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ABSTRACT 

Generative Adversarial Networks (GANs) is a novel class of deep generative models which has recently 
gained significant attention. GANs learns complex and high-dimensional distributions implicitly over images, 
audio, and data. However, there exist major challenges in training of GANs, i.e., mode collapse, non-
convergence and instability, due to inappropriate design of network architecture, use of objective function 
and selection of optimization algorithm. Recently, to address these challenges, several solutions for better 
design and optimization of GANs have been investigated based on techniques of re-engineered network 
architectures, new objective functions and alternative optimization algorithms. To the best of our knowledge, 
there is no existing survey that has particularly focused on the broad and systematic developments of these 
solutions. In this study, we perform a comprehensive survey of the advancements in GANs design and 
optimization solutions proposed to handle GANs challenges. We first identify key research issues within each 
design and optimization technique and then propose a new taxonomy to structure solutions by key research 
issues. In accordance with the taxonomy, we provide a detailed discussion on different GANs variants 
proposed within each solution and their relationships. Finally, based on the insights gained, we present 
promising research directions in this rapidly growing field. 

Index Terms—Generative Adversarial Networks, GANs Survey, Deep learning, GANs, Deep Generative 
models, GANs challenges, GANs applications, Image generation, GANs variants 

1. INTRODUCTION
eep generative models (DGMs), such as Restricted Boltzmann Machines (RBMs), Deep Belief 
Networks (DBNs), Deep Boltzmann Machines (DBMs), Denoising Autoencoder (DAE), and Generative 

Stochastic Network (GSN), have recently drawn significant attention for capturing rich underlying 
distributions of the data, such as audio, images or video and synthesize new samples. These deep generative 
models are modelled by Markov chain Monte Carlo (MCMC) based algorithms [1][2]. MCMC-based 
approaches calculate the gradient of log-likelihood where gradients vanish during training advances. This is 
the major reason that sample generation from the Markov Chain is slow as it could not mix between modes 
fast enough. Another generative model, variational autoencoder (VAE), uses deep learning with statistical 
inference for representing a data point in a latent space [3] and experiences the complexity in the 
approximation of intractable probabilistic computations. In addition, these generative models are trained by 
maximizing training data likelihood where likelihood-based methods go through the curse of dimensionality 
in many datasets, such as image, video. Moreover, sampling from the Markov Chain in high-dimensional 
spaces is blurry, computationally slow and inaccurate. 

To handle the abovementioned issues, Goodfellow, et al. [4] proposed Generative Adversarial Nets (GANs), 
an alternative training methodology to generative models. GANs is a novel class of deep generative models 
in which backpropagation is used for training to evade the issues associated with MCMC training. GANs 
training is a minimax zero-sum game between a generative model and a discriminative model. GANs has 
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gained a lot of attention recently for generating realistic images as it avoids the difficulty related to maximum 
likelihood learning [5]. Figure 1 shows an example of progress in GANs capabilities from year 2014 to 2018. 

 

Figure 1. Progress in the GANs capabilities for image generation from year 2014 to 2018. Figure from 
[4][6][7][8][9] 

GANs are a structured probabilistic model which comprises of two adversarial models: a generative model, 
called Generator (G) for capturing the data distribution and a discriminative model, called Discriminator (D) 
for estimating the probability to find whether a data generated is from the real data distribution or generated 
by G’s distribution. A two-player minimax game is played by D and G until Nash equilibrium using a 
gradient-based optimization technique (Simultaneous Gradient Descent), i.e., G can generate images like 
sampled from the true distribution, and D cannot differentiate between the two sets of images. To update G 
and D, gradient signals are received from the loss induced by calculating divergences between two 
distributions by D. We can say that the three main GANs design and optimization components are as follows: 
(i) network architecture, (ii) objective (loss) function, and (iii) optimization algorithm. 

GANs has worked well on several realistic tasks, such as image generation [8][9], video generation [11], 
domain adaptation [12], and image super-resolution [10], etc. Despite its success in many applications, 
traditional GANs is highly unstable in training because of the unbalanced D and G training. D utilizes a 
logistic loss which saturates quickly. In addition, if D can easily differentiate between real and fake images, 
D’s gradient vanishes and when D cannot provide gradient, G stops updating. In recent times, many 
improvements have been introduced for handling the mode collapse problem as G produces samples based 
on few modes rather than the whole data space. On the other hand, several objective (loss) functions have 
been introduced to minimize a divergence different from the traditional GANs formulation. Further, several 
solutions have been proposed to stabilize the training.  

