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Abstract: This paper establishes real option game models to investigate two competing shipping 

lines’ timing decisions on their respective dedicated terminal (DT) investments in the presence of 

demand ambiguity. In addition, we compare the shipping lines’ DT investment timing with the 

choice under the social optimum, and discuss the subsidy policies with which a government can 

regulate the shipping lines’ investment timing. The results indicate that (1) if the shipping lines are 

symmetric (i.e., have the same DT capacities, investment costs, and operation costs while having 

symmetric demands), their DT investment game could reach sequential investment equilibrium, 

where the leader makes a preemptive investment while the follower’s investment is delayed 

compared to the case without ambiguity; (2) when the government has complete information on 

the shipping lines’ ambiguity level, the regulation rule exhibits a stepwise structure where the 

social optimum (or the mixed timing between the social optimum and the shipping lines’ optimum, 

respectively) are implemented, if the social optimal timing is late (or earlier, respectively) than the 

shipping lines’ break-even timing; (3) when the government has incomplete information on the 

shipping lines’ ambiguity level, the stepwise structure still holds but the shipping lines can obtain 

extra subsidies due to their information advantages compared to the complete information case; 

and (4) compared to the complete information case, the incomplete information may promote (or 

delay, respectively) the regulated DT investment timing, if the increasing ambiguity has positive 

(or negative, respectively) marginal contribution of the investment timing on the shipping lines’ 

profits. 
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1. Introduction 

 In the past decades, the traditional competition between shipping lines and between ports 

has been evolving into the competition between supply chains (Notteboom, 2007). To offer more 

competitive services, shipping lines are entering the area of terminal management worldwide. In 

particular, a dedicated terminal (DT) is a common form of vertical integration between shipping 

lines and terminals (Alvarez-SanJaime et al., 2013). For instance, Orient Overseas Container Line 

(OOCL) has two DTs located in Kaohsiung and Long Beach.1 Mediterranean Shipping Company 

(MSC) launched its container terminal operator company, Terminal Investment Limited (TIL) in 

2000, which now operates 34 terminals in 22 countries, including terminals in the cities of 

Antwerp, Le Havre, Bremerhaven, and Marseille. Its company profile describes the company’s 

goal as “(TIL) invests in, develops and manages container terminals around the world. It was 

founded in 2000 to secure berths and terminal capacity in the major ports used by Mediterranean 

Shipping Company (MSC).” 2  Maersk line and A.P. Moller Terminal, though legally two 

independent companies, belong to the same group. These two companies have established a close 

partnership whereby Maersk line is secured dedicated capacity in certain strategically important 

ports.3  

Although DTs offer shipping lines many benefits, such as greater flexibility, reliability, short 

turnaround time, and increased efficiency, shipping lines also experience substantial costs and 

risks to construct and operate DTs (Haralambides et al., 2002), due to the irreversibility of the 

terminal investment and the uncertainty of the future demand4. Shipping lines’ investments in DTs 

may expand their potential market because of the better services provided by the DTs. However, 

in addition to better services, market expansion can be affected by many other factors, including 

the economic development in the hinterland, the competition from the other ports, and the regional 

transport and logistics infrastructure (Song, 2003; Talley, 2009, 2014; Lam and Yap 2011; 

Marquez‐Ramos, 2014; Zhuang et al., 2014; Homsombat et al., 2016; Tu et al. 2018). These 

complicated, interdependent factors make the benefits of DT investment uncertain and dynamic. 

Furthermore, many of these factors are not controlled and even not clearly recognized by the 

investors (either the shipping lines or the government). They create not only risks but also 

ambiguity regarding the prospects of the DT investment. In many studies (e.g., Dixit and Pindyck, 

1994; Azevedo and Paxson, 2014), risk/uncertainty is characterized by a specific probability 

measure, whereas ambiguity cannot be described by a single probability measure and should be 

characterized by a set of probability measures, which is also called Knightian uncertainty (Knight, 

1921). Such demand ambiguity makes DT investment timing a more realistic albeit difficult 

decision to make. 

Besides the demand ambiguity, shipping lines’ competition complicates their DT investment 

timing decisions further. Some studies indicate that DTs are popular among the world’s top 

container shipping companies and have become one battleground in their competition (e.g., Table 
                                                        
1http://www.oocl.com/eng/aboutoocl/companyprofile/containerterminals/Pages/default.aspx. 
2https://www.tilgroup.com/about 
3https://shippingwatch.com/Ports/article8568451.ece 
4Although terminals can be sold generally, as a dedicated facility for a specific shipping line, the DT may not fit 
for others. For example, the Bao Steel Company has its DT (Majishan Terminal) in the Port of Zhoushan to 
facilitate its metal ore transport (http://www.bulkcn.com/bulkmachi/majishanport.htm). Due to its specialty on 
function and location, and the huge investment costs, it may be difficult for other shipping companies to buy it. 
Therefore, DTs are useful to their investors but may not be suitable for others. We propose that the DT investment 
is irreversible, at least partially irreversible. 
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3 in Van de Voorde and Vanelslander, 2008; Table 1 in Alvarez-SanJaime et al., 2013).5 The 

shipping lines face the tradeoff between making a preemptive DT investment to gain the first 

mover advantage, or waiting for better opportunities in the future (because of the increasing but 

uncertain demand). On the other side, the shipping lines’ competition on their DT investments 

affects the social welfare and thereby attracts attentions from the government. The government 

may wish to use the regulation tools (e.g., subsidy) to align the shipping lines’ DT investment 

timing to the social optimum. Indeed, it has been well recognized that DT investments can have 

important yet complex implications to ports, shipping lines, competition and social welfare. 

OECD (2011) noted “Some shipping lines operate or own terminals within ports. This level of 

integration between the companies can provide them with incentives to restrict access to their 

facilities only to their own downstream operations…can have welfare benefits if it creates 

incentives for the upstream operator to invest in facilities that it would not have invested in if it 

had to allow downstream competitors to access them. For example, the terminal operator may 

purchase specialized modern unloading equipment that creates efficiencies in unloading time. 

However, if some of the benefit of this new equipment were shared with a downstream competitor, 

it may no longer be a viable investment.” It should be noted that there has been no consensus on 

the effects of such vertical investments, which have significant practical implications. For example, 

in the privatization of the Turkish Port of Ismir and the Port of Mersin, it was decided that the two 

ports should be separately managed, and the operating rights cannot be transferred to liner 

transport or ship brokers. These decisions were made by the government to safeguard competition 

(OECD 2011). The problem under investigation is of significant theoretical and practical values.    

In our paper, we analytically investigate two shipping lines’ investment competition 

regarding two DTs under market ambiguity. Specifically, we aim to answer the following research 

questions: (1) When facing demand ambiguity, how do the competing shipping lines determine 

their timing of DT investment? 6 Will they engage in a simultaneous investment game or a 

sequential investment game? (2) What are the impacts of the competition between shipping lines 

and the degree of ambiguity on the shipping lines’ DT investment timing decisions? (3) Compared 

to the social optimal level, are the shipping lines’ DT investment timing expedited or delayed? If 

the shipping lines’ DT investment timing is not consistent with the social optimum, could the 

government use regulation tools to induce social optimum, especially when the government has 

incomplete information on the shipping lines’ ambiguity level?  

Within these research questions, there exist two issues: terminal investment competition 

under dynamically stochastic and ambiguous environment, and the government’s regulation under 

incomplete information, which have important implications both in theory and in practice. The 

issue of ambiguity has a realistic meaning because the different decision makers (even from the 

same shipping line) may have different perceptions because of the differences in their attitudes, 

confidence, or information of such a new project (DT investment). Other reasons include factors 

that may influence the project prospect, such as hinterland development, competition from rivals, 

and regional logistics infrastructure. These differences in the decision makers’ subjective measures 

                                                        
5As reported in Table 1 in Alvarez-SanJaime et al. (2013), MSC and CMA-CGM have their DTs in the Port of Le 
Havre. In addition, MSC has its DTs in the Port of Antwerp, where COSCO Pacific, CMA-CGM, P&O Nedlloyd 
have their DTs too. These examples show the competing shipping lines’ DT investment strategies in recently 
years. 
6Shipping lines’ decision on which port to invest is affected by many economic and political factors, and prior 
decisions of shipping networks. The current paper focuses on when they should make such investments, given the 
DT plans. 
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determine the ambiguity. The issue of incomplete information also has a realistic meaning because 

shipping lines’ subjective ambiguity levels cannot be obtained easily by the government. To 

formulate an effective regulation, the government must design the incentive mechanism to elicit 

the shipping lines to reveal their private information (their ambiguity levels) truthfully. The 

regulation outcomes under incomplete information may deviate from the outcomes under 

complete information. Therefore, investigating these two issues can help shipping lines and the 

government to make proper decisions in a realistic setting. 

To answer these research questions, we use the multiple-priors expected utility form to 

describe the ambiguity-averse shipping lines’ preferences. By applying the approach of a real 

option game, the optimal DT investment timing rules under different scenarios (simultaneous 

investment and sequential investment) are obtained and compared to identify the optimal 

equilibrium decisions for the two shipping lines. In addition, the shipping lines’ DT investment 

timings are compared to the socially optimal timing. We discuss the possibility for the government 

to use the subsidy to regulate the shipping lines’ DT investment timing decisions. 

Our work contributes to the related literature in the following ways. 

(1) We analytically investigate competing shipping lines’ DT investment timing decisions 

under demand ambiguity. Although some studies have investigated DT or exclusive transport 

infrastructure investment under demand ambiguity (see the detailed literature review in Section 2), 

none has explored DT investment competition under ambiguity. Given that competition is an 

important and nonnegligible feature in the maritime industry, our study provides a more realistic 

picture. Moreover, our conclusion on the sequential investment equilibrium reveals insights into 

shipping lines’ DT investment that cannot be revealed without considering competition.    

(2) We examine the government’s regulation on the shipping lines’ DT investment behavior, 

especially when it has incomplete information on the shipping lines’ ambiguity level. We obtain 

the stepwise structure of the subsidy regulation policy (on both complete information and 

incomplete information), which depends on the comparisons of three thresholds: the social 

optimum, the shipping lines’ break-even timing, and the mixed timing between the social 

optimum and the shipping lines’ optimum (i.e., profit maximization). Moreover, we use a 

principal–agent framework to transfer the government’s DT investment regulation under 

incomplete information into a bi-level programming problem. The conclusions state that compared 

to complete information, whether incomplete information delays or promotes the regulated DT 

investment timing depends on the sign of the “incentive correction term”. If the shipping lines 

have the lowest ambiguity, the regulation outcomes under incomplete information are the same as 

under complete information. The shipping lines can obtain extra “information subsidies” under 

incomplete information. Our study provides useful policy implications for governments to align 

the shipping lines’ DT investment, because shipping lines’ ambiguity level is difficult to assess in 

practice. 

The remainder of this paper is organized as follows. Section 2 reviews the literature, and 

Section 3 investigates two competing shipping lines’ DT investment timing decisions. Section 4 

examines the social optimum for the DT investment timing of competing shipping lines and how 

the government should regulate the sipping lines’ DT investment under both complete and 

incomplete information. The last section concludes the paper and identifies areas for future 

investigation. Appendix A presents the logic of the paper. 
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2. Literature Review 

 Three strands of literature—terminal investment, dedicated terminals, and transportation 

investment decision under ambiguity—are related to this study.  

The literature on port/terminal investment is rich. Most studies have discussed this issue 

under certainty, for example, Musso et al. (2006), Anderson et al. (2008), Luo et al. (2012), Zheng 

and Negenborn (2014), Simkins and Stewart (2015), Tan et al. (2015), Cheng and Yang (2017), 

Zheng et al. (2017), Dong et al. (2018), and Zhu et al. (2019). Specifically, some literature has 

addressed port/terminal investment in a supply chain setting, for example, Kaysi and Nehmeb 

(2016), Song et al. (2018), and Asadabadi, and Elise Miller-Hooks (2018, 2020). We confine our 

discussions in a simplified chain comprising a government, two shipping lines, and three terminals. 

