. Constraints (1.10) guarantee that two operations assigned to the same machine can 

only have one execution sequence (either Oij precedes Ohg, or vice versa). To specify the sequential 

relationship on the machine, either Constraints (1.11) or Constraints (1.12) must hold. For example, if 

Oij precedes Ohg as restricted by (1.11), the starting time of Ohg should be later than the starting time of 

Oij plus the processing time of Oij.  

In case of a deadlock situation, Constraints (1.13) - (1.16) formulate the deadlock-avoidance 

constraints for the machines as well as the robot with the following four considerations: (i) whether the 

operation’s same-machine predecessor is still in execution; (ii) whether the operation’s same-machine 

predecessor has been finished while not been released from the machine; (iii) whether the robot is busy 

delivering the operation’s same-machine predecessor to the next destination; (iv) whether the robot is 

conducting an empty movement or waiting at the machine that executes the operation’s same-job 

predecessor. If any one of the above mentioned four scenarios happens, the delivery of the current 

operation will lead to a deadlock situation. Thus, for operations other than the first operation in each 

job, either Constraints (1.13) or Constraints (1.14) will hold. If Ohg is the successor of Oij on the same 

machine, Oij should be removed and delivered to Mi(j+1) before Ohg can start. Thus, the start time of Ohg 

should be later than the start time of Oi(j+1) plus the empty movement from Mi(j+1) to Mh(g-1) and a loaded 

movement that transports job h from Mh(g-1) to Mhg. Constraints (1.15) and Constraints (1.16) are 

deadlock-avoidance constraints designed for the first operations in each job, as these operations need 

transportation from the input depot.  

Constraints (1.17) - (1.23) define the decision variables and parameters.  
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5. Network-RJSPDT  

Different from the Position-RJSPDT, the Network-RJSPDT characterizes the job-shop scheduling and 

robot routing through a connected network. Following the network theory, the RJSPDT could be 

transformed into routing the robot among all operations under resource restrictions and other 

operational requirements. In the network, operations perform as nodes. The connected network stresses 

the balanced flow in the network. There are two foundations to support this idea: (i) the inflow linkages 

and the outflow linkages of an operation share the same machine; (ii) the restriction of robot availability 

guarantees the connectivity and consistency of the movement map. 

 

Table 4. Decision variables of the Network-RJSPDT. 

Continuous Decision Variables 

𝐶𝑚𝑎𝑥 The total time needed to finish all the operations and deliver all jobs to the output depot. 

𝑆𝑀𝑖𝑗 The start time of 𝑂𝑖𝑗 on the assigned machine. 𝑆𝑀𝐹 denotes the time that the algorithm 

reaches the dummy sink point, which equals the makespan. 

Binary Decision Variables 

𝑍𝑖𝑗ℎ𝑔 Binary decision variable. It equals 1 when both 𝑂𝑖𝑗 and 𝑂ℎ𝑔 are executed on the same 

machine, and 𝑂𝑖𝑗 precedes 𝑂ℎ𝑔; 0 otherwise. 

𝑋𝑖𝑗𝑚𝑛 Binary decision variable. It equals 1 when the robot leaves for 𝑂𝑚𝑛 after 𝑂𝑖𝑗  starts, 

where i and m are two different jobs; 0 otherwise. 

𝑌𝑖𝑗(𝑗+1) Binary decision variable. It equals 1 when the robot waits for the completion of the 

current operation 𝑂𝑖𝑗 and goes to 𝑀𝑖(𝑗+1); 0 otherwise. 

 

It is easily identified that in this network, each node might have two categories of successor, i.e., 

the same-job successor and the robot-routing successor. Similarly, each node also has two categories of 

predecessor, i.e., the direct same-job predecessor and the robot-routing predecessor. These four types 

of linkages, however, can be simplified into two categories of arcs, namely the “waiting-delivering” arc 

and the “returning-delivering” arc, which represent the two options for the robot to carry out the next 

operation. Accordingly, the two types of arcs (i.e., X and Y types) are characterized by the binary 

decision variables Xijmn and Yij(j+1). Xijmn indicates whether a robot-routing sequential relationship exists 

between Oij and Omn (two operations from different jobs). This type of arc corresponds to the “returning 

and delivering” situation and consists of two movements: an empty movement back to the same-job 

predecessor of Omn (from Mij to Mm(n-1)), and a loaded movement from Mm(n-1) to Mmn. Yij(j+1) records the 

“waiting and delivering” connection and consists of the waiting time at the current station (i.e., PTij) 

and the travel time to the same-job successor (from Mij to Mi(j+1)). Each node should be connected in the 

network with an X or Y type of arc. 

Besides, a dummy sink node (F) is established in the model, which is the exit for the entire 

assignment, preventing the model from getting into a loop. Since the final operation of the assignment 
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will be connected with the sink node, the time that the model reaches the sink node is equal to the 

makespan. In this way, the whole network is connected by the two types of arcs mentioned above and 

it is guaranteed that each node (operation) will be visited and no loops will appear due to the balanced 

one-degree inflow and outflow limitation. Definitions of decision variables are summarized in Table 4, 

based on which the proposed Network-RJSPDT is formulated in Table 5. 

 

Table 5. The proposed Network-RJSPDT. 

Obj. Min 𝐶𝑚𝑎𝑥  (2.0) 

s.t.   