1.1. Motivation and Contributions 
In recent times, GANs has achieved outstanding performance in producing natural images. However, there 
exist major challenges in training of GANs, i.e., mode collapse, non-convergence and instability, due to 
inappropriate design of network architecture, use of objective function and selection of optimization 
algorithm. Recently, to address these challenges, several solutions for better design and optimization of GANs 
have been investigated based on techniques of re-engineered network architectures, new objective functions 
and alternative optimization algorithms. To study GANs design and optimization solutions proposed to 
handle GANs challenges in contiguous and coherent way, this survey proposes a novel taxonomy of different 
GANs solutions. We define taxonomic classes and sub-classes addressing to structure the current works in 
the most promising GANs research areas. By classifying proposed GANs design and optimization solutions 
into different categories, we analyze and discuss them in a systematic way. We also outline major open issues 
that can be pursued by researchers further.   

There are a limited number of existing reviews on the topic of GANs. [13] and [14] provided an limited 
overview of the GANs taxonomy and introduced some of the architecture-variants and loss-variants of GANs. 
[15]–[17] provided a brief introduction of some of the GANs models, while [17] also presented development 
trends of GANs, and relation of GANs with parallel intelligence. [18] reviewed various GANs methods from 
the perspectives of algorithms, theory, and applications. [19] categorized GANs models into six fronts, such 
as architecture, loss, evaluation metric, etc., and discussed them in brief. [20] presented a brief summary of 
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GANs models addressing the GANs challenges. [21][22] and [23] provided a brief overview of some GANs 
models and their applications. [24] and [25] discussed on specific methods proposed for GANs stability. On 
the other hand, several researchers reviewed specific topics related to GANs in detail. [26] reviewed GANs 
based image synthesis and editing approaches. [27] surveyed threat of adversarial attacks on deep learning. 
[28] discussed various types of adversarial attacks and defenses in detail.  

Despite reviewing the state-of-the-art GANs, none of these surveys, to the best of our knowledge, have 
particularly focused on broad and systematic view of the GANs developments introduced to address the 
GANs challenges. In this study, our main aim is to comprehensively structure and summarize different GANs 
design and optimization solutions proposed to alleviate GANs challenges for the researchers that are new to 
this field.  

Our Contributions. Our paper makes notable contributions summarized as follows:  

New taxonomy. In this study, we identify key research issues within each design and optimization technique 
and present a novel taxonomy to structure solutions by key research issues. Our proposed taxonomy will 
facilitate researchers to enhance the understanding of the current developments handling GANs challenges 
and future research directions.  

Comprehensive survey. In accordance with the taxonomy, we provide a comprehensive review of different 
solutions proposed to handle the major GANs challenges. For each type of solution, we provide detailed 
descriptions and systematic analysis of the GANs variants and their relationships. But still, due to the wide 
range of GANs applications, different GANs variants are formulated, trained, and evaluated in heterogenous 
ways and direct comparison among these GANs is complicated. Therefore, we make a necessary comparison 
and summarize the corresponding approaches w.r.to their novel solutions to address GANs challenges. We 
provide a detailed investigation into the numerous research domains where GANs has been broadly explored. 
This survey can be used as a guide for understanding, using, and developing different GANs approaches for 
various real-life applications.  

Future directions. This survey also highlights the most promising future research directions. 

1.2. Organization 
In this paper, we first discuss three main components for designing and training GANs framework, analyze 
challenges with GANs framework, and present a detailed understanding of the current developments handling 
GANs challenges from the GANs design and optimization perspective.  

Section 2 explains the GANs framework from the designing and training perspective. In Section 3, we present 
the challenges in the training of GANs. In Section 4, we identify key issues related to the design and training 
of GANs and present a novel taxonomy of GANs solutions handling these key issues. In accordance with the 
taxonomy, Section 5, 6 and 7 summarize GANs design and optimization solutions, their pros and cons, and 
relationships. Section 8 discusses the future directions and Section 9 summarizes the paper.  

2. GENERATIVE ADVERSARIAL NETWORKS 
Before discussing in detail about solutions for better design and optimization of GANs in the proposed 
taxonomy, in this section, we will provide an overview of GANs framework and main GANs design and 
optimization components.  