We focus on two issues: terminal investment under a dynamically stochastic and ambiguous 

environment, and the government’s regulation under incomplete information. According to our 

review of the literature, few studies have investigated these two issues (especially in the 

transportation area).  

Next, we focus on port/terminal investments under uncertainty. Meersman (2005) uses the 

real options model to find the optimal port investment law under revenue uncertainty. 

Allahviranloo and Afandizadeh (2008) use fuzzy integer programming to find the port investment 

criteria under the uncertainty of a cargo forecast. Zheng and Negenborn (2017) use the real 

options method and the least squares Monte Carlo simulation algorithm to examine the terminal 

investment timing decisions in a competitive, uncertain market. Li and Cai (2017) use the real 

options model to investigate the government’s incentive policies on private investment under 

uncertainty. Balliauw et al. (2019) use real option game models to explore the capacity investment 

of two competing ports under uncertainty.  

Here we focus on the comparison of our paper to that of Balliauw et al. (2019). Although our 

paper discusses a similar topic, that is, terminal investment competition in a dynamically 

stochastic setting, and uses a similar approach (the real option game), we have two new 

characteristics—ambiguity and the government’s regulation under incomplete information—that 

are absent in their paper. These two issues lead to very different conclusions (Section 1). Moreover, 

some conclusions in Balliauw et. al. (2019) are from numerical studies, whereas most of our 

conclusions are obtained analytically. 

Vertical integration in the shipping industry has led to the prevalence of DTs over the past 

decades. Some literature discusses the reasons for and the benefits of DTs. For instance, 

Alvarez-SanJaime et al. (2013) demonstrate that the existence of DTs is mainly due to the 

differences between the objectives of ports and shipping lines. Haralambides et al. (2002) offer a 

detailed analysis of the costs (e.g., diseconomies of scale in ports) and the benefits (e.g., flexibility, 

reliability, short turnaround time, and high efficiency) of DTs. Kaselimi et al. (2011) suggest some 

advantages that a shipping line can exploit from DT, including value-added services to customers 

and increased profit. Hsu et al. (2015) use a revised importance-performance analysis model to 

evaluate the service attributes of DTs from users’ perspectives.  

Another topic in the DT literature is the competition between DTs and public terminals (PTs). 

Kaselimi et al. (2011) analyze the impacts of DT facilities on the competition between the existing 

multi-user terminals. Alvarez-SanJaime et al. (2013) examine the competition between a DT and a 

PT under the scenarios of exclusive use (the DT is used only by its shipping line investor and the 
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PT is used only by the investor’s rival), mixed use (the DT is used only by its investor, and the PT 

can be used by both shipping lines), and non-exclusive use (the DT and the PT can be used by 

both shipping lines). They conclude that the DT investor is better to allow other shipping lines, 

including her rivals, to use her DT. Although these studies discuss the aspects of DT, none has 

investigated DT investment under ambiguity. Due to market complexity, there are many factors 

that DT investors do not know exactly. Therefore, our discussion on DT investment under 

ambiguity should fit reality better and can provide more insights into DT management.  

The studies of transportation investment and planning under ambiguity have been limited 

(with a few notable examples such as Gao and Driouchi, 2013; Wang and Zhang, 2018; 

Randrianarisoa and Zhang, 2019 and Zheng et al., 2020). The major difference between this paper 

and the literature is that we analyze shipping lines’ DT investment competition in a dynamic 

setting and the government’s regulation on DT investment competition, especially when it has 

incomplete information on shipping lines’ ambiguity degree. To be more specific, Gao and 

Driouchi (2013) assume that the investor needs to invest immediately or abandon the investment 

opportunity forever. In other words, they do not consider the possible flexibility of investment 

timing, or the value of delayed investment, which is an important feature in our model. Wang and 

Zhang (2018) and Randrianarisoa and Zhang (2019) have investigated seaport disaster adaptation 

investment under ambiguity and competition. However, their analysis is in a static ambiguity 

setting where the disaster occurrence probability is uncertain, and our study is in a dynamic 

ambiguity setting where the market expansion caused by the DT investment follows a range of 

geometric Brown motions (GBMs). Technically, our paper is most relevant to Zheng et al. (2020), 

with differences in the following aspects: (i) Zheng et al. (2020) model one investor (one airline 

investing an exclusive terminal), and our study considers the investment competition between two 

investors (two competing shipping lines) under the dynamic ambiguity setting. The investment 

game results in the challenging analysis of the equilibrium selection (simultaneous equilibrium or 

sequential equilibrium) and provides descriptions closer to the industrial dyanmics. (ii) Zheng et al. 

(2020) investigate the regulation on the airport exclusive terminal investment timing while 

assuming that the government knows the airline’s ambiguity level exactly. We relax this 

assumption and explore the regulation when the government has incomplete information on the 

shipping lines’ ambiguity level.  

 

3. DT investment competition under ambiguity 

In this section, we first present the basic framework of our models and the formulation of 

ambiguity. Second, we analyze the shipping lines’ optimal DT investment decisions under the 

scenarios of simultaneous investments and sequential investment. We also compare the outcomes 

of these two scenarios and obtain the equilibrium of the DT investment competition. 

 

3.1 Model basics  
We consider two shipping lines, 1 and 2 (SL1 and SL2, respectively), that offer differentiated 

and substitutable freight services in a particular port. To improve the service, each shipping line 

plans to build its DT (DT1 or DT2), which only it can use. Additionally, there is a PT in the port, 

which can be used by both shipping lines. We assume that the demand functions of the two 

shipping lines have the following linear forms: 
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11 11 13 23 221 ( )p v q b q q q                                                (1) 

13 13 11 23 221 ( )p q b q q q                                                  (2) 

23 23 11 13 221 ( )p q b q q q                                                  (3) 

22 22 11 13 231 ( )p v q b q q q                                               (4) 

where 11p  and 13p  denote the fare of SL1 through DT1 and the PT, respectively; 11q  and 

13q  denote the freight service volumes of SL1 through DT1 and the PT, respectively; 22p  and 

23p  denote the freight rate/fare of SL2 through DT2 and the PT, respectively; 22q  and 23q  

denote the  freight service volumes of SL2 through DT2 and the PT, respectively. (0,1]b  is 

the substitution degree of the freight services provided by the two shipping lines, which represents 

the competition intensity, with a higher b indicating a more intensified competition. To simplify 

the problem, we assume that SL1 and SL2 are symmetric. We normalize the market scale to 1 and 

assume that the DT can promote its investor’s market scale to 1 v  by improving services, 

where 0v  . A similar assumption has been common in the DT literature (e.g., 

Alvarez-SanJaime et al., 2013). All notations used in this paper are summarized in Table B-1 in 

Appendix B. The market structure is presented in Figure 1.  

 

 

 

 

 

 

 

 

 

 

We propose the following two-stage game to analyze the shipping line’s DT investment 

decisions. Two scenarios for their investment behaviors, simultaneous and sequential, are 

considered. In Stage 1, SL1 and SL2 determine whether and when to invest in their DTs 

simultaneously to maximize their total future profits under the simultaneous scenario. Under the 

sequential scenario, one shipping line first makes the investment decision as the leader, and the 

other chooses its investment after it observes the leader’s investment outcomes. To simplify the 

problem, we assume that the shipping lines’ DTs are symmetric and their investments are lumpy 

and equal to I . In Stage 2, given the construction of one DT or two DTs, the two shipping lines 

engage in a simultaneous Cournot competition. The shipping lines choose their service volumes 

through the DT and the PT, that is, 11q , 13q  and 22q , 23q , to maximize their instantaneous 

SL1 

DT1 

11q  

SL2 

DT2 

22q

PT 

13q13q 23q

Cournot competition 

Figure 1  Market structure 
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profits. The profit functions of the two shipping lines are presented as follows: 

1 11 11 13 13( )p q p f q                                                      (5) 

2 22 22 23 23( )p q p f q                                                     (6) 

where 1  and 2  are their profits, and f  is the terminal charge of the PT. To simplify the 

problem, we normalize the operation costs of the two shipping lines, the DTs, and the PT to 0.  

Here we assume that the two shipping lines are symmetric, which means that they have the 

same service levels and the same marginal operation costs (which are normalized to 0). Their DTs 

have the same capacities and thereby their investments are the same. The symmetry assumption is 

commonly used to model competitors in the literature of economics, game theory (e.g., Jehle and 

Reny, 2001) and real option game (e.g., Dixit and Pindyck, 1994). The main reason for such 

simplification is to better reveal the underlying economic intuition by focusing on the effects of 

key factors/variables. For example, if the demand for shipping line is modeled as slightly better 

than the other, even such a difference is very small to the extent that it will not change (real 

comparison) results, it would be difficult to identify mathematically the impacts on market 

equilibrium results when the analytical solutions are already complex (which is the case of our 

study). Because in this study we would like to focus on the implications of DT (instead of the 

differences in shipping lines per se), we have considered the symmetry case. Of course, if we want 

to more closely examine the effects of the differences between shipping lines, then it is necessary 

to model asymmetric shipping lines (and thereby their demand promotions follow different 

evolution patterns). Note in such a case obtaining closed form solution is only the first step, since 

no conclusions can be obtained if no analytical comparison results or comparative statics can be 

obtained. This can be a useful further investigation. Given the complexity of the problem and 

solutions, some alternative simplifying assumptions may have to be made to make the model and 

comparisons mathematically tractable. In our model, the two shipping lines compete in the same 

market. Each of their DT has a promotion on the market demand. Because the shipping lines are 

symmetric, their DT promotions are also symmetric, with the demand evolution in the same 

pattern. In practice, DTs are used by the world’s leading container shipping companies, whose 

scales are of similar magnitudes, with comparable operations in key markets and ports. The 

assumption of symmetry should be reasonable in practice for such markets. As indicated in (1), 

this allows us to better reveal and highlight the effects of DT. It would of course be a useful 

extension to consider asymmetric cases, which would be a even more realistic characterization of 

many other markets. Combined and compared to the analytical results obtained in this paper, we 

would be in a better position to evaluate the individual and combined effects of the factors related 

to shipping lines, ports, DTs, and government policy etc. The current study offers fresh insights on 

this important issue, but is not capable of answering all the related questions. 

Furthermore, we investigate the optimal investment decisions of the DTs from a social 

perspective, where the government regulates the DT investments in Stage 1 to maximize social 

welfare7, which is the sum of the (net) consumer surplus (the consumer surplus minus their 
                                                        
7According to the microeconomics (Jehle and Reny, 2001), we have the following relationships: Social welfare = 

consumers’ net surplus (i.e., consumers’ surplus - their payments to the firms) + the firms’ profits (i.e., the 

payments they received from the consumers - their cost). Therefore, social welfare = consumers’ surplus – firms’ 



9 
 

payments to the shipping lines), the profits of the shipping lines, and the profit of the PT.8  

2 2 2 2
11 13 22 23 11 22 13 23 11 13 22 23

11 13 11 23 11 22 13 23 13 22 22 23

( , , , ) (1 )( ) ( ) / 2

( )

u q q q q v q q q q q q q q

b q q q q q q q q q q q q

        
     

                (7) 

 

3.2 Expression of ambiguity 

Ambiguity refers to the probability distribution over states when the event is unknown or 

uncertain (Ellsberg, 1961). Ambiguity may result from the difference in the decision makers’ 

subjective measures of the probabilities of the events, which are described by their ambiguity 

levels. In our paper, we assume the demand expansion caused by the DT construction, tv , 

follows the GBM: 

t t t tdv v dt v dB                                                       (8) 

where tdB  is a Wiener process, and   and   are the expected growth rate and the 

volatility of tv , respectively. We assume that 0 0v  , 22r     and 0  , where r  is 

the riskless discount rate.9 To incorporate demand ambiguity, tv  is expanded into a set of 

equations through a range of GBMs such that 

( )t t t t tdv v dt v dB                                                  (9) 

where the density generators t  are restricted to the non-stochastic interval [ , ]     that 

defines the level of ambiguity, with a bigger   representing a higher level of ambiguity. 