𝐶𝑚𝑎𝑥 ≥ 𝑆𝑀𝐹 ,   (2.1) 

𝑆𝑀𝐹 ≥ 𝑆𝑀𝑖𝑗 ∀𝑖, ∀𝑗 ∈ (1, |𝐽𝑖| + 1), (2.2) 

𝑆𝑀11 = |𝑃𝑀11 − 𝑃𝑀𝐷|δ,   (2.3) 

𝑆𝑀𝑖𝑗 + 𝑃𝑇𝑖𝑗 + 𝑡𝑙𝑖(𝑗+1) ≤  𝑆𝑀𝑖(𝑗+1), ∀𝑖, ∀𝑗 ∈ (1, |𝐽𝑖|), (2.4)  

∑ ∑ 𝑋𝑖𝑗𝑚𝑛𝑛𝑚 + 𝑌𝑖𝑗(𝑗+1) = 1,   ∀𝑖, ∀𝑚, 𝑖! = 𝑚, 𝑗 ∈ (1, |𝐽𝑖|), 𝑛 ∈ (1, |𝐽𝑚| + 1), (2.5)  

∑ ∑ 𝑋𝑚𝑛𝑖𝑗𝑛𝑚 + 𝑌𝑖(𝑗−1)𝑗 = 1,  ∀𝑖, ∀𝑚, 𝑖! = 𝑚, 𝑗 ∈ (2, |𝐽𝑖| + 1), 𝑛 ∈ (1, |𝐽𝑚| + 1), (2.6)  

∑ ∑ 𝑋𝑖(|𝐽𝑖|+1)𝑚𝑛 +𝑛𝑚 𝑋𝑖(|𝐽𝑖|+1)𝐹 = 1,     ∀𝑖, ∀𝑚, 𝑖! = 𝑚, 𝑛 ∈ (1, |𝐽𝑚| + 1), (2.7) 

∑ ∑ 𝑋𝑚𝑛𝑖1𝑛𝑚 = 1,   ∀𝑖, ∀𝑚, 𝑖! = 𝑚, 𝑖 ! = 1, 𝑛 ∈ (1, |𝐽𝑚| + 1), (2.8) 

𝑆𝑀𝑖𝑗 + 𝑃𝑇𝑖𝑗 + 𝑡𝑙𝑖(𝑗+1) ≤  𝑆𝑀𝑖(𝑗+1) + (1 − 𝑌𝑖𝑗(𝑗+1)) ∗ 𝛽, ∀𝑖, ∀𝑗 ∈ (1, |𝐽𝑖|), (2.9) 

𝑆𝑀𝑖𝑗 ≥  𝑆𝑀𝑚𝑛 + 𝑡𝑢𝑚𝑛𝑖(𝑗−1) + 𝑡𝑙𝑖𝑗 − (1 − 𝑋𝑚𝑛𝑖𝑗) ∗ 𝛽, ∀𝑖, ∀𝑚, 𝑖! = 𝑚, 𝑗 ∈ (2, |𝐽𝑖| + 1), 𝑛 ∈ (1, |𝐽𝑚| + 1), (2.10) 

𝑆𝑀𝑚(𝑛+1) ≥  𝑆𝑀𝑖𝑗 + 𝑡𝑢𝑖𝑗𝑚𝑛 + 𝑡𝑙𝑚(𝑛+1) − (1 − 𝑋𝑚𝑛𝑖𝑗) ∗ 𝛽, ∀𝑖, ∀𝑚, 𝑖! = 𝑚, 𝑗 ∈ (1, |𝐽𝑖| + 1), 𝑛 ∈ (1, |𝐽𝑚|), (2.11) 

𝑆𝑀𝑖1 ≥  𝑆𝑀𝑚𝑛 + 𝑡𝑢𝑚𝑛𝐷 + 𝑡𝑙𝑖1 − (1 − 𝑋𝑚𝑛𝑖1) ∗ 𝛽, ∀𝑖, ∀𝑚, 𝑖! = 𝑚, 𝑛 ∈ (1, |𝐽𝑚| + 1), (2.12) 

𝑍𝑖𝑗ℎ𝑔 + 𝑍ℎ𝑔𝑖𝑗 = 1,   ∀𝑖, ∀ℎ, ∀𝑗 ∈ (1, |𝐽𝑖|), 𝑔 ∈ (1, |𝐽ℎ|), 𝑀𝑖𝑗 = 𝑀ℎ𝑔, (2.13) 

 𝑆𝑀ℎ𝑔 ≥ 𝑆𝑀𝑖𝑗 + 𝑃𝑇𝑖𝑗 − (1 − 𝑍𝑖𝑗ℎ𝑔) ∗ 𝛽,  ∀𝑖, ∀ℎ, ∀𝑗 ∈ (1, |𝐽𝑖|), 𝑔 ∈ (1, |𝐽ℎ|), 𝑀𝑖𝑗 = 𝑀ℎ𝑔, (2.14) 

𝑆𝑀𝑖𝑗 ≥  𝑆𝑀ℎ𝑔 + 𝑃𝑇ℎ𝑔 − 𝑍𝑖𝑗ℎ𝑔 ∗ 𝛽,   ∀𝑖, ∀ℎ, ∀𝑗 ∈ (1, |𝐽𝑖|), 𝑔 ∈ (1, |𝐽ℎ|), 𝑀𝑖𝑗 = 𝑀ℎ𝑔, (2.15) 

𝑆𝑀ℎ𝑔 ≥ 𝑆𝑀𝑖(𝑗+1) + 𝑡𝑢𝑖(𝑗+1)ℎ(𝑔−1) + 𝑡𝑙ℎ𝑔 − (1 − 𝑍𝑖𝑗ℎ𝑔) ∗ 𝛽, ∀𝑖, ∀ℎ, ∀𝑗 ∈ (1, |𝐽𝑖|), 𝑔 ∈ (2, |𝐽ℎ|), 𝑀𝑖𝑗 = 𝑀ℎ𝑔,, (2.16) 

𝑆𝑀𝑖𝑗 ≥ 𝑆𝑀ℎ(𝑔+1) + 𝑡𝑢ℎ(𝑔+1)𝑖(𝑗−1) + 𝑡𝑙𝑖𝑗 − 𝑍𝑖𝑗ℎ𝑔 ∗ 𝛽, ∀𝑖, ∀ℎ, ∀𝑗 ∈ (2, |𝐽𝑖|), 𝑔 ∈ (1, |𝐽ℎ|), 𝑀𝑖𝑗 = 𝑀ℎ𝑔,, (2.17) 