2.1. Overview 
In recent years, generative models are continuously growing and have been applied well for a broad range of 
real applications. Generative models’ compute the density estimation where model distribution 𝑝"#$%&  is 
learned to approximate the true and new data distribution 𝑝$'('. Methods to compute the density estimation 
have two major concerns: selection of suitable objective (loss) function and appropriate selection of 
formulation for the density function of 𝑝"#$%&. The selection of objective functions for generative model’s 
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training plays an important role for better learning behaviors and performance [29][30]. The de-facto standard 
of the most widely used objective is based on the maximum likelihood estimation theory in which model 
parameters maximize the training data likelihood.  

Researchers have shown that maximum likelihood is not a good option as training objective because a model 
trained using maximum likelihood mostly overgeneralise and generate unplausible samples [29]. In addition, 
marginal likelihood is intractable which requires a solution to overcome this for learning the model 
parameters. One possible solution to handle the marginal likelihood intractability issue is not to compute it 
ever and learn model parameters via a tool indirectly [31].  

GANs achieves this by having a powerful D which have a capability to discriminate samples from 𝑝$'(' and 
𝑝"#$%&. When D is unable to discriminate samples from 𝑝$'(' and 𝑝"#$%&, then model has learned to generate 
samples similar to the samples from the real data. A possible solution for formulating density function of 
𝑝"#$%&  is to use an explicit density function in which maximum likelihood framework is followed for 
estimating the parameters. Another possible solution is to use an implicit density function for estimating the 
data distribution excluding analytical forms of 𝑝"#$%&, i.e., train a G where if real and generated data are 
mapped to the feature space, they are enclosed in the same sphere [23][24]. However, GANs is the most 
notably pioneered class of this possible solution.  

GANs is an expressive class of generative models as it supports exact sampling and approximate estimation. 
GANs learns high-dimensional distributions implicitly over images, audio, and data which are challenging 
to model with an explicit likelihood. Basic GANs are algorithmic architectures of two neural networks 
competing with each other to capture the real data distribution. Both neural nets try to optimize different and 
opposing objective (loss) function in the zero-sum game to find (global) the Nash equilibrium. The three 
main components for design and optimization of GANs are: (i) network architecture, (ii) objective (loss) 
function, and (iii) optimization algorithm. There has been a large amount of works towards improving GANs 
by re-engineering architecture [5][6][25], better objective functions [35]–[37], and alternative optimization 
algorithms [29][30].  

In the following sections, we shall discuss three main components for the GANs design and optimization, 
namely network architecture, loss function and the optimization algorithm followed by the minimax 
optimization for Nash equilibrium in detail.  

2.2. Network Architecture 
GANs learns to map the simple latent distribution to the more complex data distribution. To capture the 
complex data distribution 𝑝$'(', GANs architecture should have enough capacity. GANs is based on the 
concept of a non-cooperative game of two networks, a generator G and a discriminator D, in which G and D 
play against each other. GANs can be part of deep generative models or generative neural models where G 
and D are parameterized via neural networks and updates are made in parameter space.  

 

Figure 2. Basic GANs Architecture 

Both G and D play a minimax game where G’s main aim is to produce samples similar to the samples 
produced from real data distribution and D’s main goal is to discriminate the samples generated by G and 
samples generated from the real data distribution by assigning higher and lower probabilities to samples from 
real data and generated by G, respectively. On the other hand, the main target of GANs training is to keep 
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moving the generated samples in the direction of the real data manifolds through the use of the gradient 
information from D.  

In GANs, x is data extracted from the real data distribution, 𝑝$'(', noise vector z is taken from a Gaussian 
prior distribution with zero-mean and unit variance 𝑝), while 𝑝* refers the G’s distribution over data x. Latent 
vector z is passed to G as an input and then G outputs an image G(z) with the aim that D cannot differentiate 
between G(z) and D(x) data samples, i.e., G(z) resembles with D(x) as close as possible. In addition, D 
simultaneously tries to restrain itself from getting fooled by G. D is a classifier where D(x) = 1 if x ∼ 𝑝$'(' 
and D(x) = 0 if x ∼ 𝑝*, i.e., x is from 𝑝$'(' or from 𝑝*.  

The basic GANs architecture for the above discussion is given in Figure 2. For the given basic GANs 
architecture, the game setup between D and G during training is discussed below.  