Equation (9) is commonly used in the literature that has examined investment under ambiguity, for 

example, Chen and Epstein (2002) and Nishimura and Ozaki (2007). Because SL1 and SL2 are 

symmetric, we can reasonably assume their ambiguity levels are the same, that is, 1 2= = S   , 

where the subscript S is used to indicate the SLs and distinguish the government’s ambiguity level 

G . 

                                                                                                                                                               
costs. In our paper, the shipping lines’ operation costs are normalized to 0. Thus, in our paper, social welfare = 

consumers’ surplus. Moreover, the derivation of the consumers’ surplus with respect to their consumption quantity 

= the products’ prices. Therefore, we can obtain the consumers’ surplus from the demand functions (1)–(3). We can 

verify that 11 11/u q p   , 13 13/u q p   , 2 3 2 3/u q p   , 22 22/u q p   . These are consistent with 

the properties of the social welfare function.  
8For simplicity we assume that the shipping lines can invest and hold 100% of a DT without revenue sharing with 
the port (e.g., APM holds a 100% share in some of its DTs in, e.g., Rotterdam, Algeciras, Aarhus, and Genoa,. See 
Table 1 in Alvarez-SanJaime et al., 2013).  
9First, we need r  ; otherwise, the expected value of the DTs (either to the shipping lines or to the 

government) could become infinitely large as time goes on infinitely, making the discussion senseless. Moreover,  
to gurantee the risk-adjusted discount rates are positive (the detailed explanations can be found in Section 3.3.3), 

we need 22r    , a standard assumption in the literature of real options (e.g., Dixit and Pindyck, 1994, p. 

197). 
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In our model, the market scale is normalized to 1 and the demand promotion tv  can also be 

treated as the difference in the market potentials between the DT and the PT. Compared to the 

mature PT, which has a long operation history in the market, the relative advantage of the newly 

constructed DT is not very certain for its investor, due to a lack of historical data regarding the 

DT’s impact on specific markets. Therefore, we assume that only the DTs cause the demand 

promotion stochastically.  

 

3.3 Simultaneous investment scenario 
DT projects result in extra profits for the shipping lines and extra social welfare for society. 

To make the DT investment, the shipping lines (or the government) must assess the profit 

increment (or the social welfare increment) from the DT construction. Therefore, in the following 

subsection, we first calculate the shipping lines’ instantaneous profits and the instantaneous social 

welfare without DTs. 

 

3.3.1 Shipping lines’ instantaneous profits and the instantaneous social welfare 
without DTs 

Without DTs, the demand system (1)–(4) becomes 

13 13 231p q bq                                                          (10) 

23 23 131p q bq                                                          (11) 

The two SLs’ profit functions become 

1 13 13( )p f q                                                           (12) 

2 23 23( )p f q                                                          (13) 

We easily obtain the SLs’ optimal output decisions and profits without DT as follows: 

13 23

1

2N N

f
q q

b


 


                                                       (14) 

2

1 2 2

(1 )

(2 )N N

f

b
  

 


                                                    (15) 

where the “N” in the subscript denotes without DT. The social welfare function under the case 

without DT becomes 

2 2
13 23 13 23 13 23 13 23( , ) ( 2 )/2u q q q q q q bq q                                    (16) 

Substituting (14) into (16), we can obtain the instantaneous social welfare without DT as 

2

(1 )[(1 ) 3 ]

(2 )N

f f b f
u

b

   



                                             (17) 
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3.3.2 Shipping lines’ instantaneous profits after investing in DTs 
To investigate the shipping lines’ decisions under simultaneous DT investment, we first 

analyze their output decisions in Stage 2. Substituting (1)–(4) into (5) and (6), we find that the 

equilibrium outputs of the two shipping lines in each period are 

11 22

(2 ) 3 2 2

4(1 )(1 2 )

b v bf b
q q

b b

   
 

 
                                          (18) 

13 23

3 (2 ) 2 2

4(1 )(1 2 )

bv b f b
q q

b b

    
 

 
                                        (19) 

Substituting (18)–(19) into (5) and (6), we obtain the two shipping lines’ instantaneous profit 

increment after the DT constructions as follows: 

          
2

1 2 , , 0,t t II S t I S t Sv v                                     (20)  

where 
2

, 2

3 4 2

8(1 )(1 2 )II S

b b

b b
  


 

, 
2

, 2

(5 2) 4 2

4(1 )(1 2 )I S

f b fb

b b
   


 

, and 

We easily observe that , 0II S  . In addition, to keep the shipping lines’ fares and outputs 

positive, we need 0 1f  , which leads to , 0I S  . The signs of the coefficients in the 

shipping lines’ instantaneous profit increment functions satisfy the condition that the profit flow 

should be a convex function of the stochastic variable (see Dixit and Pindyck, 1994, pp. 197).  

 

3.3.3 Shipping line’s DT investment decisions 
From (20), we observe that the shipping lines’ profit increments are related to the stochastic 

process tv . With market uncertainty, SL1 and SL2 experience the tradeoff between making their 

investments immediately and waiting for better opportunities; in other words, their investment 

decisions are real options investment problems. Many preference models have been used to 

describe a decision maker’s utility under ambiguity (e.g., see Klibanoff et al., 2005; Skiadas, 

2014). An infrastructure investor (e.g., a DT investor), will probably be conservative regarding the 

investment outcomes and is inclined to make decisions extremely cautiously due to the large 

investment cost and the irreversible investment. It can be reasonably assumed that the shipping 

lines consider only the “worst” situation; hence, we use the Multiple Prior Expected Utility 

framework in continuous time (Chen and Epstein, 2002; Nishimura and Ozaki, 2007). Thus, the 

ambiguity-averse shipping lines’ present values of future profit increment after the DT 

construction is defined as follows: 

0
inf [ | ], 1,2Q rt

i it tE e dt F i





 


                                         (21) 

where i  is SL i’s expected present value of the future profit increment at time 0. From (13) we 

4 2 3 2 2

0, 2 2

(3 2)( 2) (48 48 16) (30 12 12) (32 8) 8

8(1 )(2 ) (1 2 )S

f f b f f b f f b f b

b b b
           


  
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observe that i  is SL i’s expected present value of its future profit increment in the worst case. 

Next, a lemma provides the value of i . All proofs are provided in the Appendix. 

 

Lemma 1. Given that the ambiguity-averse shipping line i’s preferences are (21) and the 

rectangular structure of beliefs P , its expected present value of the future profit increment is 

given by 

0,2
, , , ,

S
i II S II S t I S I S tv v

r


                                           (22) 

where , 2

1

2( )II S
Sr    

 
  

, ,

1

( )I S
Sr   

 
 

. 

 

Next, we examine the impact of SL i’s ambiguity degree S  on its expected present value 

of future profit increment i . We call the terms ,II S , ,I S , and 1 / r  the “risk-adjusted 

discount rate under ambiguity (RDRA)” (Zheng et al., 2020). Therefore, i  is the expected 

present value of SL i’s profit increment calculated with RDRA. We easily find that 

, / 0II S S    and , / 0I S S   . Because , 0II S  , , / 0II S S    , , 0I S  , 

, / 0I S S    , and 0, / 0S S    , we have / 0i S   ; thus, an increase in ambiguity 

has a negative impact on the expected present value of the shipping line’s future profit increment.  

Now, we analyze SL i’s investment decision in Stage 1 to maximize its opportunity value; in 

other words, SL i experiences the following optimal stopping problem: 

[ , ]0
max[ inf ( | ) ]i

ii

rQ rt
i it tZ E e dt F e I

 

  


 

 
                                (23) 

by choosing an ( )tF -stopping time, that is, { 0}i tF   , where iZ  is SL i’s option value of 

its DT investment and i  is its investment timing. Equation (23) denotes that SL i attempts to 

determine its DT investment timing to maximize its net present value, which is its expected 

present value of the future profit increment minus the present value of DT investment. Because 

SL1 and SL2 are symmetric, their optimal DT investment timings are the same in the 

simultaneous investment scenario, which we denote as *
Fv . By solving (23), we can obtain SL i’s 

DT investment rule in the simultaneous scenario as Proposition 1. 

 

Proposition 1. If 0, /SI r , both shipping lines invest immediately, that is, *
0Fv v ; 

otherwise, their optimal DT investment timing, that is, *
Fv , is the positive root of the following 
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quadratic equation: 

0,2
, , , ,

2 1
(1 ) (1 ) S

II S II S I S I S
S S

v v I
r


 

 
                                (24) 

where 2
2 2 2

1 1 2
( ) 2

2 2
S S

S

r 
  

       and S S     . 

 

Proposition 1 provides the optimal DT investment rule under the simultaneous investment 

scenario as follows: once the market scale expansion tv reaches or exceeds the threshold *
Fv , 

that is, *
t Fv v , both shipping lines should make the DT investment immediately. In the LHS of 

(16), the term 1 2/ S  and 1 1/ S  are the inverses of the “option value multipliers.” 

Because 2S  , these two inverses are both less than 1. The optimal DT investment rule (24) 

indicates that under ambiguity each shipping line’s expected present value of the future profit 

increment must exceed its investment cost by the option value multipliers. This result is consistent 

with standard real options theory.  

Next, we investigate the impact of the competition between the shipping lines on their DT 

investment timing. Corollary 1 summarizes the conclusions. 

 

Corollary 1. Define the parameter areas with respect to b  and f  as follows: 

^

1 {0 ,0 1}M b b f     ,
^ ^

2 1{ 1,0 ( )}M b b f f b     , 
^ ^ ^

3 1 2{ 1, ( ) ( )}M b b f b f f b     , 

and 
^ ^

4 2{ 1, ( ) 1}M b b f b f     , where 
^

b is the root of the following equation that is 

between 0 and 1: 3 26 13 10 2 0b b b    , 
3 2^

1 3 2

4 2 8 6
( )

10 11 2 4

b b b
f b

b b b

  


  
, and  

^

2 ( )f b  െ
ଶ൫ଵ଺ିଶ଼௕ିସ଺௕మା଺ଷ௕యାସ଺௕రିହଷ௕ఱାଶ௕ల൯

ଷ௕ሺସ଴ା଻଺௕ାଷସ௕మାଷଶ௕యାହଽ௕రାଶ௕ఱሻ
 

൅
2
3
√256൅ 1504ܾ ൅ 2432ܾଶ െ 1144ܾଷ െ 6060ܾସ െ 3120ܾହ ൅ 3399ܾ଺ ൅ 3774ܾ଻ ൅ 267଼ܾ െ 988ܾଽ െ 352ܾଵ଴ ൅ 16ܾଵଵ ൅ 16ܾଵଶ

bሺ40 ൅ 76ܾ ൅ 34ܾଶ ൅ 32ܾଷ ൅ 59ܾସ ൅ 2ܾହሻ
 

We also have the following regulation results:   

(i) If 1 2( , )b f M M  , an increase in competition between the shipping lines delays their DT 

investment timing, that is, * / 0Fv b   ; 

(ii) if 4( , )b f M , an increase in competition between the shipping lines promotes their DT 

investment timing, that is, * / 0Fv b   ; 

(ii) if 3( , )b f M , the impact of increasing competition between the shipping lines on their DT 
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investment timing is uncertain. 