𝑆𝑀ℎ1 ≥ 𝑆𝑀𝑖(𝑗+1) + 𝑡𝑢𝑖(𝑗+1)𝐷 + 𝑡𝑙ℎ1 − (1 − 𝑍𝑖𝑗ℎ1) ∗ 𝛽,   ∀𝑖, ∀ℎ, ∀𝑗 ∈ (1, |𝐽𝑖|), 𝑀𝑖𝑗 = 𝑀ℎ1, (2.18)  

𝑆𝑀𝑖1 ≥ 𝑆𝑀ℎ(𝑔+1) + 𝑡𝑢ℎ(𝑔+1)𝐷 +  𝑡𝑙𝑖1 − 𝑍𝑖1ℎ𝑔 ∗ 𝛽,   ∀𝑖, ∀ℎ, ∀𝑔 ∈ (1, |𝐽ℎ|), 𝑀𝑖1 = 𝑀ℎ𝑔, (2.19) 

𝑋𝑖𝐽𝑚𝑛 ∈ (0,1), ∀𝑖, ∀𝑚 ∈ (1, |𝐼| + 1), 𝑖! = 𝑚, 𝑗 ∈ (1, |𝐽𝑖| + 1), n ∈ (1, |𝐽𝑚| + 1), (2.20) 

𝑌𝑖𝑗(𝑗+1) ∈ (0,1), ∀𝑖, ∀𝑗 ∈ (1, |𝐽𝑖|), (2.21) 

𝑍𝑖𝐽ℎ𝑔 ∈ (0,1), ∀𝑖, ∀ℎ, 𝑖! = ℎ, ∀𝑗 ∈ (1, |𝐽𝑖|), 𝑔 ∈ (1, |𝐽ℎ|), (2.22) 

𝑆𝑀𝑖𝑗 > 0, ∀𝑖, ∀𝑗 ∈ (1, |𝐽𝑖| + 1), (2.23) 

𝑡𝑢𝑖𝑗𝑚𝑛 = |𝑃𝑀𝑖𝑗 − 𝑃𝑀𝑚𝑛|δ,  ∀𝑖, ∀𝑚, 𝑗 ∈ (2, |𝐽𝑖| + 1), 𝑛 ∈ (1, |𝐽𝑚| + 1), (2.24) 

𝑡𝑙𝑖𝑗 = |𝑃𝑀𝑖𝑗 − 𝑃𝑀𝑖(𝑗−1)|δ, ∀𝑖, ∀𝑗 ∈ (2, |𝐽𝑖| + 1), (2.25) 

𝑡𝑙𝑖1 = |𝑃𝑀𝑖1 − 𝑃𝑀𝐷|δ,   ∀𝑖, (2.26) 

𝑡𝑢𝑖𝑗𝐷 = |𝑃𝑀𝑖𝑗 − 𝑃𝑀𝐷|δ ∀𝑖, ∀𝑗 ∈ (1, |𝐽𝑖| + 1). (2.27) 

 

The objective function (2.0) is to minimize the makespan of the entire assignment which is defined 

in Constraint (2.1). Constraints (2.2) regulate that the completion time of the last operation in the 

assignment equals the time that the algorithm reaches the dummy sink node (F). Constraints (2.3) and 



   
 

19 
 

(2.4) are equivalent to Constraints (1.2) and (1.4). Constraints (2.5) - (2.8) are the balanced flow 

restrictions designed to guide the robot’s movement throughout the network. Constraints (2.5) and (2.6) 

guarantee an exact coverage for each operation by one of the two types of arcs in the network. In 

particular, the robot has two options at each node: going to the same-job successor directly or turning 

to another job. Therefore, the value of either Yij(j+1) or a certain Xijmn will be 1. If Yij(j+1)=1, then the sum 

of Xijmn equals to zero, which means that the robot will wait at the current station for transporting the 

same job for its next operation. Otherwise, if there is a certain Xijmn equal to 1, then Yij(j+1) must be zero, 

which means that the robot will turn to handling another operation of a different job. 

Constraints (2.7) and (2.8) model the boundary situations for each job (i.e., the first and last 

operations). Oi|Ji|+1 is the last dummy stock operation in job i and this operation must be connected to 

an operation in a different job, or the sink node F as regulated by Constraints (2.7). Actually, only one 

dummy stock operation can be linked with F. Correspondingly, as the first operation Oi1 of job i has no 

same-job predecessor, Constraints (2.8) indicate that the preceding operation of Oi1 should be an 

operation in a different job. O11 is excluded from this constraint since it has been defined as the system 

entrance point by Constraints (2.2), which is same as the Position-RJSPDT.  

Constraints (2.9) - (2.11) formulate the relationship between the starting times of two connected 

operations in the robot route. First, as specified in Constraints (2.9), if the robot chooses to implement 

the same-job successor Oij+1 after loading job i onto Mij, a Y arc is used to connect Oij and Oij+1. In such 

circumstances, the robot needs to wait for a period of PTij before picking up job i and conducting a 

loaded movement to Mij+1. Second, Constraints (2.10) ensure that if Omn is the predecessor of Oij in the 

robot route, Omn is linked with Oij through an X arc. In this circumstance, the robot will first conduct an 

empty movement to Mij-1, pick up job i when Oij-1 is finished (the robot will wait if Oij-1 has not been 

completed as restricted by Constraints (2.4)), and then deliver it to Mij. It is noticeable that Constraints 

(2.11) are critical in terms of the completeness of the robot movement map, which formulates the 

relationship between the starting times of Omn+1 and Oij, when Oij is the successor of Omn in the robot 

route. In this circumstance, Oij must precede Omn+1. Thus, if Omn+1 is to be handled, then at least the time 

spent on an empty movement from Mij to Mmn should be considered before the loaded movement to 

Omn+1. This situation appears when Omn+1 is immediately after Oij, which could be controlled by 

Constraints (2.11).  