2.3. Objective (Loss) Function 
Objective function tries to match real data distribution 𝑝$'('  with 𝑝* . Basic GANs use two objective 
functions: (1) D minimizes the negative log-likelihood for binary classification; (2) G maximizes the 
probability of generated samples for being real. D parameters are denoted by 𝜃- , which are trained to 
maximize the loss to distinguish between the real and fake samples. G parameters are denoted by 𝜃. which 
are optimized such that the D is not able to distinguish between real and fake samples generated by G. 𝜃. is 
trained to minimize the same loss that 𝜃- is maximizing. Hence, it is a zero-sum game where players compete 
with each other. The following minimax objective applied for training G and D models jointly via solving: 

                           min
23

max
26

𝑉(𝐺, 𝐷) =	min
.
max
-

𝔼@∽BCDED[log𝐷(𝑥)] +	 𝔼)∽BM Nlog 	O1 − 	𝐷R𝐺(z)TUV																																(1) 

𝑉(𝐺, 𝐷) is a binary cross entropy function, commonly used in binary classification problems [40]. In Eq. 1, 
for updating the model parameters, training of G and D are performed by backpropagating the loss via their 
respective models. In practice, Eq. 1 is solved by alternating the following two gradient updates:  

θ-(XY = θ-(  + 𝜆(∇\6	V(𝐷
(, 𝐺() and θ.(XY = θ.(  + 𝜆(∇\3	V(𝐷

(XY, 𝐺() 

where 𝜃. is the parameter of G, 𝜃- is the parameter D, λ is the learning rate, and t is the iteration number.  

In practice, second term in Eq. 1, log O1 − 𝐷R𝐺(𝑧)TU saturates and makes insufficient gradient flow through 
G, i.e., gradients value gets smaller and stop learning. To overcome the vanishing gradient problem, the 
objective function in Eq. 1 is reframed into two separate objectives: 

                       max
26

𝔼@∽BCDED[log𝐷(𝑥)] +	𝔼)∽BM Nlog 	O1 − 	𝐷R𝐺(𝑧)TUV and max
23
	𝔼)∽BM Nlog O𝐷R𝐺(𝑧)TUV                    (2) 

Moreover, G’s gradient for these two separate objectives have the same fixed points and are always trained 
in the same direction. After cost computation in Eq. 2, Backpropagation can be used for updating the model 
parameters. Because of these two different objectives, the update rule is given as: 

{θ-(XY, θ.(XY} 	← 	a
Update			if	𝐷(𝑥)	predicts	wrong								
Update			if	𝐷R𝐺(𝑧)T	predicts	wrong	
Update			if	𝐷R𝐺(𝑧)T	predicts	correct

 

If D and G are given enough capability with sufficient training iterations, G can convert a simple latent 
distribution 𝑝* to more complex distributions, i.e., 𝑝* converges to 𝑝$'(', such as 𝑝* = 	𝑝$'('.  

2.4. Optimization Algorithm 
In GANs, optimization is to find (global) equilibrium of the minmax game, i.e., saddle point of min-max 
objective. Gradient-based optimization methods are widely used to find the local optima for classical 
minimization and saddle point problems. Any traditional gradient-based optimization technique can be used 
for minimizing each player’s cost simultaneously which leads to Nash equilibrium. Basic GANs uses the 
Simultaneous Gradient Descent for finding Nash-equilibria and update D’s and G’s parameters by 
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simultaneously using gradient descent on D’s and G’s utility functions. Each player D and G tries to minimize 
its own cost/objective function for finding a Nash equilibrium (θ-, θ.), J-(θ-, θ.) for the D and J.(θ-, θ.) 
for the G, i.e., J- is at a minimum w.r.to θ- and J. is at a minimum w.r.to θ..  