 

From Corollary 1 we know that in the simultaneous investment scenario, the marginal impact 

of the competition on the shipping lines’ DT investment timing depends on two factors: the 

competition between the shipping lines and the PT charge. As indicated by Proposition 1, the 

expected present value of future profit increment determines the DT investment timing. Increasing 

competition decreases the shipping lines’ instantaneous profits both before and after their DT 

construction. The final outcome depends on the impacts of competition on the decreasing 

comparison. When the competition between the shipping lines or the PT charge is very low (area 

1M  and 2M ), the decrease of the shipping lines’ instantaneous profits after their DT 

construction dominates those before their DT construction; thereby, the DT investments are 

delayed. When one or both of these two factors are sufficiently high (area 4M ), the decrease in 

their instantaneous profits before their DT construction dominates; thereby, the DT investments 

are promoted. In the intermediate area (area 3M ), how the DT investment is affected is uncertain. 

Figure 2 illustrates the parameter areas which have different impacts on the shipping lines’ DT 

investment timing 

For the impact of ambiguity on the shipping lines’ DT investment timing, our conclusions are 

similar to those of Zheng et al. (2020), which indicates that the ambiguity delays the DT 

investment, that is, * / 0F Sv    , if the shipping lines are ambiguity averse. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.4 Sequential investment scenario 
3.4.1 Shipping lines’ outputs decisions when only one shipping line makes the DT 
investment 

Without loss of generality, we assume that SL 1 is the leader (i.e., it invests in DT ahead of 

SL 2). After its DT investment, the demand system becomes 

11 11 13 231 ( )p v q b q q                                                   (25) 

13 13 11 231 ( )p q b q q                                                     (26) 

b

f

^

b

Figure 2  The parameter scope 

which has the promotion impact on 

the SLs’ DT investment timing 

Figure 2  The parameter areas 

which have different impacts on 

the shipping lines’ DT investment 

timing  

1M

2M

3M

4M

^

2 ( )f b

^

1( )f b
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23 23 11 131 ( )p q b q q                                                     (27) 

The equilibrium outputs of the two shipping lines after SL 1’s DT construction are 

11 2

(2 )[(2 ) 3 2 2]

4(1 )(2 2 )

b b v bf b
q

b b b

    


  
                                       (28) 

2

13 2

( 4) (2 ) (2 6) 4 4

4(1 )(2 2 )

b b v f b f b f
q

b b b

      


  
                             (29) 

23 2

(2 ) 2

4 4 2

bv b f
q

b b

   


 
                                                  (30) 

Then we obtain the leader’s instantaneous profit increment as follows: 

2
, , 0 ,Lt II SL t I SL t SLv v                                                   (31)  

where the added subscript “L” represents the leader, and 

4 3 2

, 2 2

4 4 8 8

8(1 )(2 2 )II SL

b b b b

b b b
    


  

, 
4 2

,

3

2 2

(4 8 ) (12 4) 8

4(1 )(2 2

(4 8)

)I SL

fb f b f b f b

b b b
      

  
  

6 5 2 4

2 3 2 2

0, 3 2

(2 )(3 2) (8 8 ) (36 24 4)

(48 104 32) (72 16 32) (96 32) 32

8(1 )(4 6 )SL

f f b f b f f b

f f b f f b f b

b b b


       

       


  

  

It is straightforward to show that , 0II SL   and , 0I SL   when [0,1)b  and [0,1]f  . 

 

3.4.2 Shipping line’s DT investment decisions 
Using a similar approach as in Section 3.3.3, the leader’s expected present value of the future 

profit increment can be expressed as follows when there is only one DT:  

0,2
, , , ,

SL
L II S II SL t I S I SL tv v

r


                                         (32) 

    When the follower, that is, SL 2, makes the DT investment too, the two shipping lines’ 

outputs decisions and their instantaneous profit increment are the same as in Section 3.3.2. Thus, 

the follower’s option value can be expressed as 

*

* * *

( )

( / ) [ ( ) ]S

F t t F

F

t F F F t F

v I if v v
Z

v v v I if v v


    
  

                                  (33) 

where * *
F Sv v  is the follower’s DT investment timing and the added subscript “F” represents 

the follower. In this equation, the follower’s expected present value of the future profit increment 

F  has the same form as (22). Using the method proposed by Dixit and Pindyck (1994), the 

leader’s option value can be expressed as Proposition 2.  
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Proposition 2. The option value of the leader can be expressed as  

*

* * * *

( )

( ) ( / ) [ ( ) ( )]S

F t t F

L

L t t F F F L F t F

v I if v v
Z

v I v v v v if v v


   
     

                   (34)                  

 

(34) suggests that the leader’s option value shows a stepwise structure depending on tv . If 

tv  is later than the follower’s DT investment time *
Fv , the leader’s option value is the same as 

the follower’s because the two symmetric shipping lines divide the market. If tv  is earlier than 

*
Fv , the leading investor’s profit increment is different at different times. Before *

Fv , the leader’s 

present value of the future profit increment is L . After *
Fv , the leader loses some profit 

increment because of the entry of the follower. The present value of this future profit increment 

loss is indicated by the term * * *( / ) [ ( ) ( )]S
t F L F F Fv v v v   . Therefore, the present value of the 

leader’s profit increment is represented by the term * * *( ) ( / ) [ ( ) ( )]S
L t t F F F L Fv v v v v    . 

The final option value of the leader is the difference between this term and the DT investment cost 

I , if *
t Fv v .  

If 0, /SLI r , from the analysis in Section 3.4.1 we know that both shipping lines make 

an immediate investment and the sequential investment scenario will never occur. Therefore, we 

now focus on the case when 0, /SLI r . With Proposition 2, we can obtain the optimal DT 

investment timing of the two shipping lines in the sequential investment scenario as follows. 

 

Proposition 3. When 0, /SLI r  and the two shipping lines make DT investments sequentially, 

the follower’s optimal timing is *
Fv  (which is the positive root of the equation in [24]), and the 

leader’s optimal timing *
Lv  is the positive root of the equation in (35): 

0,2 12 * * *
, , , ,[ ( ) ] [ ( ) ] ( )[1 ( ) ] 0S S S S S SSL

II S II SL F I S I SL F Fv v v v v v I v v
r

     
            (35) 

 

    When there is no DT, the shipping line has two choices: invest in DT now as a leader or 

invest in the future as a follower. Comparing its option value under these two choices, (35) 

provides the leader’s threshold timing *
Lv , under which the two choices generate equal option 
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values (see the proof of Proposition 4). When the time is earlier (or later, respectively) than *
Lv , 

the option value of waiting as a follower is more (or less, respectively) than the option value of 

investing as a leader and the shipping line chooses the waiting (or investing, respectively) strategy. 

After the follower invests his DT, both shipping lines have their DTs, and the situation is the same 

as that in Section 3.3. Thus, the follower’s DT investment timing is the same as the shipping lines’ 

DT investment timing in the simultaneous scenario *
Fv . 

 

3.5 Which will occur: simultaneous investment or sequential investment? 
To assess whether simultaneous investment or sequential investment might occur, we first 

calculate *
Mv , which is the leader’s optimal timing if he is the only investor while the other 

shipping line never invests. After comparing *
Lv , *

Fv , and *
Mv , we have Corollary 2.  

Corollary 2. If 0, /SLI r , *
Mv  is the positive root of the equation in (36): 

0,2
, , , ,

2 1
(1 ) (1 ) SL

II S II SL I S I SL
S S

v v I
r


 

 
                              (36) 

Moreover, we have * * *
L M Fv v v  . 

 

Corollary 2 shows that the leader makes an earlier DT investment than his optimal timing as 

a monopoly investor. Without threats from SL 2, SL 1 would invest at *
Mv . Under the pressure of 

a possible investment from the competitor SL2, SL1 has to invest in advance; otherwise, SL2 

would invest at *
Lv  when the leader’s option value is larger than that of the follower’s. In other 

words, SL1 makes a preemptive investment (Chevalier-Roignant et al., 2011). If the two shipping 

lines are symmetric, each has a 50% probability to be the leader and invests at *
Lv . After 

observing the leader’s investment decision, the follower makes his DT investment at *
Fv . Notably, 

the rules of the game do not preclude that SL2 invests first; however, after observing SL1’s 

investment, SL2’s investment is prevented automatically because it would suffer a loss by doing 

so. Thus, we present Proposition 4 to summarize the conclusion on the assessment of the 

investment scenarios. Moreover, the shipping lines’ DT investment timing sequence is presented 

by Figure 3. 

 

Proposition 4. If 0, /SLI r , the sequential investment occurs in the DT competition game 

between two symmetric shipping lines.  
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4. Regulation on shipping lines’ DT investment timing 

In this section, we first demonstrate that the sequential investment dominates the 

simultaneous investment in terms of social optimum. Moreover, the social optimal DT investment 

timing in the sequential investment scenario is obtained. Next, we show that the social optimal DT 

investment timing is mostly not consistent with the shipping lines’ preferred timing, even with the 

government having the same ambiguity level with the shipping lines. The inconsistency raises the 

necessity for the government’s regulation on the shipping lines’ investment behavior. We 

investigate the possibility for the government to use the lump-sum subsidy to align the shipping 

lines’ DT investment timing with the social optimum, especially when it has incomplete 

information on the shipping lines’ ambiguity levels.  

 

4.1 Social optimal timing for the DT investment 
    Substituting (28)–(30) into social welfare function (7), we obtain the instantaneous social 

welfare increment 1tu  after the construction of the leader’s DT as follows: 

2
1 , , 0,t II GL t I GL t GLu v v                                                 (37)  

where 
4 3 2

, 2 2

3 10 14 24 24

16(1 )(2 2 )II GL

b b b b

b b b
    


  

, 

4 3 2

, 2 2

( 4) (24 10 ) (2 28) (16 16) 24

8(1 )(2 2 )I GL

f b f b f b f b

b b b
        


  

  

6 2 5 2 4

2 3 2 2

0, 3 2

(2 3 )(2 7 ) (42 24 16) (18 112 52)

(96 128 200) (24 96 104) (128 128) 96

16(1 )(4 6 )GL

f f b f f b f f b

f f b f f b f b

b b b


       

        


  

  

We know that , 0II GL   and , 0I GL  . 

Substituting (18)–(19) into the social welfare function (7), we can obtain the instantaneous 

social welfare increment 2tu  after the follower makes the DT investment as follows: 

2
2 , , 0,t II G t I G t Gu v v                                                   (38)  

where 
2

, 2

7 14 6

8(1 )(1 2 )II G

b b

b b
  


 

, 
2

, 2

(5 10) 4( 1) 6

4(1 )(1 2 )I G

f b f b

b b
    


 

, 

0v  t  
*
Lv  

*
Fv  

Both shipping  

lines wait  

Only the leader 

SL has a DT  

Both SLs  

Have DTs  

Figure 3  The DT market in different time 
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4 2 3 2 3

0, 2 2

(2 3 )(11 6) (42 48 24) (6 12 60) 32 24

8(1 )(2 ) (1 2 )G

f f b f f b f f b fb

b b b
          


  

 

We easily obtain that , 0II G   and , 0I G  .  

Similar to Section 3.3.2, we can define the present value of the future social welfare increment 

after the first and the second DT construction as follows: 

0
inf [ | ], ,Q rt

i it tU E e u dt F i L F




 


                                        (39) 

Where iU  is the expected present value of the future social welfare increment at time 0 after the 

ith DT construction. We assume that the government is ambiguity averse too. Using similar 

approach as in Section 3.3, we obtain the social optimal timing of the first and the second DT 

investment as follows: 

Proposition 5. If 0, /GLI r , it is better to construct two DTs immediately for the social 

optimum, that is, * *
0LG FGv v v  . If 0, /GLI r , the social optimal investment timing for the 

first DT, that is, *
LGv , is the positive root of the quadratic equation in (40): 

0,2
, , , ,

2 1
(1 ) (1 ) GL

II G II GL I G I GL
G G

v v I
r


 

 
                             (40) 

where 2
2 2 2

1 1 2
( ) 2

2 2
G G

G

r 
  

       and G G     . 