Constraints (2.12) distinguish the starting time of Oi1 from other operations. Supposing that Oi1 is 

connected with Omn through an X arc, then the robot should firstly conduct an empty movement from 

Mmn to the input depot before delivering job i to Mi1.  

Constraints (2.13) - (2.15) show that the operations should satify the machine-sequence restrictions. 

Besides, Constraints (2.16) - (2.19) are the deadlock-avoidance constraints which have been discussed 

for the Position-RJSPDT. Last, Constraints (2.20) - (2.27) define the decision variables and parameters.  

To further illustrate the characteristics of the Position-RJSPDT and Network-RJSPDT, Table 6 

summarizes the differences between the two models. 
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Table 6. Differences between the two models. 

 Position-RJSPDT Network-RJSPDT 

Modelling idea Each operation should be assigned 
with an execution position on the 
robot. 

 

Each node has one inflow arc and one 
outflow arc which share the same 
machine. 

Binary decision 
variable 

𝑋𝑖𝑗𝑘= 1 if 𝑂𝑖𝑗 is scheduled as the k-th 
operation to be executed by the 
robot. 

𝑋𝑖𝑗𝑚𝑛= 1 if the robot leaves for 𝑂𝑚𝑛 
after 𝑂𝑖𝑗  starts, where i and m are two 
different jobs. 

𝑌𝑖𝑗𝑗+1= 1 if the robot waits for the 
completion of the current operation 
𝑂𝑖𝑗  and goes to 𝑀𝑖𝑗+1. 

Constraints Successive executions by the robot. Network balance and connection. 

 
 
6. The Efficiency of the Deadlock-avoidance Constraints 

In this section, a numerical example that contains three jobs and three operations in each job (please see 

Table 7) is used to demonstrate the solutions of the Position-RJSPDT and Network-RJSPDT. Then, we 

generalize the significance of the deadlock-avoidance constraints by comparing the models with and 

without the deadlock-avoidance constraints. 

 
Table 7. An example with 3 jobs × 3 operations. 

 job 1 job 2 job 3 

Operations 𝑂11, 𝑂12, 𝑂13 𝑂21, 𝑂22, 𝑂23 𝑂31, 𝑂32, 𝑂33 

Specified Operating 

Machine 

Machine 1, Machine 3, 

Machine 1 

Machine 1, Machine 2, 

Machine 3 

Machine 3, Machine 2, 

Machine 1 

Processing Time (mins) 2, 3, 4 3, 4, 5 2, 4, 3 

 
The optimal solution to this instance is given in Table 8. Both models obtain the same optimal 

makespan of 40. The Position-RJSPDT directly generates the execution priority for each operation, 

while the Network-RJSPDT derives the robot-routing connections between each pair of predecessor 

and successor within the network. Most predecessors and successors are connected by X arcs except 

that three Y arcs are used to connect O21 & O22, O31 & O32, and O33 & O34. The movement of the robot 

is depicted in Figure 5, where Y arcs are denoted by solid lines, while X arcs consisting of an empty 

movement and a loaded movement are depicted by dash lines. The components of the route for the robot 

are indexed with an increasing number in Figure 5. 

 
Table 8. The operation starting times (min) for the two proposed models in the example. 

Position-RJSPDT Network-RJSPDT 

 operation 1 operation 2 operation 3 stock  operation 1 operation 2 operation 3 stock 

job 1 1 11 31 38 job 1 1 11 31 38 

job 2 24 28 33 40 job 2 24 28 33 40 
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job 3 5 8 13 19 job 3 5 8 13 19 

 

 
Figure 5. The robot route in the example. 

 

Figure 6 presents the execution flow of machines and the robot according to the elapse time. The 

metrics for the elapsed time in Figure 6-8 are minutes (mins). The horizontal axis represents the time 

elapsed, while the vertical axis stands for the three machines and the robot. Three jobs and their related 

activities on the robot are distinguished by using colors: job 1 (green), job 2 (orange), and job 3 (blue). 

Specifically, the lighter color is for jobs, while the corresponding deeper color is for the robot. Besides, 

loaded movements and empty movements are distinguished by Lij and Eij, respectively. Moreover, ESi 

is the empty movement for the stock operation of job i, while LSi is the loaded movement for the stock 

operation of job i. The blocking activity is denoted by Bi. For example, at the beginning, the robot 

delivers the first operation of the first job from the input depot to its operating machine (i.e., Machine 

1). Then, the robot moves to the input depot without carrying anything to pick up the third job, and then 

transport it to the operating machine for its first operation (i.e., Machine 3). After O11 is finished by 

Machine 1, as the robot is not available, job 1 has to be blocked in Machine 1 to wait for the robot. 

Similarly, job 1 would also wait at Machine 3 for the robot after its second operation is completed. 

 

 
Figure 6. The optimal flow of machines and robot for the example. 

 

From the results of the example, it is seen that there is no conflict for the system (i.e., no deadlock). 

This is because that the deadlock-avoidance constraints are incorporated in both proposed models. To 

verify the efficacy of these constraints, we examine the performances of the two models without the 
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deadlock-avoidance constraints (named as the Position-RJSPDTND and Network-RJSPDTND) and the 

results are summarized in Table 9. The optimal makespan obtained now becomes 32. However, this 

reduced makespan is actually infeasible due to deadlocks as indicated by the infeasible outcomes, with 

which the robot will definitely meet a transportation failure in real operations. 

Table 9. The operation starting times (min) without the deadlock-avoidance constraints. 