Minimax optimization for Nash equilibrium. The total cost of all players in a zero-sum game is always 
zero. In addition, a zero-sum game is also known as a minimax game because solution includes minimization 
and maximization in an outer and inner loop, respectively. Therefore,  

J. 	+	 J- = 0 

i.e.,                                                                         J. 	= 	−J- 

All the GANs game designed earlier, apply the same cost function to the D, J-, but they vary in G’s cost, J.. 
In these cases, D uses the same optimal strategy. D’s cost function is as follows w.r.to θ-: 

																																												J-(θ-, θ.) = 	−
Y
n
𝔼@∽BCDED[log𝐷(𝑥)] 	−	

Y
n
𝔼) Nlog O1 − 	𝐷R𝐺(𝑧)TUV                                              (3) 

Eq. 3 represents the standard cross-entropy cost which is minimized during the training of a standard binary 
classifier with a sigmoid output. In the minimax game, G attempts to minimize and maximize the log-
probability of D being correct and being mistaken, respectively. In GANs, training of a classifier is performed 
on two minibatches of data: a real data minibatch having examples’ label 1 and another minibatch from G 
having examples’ label 0, i.e., the density ratio between true and generated data distribution is represented as 
follows:  

𝐷(𝑥) = 	
𝑝$'('(𝑥)
𝑝*(𝑥)

= 	
𝑝(𝑥|𝑦 = 1)
𝑝(𝑥|𝑦 = 0) =

𝑝(𝑦 = 1|𝑥)
𝑝(𝑦 = 0|𝑥) =

𝐷∗(𝑥)
1 − 𝐷∗(𝑥) 

Here, 𝑦=0 means generated data and 𝑦=1 means real data. 𝑝(𝑦 = 1) = 𝑝(𝑦 = 0) is assumed. 

Through training D, we get an estimate of the ratio 𝑝$'('(𝑥)/𝑝*(𝑥) at every point x which allows the 
computation of divergences and their gradients and sets approximation technique of GANs differ from VAEs 
and DBMs as they generate lower bounds or Markov Chains based approximations. D learns to distinguish 
samples from data for any given G. The optimal D for a fixed G is given by 𝐷.∗(𝑥) 	= 	

sCDED(@)
sCDED(@)X	st(@)

. After 

sufficient training steps, G and D with enough capacity will converge to 𝑝* = 	𝑝$'(' , i.e., D cannot 
discriminate between two distributions. For optimal D, the minimax game in Eq. 1 can now be reformulated 
as follows. 

																																																																				J- 	= 	−2log2+2	 O𝐷vwR𝑝$'(' ∥ 𝑝*TU																																																																							(4) 

where 𝐷vw denotes Jensen-Shannon divergence. When D is optimal, G minimizes Jensen-Shannon divergence 
(JSD) mentioned in Eq. 4 which is an alternative similarity measure between two probability distributions, 
bounded by [0,1]. In the basic GANs, it is feasible to estimate neural samplers through approximate 
minimization of the symmetric JSD.  

𝐷vwR𝑝$'(' ∥ 𝑝*T = 	
Y
n
𝐷z{ |𝑝$'(' ∥

Y
n R𝑝$'(' + 𝑝*T} +	

Y
n
𝐷z{ |𝑝* ∥

Y
n R𝑝$'(' + 𝑝*T}, 

where 𝐷z{ denotes the KL divergence. 

JSD is based on KL divergence, but it is symmetric, and it always has a finite value. Because 𝐷vwR𝑝$'(' ∥ 𝑝*T 
is an appropriate divergence measure between distributions, i.e., real data distribution 𝑝$'('  can be 
approximated properly when sufficient training samples exist and model class 𝑝* can represent 𝑝$'('. The 
JSD between two distributions is always non-negative and zero when two distributions are equivalent, J-∗  = 
− 2log2 is the global minimum of J- which shows 𝑝* = 	𝑝$'('.  

Given the minimax objective, 𝑝* = 	𝑝$'(' occurs at a saddle point 𝜃., 𝜃-. Saddle point of a loss function 
occurs at a point which is minimal w.r.to one set of weights and maximal w.r.to another. GANs training 
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interchanges between minimization and maximization steps. If one step is powerful than another, then 
solution path “slides off” the loss surface as shown in Figure 3. Due to this, training becomes unstable and 
network collapses [41]. 

 
Figure 3. An illustration of gradient method of Adversarial Net [41] 

Finding Nash equilibrium in GANs is a very challenging problem as objective functions are non-convex, 
parameters are continuous, and parameter space is high-dimensional [42], e.g., an update to θ- that decreases 
J- can increase J., and an update to θ. that decreases J. can increase J-, i.e., training fails to converge. GANs 
are still hard to train and training suffers from the following problems, such as difficulty converging and 
instability, and mode collapse. In the next section, we shall discuss major reasons of these problems in the 
GANs training in detail.  