The social optimal investment timing of the second DT, that is, *
FGv , is the positive root of the 

quadratic equation in (41): 

0,2
, , , ,

2 1
(1 ) (1 ) 2G

II G II G I G I G
G G

v v I
r


 

 
                             (41) 

Moreover, * *
LG FGv v . 

From Proposition 5, we know that when 0, 0,min( , )
2

S GI
r r

 
 , there exist two optimal 

investment timings for the social welfare, that is, an earlier timing *
LGv  when only one DT is the 

best choice for the social welfare, and a later timing *
FGv  when the second DT can be 

constructed for the social optimum. In other words, if a simultaneous game is considered, it is 

worse than the sequential game in terms of the social welfare optimum. Simultaneously investing 
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in two DTs at *
LGv  is too early because the social welfare increment is insufficiently large, and 

simultaneous investing in two DTs at *
FGv  is too late because the possible social welfare 

increment during the period from *
LGv   to *

FGv  (if the first DT is constructed at *
LGv ) is lost. 

Therefore, the sequential investment dominates the simultaneous investment when 

0, 0,min( , )
2

S GI
r r

 
 .  

Next, we explore whether the shipping lines’ DT investment timing and the corresponding 

social optimal timing are equal. We easily find that when 0, 0,min( , )
2

S GI
r r

 
 , the DT 

investment timing preferred by both the leader and follower always coincides with that of the 

government. Therefore, we focus on the regulation when 0, 0,min( , )
2

S GI
r r

 
  hereinafter. We 

first compare the follower’s investment timing and the social optimum. We find that they are 

mostly different, even under some strict assumptions, for example, the government having the 

same ambiguity level as the shipping lines, S G  . Corollary 3 summarizes the comparison 

results. 

 

Corollary 3. Suppose that the government has the same ambiguity level with the shipping lines, 

that is, S G    , we have , , 2

1

2( )II S II G II r   
     

  
, 

, ,

1

( )I S I G I r  
     

 
, S G        , and 

2
2 2 2

1 1 2
( )

2 2S G

r   
  

       .  Given that the ambiguity degree   is fixed, we 

define the parameter areas with respect to b  and f  as follows: 

1 {0 ( 55 3) / 23,0 1}b f       , 
2 3

2 2 3

4 12 6 10
{( 55 3) / 23 1,0 }

22 46 13

b b b
b f

b b b

  
      

 
,

2 3

3 2 3

4 12 6 10
{( 55 3) / 23 1, 1}

22 46 13

b b b
b f

b b b

  
      

 
, we find that:   

(i) if 1 2( , )b f   , the follower’s optimal DT investment timing is always later than the 



21 
 

social optimum, and they can never coincide, that is, * *
F FGv v . 

(ii) If 3( , )b f  , the follower’s optimal DT investment timing may be or may not be the same as 

the social optimum. Specifically, when the following equality holds, the follower’s optimal DT 

investment timing is the same as the social optimum; otherwise, they are not the same. 

 

, , 0, ,2

,

, 0,2
, ,

,

1 2 1
[ (1 ) ] (1 ) (1 )

2 2

1 2 1
[ (1 ) ] 4 (1 ) (1 )

I G II G G I G
I II I

II G

II S S
I I S II I I S

II S

r

r

   
  



 
 

  


     

      


 

 

The parameter scopes mentioned in Corollary 3 are represented in Figure 4.  

 

Figure 4  The parameter scopes which have different comparison results 

 

    Corollary 3 provides the following insights: 

(i) If the DT investment cost is very low such that it can be covered in the beginning (for both the 

government and the shipping lines), it will be invested immediately (by both the government and 

the shipping lines) and there is no need to regulate. 

(ii) If the DT investment cost cannot be covered at the beginning, both the government and the 

shipping lines will wait for better opportunities. The comparison of the follower’s optimal timing 

and the social optimal timing depends on the shipping lines’ competition and the charge of the PT, 

when the government has the same ambiguity level as the shipping lines. If the competition 

between the shipping lines is weak (i.e., 0 ( 55 3) / 23b   ), the shipping lines’ incentives 

to construct the DTs are weak because their relatively strong monopoly powers lead to smaller 

incremental profits contributed by the DTs. Therefore, the follower’s optimal timing is always 

later than the social optimal timing. If the competition between the shipping lines is strong (i.e., 
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( 55 3) / 23 1b   ) and the charge of the PT is low (i.e., 
2 3

2 3

4 12 6 10
0

22 46 13

b b b
f

b b b

  
 

 
), 

the shipping lines’ incentives to construct the DTs are still weak because the low PT charge leads 

to smaller advantage of DT. This also makes the follower’s optimal timing later than the social 

optimal timing. 

(iii) If both the competition intensity between the shipping lines and the charge of the PT are high, 

the follower’s optimal timing may be earlier than the social optimal timing, because the shipping 

line is eager to gain competitive advantage through its DT and the high PT charge pushes more 

users to use its DT. 

Using similar logic, we can find that the leader’s timing decision is mostly not consistent 

with the social optimum. Therefore, government regulation is necessary. 

 

4.2 Using subsidies to regulate shipping lines’ DT investments  
Subsidies are common in the port industry and can be offered in different manners, for 

example, paying for terminal construction directly (e.g., in the construction of Yangshan Port in 

China), giving ports preferential policies (e.g., loan guarantees and tax incentives for port 

construction investment in the United Kingdom), or reducing lease payments in concessions. 

These subsidies are important for terminal investors to cover their budget deficits and thereby 

change their investment behavior. Now, we investigate the possibility for the government to use 

the lump-sum subsidy, which is allocated after the shipping lines’ DT investment, to regulate their 

investment decisions. 

When the government regulates the shipping lines’ investment behavior, it needs to know 

their ambiguity levels. Because the shipping lines’ ambiguity levels are their private information, 

it is difficult for the government to know them exactly. Therefore, we must discuss the regulation 

when the government has incomplete information on the shipping lines’ ambiguity levels. 

We explore the regulation step by step. First, we discuss the case where the government 

knows the shipping lines’ ambiguity levels exactly, that is, it has the complete information on S . 

Next, we extend our discussion to the incomplete information setting, where the government does 

not know S  exactly, that is, only its distribution. Finally, we compare the regulation rules under 

these two cases and indicate the impacts of incomplete information on the DT investment 

regulation.    

 

4.2.1 Regulation under complete information 
Because the investment timing rules of the leader and the follower differ, and their 

corresponding social optimal timings differ too, their subsidies differ after the construction of the 

first and the second DTs. From (35), we know that the leader’s optimal timing decision depends 

on the follower’s timing. Therefore, according to backward induction, we first discuss the 

regulation on the follower’s DT timing, which can be used subsequently to investigate the leader’s 

investment timing regulation. The government’s regulation on the follower can be described as the 

following optimization problem10: 

                                                        
10 According to the standard assumption in the regulation literature, e.g., Laffont and Tirole (1993), in this study, 
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,

( )
max{( ) [ ] }

2
G

FR F

t F FR
F

v P
FR

v U v
I P

v
                                          (42a) 

s.t. ( ) [ ( ) ] 0St
F F FR F

FR

v
Z v I P

v
                                       (42b) 

    0FP                                                             (42c) 

where 0,2
, , , ,

G
F II G II G t I G I G tU v v

r


     is the government’s present value of the future 

social welfare increment after the follower’s DT is constructed. FRv  and FP  are the regulated 

DT investment timing and the subsidy to the follower, respectively. The objective function (42a) 

means that the government determines the regulated investment timing FRv  and the subsidy FP  

to maximize its option value of the social welfare increment11. Constraint (42b) is the Participation 

Constraint (PC), which means that the follower’s option value under the regulation should not be 

lesser than his reserved value 0. Constraint (42b) requires that the subsidy needs to be 

non-negative. Solving (42a)–(42b), we have Proposition 6. 

 

Proposition 6. Let 1Fv  and 2Fv  be the (minimum) positive root of the following equations  

2
, , , , , ,

0, 0,
, ,

[( 2) 2( 2) ] [( 1)

2
2( 1) ] 2( )

G S

G S

G S G S

G II G II G S II S II S G I G I G

G G S S
S I S I S G S

v v

v
v v v I

r

 

 
   

     

   
   




 

       


     

              (43) 

0,2
, , , ,

S
II S II S I S I Sv v I

r


                                                  (44)   

respectively. Then, under complete information, the government’s regulated investment timing for 

the follower’s DT, that is, *
FRv , can be expressed as follows: (i) if *

2FG Fv v , then * *
FR FGv v ,

0FP  ; (ii) if *
2FG Fv v  and 1 2F Fv v , then *

1FR Fv v , 0FP  ; (iii) if *
2FG Fv v  and 

1 2F Fv v , then *
1FR Fv v ,

0,*2 *
, , , ,*

( ) ( )S St
F II S II S FR I S I S FR

FR

v
P I v v

v r
 

     . 

 

Similarly, the government’s regulation on the leader can be described as the following: 

optimization problem: 

                                                                                                                                                               
we assume that the government has all the bargaining power and offers a take-it-or-leave-it subsidy contract to 
the shipping lines. 

11 The form of FU  can be obtained from (39) by using an approach similar to that in Section 3.3.3. 
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,
max{( ) [ ( ) ] }G

LR L

t
L LR L

v P
LR

v
U v I P

v
                                            (45a) 

s.t. 
* *

*
( ) { ( ) ( ) [ ( ) ( )]} 0S St LR

L L LR F FR L FR L
LR FR

v v
Z v I v v P

v v
                (45b) 

    0LP                                                             (45c) 

where 0,2
, , , ,

GL
L II G II GL t I G I GL tU v v

r


     is the government’s present value of the 

future social welfare increment after the leader’s DT is constructed. LRv  and LP  are the 

regulated DT investment timing and the subsidy to the leader, respectively. Solving (45a)–(45c), 

we obtain the regulation outcomes on the leader’s timing decision as follows. 

 

Proposition 7. Let 1Lv  and 2Lv  be the (minimum) positive root of the following equations  

2
, , , , , ,

0, 0,
, ,

[( 2) ( 2) ] [( 1)

( 1) ] ( )

G S

G S

G S G S

G II G II GL S II S II SL G I G I GL

G GL S SL
S I S I SL G S

v v

v
v v v I

r

 

 
   

     

   
   




 

       


     

               (46) 

* *
*

( ) ( ) [ ( ) ( )] 0S
L F FR L FR

FR

v
v I v v

v
                                         (47)   

respectively. Then, under complete information, the government’s regulated investment timing for 

the leader’s DT, that is, *
LRv , can be expressed as follows: (i) if *

2LG Lv v , then * *
LR LGv v ,

0LP  ; (ii) if *
2LG Lv v  and 1 2L Lv v , then *

1LR Lv v , 0LP  ; (iii) if *
2LG Lv v  and 

1 2L Lv v , then *
1LR Lv v ,

*
* * *

* *
( ) { ( ) ( ) [ ( ) ( )]}S St LR

L L LR F FR L FR
LR FR

v v
P I v v v

v v
       . 