Position-RJSPDTND Network-RJSPDTND 

 operation 1 operation 2 operation 3 stocking  operation 1 operation 2 operation 3 stocking 

job 1 1 13 19 30 job 1 1 13 19 30 

job 2 3 16 25 32 job 2 11 16 25 32 

job 3 7 10 15 22 job 3 5 8 15 22 

 

  

Figure 7. System conflicts generated by the Position-RJSPDTND. 

 

  

Figure 8. System conflicts generated by the Network-RJSPDTND. 

 

Take a closer look at Figure 7, the execution of O11 on Machine 1 is scheduled from 1s to 3s. The 

Position-RJSPDTND, therefore, supposes that O21 can start from 3s based on two reasons. Firstly, O11 

on the same machine has been finished. Second, there is enough time for the robot to return to the input 

depot and bring job 2 to Machine 1. However, such a schedule violates the no-buffer restriction so that 

a deadlock appears, since job 1 is still remained on Machine 1 while the single robot is occupied by job 

2. Accordingly, the subsequent plans are also infeasible. Similar dilemma also occurs in the solution 

provided by the Network-RJSPDTND. In the result (as depicted in Figure 8), the robot starts the 

delivery of job 2 after job 3 is placed on Machine 2 for the execution of O32. However, at the time when 

job 2 is delivered to Machine 1 (11s), job 1 has not been removed from Machine 1 yet. Accordingly, a 

deadlock situation occurs. The conflict points in both schedules are highlighted with vertical red lines 

in Figure 7 and Figure 8.  
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In conclusion, through the performance comparisons between the models with and without the 

deadlock-avoidance constraints, the significance of the proposed deadlock-avoidance constraints in 

avoiding system conflicts is demonstrated. 

 

7. Computational Experiments  

In this section, computational experiments are carried out to test the performances of the proposed 

models. Both the Position-RJSPDT and the Network-RJSPDT are coded in OPL. The IBM commercial 

solver CPLEX Studio IDE 12.10 is used to solve these problems on a desktop MacBook Pro with 1.4 

GHz Intel Core i5 processor and 8 GB of RAM memory. The upper limit for the running time of each 

instance is set as 5200s. Twenty instances are applied for the experiments, and the features are 

summarized in Table 10. Note that each instance is featured by three dimensions: the number of jobs, 

the number of operations in a job, and the number of machines, as shown in the second and the fourth 

columns of Table 10. In the following, we first compare the model sizes and computational times of the 

two models in Section 7.1. Then, sensitivity analysis is carried out to test the impacts of the number of 

jobs and number of operations in a job on the model performances in Section 7.2. Last, Section 7.3 

examines how the entrance strategies would affect the solutions. 

 

Table 10. Instance characteristics. 

Instance Scale Instance Scale 

1 3×3×3 11 6×5×4 

2 3×5×3 12 7×4×3 

3 3×5×4 13 7×4×4 

4 3×7×4 14 7×5×4 

5 4×4×4 15 8×4×3 

6 4×5×4 16 8×5×3 

7 5×4×3 17 9×4×3 

8 5×4×4 18 9×5×3 

9 5×5×4 19 10×3×3 

10 6×5×3 20 10×4×3 

 

7.1 Comparisons of Model Sizes and Computational Times  

The performances of the Position-RJSPDT and the Network-RJSPDT are compared from two 

perspectives, namely the model size and computational time.  

First of all, the features of the two proposed models for the twenty instances are summarized in 

Table 11. To be specific, two indicators are used to measure the model sizes: the number of constraints 

(NCs) and the number of decision variables (NBVs) (the binary ones). The last two columns of Table 

11 shows the comparisons between the two models (i.e., (Position-RJSPDT - Network-RJSPDT)/ 

Position-RJSPDT). As shown from this table, the Network-RJSPDT generates 99.6% less constraints 

and 15.9% less decision variables compared with the Position-RJSPDT. From Figure 9 and Figure 10, 



   
 

24 
 

we can also clearly observe the larger sizes of the Position-RJSPDT over the Network-RJSPDT for all 

instances. When the sizes of instances become larger, the number of constraints derived by the Position-

RJSPDT grows dramatically, while that by the Network-RJSPDT can remain in a relatively low level. 

Accordingly, the Network-RJSPDT shows higher modelling stability than the Position-RJSPDT.  

 

Table 11. Comparisons of model sizes between the two models. 

Instance 
Position-RJSPDT Network-RJSPDT Comparisons 

NCs NBVs NCs NBVs NCs NBVs 

1 15131 170 269 128 98.2% 24.7% 

2 74191 382 607 286 99.2% 25.1% 

3 74156 368 572 272 99.2% 26.1% 

4 230872 652 1006 478 99.6% 26.7% 

5 126312 458 743 366 99.4% 20.1% 

6 259642 662 1085 530 99.6% 19.9% 

7 325508 747 1265 627 99.6% 16.1% 

8 325448 723 1205 603 99.6% 16.6% 

9 670238 1044 1756 874 99.7% 16.3% 

10 1439592 1578 2772 1368 99.8% 13.3% 

11 1439427 1512 2607 1302 99.8% 13.9% 

12 1323944 1495 2614 1313 99.8% 12.2% 

13 1323784 1431 2454 1249 99.8% 12.7% 

14 2731806 2068 3616 1816 99.9% 12.2% 

15 2297174 1950 3431 1734 99.9% 11.1% 

16 4743346 2822 5067 2526 99.9% 10.5% 

17 3727457 2477 4388 2225 99.9% 10.2% 

18 7700372 3584 6486 3242 99.9% 9.5% 

19 2362723 1960 3365 1750 99.9% 10.7% 

20 5739263 3064 5455 2774 99.9% 9.5% 

      Average 99.6% 15.9% 

        NCs: the number of constraints; NBVs: the number of decision variables. 