3. CHALLENGES IN TRAINING GANs 
GANs suffer from the limitation of generating samples with little diversity, even trained on multi-model data. 
E.g., when GANs is trained on hand-written digits’ data with ten modes, G may unable to generate some 
digits [43]. This condition is identified as mode collapse problem and several recent advances in GANs has 
focused to resolve this problem.  

It may also possible that G and D oscillate during training, instead of a fixed-point convergence. When a 
player gets more powerful than another player, then it may possible that system does not learn and suffers 
from the vanishing gradients, i.e., instability. When the generated samples are initially very poor, D learns to 
differentiate easily between real and fake samples. This causes D(G(z)), probability of the generated samples 
being real, will be close to zero, i.e., gradient of log(1 − D(G(z)) will be very small [44]. This shows that 
when D fails to provide gradients, G will stop updating. Also, hyperparameters selection, such as batch size, 
momentum, weight decay, and learning rate is an utmost important factor for GANs training to converge [6].  

In this section, we shall discuss about the main challenges in the GANs training in detail.  

3.1. Mode Collapse 
Mode collapse problem can occur as the max-min solution to the GANs works in a different way from the 

min-max solution. Therefore, in G∗ =min
23

max
26

𝑉(𝐺, 𝐷), G∗ generates samples from the data distribution. In 

case of G∗ =max
26

min
23

𝑉(𝐺, 𝐷), G maps every z value to the single x coordinate that D believes them real 

instead of fake. Simultaneous gradient descent does not clearly benefit min max over max min or vice versa.  

 
Figure 4. An example for mode collapse problem on a 2D toy dataset. Target distribution is a mixture of 

Gaussians in 2D space. During GANs training, G generates only single mode at each time step and keep moving 
among different modes as D is trained to discard separate modes. Figure from [45] 
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Figure 4 shows GANs training on a toy dataset in which G produces only single mode instead of having 
multi-model training dataset and keeps cycling between different modes as D continuously rejects samples 
generated by G. This shows GANs oscillates and have difficulty in achieving Nash equilibrium. Mode 
collapse is one of the key reasons for the cause of unstable GANs training – another big challenge in GANs. 

The main drawback of GANs is that they could not focus on the whole data distribution as GANs’ objective 
function has some similarity with the JSD. Experiments have shown that even for the bi-model distribution, 
minimizing JSD only produces a good fit to the principal mode and could not generate quality images [30].  

Figure 5 illustrates the missing mode problem where G’s gradient pushes G towards major mode M1 for most 
z while G’s gradient pushes G towards M2 only when G(z) is very close to mode M2. However, it is likely 
that in the prior distribution, such z is of low or zero probability. As Figure 5 shows one of the main reasons 
of mode missing is that the G visits missing modes area rarely, i.e., provides very few examples for improving 
G around those areas.  

 
Figure 5. Illustration of missing mode problem. Figure from [46] 

Generally, mode collapse is a consequence of poor generalization. There can be two types of mode collapse: 
(1) most of the modes from the input data are absent from the generated data, (2) only a subset of particular 
modes is learned by G. An ill-suited objective function can be a major reason for the mode collapse problem 
where several GANs variants, including modifying D’s objective [27][30], modifying G’s objective [47] have 
been proposed. In these variants, G is shown, at equilibrium, and able to learn the whole data distribution, 
but convergence is elusive in practice. To handle this issue, several recent studies have introduced new 
network architectures with new objective functions or alternative training schemes.  

In the next-subsection, we shall discuss another major challenge in the GANs training.   

3.2. Non-convergence and Instability 
In the traditional GANs, G uses two loss function as already discussed: 𝔼𝑧~log	DRG(𝑧)T�  and 

𝔼𝑧 Nlog O1 − DRG(𝑧)TUV. But, unfortunately, G’s loss can lead to potential issues in GANs training.  

  
Figure 6. DCGANs for 1, 10 and 25 epochs. G is fixed 

while D is trained from scratch and using original 
cost function to compute the gradients [48] 

Figure 7. DCGANs for 1, 10 and 25 epochs. G is 
fixed, D is trained from scratch and using − log D 

cost function to compute the gradients [48] 

The former loss function 𝔼𝑧~logDRG(𝑧)T� can be the cause of gradient vanishing problem when D can easily 
differentiate between real and fake samples. For an optimal D, G loss minimization is similar to the 
minimization of the JSD between real image distribution and generated image distribution. As already 
discussed, in this case, the JSD will be 2log2. This allows optimal D to assign probability 0 to fake samples, 
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and 1 to real ones and causes gradient of G loss towards 0 which is called vanishing gradients on G. Figure 
6 shows that as D gets better and the gradient of G vanishes. 