 

From Propositions 6 and 7, we find that the regulated DT investment rules have similar 

structures for both the leader and the follower: a stepwise structure depending on the comparison 

of three thresholds—the social optimum ( *
FGv  or *

LGv ), the shipping lines’ break-even timing 

( 2Fv  or 2Lv ), and the mixed timing between the social optimum and the shipping lines’ 

optimum ( 2Fv  or 2Lv ). The government faces a tradeoff between the social welfare increment 

(arising from earlier DT construction) and a higher subsidy. When the social optimal timing 

cannot be implemented voluntarily, the government must compare the following two options: 
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subsidizing the shipping lines to encourage early DT investment (Point [iii] in Propositions 6 and 

7) or wait until their PC Constraints are satisfied (Point [ii] in Propositions 6 and 7). The 

explanations on Propositions 6 and 7 are similar to those of Zheng et al. (2020). 

 

4.2.2 Regulation under incomplete information 
Now, we assume that the government does not know the SL’s ambiguity level S  exactly 

and knows only that it follows a certain distribution in 0 1[ , ]  and its cumulative distribution 

function (c.d.f.) and probability density function (p.d.f.) are ( )H   and ( )h  , respectively. 

Moreover, we assume that its distribution satisfies the Monotone Likelihood Ratio Property 

(MLRP), i.e., 
( )

[ ] 0
( )

d H

d h


 

 .12 To elicit the SLs to reveal their private information on S  

truthfully, the government should use the following incentive mechanism. The government should 

ask SL1 and SL2 simultaneously to reveal their ambiguity level 
^

S and then determine the 

investment timing 
^

( )LR I Sv  , 
^

( )FRI Sv   and the related subsidy 
^

( )LI SP  , 
^

( )FI SP  , 

respectively, based on their report 
^

S .  In this case, the added subscript “I” indicates the 

incomplete information case. Then, the government’s regulation problem for the follower can be 

expressed as the following bi-level programming: 

,

( )
max ( ) {( ) [ ] }

2
G

S S
FRI FI

t F FRI
F FI

v P
FRI

v U v
E U E I P

v


                           (48a) 

s.t. 
^

^

max( ) [ ( ) ] 0S

S

t
F F S FI

FRI

v
Z I P

v




                                  (48b) 

    0FIP                                                             (48c) 

The objective function (48a) means that the government determines the follower’s regulated 

investment timing F R Iv  and subsidy FIP  to maximize its expected option value of the social 

welfare increment. Constraint (48b) is the Incentive Compatibility constraint, which means that 

the follower chooses his report 
^

S  to maximize his option value of the profit increment under 

the regulation rule. Constraint (48b) also contains the PC, which indicates that the follower’s 

optimal option value of the profit increment is non-negative. Solving the bi-level programming 

(48a)–(48c), we present Proposition 8 to describe the regulation rule on the follower under 

incomplete information.   

 

Proposition 8. Suppose that the government does not know the exact value of the follower’s 

ambiguity levels and knows only its c.d.f. and p.d.f. as ( )H   and ( )h  , respectively. Let 

                                                        
12The MLRP assumption is common in the principal–agent literature (Fudenberg and Tirole, 1991). 
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( , ) [ ]F FY v v I    , 
1

*

0

( , )
S

F FRI
F

Y v
P d





 





  and 3Fv  be the (minimum) positive root 

of the following equations: 

2
, , , , , ,

2
0, 0,

, ,

[( 2) 2( 2) ] [( 1)

2 ( , )
2( 1) ] 2( )
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r h v
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 
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     

       





 

       

 
       

 

(49) 

Then, under incomplete information, the government’s regulated investment timing for the 

follower’s DT, that is, *
FRIv  can be expressed as follows: (i) if *

2FG Fv v , then *
FRI FGv v ,

0FI FP P ; (ii) if *
2FG Fv v  and 3 2F Fv v , then *

3FRI Fv v , 0FI FP P ; (iii) if *
2FG Fv v  

and 3 2F Fv v , then *
3FRI Fv v ,

0,*2 *
, , , , 0*

( ) ( )S St
FI II S II S FRI I S I S FRI F

FRI

v
P I v v P

v r
 

      . 

Moreover, compared to the complete information case, the government’s regulated investment 

timing to the follower under incomplete information is delayed (or promoted, respectively), that is, 

* *
FRI FRv v  (or * *

FRI FRv v , respectively), if 
2 *( , )

0F FRI SY v

v







 
 (or 

2 *( , )
0F FRI SY v

v







 
, 

respectively). Specifically, when 0S  , incomplete information has no impact on the 

government’s regulated investment timing, that is, * *
FRI FRv v . 

 

Similarly, the government’s regulation on the leader under incomplete information can be 

described as follows: 

,
max ( ) {( ) [ ( ) ] }G

S S
LRI LI

t
L L LRI LI

v P
LRI

v
E U E U v I P

v


                                  (50a) 

s.t. ^
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*
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S

t LRI
L L LRI F FRI L FRI LI

LRI FRI

v v
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v v
 



             (50b) 

    0LIP                                                             (50c) 

    Solving (50a)–(50c), we propose Proposition 9 to describe the regulation rule on the leader 

under incomplete information. 

 

Proposition 9. Suppose that the government does not know the exact value of the leader’s 

ambiguity levels and knows only its c.d.f. and p.d.f. as ( )H   and ( )h  , respectively. Let 

( , ) ( )L LY v v I    , 
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L LRI
L
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P d





 





  and 3Lv  be the (minimum) positive root 
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of the following equations: 
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  (51) 

Then, under incomplete information, the government’s regulated investment timing for the leader’s 

DT, that is, *
LRIv  can be expressed as follows: (i) if *

2LG Lv v , then * *
LRI LGv v , 0LI LP P ; (ii) 

if *
2LG Lv v  and 3 2L Lv v , then *

3LRI Lv v , 0LI LP P ; (iii) if *
2LG Lv v  and 3 2L Lv v , 

then *
3LRI Lv v ,

*
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v v
       . 

Moreover, compared to the complete information case, the government’s regulated investment 

timing to the leader under incomplete information is delayed (or promoted, respectively), that is, 

* *
LRI LRv v  (or * *

LRI LRv v , respectively), if 
2 *( , )

0L LRI SY v

v





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 
 (or 

2 *( , )
0L LRI SY v

v







 
, 

respectively). Specifically, when 0S  , incomplete information has no impact on the 

government’s regulated investment timing, that is, * *
LRI LRv v . 

 

Based on Propositions 8 and 9, our insights are as follows: 

(i) Compared to the complete information case, the mixed timing determination equations, that is, 

(49) and (51), have the extra “incentive correction terms” (

2 ( , )F SY vH

h v







 
 and 

2 ( , )L SY vH

h v







 
) compared to the complete information cases, that is, (43) and (46). This is 

common in principal–agent models. These terms may cause the distortions in the regulation results 

under incomplete information. If 

2 ( , )F SY v

v





 

 is positive (or negative, respectively), it satisfies 

the CS+ (or CS-, respectively) 13 condition, and the regulated investment timing expedites (or 

delays, respectively) as the shipping lines’ ambiguity level increases, that is, 
* / 0FRI Sv     (or 

* / 0FRI Sv    , respectively). 

2 ( , )F SY v

v





 

 indicates the impact of increasing ambiguity to the 

marginal contribution of the investment timing on the follower’s benefit. If this term is positive (or 

negative, respectively), increasing ambiguity results in larger (or smaller, respectively) marginal 

                                                        
13 CS indicates the single-crossing condition (Fudenberg and Tirole, 1991).     
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contributions and thereby earlier (or later, respectively) investment timing for the follower 

( / 0FY v    because FY  is concave to v ). Because mixed timing must compromise the 

benefits of both the government and the follower, the regulated investment timing is thereby 

expedited (or delayed, respectively). Similar explanations can be applied to the regulated timing 

for the leader.  

(ii) When 0S  , the shipping lines have the lowest ambiguity and the regulated timing under 

incomplete information is the same as under complete information. This finding is consistent with 

the principle of “no distortions at the top” in principle-agent theory (Fudenberg and Tirole, 1991). 

(iii) Compared to complete information, both the leader and the follower have the extra 

“information subsidy,” namely, 0LP  and 0FP , under incomplete information. Unlike the 

complete information scenario where the subsidies may not be necessary, the subsidies are always 

necessary because of the shipping lines’ information advantages. Therefore, the government needs 

more subsidies under incomplete information. 

 

4.3 Regulation outcome summary under different scenarios  
In this section, we aim to answer important questions related to the regulation outcome 

comparisons under different scenarios based on Propositions 6 to 9. The answers to the following 

questions are useful in the policy implications. 

First, can the social optimum be realized? The answer is yes. Under both complete 

information and incomplete information, when the social optimum timing for the first DT (or the 

second DT, respectively) is later than the leader’s (or the follower’s, respectively) break-even 

timing, the first best can be achieved voluntarily or costless. When the social optimum timing for 

the first DT (or the second DT, respectively) is earlier than the leader’s (or the follower’s, 

respectively) break-even timing, the first best cannot be achieved, and the regulation leads to a 

mixed outcome between the social optimum and the shipping lines’ optimum.  

Second, is a subsidy necessary to reach the first-best solution? Does a subsidy accomplish the 

first-best solution? The answer is no. The first best is costless if it can be achieved, under both 

complete information and incomplete information. The subsidy is used to remedy the DT 

investment timing deviation from the social optimum partially if the social optimum cannot be 

realized. 

Third, if the first-best solution cannot be reached, what is the welfare loss, and how much 

does a subsidy reduce the welfare loss? Under complete information, the regulation leads to the 

mixed timing between the social optimum and the shipping lines’ optimum (for both the leader 

and the follower), which is later than the social optimal timing (but earlier than the shipping lines’ 

optimum) if the latter cannot be achieved. With the subsidy, the welfare loss is 

*
1( ) ( )L LG L LU v U v  for the first DT construction, and *

1( ) ( )F FG F FU v U v  for the second DT 

construction, where 0,2
, , , ,

GL
L II G II GL t I G I GL tU v v

r


     and 
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0,2
, , , ,

GF
F II G II GF t I G I GF tU v v

r


    . Without the subsidy, the welfare loss is 

* *( ) ( )L LG L LU v U v  for the first DT construction and * *( ) ( )F FG F FU v U v  for the second DT 

construction. Because the mixed timing is earlier than the shipping lines’ optimum, the social 

welfare loss is rescued by *
1( ) ( )L L L LU v U v  for the first DT construction, and 

*
1( ) ( )F F F FU v U v  for the second DT construction with the subsidy. 

Fourth, what is the extra welfare loss due to incomplete information? If the first best can be 

achieved, incomplete information does not lead to welfare loss. If it cannot be achieved but the 

shipping lines’ ambiguity level is the lowest, that is, 0S  , incomplete information does not 

lead to extra welfare loss, compared to the complete information case. If it cannot be achieved, 

and the shipping lines’ ambiguity level is not the lowest, that is, 0S  , incomplete information 

may lead to extra and less welfare loss, depending on the signs of 
2 *( , )F FRI SY v

v





 

 (for the 

follower) and 
2 *( , )L LRI SY v

v





 

 (for the leader). Specifically, when these signs are negative (or 

positive, respectively), incomplete information leads to a more delayed (or less delayed, 

respectively) regulation timing and extra (or less, respectively) welfare loss, compared to the 

complete information case.  