 

The reasons of the discrepancies in model sizes between the Network-RJSPDT and the Position-

RJSPDT are discussed as follows. For the Position-RJSPDT, it contains a series of functions that would 

create a huge number of constraints in multiple loops. For instance, assuming that there are 𝜌 jobs and 

𝜇 operations in each job, Functions (1.8) formulating the relationship between the two operations which 

are delivered by the robot successively, generate [𝜌(𝜌-1)×𝜇(𝜇+1)×(𝜌(𝜇+1)-1)] pieces of constraints. 

Moreover, the number of constraints generated by Functions (1.7) will reach up to 𝜌8 when 𝜌 equals 𝜇. 

Accordingly, when the problem sizes increase, the growth in the number of constraints for the Position-

RJSPDT is drastic. In contrast, the Network-RJSPDT focuses on local relationships based on each 

individual node, instead of the whole network. Assuming that there are 𝜌 jobs and 𝜇 operations in each 

job, the number of constraints generated by each function of the Network-RJSPDT is no more than 
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𝜌2𝜇2. Accordingly, the modelling idea of the Network-RJSPDT is shown to be advantageous over that 

of the Position-RJSPDT by generating much fewer constraints. In conclusion, it is demonstrated that 

the Position-RJSPDT encounters larger model sizes than the Network-RJSPDT, which implies a higher 

problem complexity and a lower solution efficiency. 

 

 

Figure 9. Comparisons of the number of variables for the tested instances. 

 

 

Figure 10. Comparisons of the number of constraints for the tested instances. 

 

Accordingly, in terms of the computational times (as listed in Table 12), it is reasonable to observe 

the superior performances of the Network-RJSPDT over the Position-RJSPDT. On one hand, for 

Instances 1 to 7 (named as “small-scale instances” hereafter), both models can obtain the optimal 

solutions with the same makespan within the upper time limit. However, as shown in the last column 

of Table 12, the Network-RJSPDT consumes much less computational time than the Position-RJSPDT 

for these small-scale instances (i.e., an average of 96%). Besides, it is seen that along with the increase 

in the instance size, the computational time reduction achieved by the Network-RJSPDT over the 

Position-RJSPDT becomes increasingly remarkable, which shows the shortcomings of the Position-

RJSPDT when the problem sizes grow. On the other hand, for Instances 8 to 20 (named as “large-scale 

instances” hereafter), the Position-RJSPDT fails to identify a solution within 5200s, while the Network-
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RJSPDT can obtain the shortest makespan for most of these instances. Note that Instances 13 & 14 

involve more machines than Instances 15-18. Therefore, Instances 13 & 14 are more computationally 

difficult in finding a solution than Instances 15-18 by the Network-RJSPDT. Besides, for Instances 19 

& 20, the overall problem complexity is the highest among all instances due to the integrated effect of 

the three dimensions. Accordingly, Instances 19 & 20 are also unsolvable in the given time limit. 

In conclusion, the modelling advantages of the network-based approach over the traditional 

position-based approach are verified through the comparisons regarding model sizes and computational 

times. From the modelling process and the computational results, we can obtain the following important 

insights: (i) the large number of binary decision variables and multi-loop constraints produced by the 

position-based modelling idea lead to the high computational difficulty; and (ii) the network-based 

approach can effectively reduce the model size and computational time because the constraints in the 

Network-RJSPDT concentrate on modelling the neighboring relationships for each node (or operation). 

 

Table 12. Comparisons of the computational times between the two models. 

Instance 

Position-RJSPDT Network-RJSPDT Comparison of 

computational 

time 
Computational 

time (s) 
Iterations 

Makespan 

(mins) 

Computationa

l time (s) 
Iterations 

Makespan 

(mins) 

1 1.7 8263 45 0.36 56 45 78.80% 

2 19 69096 60 0.24 83 60 98.70% 

3 11 50492 69 0.3 261 69 97.30% 

4 90 121451 79 0.6 9288 79 99.30% 

5 76 169390 73 1.3 26523 73 98.30% 

6 384 494540 86 2.3 77448 86 99.40% 

7 326 271364 76 1.8 26555 76 99.40% 

8 

Unsolvable within the given time limit 

12 476289 91 

NA 

9 25 728398 104 

10 8 83944 113 

11 746 11954872 130 

12 48 1945193 111 

13 
Unsolvable within the given time limit 

14 

15 200 3698493 123 

16 682 3984601 142 

17 1930 26227306 135 

18 5155 48832905 160 

19 
Unsolvable within the given time limit 

20 
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7.2 Sensitivity Analysis 

In this section, we conduct sensitivity analysis to investigate the impacts of crucial parameters (i.e., the 

number of jobs (NJ) and the number of operations in a job (NOJ)) on the performance of models.  

We carry out two groups of experiments for comparisons. In the first group (i.e., G1), the NOJ 

remains unchanged as 3, while the NJ is increased from 2 to 10 by a step of 1. In the second group (i.e., 

G2), the NJ remains unchanged as 3, while the NOJ is increased from 2 to 10 by a step of 1. The 

Position-RJSPDT and the Network-RJSPDT are then examined for these derived instances. Figure 11 

depict the increase in the makespan (metric: minutes) along with the rise in instance scales for the two 

groups of experiments. It is seen that the Position-RJSPDT becomes intractable within the given time 

limit along with the growth in the instance size (i.e., from (7×3×3) in Group 1 and (3×8×3) in Group 

2), while the Network-RJSPDT can solve all the problems.  

  

 
Figure 11. Makespan growths of Position-RJSPDT and Network-RJSPDT by increasing NJ (G1) and 

NOJ (G2). 

 

Table 13. Sensitivity analysis for Position-RJSPDT. 