To minimize the cross-entropy between a target class and a classifier’s predicted distribution, classifier 
requires to choose the correct class. In GANs, D tries to minimize a cross-entropy while G tries to maximize 
the same cross-entropy. When D confidence is quite high, D rejects the samples generated by G, and then 
G’s gradient vanishes. One possible solution to alleviate this issue is to reverse the target employed for 
constructing the cross-entropy cost. Thus, G’s cost is as follows: 

The second one is considered as the −log D trick [4][48][35]. The minimization of the G’s loss function 
𝔼z Nlog O1 − DRG(𝑧)TUV  is equal to minimize 𝐷z{R𝑝* ∥ 𝑝$'('T − 	2 O𝐷vwR𝑝$'(' ∥ 𝑝*TU  which causes the 
unstable gradients as it minimizes the KL divergence and maximizes JSD simultaneously. This situation is 
called instability of G’s gradient updates. Figure 7 shows that gradients of the G are growing rapidly. This 
figure also shows that variance of the gradients growing, i.e., these gradients updates will lead generation of 
low sample quality. 

J. = −Y
n
𝔼z~log	𝐷R𝐺(𝑧)T�,  or 

J. = −Y
n
𝔼z Nlog O1 − 𝐷R𝐺(𝑧)TUV, 

Several GANs design and optimization solutions have been proposed to cope up with the non-convergence 
and instability problems. We shall discuss key solutions in the subsequent sections.  

3.3. Evaluation Metrics 
GANs model has been used for the wide applications of the unsupervised representation learning, supervised 
and semi-supervised learning, inpainting, denoising and many more. For these extensive applications, loads 
of heterogeneity exists in models’ formulation, training and evaluation. Despite the availability of lots of 
GANs model, the evaluation is still qualitative, (i.e., visual examination of samples by human) even though 
several approaches and measures have been introduced to evaluate GANs performance. Visual inspection is 
time-consuming, subjective and cannot capture distributional characteristics, which is an utmost important 
factor for the unsupervised learning. As the selection of appropriate model is important for getting good 
performance for an application, the selection of appropriate evaluation metric is important for drawing right 
conclusion. For designing better GANs model, it is required to overcome the limitations of the qualitative 
measure by developing or using proper quantitative metrics. Recently, multiple GANs evaluation metrics 
have been introduced with the emergence of new models.  

In this paper, we restrict our focus on GANs design and optimization solutions proposed for handling first 
two GANs challenges, mode collapse, non-convergence and instability. In the next section, we shall discuss 
the proposed taxonomy of GANs design and optimization solutions proposed to mitigate these challenges 
and improve the GANs performance.  

4. A TAXONOMY  
Table 1 illustrates our proposed taxonomy of GANs designing and optimization solutions proposed to handle 
two major GANs training challenges as discussed earlier. In recent times, several solutions (S) have been 
proposed for better design and optimization of basic GANs based on three main techniques, namely re-
engineering network architecture (S1), new loss function (S2), and alternative optimization algorithm (S3). 
Re-engineered network architecture (S1) focuses on the re-engineering GANs network architecture 
[6][49][8][50][51], new loss function (S2) covers modified or new loss functions for GANs [36][38][46][52], 
while alternative optimization algorithm (S3) includes modified or regularized optimization algorithms for 
GANs [45].  
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Table 1 Proposed taxonomy and different variants proposed within the GANs 
design and optimization techniques 

Techniques Solutions (S) Variants 

Re-
engineered 
Network 
Architecture 
(S1) 

Conditional generation (S11) 

cGANs [34], FCGAN [53], IRGAN [53], GRANs [54], LAPGAN 
[5], SGAN [49], IcGAN [55], BiCoGAN [56], MatAN [57], Self-
conditioned GANs [58], AC-GANs [59], TripleGAN [60], KDGAN 
[61], ControlGAN [62] 

Generative-
discriminative 
network pair 
(S12) 

Training of Single G 
(S12(i)) 

DCGAN [6], ProgressGAN [8], PacGAN [43], BayesianGAN [63], 
CapsNets [64], QuGANs [65], SAGAN [66] 