 

4.4 A numerical example  
To better understand the previous conclusions, we use a numerical example to illustrate them. 

The parameters are as follows: 0.1r  , 0.03  , 0.01  , 0.5b  , 50I  , 0.45f  , 

[0,5]S G     .14 In the incomplete information case,   follows the uniform distribution, 

~ (0,5)U . The numerical results are illustrated in Figures 5, 6, and 7. Among these figures, 

Figure 5 relates to Propositions 1, 3, and 5 and Corollary 3, which indicate the preferred DT 

investment timing of SLs and the government. Figure 6 relates to Propositions 6 and 8, which 

indicate the regulated policies for the follower under complete information and incomplete 

information. Figure 7 relates to Propositions 7 and 9, which indicate the regulated policies for the 

leader under complete information and incomplete information. In our numerical example, 

0.5 ( 55 3) / 23 0.186b     , 
2 3

2 3

4 12 6 10
0.45 0.514

22 4 13

b b b
f

b b b

  
  

 
, that is, 2( , )b f  ; we 

find that in Figure 5 the social optimum of the follower investment timing FGv  is always earlier 

                                                        
14 According to Schröder (2011),   should be restricted to ( ) /r    . Moreover, although the values of 

the parameters are assumed, they do not affect the results qualitatively because the results have been proved 
analytically.    
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than SL’s preferred Fv , which coincides with Corollary 3. Figure 5 also illustrates that the 

leader’s preferred timing is later than the social optimum too. The differences (between the social 

optimum and the SL’s optimum for both the leader and the follower) increase as the ambiguity 

level   increases. Figures 6 and 7 show the regulated DT investment timing and the related 

subsidy for both the leader and the follower under complete information and incomplete 

information. For the follower (Figure 6), when 1.3  , 2F G Fv v , and the regulated timing is 

F Gv  (under both complete information and incomplete information). The subsidy is 0 under 

complete information and positive under incomplete information (the information subsidy). 

Because 1.3  , 2F G Fv v , and the regulated timing becomes 1Fv  (under complete 

information) and 3Fv  (under incomplete information). When 1.3 2  , 1 2F Fv v , and the 

subsidy under complete information is still 0 and positive under incomplete information. Because 

2  , 1 2F Fv v , and the subsidy under complete information now becomes positive and 

increases as   increases because the difference between the regulated timing 1Fv  and the 

follower’s break-even timing 2Fv  widens and he needs more subsidies to cover his investment 

deficit. The information subsidy is still positive in order to induce the follower’s truthful reporting 

of his ambiguity level. These results coincide with Proposition 6. A similar stepwise structure can 

be found in the regulated timing and the subsidy to the leader in Figure 7, under complete 

information and incomplete information. 

 

 

Figure 5. Comparisons of the preferred DT investment timing of SLs and the government 
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Figure 6. The government’s DT 

regulation policy on the follower  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. The government’s DT 

regulation policy on the leader 

 

 

 

 

5. Discussion and Conclusions 

In this paper, we use real option game models to obtain two symmetric competing shipping 

lines’ optimal DT investment timing rules. We conclude that the sequential DT investment could 

occur with each shipping line having a 50% probability of being the leader and making a 

preemptive investment. In addition, we discuss the design of the subsidy policies, especially when 

the government does not know the shipping lines’ ambiguity level exactly. Next, we summarize 

our main results as follows (corresponding to our research questions identified in Section 1): 
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shipping lines’ DT investment competition, with the leader making a preemptive DT investment 

earlier than its investment timing as the monopoly investor. The follower makes its DT investment 

decision only when its expected present value of the future profit exceeds its investment cost by 

the option value multipliers. 

(2) Both the competition between the shipping lines and the PT charge affect the follower’s 

instantaneous profit increment and thereby his DT investment timing. When these two factors are 

very low, its DT investments are delayed as the shipping lines’ competition intensifies. When these 

two factors are sufficiently high, his DT investments are promoted as the shipping lines’ 

competition intensifies. In the intermediate area, how the DT investment is affected by the 

increasing competition is uncertain. The shipping lines’ increasing ambiguity always delays the 

DT investment timing. 

(3) The shipping lines’ DT investment timing may not be consistent with the social 

optimum, which makes the government’s regulation based on the subsidy policies necessary. The 

regulation rule (under both complete information and incomplete information) exhibits a stepwise 

structure, depending on the comparisons of three thresholds: the social optimum, the shipping 

lines’ break-even timing, and the mixed timing between the social optimum and the shipping lines’ 

optimum. Specifically, when the government has incomplete information on the shipping lines’ 

ambiguity level, the shipping lines can obtain extra subsidies because of their information 

advantages.  

These theoretical results provide the following policy implications: 

(1) Market uncertainty (e.g., the ambiguity) causes the possible delayed investment in DT 

compared to the social optimum if the investor is private and the competition between the 

shipping lines is low. Port privatization has been pursued by quite many ports in recent years and 

might improve port efficiency. However, this phenomenon is also controversial because private 

ports may abuse their monopoly power and harm social welfare. Our paper reiterates this opinion 

from the perspective of DT investment under demand ambiguity. Our conclusions indicate that 

private investors are inclined to delay their DT investment when experiencing market ambiguity 

and lower competition.  

(2) The regulation on shipping lines’ DT investment is necessary in the competing DT 

market. The government can use subsidies to align the shipping lines’ DT investment with the 

social optimum. When the ambiguity level is high, subsidies are necessary to promote the shipping 

lines’ DT investment.  

(3) The incomplete information on shipping lines’ ambiguity level may distort the 

regulation results, and the government needs more subsidies, compared to the complete 

information case.   

Suggested topics for further research are as follows. In Section 3.1, we assume that each DT 

can be used by its investor only. However, in practice, some DTs are also used by rival shipping 

lines (the non-exclusive DT, see Alvarez-SanJaime et al., 2013). Therefore, examining the 

investment timing of the non-exclusive DT under ambiguity would be a valuable extension to the 

work in this paper. Also the strategic berth template decisions (e.g., Imai et al., 2014; Iris et al., 

2018) to partition port capacity among the DT investors and their competing shipping lines are 

worth investigating, especially when the future demand is stochastic and ambiguous. Furthermore, 

shipping alliances are popular in today’s shipping industry. Considering the possible alliance 

between the shipping lines and its DT construction strategies under ambiguity can provide more 
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policy implications on the governance of DTs in a shipping alliance era. Another possible 

extension is to relax the assumption of the symmetry between the shipping lines, and investigate 

their DT competition when their demand promotions follow the different evolutions.    
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Appendix B Notations 

Table B-1 Notations 

Parameters and variables 

11p , 22p , 13p , 23p  
The shipping lines’ fare through the DTs and the PT 

11q , 22q , 13q , 23q  
The shipping lines’ freight service volumes through the DTs and the PT 

b   The shipping lines’ service substitution degree  

f   
Terminal charge of the PT 

I  DT investment 

1 , 2  
Shipping lines’ instantaneous profits 

tv  
Demand promotion caused by the DT at time t 

 ,   
The expected growth rate and the volatility of tv  

t   
Density generator 

tdB , tdB  
Wiener process and the Wiener process under density generator 

G , S  
Ambiguity level of the government and the shipping lines 

r   Riskless discount rate 

u  Social welfare 

i , L , F  
SL i’s , the leader’s and the follower’s expected present value of the 

future profit increment at time 0 

LU , FU  
The expected present value of social welfare increment after the first 

and the second DT at time 0 

iZ , LZ , FZ  
SL i’s, the leader’s and the follower’s option value of their DT 

investments 

S , G  
The positive roots of the equations in the real option models in 

Proposition 1 and Proposition 5 

,II S , ,I S   
The shipping lines’ risk-adjusted discount rates under ambiguity 

,II G , ,I G   
The government’s risk-adjusted discount rates under ambiguity 

,II S , ,I S , 0,S  
The coefficients of the shipping line’s expected present value of the 

future profit increment  

,II SL , ,I SL , 0,SL  
The coefficients of the leader’s expected present value of the future 

profit increment  
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,II G , ,I G , 0,G  
The coefficients of the expected present value of social welfare 

increment caused by the second DT 

,II GL , ,I GL , 0,GL  
The coefficients of the expected present value of social welfare 

increment caused by the first DT 

1Fv , 2Fv , 3Fv , 1Lv , 

2Lv , 3Lv  

The (minimum) positive roots of Equations (43), (44), (49), (46), (47), 

and (51) 

*
Sv , *

Fv , *
Lv , *

Mv   
The shipping lines’ optimal DT investment timing in the simultaneous 

investment scenario, and the follower and the leader. The positive roots 

of Equation (36) 

*
LGv , *

FGv  
The social optimal DT investment timing for the first and the second 

DT 

*
LRv , *

FRv  
The regulated DT investment timing for the leader and the follower 

under complete information 

LP , FP  
The subsidies to the leader and the follower under complete information 

*
LRIv , *

FRIv  
The regulated DT investment timing for the leader and the follower 

under incomplete information 

LIP , FIP  
The subsidies to the leader and the follower under incomplete 

information 

H , h  The c.d.f. and p.d.f. of S  

1M , 2M , 3M , 4M  
Different parameter areas in Corollary 1 

1 , 2 , 3  
Different parameter areas in Corollary 3 

Subscripts 

1, 2, 3 1 and 2 represent the shipping lines and their DTs; 3 represents the PT 

G Government 

S Shipping lines 

N Without DT 

R Regulation 

I Incomplete information 

t Time 

F Follower 

L Leader 

0, I, II The constants, the coefficients of the linear terms and the coefficients of 

the quadratic terms in the functions 
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Appendix C Proofs of the propositions and corollaries 

 
Proof of Lemma 1: 
The proof can be obtained by using an approach similar to that of Proposition 1a in Zheng et al. 

(2020). Here, we present it briefly as follows: 

   Let , , 0,it II St I St S                                                   (52) 

where 
2

, ,II St II S tv    and , ,I St I S tv   . We apply the Ito lemma to 
,II St  and obtain 

2 2
, , [(2 2 ) 2 ]II St II S t t td v dt dB          .                                  

Therefore, 2
, , 0 0

exp[(2 ) 2 2 )]
t

II St II S s tt ds B                               (53) 

We also apply the Ito lemma to ,I St  and obtain 

, , [( ) ]I St I S t t td v dt dB        .                                  

Therefore, 2
, , 0 0

1
exp[( ) ]

2

t

I St I S s tt ds B            .                       (54) 

We plug (52), (53), and (54) into (21) and obtain 
2

0 , 00 0 0

2
, 0 0,0

2
, 0 00 0

, 0

inf [ | ] inf [ ( exp(2 2 2 )

1
exp(( ) ) )]

2

[ exp((2 ) ) inf (exp(2 ( )))

exp((

S S

S

tQ rt rt
it t II S s t

t

I S s t S

t

II S t s

I S

E e dt F E e t t ds B

t ds B dt

r t E B ds

  

 



 



      

      

    

 

  

 





     

    

     



  



 
2

0 0,0

1
) ) inf (exp( ( ))) exp( )]

2 S

t

t s Sr t E B ds rt dt 


   


     

   

(55) 

Notably, [ , ]t S S S      ; thus, we know that  

0 0 00 0

2

[exp(2 ( ))] [exp(2 ( ))] [exp(2 ( ))]

exp(2 2 )

t t

t s t S t S

S

E B ds E B ds E B t

t t

          

 

    

 

   

0 0 00 0

2

[exp( ( ))] [exp( ( ))] [exp( ( ))]

1
exp( )

2

t t

t s t S t S

S

E B ds E B ds E B t

t t

          

 

    

 

 
 

Therefore, 
2

0
inf [exp(2 ( ))] exp(2 2 )

S

t

t s SE B ds t t 


   


                        (56) 

and 2

0

1
inf [exp(( ) )] exp( )

2S

t

t s SE B ds t t 


   


   .                            (57) 

Plugging (56) and (57) into (55), we obtain  
2 2

, 00 0

0,2 2
, 0 0

0,2
, 0 , 00 0

2
, 0

inf [ | ] [exp((2 ) ) exp(2 2 )]

1 1
[exp(( ) ) exp( )]

2 2

exp((2 2 ) ) exp(( ) )

S

Q rt
it t II S S

S
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S
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II S
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r t t t dt
r

r t r t dt
r

v

r




     


    


        



 





 

       

     

         



 



 
, 0 0,

22( ) ( )
I S S

S S

v

r r

 
      

 
    

     (58) 

which is (22).    □ 
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Proof of Proposition 1: 
The proof can be obtained by using an approach similar to that of Proposition 1b in Zheng et al. 