Instance 

Number of Jobs (NJ) - Group 1 

Instance 

Number of operations in a job (NOJ) 

- Group 2 

Makespan 

(mins) 
CT (s) NBVs NCs 

Makespan 

(mins) 
CT (s) NBVs NCs 

2×3×3 25 0.3 72 2387 3×2×3 28 0.24 93 4947 

3×3×3 40 1.1 168 15126 3×3×3 40 1.1 168 15126 

4×3×3 55 16 304 52459 3×4×3 46 6.5 263 36224 

5×3×3 66 62 480 134738 3×5×3 62 12.4 380 74186 

6×3×3 76 270 696 288459 3×6×3 71 31 519 136248 

7×3×3 

Unsolvable within the given time 

limit 

3×7×3 77 69 678 230937 

8×3×3 3×8×3 

Unsolvable within the given time limit 9×3×3 3×9×3 

10×3×3 3×10×3 

CT (s): Computational time in seconds. 
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7.2.1 Impacts of NJ and NOJ on Model Sizes and Computational Times - Position-RJSPDT 

Table 13 presents the model performance changes caused by the increase of the NJ and the NOJ for the 

Position-RJSPDT. It is obvious to identify that the increase in the NJ leads to much longer 

computational times than that in the NOJ (as depicted in Figure 14(a) and Figure 14(b)). For instance, 

when the NJ grows from 2 to 6, the Position-RJSPDT consumes 269.7 (i.e., 270-0.3) more seconds for 

solution derivation. However, this figure becomes 30.76 (i.e., 31-0.24) when the NOJ grows from 2 to 

6. Moreover, the NJ also shows a greater impact on the model size than the NOJ, especially in terms of 

the number of constraints (as shown in Figure 12 and Figure 13). For example, the number of constraints 

generated by Instance (6×3×3) is 111.7% more than that by Instance (3×6×3).  

 
Figure 12. Decision variable growths of Position-RJSPDT by increasing NJ (G1) and NOJ (G2). 

 

 
Figure 13. Constraint growths of Position-RJSPBT by increasing NJ (G1) and NOJ (G2). 

 
Figure 14. Computational time growths of Position-RJSPDT by increasing NJ (G1) and NOJ (G2). 
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7.2.2 Impacts of NJ and NOJ on Model Sizes and Computational Times - Network-

RJSPDT 

With the increase in the NJ and NOJ, the number of decision variables and the number of constraints in 

the Network-RJSPDT both show stable growths (see Figure 15 and Figure 16). Similar to the Position-

RJSPDT, the impact of the NJ is greater than that of the NOJ. In terms of the computational time, a 

much sharper increasing trend can be observed along with the increase in the NJ. To be specific, when 

the NJ grows from 7 to 8, the computational time increases sharply from 7s to 182s, while the figure 

rises from 619s to the surprising 3620s when the NJ grows from 9 to 10. On the other hand, all instances 

can be solved within 1s when the NOJ increases from 2 to 10 (as demonstrated in Table 14 and Figure 

17). 

 
Table 14. Sensitivity analysis for Network-RJSPDT. 

Number of Jobs (NJ) - Group 1 Number of operations in a job (NOJ) - Group 2 

Instance 
Makespan 

(mins) 
CT (s) NBVs NCs Instance 

Makespan 

(mins) 
CT (s) NBVs NCs 

2×3×3 25 0.12 46 107 3×2×3 28 0.12 69 144 

3×3×3 40 0.12 126 267 3×3×3 40 0.13 126 267 

4×3×3 55 0.2 244 498 3×4×3 46 0.16 197 419 

5×3×3 66 0.55 421 800 3×5×3 62 0.17 284 605 

6×3×3 76 2.3 594 1173 3×6×3 71 0.22 387 825 

7×3×3 87 7.0 826 1617 3×7×3 77 0.33 504 1074 

8×3×3 100 182 1096 2123 3×8×3 83 0.46 641 1367 

9×3×3 112 619 1404 2718 3×9×3 88 0.65 792 1689 

10×3×3 127 3620 1750 3365 3×10×3 103 1.0 957 2040 

 

 
Figure 15. Decision variable growths of Network-RJSPDT by increasing NJ (G1) and NOJ (G2). 
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Figure 16. Constraint growths of Network-RJSPBT by increasing NJ (G1) and NOJ (G2). 

 

 

Figure 17. Computational time growth of Network-RJSPDT by increasing NJ (G1) and NOJ (G2). 

In conclusion, both the Position-RJSPDT and Network-RJSPDT are more sensitive to the changes 

in the number of jobs compared with the number of operations in a job.  

 

Table 15. The impact of different entrance strategies. 

Instance 

Network-FE-RJSPDT Network-RJSPDT Comparison 

Makespan 

(mins) 
CT (s) NCs NBVs 

Makespan 

(mins) 
CT (s) NCs NBVs 

Makespan 

(mins) 
CT (s) 

1 45 0.59 295 131 45 0.36 269 128 0.00% -39.00% 

2 60 0.5 645 289 60 0.24 607 286 0.00% -52.00% 

3 68 0.47 620 275 69 0.3 572 272 1.40% -36.20% 

4 77 1.7 1056 481 79 0.6 1006 478 2.50% -64.70% 

5 69 2.3 806 370 73 1.3 743 366 5.50% -43.50% 

6 83 6.8 1159 534 86 2.3 1085 530 3.50% -66.20% 

7 72 6 1367 632 76 1.8 1265 627 5.30% -70.00% 

8 89 50.8 1307 608 91 12 1205 603 2.20% -76.40% 

9 102 45 1887 879 104 25 1756 874 1.90% -44.40% 

10 113 102 2954 1374 113 8 2772 1368 0.00% -92.20% 

12 110 145 2826 1320 111 48 2614 1313 0.90% -66.90% 

15 119 749 3713 1742 123 198 3431 1734 3.30% -73.60% 

                Average 2.21% -60.43% 
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7.3 The Impact of Entrance Strategies 

In this section, we examine the impact of different entrance strategies (i.e., fixed or flexible entrance 

strategies) on the model performances. In our proposed models, we apply the fixed entrance strategy. 