(2020). Here, we present the proof of 2S   as follows: 

We know that S  is the positive solutions of the quadratic equation (59): 

21/2 ( 1) 0r                                  (59) 

where S     . 
Notably, the risk-adjusted discount rates under ambiguity are both positive, leading to 

22( ) 0Sr        . This inequality is equivalent to the inequality in equation (60): 

21/2 ( 1) ( ) 0S r                                 (60) 

when 2  .  

Comparing (59) and (60), we obtain that 2S  .   □ 

 

Proof of Corollary 1: 

By calculating, we have 
3 2

,

2 3

6 13 10 2

8(1 ) (1 2 )
II S b b b

b b b

   


  
 

3 2
,

2 3

2(5 2) (11 2) 2(4 ) 4 6

4(1 ) (1 2 )
I S f b f b f b f

b b b

       


  
 and  

2 6 2 5 2 4 2

3 2 2 2
0,

2 2 3

(6 8 8) (177 212 84) (96 184 120) (102

252 92) (228 184 168) (120 112 48) 64 80

8(1 ) (2 ) (1 2 )
S

f f b f f b f f b f

f b f f b f f b f

b b b b


        

          


   
. 

When 1 2( , )b f   , , 0II S

b





, , 0I S

b





, and 0, 0S

b





. From (24), we know that 

*

0Sv

b





. When 4( , )b f  , , 0II S

b





, , 0I S

b





, and 0, 0S

b





. From (24), we 

know that 
*

0Sv

b





. When 3( , )b f  , , 0II S

b





, , 0I S

b





, and 0, 0S

b





. From 

(24), we know that the sign of 
*
Sv

b




 is uncertain.    □ 

 

Proof of Proposition 2: 

If *
t Fv v , the follower has invested, and the two symmetric shipping lines divide the market 

equally and have the same option value as ( )L F F tZ Z v I    . If *
t Fv v , the leader (here, 
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we suppose SL1 without loss of generosity because the two shipping lines are symmetric) would 

be the only DT investor and his option value would equal to his present value of the future profit 

increment minus his DT investment, that is, ( )L tv I  , if the follower (SL 2) does not invest 

forever. However, because SL2 would invest at *
Fv , SL 1’s present value of the future profit 

increment is “exchanged” from *( )L Fv  to *( )F Fv  after SL2’s investment. Therefore, SL1’s 

present value of the profit increment loss caused by the DT investment of SL 2 at time tv  is 

* * *( / ) [ ( ) ( )]t F L F F Fv v v v   , where the term *( / )t Fv v   is the “expected discount factor” 

(Dixit and Pindyck, 1994). In summary, SL 1’s option value before the time *
Fv  is 

* * * * * *( ) {( / ) [ ( ) ( )]} ( ) ( / ) [ ( ) ( )]L t t F L F F F L t t F F F L Fv I v v v v v I v v v v           .    □ 

 

Proof of Proposition 3: 

Before the time of the follower’s DT construction, that is, *
Fv , the leader, SL 1’s option value is 

* *( / ) [ ( ) ]t F F Fv v v I    if it chooses waiting. If SL 1 chooses investing, its option value is 

* * *( ) ( / ) [ ( ) ( )]L t t F F F L Fv I v v v v     . When these two values are equal, that is, the 

following equation holds, SL1 is indifferent between a leader and a follower. 

* * * * *( ) ( / ) [ ( ) ( )] ( / ) [ ( ) ]L t t F F F L F t F F Fv I v v v v v v v I                     (61) 

According to the rent equalization principle (Fudenberg and Tirole, 1991), the preemptive strategy 

is no longer profitable at *
Lv , which is the positive root of Equation (61). In other words, *

Lv  is 

SL 1’s optimal DT investment timing as the leader. Substituting (22) and (32) into (61), and 

performing a rearrangement, we obtain (35).    □ 

 

Proof of Corollary 2: 

First, using a similar approach as in Proposition 1, we can prove that *
Mv  is the positive root of 

Equation (36). Second, by calculating, we have , ,II S II SL  , , ,I S I SL  , and 

0, 0,S SL  . Comparing (24) and (36), we know that * *
M Fv v . Examining (35), we find that 

when *
Fv  , (35) becomes 

0,2
, , , ,

SL
II S II SL I S I SLv v I

r


                                               (62) 
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Comparing (62) and (36), we know that * *
L Mv v  when *

Fv  . Moreover, examining (35), 

we know that * */ 0L Fv v    because 2S  . Therefore, we have * *
L Mv v  given all *

Fv . 

Combining the above proof results, we have * * *
L M Fv v v  .    □ 

 

Proof of Proposition 4: 
The proof can be directly obtained from Proposition 3 and Corollary 2.    □ 

 

Proof of Proposition 5: 
Use a similar approach as that in Proposition 1.   □ 
 
Proof of Corollary 3: 
For Part (i), the proof of can be directly obtained in a manner similar to that used in Propositions 1 

and 5.  

It can be analytically shown that ,
, 0

2
II G

II S


   and ,

, 0
2
I G

I S


   for all 0 1b   

and 0 1f  . Thus, investigating (24) and (41), we can conclude that the comparison between 

*
Fv  and *

FGv  depends on the sign of 0,
0,2

G
S


 . 

3 2 3 2
0,

0, 2 2

(2 2 3 )[(13 46 22 ) 10 6 12 4]

2 16(1 )(2 ) (1 2 )
G

S

b bf b b b f b b b

b b b


         

 
  

. 

It is obvious that the denominator of 0,
0,2

G
S


  is positive. In the numerator, because 

2 2 3 0b bf   , it can be proved that 3 2 3 2(13 46 22 ) 10 6 12 4 0b b b f b b b       , 

when 0 ( 55 3) / 23b    or 
2 3

2 3

4 12 6 10
0

22 46 13

b b b
f

b b b

  
 

 
, which analytically illustrates 

the DT investment threshold between (i), (ii) and (iii) in Corollary 3.    □ 

 

Proof of Proposition 6: 
The proof can be obtained by using an approach similar to that in Proposition 4 in Zheng et al. 

(2020). Here, we present it briefly as follows: 

If 2FR Fv v , we easily verify that FRv  satisfies Constraint (42b) when 0FP  . Problem 

(42a)–(42c) becomes an unconstraint optimization problem as follows: 
( )

max{( ) [ ]}
2

G

FR

t F FR

v
FR

v U v
I

v
 

                             (63) 
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Solving (63) leads to * *
FR FGv v , which proves Part (i) of Proposition 6.  

If 2FR Fv v , Constraint (42b) cannot be satisfied with 0FP   and * *
FR FGv v . In 

objective function (42a), we observe that the coefficient of the positive decision variable FP  is 

negative. Therefore, to maximize (42a), Constraint (42b) is binding, and the following equation 
must hold at the optimum: 

0,20
, , , ,( ) ( )S S

F II S II S R I S I S FR
FR

v
P I v v

v r
 

                       (64) 

We substitute (64) into (42a) and find that the first-order condition of FRv  is now (43). Therefore, 

*
1FR Fv v . If 1 2F Fv v , we easily verify that 1Fv  satisfies Constraint (22b) when 0FP  , 

which proves Part (ii) of Proposition 6. If 1 2F Fv v , FP  must be positive and 

0,*2 *
, , , ,*

( ) ( )S St
F II S II S FR I S I S FR

FR

v
P I v v

v r
 

      to satisfy (42b) when *
1FR Fv v , 

which proves Part (iii) of Proposition 6.  
Moreover, we must prove the existence of the positive roots for Equation (43). Let 

2
, , , , , ,

0, 0,
, ,

( ) [( 2) 2( 2) ] [( 1)

2
2( 1) ] 2( )

G S

G S

G S G S

G II G II G S II S II S G I G I G

G G S S
S I S I S G S

v v v

v
v v v I

r

 

 
   

     

   
   




 

         


     

 

When 0v  , 0,( ) 2 0G G
Gv I

r

 
    , because 0G   and 0, 0,min( , )

2
S GI

r r

 
 . 

Moreover, ( )v  is a continuous polynomial function with respect to v , and its highest order is 

greater than or equal to 2. Because 0v  , lim ( )
v

v


   . Therefore, Equation (43) has at least 

one positive root.  □ 

 

Proof of Proposition 7: 
Use an approach similar to that of Proposition 6.   □ 

 

Proof of Proposition 8: 
From the Revelation Principle (Fudenberg and Tirole, 1991), we know that the government can 

limit the search of the mechanism to the class of direct mechanisms, where the follower truthfully 

reveals his ambiguity level to maximize his profit. Applying the envelop theorem to (48b) implies 

that  
^

*( ) ( , )F S F FRI S

S

Z Y v 
 

 


 
                                                    (65)  

Therefore, giving the follower the “information subsidy” 
1

*

0

( , )
S

F FRI
F

Y v
P d





 





  can always 

force him to truthfully reveal his S . Rearranging Constraint (48b) we have  
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^

( ) [ ( ) ]St
FI F F S

FRI

v
P Z I

v
                                                  (66) 

Substituting (65) and (66) into (48a)–(48c), we transform (48a)–(48c) into the following optimal 

control problem: 

1

0

max [( ) ( ) ( ) ( )] ( )
2

G S

FRI

t tF
F F S S

v
FRI FRI

v vU
I Z I h d

v v

  


                         (67a) 

s.t.  ( ) [ ] 0St
F FI

FRI

v
I P

v
                                                   (67b) 

(65) 

where FRIv  is the control variable, and FZ  is the state variable.  

We set up the following Hamiltonian function: 

1

0

( , )
[( ) ( ) ( ) ( )] ( )

2
G St t F FRI SF

F F S
FRI FRI

v v Y vU
H I Z I h

v v

  



 



      


               

(68) 

where   is the co-state variable of S . The first-order conditions of this Hamiltonian function 

with respect to FRIv  and FZ  are 

2
, , , , , ,

2 2
0, 0,

, ,

[( 2) 2( 2) ] [( 1) 2( 1)

2 ( , ) ( , )
] 2( ) 0

G S G S

G S

G S

G II G II G S II S II S G I G I G S
FGI

G G S S F S F S
I S I S G S

H
v v v

v

v Y v Y vH
v v I

r h v v
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 
 

      

        
 

 





          



  
       

   
(69) 

( )S
F S

H d
h

Z d





 


                                                      (70) 

From (70), we have 

 ( )SH                                                                  (71) 

Substituting (71) into (69) and making simplification, we obtain (49).  

If *
2FG Fv v , the social optimum FGv  can be implemented. However, to induce the 

follower to report his S  truthfully, the subsidy 0FP  is necessary to guarantee Constraint (48b). 

If *
2FG Fv v , the social optimum FGv  cannot be implemented and the mixed optimum 3Fv  

can be implemented. Because 3 2F Fv v , the follower’s PC Constraint (67b) can still be satisfied. 

Therefore, only the information subsidy 0FP  is necessary. If *
2FG Fv v  and 3 2F Fv v , not 



45 
 

only the information subsidy 0FP but also the participation subsidy 

0,*2 *
, , , ,*

( ) ( )S St
II S II S FRI I S I S FRI

FRI

v
I v v

v r
 

     is necessary to implement the mixed 

optimum 3Fv . 

Comparing (43) and (49), we easily know the relationship between *
FRIv  and *

FRv . When 

0S  , we know that ( ) 0SH   , which leads to * *
FRI FRv v . 

The proof of the existence of the positive roots for Equation (49) can be made using logic 

similar to that in the proof of Proposition 6.    □ 

 

Proof of Proposition 9: 
Use an approach similar to that in Proposition 8.   □ 

 