That is, both the Position-RJSPDT and Network-RJSPDT designate O11 (i.e., the first operation in the 

first job) as the production line entrance by ranking O11 with the highest priority or defining O11 as the 

first operation to execute. It is worthwhile to note that the fixed entrance strategy may lead to sub-

optimality compared with the flexible entrance strategy. Therefore, we modify the job operation 

entrance strategy to allow the algorithm to determine the production process to start from which specific 

job in the assignment (i.e., the flexible entrance strategy). From our previous discussions, it is shown 

that the Position-RJSPDT suffers from larger model sizes and longer computational times than the 

Network-RJSPDT. Besides, the flexible entrance strategy complicates the problem significantly than 

the fixed entrance strategy which is applied in our problem setting. Therefore, in this section, a set of 

experiments is carried out to examine the impacts of the entrance strategies based on the Network-

RJSPDT for the tractable instances. Accordingly, the Network-RJSPDT is modified into the Network-

based Flexible Entrance RJSPDT (Network-FE-RJSPDT). To build the Network-FE-RJSPDT, a 

dummy starting point is established to connect with a certain Oi1 (𝑖 ∈ 𝐼) which serves as the starting 

operation. The impacts of this modification on the model sizes, makespan, and computational times are 

demonstrated in Table 15.  

 

 

Figure 18. Comparisons of makespan of the Network-RJSPDT and the Network-FE-RJSPDT.  
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Figure 19. Comparisons of computational times of the Network-RJSPDT and the Network-

OERJSPDT. 

 

The last two columns in Table 15 reflect the comparisons in terms of the makespan and 

computational times of the Network-RJSPDT and the Network-FE-RJSPDT (i.e., (Network-RJSPDT- 

Network-FE-RJSPDT)/Network-FE-RJSPDT). It is shown that by allowing flexible entrace, the 

makespan (metric: minutes) can be slighted reduced by an average of 2.21% (i.e., Figure 18). This is 

reasonable as a higher level of system flexibility is guaranteed in the flexible entrace strategy. However, 

the reduction in makespan is at a great cost of the computational times. Taking Instance 10 as an 

example, the makespan is not improved by the Network-FE-RJSPDT, while the computational time 

dramatically increases by 92.2% compared with the Network-RJSPDT. From the last column of Table 

15 and Figure 19, we can see that the Network-RJSPDT averagely consumes 60% less computational 

time than the Network-FE-RJSPDT due to the much smaller solution spaces. Actually, through our 

analysis, it is found that when the NJ exceeds 8, the Network-FE-RJSPDT becomes unsolvable within 

the given time limit. Accordingly, it is concluded that the flexible entrance strategy can only bring slight 

makespan reduction with a great sacrifice in computational efforts. As a result, it is reasonable to apply 

the fixed entrance strategy in our proposed models.  

 

8. Conclusion  

Due to the wide application of robots for material transportation in modern logistics and supply chain 

systems, the job-scheduling problem (JSP) in robot-driven production lines is becoming increasingly 

important. The traditional JSP studies majorly suffer from two assumptions: (i) the material 

transportation time between two machines is negligible or could be incorporated into the processing 

time of an operation, and (ii) machines have infinite buffers. These assumptions make the robotic job-

scheduling problem (RJSP) impractical as the robot movement procedures as well as the capacity and 

availability of robots and machines should be considered in the scheduling process. Besides, the 

deadlock dilemma caused by the limited buffer of machines and robots, together with the corresponding 

machine blocking strategy are important considerations for the RJSP, but have received little attention 



   
 

33 
 

in the literature. In this work, we propose two novel robotic job-shop scheduling models with deadlock 

and robot movement considerations (RJSPDT), namely the Position-RJSPDT and the Network-

RJSPDT, in order to fulfil the important research gaps. To be specific, the proposed Network-RJSPDT 

is the first JSP model applying the network-based modelling approach which is widely used in aviation 

scheduling problems with the considerations of deadlock and robot movement. Besides, a set of novel 

tight deadlock-avoidance constraints is proposed to deal with the deadlock dilemma. Through numerical 

examples and computational experiments, several important insights can be derived. First of all, the 

proposed models are shown to completely avoid the conflicts in the production line through the tight 

deadlock-avoidance constraints. Second, the Network-RJSPDT demonstrates higher solution efficiency 

over the Position-RJSPDT due to the smaller model size. In small-scale problems, the Network-

RJSPDT even realizes an average reduction of 96% in the computational time. Besides, it is identified 

that the number of jobs greatly affects the performances of the two models, while the fixed entrance 

strategy can help reduce the computational time by 60% averagely.   

 

Managerial Implications & Future Studies 

The analyses derived from this study demonstrate the differences between the traditional JSP and the 

robotic JSP in robot-driven production lines which are becoming increasingly important nowadays. 

Therefore, in order to enhance productivity and profitability, the practitioners in the robot-driven 

logistics and supply chain systems should carefully consider the schedules of operations in jobs and the 

movement procedures of the robot at the same time, in order to avoid the potential deadlock which 

significantly impairs the system efficiency. The industry will be benefited from this study by applying 

the proposed novel robotic job-shop scheduling models with deadlock and robot movement 

considerations. By utilizing our proposed models, industrialists can make production schedules with 

fewer system failures and better adjust the production line according to the dynamically changing 

business environment. 

For future research, it will be interesting to integrate robot movement with other JSP variants, like 

the flexible JSP. Besides, in our current study, we explore a single-robot problem. Therefore, a 

promising future research direction is to consider a multi-robot production line. Moreover, machines 

are operated without buffer in our current model. Different buffer rules can thus be evaluated in future 

studies. Furthermore, it is valuable to study the application of other modelling ideas (like the sequence-

based approach) on the considered problem. Last but not the least, intelligent algorithms which can 

shorten the computational time can be developed for practical application of the proposed models. 
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