Training of Multiple 
Gs (S12(ii)) 

cGAN [50], AdaGAN [51], MAD-GAN [67], MGAN [68], MPM 
GAN [69], FictitiousGAN [70], MIX+GAN [71] 

Training of Multiple 
Ds (S12(iii)) 

D2GAN [72], GMAN [73], StabGAN [74], Dropout GAN [75], 
MicroBatchGANs [76], SGAN [77] 

Joint 
Architecture 
(S13) 

Data space 
autoencoder (S13(i)) 

VAE-GAN [78], AAE [79], AVB [80], ASVAE [81], MDGAN [46], 
Dist-GAN [82], α-GAN [31] 

Latent space 
autoencoder (S13(ii)) 

ALI [83], BiGAN [84], DALI [85], CV-BiGAN [86], MV-BiGAN 
[86], HALI [87], AGE [88], VEEGAN [89], MGGAN [90] 

Improved D (S14) EBGAN [91], BEGAN [92], MAGAN [93], [94], Max-Boost-GAN 
[95] 

Memory Networks (S15) MemoryGAN [96] 

Latent space engineering (S16) 
DeLiGAN [97], NEMGAN [98], MultiplicativeNoise [99], DE-GAN 
[100], InfoGAN [101] 

New Loss 
Function (S2) 

New probability distance and 
divergence (S21) 

WGAN [35], LS-GAN [102],RWGAN [37], f-GAN [103], [104], χ2-
GAN [105], OT-GAN [106], LSGAN [40], SoftmaxGAN [107], 
GAN-RL [108], GoGAN [109], IGAN [42], McGAN [110], MMD 
GAN [52], MMGAN [111], CramerGAN [112] 

Regularization (S22) 
WGAN-GP [113], BWGAN [36], [114] , CT-GAN [115], SN-GAN 
[116], [117], FisherGAN [118], [38], Unrolled GANs [45], [119], 
[120], DRAGAN [121] 

Alternative Optimization Algorithm (S3) [38], [122], [123], [39], [41] 

   
For each technique, we point out number of key research issues and the corresponding solutions (S) to address 
the GANs challenges.  

1. Re-engineered network architecture (S1). GANs are hard to train as G could not learn the complex 
data distribution and generates low variety of samples. Therefore, GANs requires better designs of model 
architectures. In recent times, several architectural solutions have been proposed to handle GANs 
challenges in different ways, such as conditional generation, generative-discriminative network pair, 
using strong discriminator, memory network, and encoder-decoder architecture, engineering noise. We 
classify existing architectural solutions into six categories where each category represents an issue with 
the existing architecture and its possible solution to improve the GANs performance. The key research 
issues and their solutions are as follows: 

a. Conditional generation (S11). An unconditional generative model cannot control the modes 
generation. To control the generation process, a generative model can be conditioned on additional 
information [34]. In this way, conditional GANs learn conditional probability distribution where a 
condition can be any auxiliary information about the data.  

b. Generative-discriminative network pair (S12). Intermediate representation of GANs can only 
handle the generation of smaller images [6]. It requires architectural changes in the layers and 
networks for improving the generating ability of GANs. But still, a single pair of G and D in minimax 
game fluctuates and do not converge as discriminatively trained networks do [50]. To handle this 
issue, multiple Gs and Ds can be trained to increase the generation capacity of Gs and to get more 
constructive gradient signals for G, respectively.  

c. Joint architecture (S13). Some research works have proposed to use most common approach to 
address mode collapse, encoder-decoder architecture in GANs, in which features are learned from 
the latent space or image space. 
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d. Improved Discriminator (S14). Weak discriminators can also be the reason of mode collapse, 
because of either low capacity or a poorly-chosen architecture. Therefore, researchers proposed to 
use autoencoder to define the D’s objectives. 

e. Memory networks (S15). Basic GANs encounters instability and divergence in the unsupervised 
GANs training due to two key issues, namely the structural discontinuity in a latent space and the 
forgetting problem of GANs. Basic GANs use unimodal continuous latent distribution to embed 
multiple classes; hence, structural discontinuity between classes is not clear in the generated 
samples. In addition, Ds forget about the previously generated samples. To handle these issues, [96] 
proposed a solution to incorporate a memorization module with unsupervised GAN models.  

f. Latent-space engineering (S16). Basic GANs cannot generate diverse samples in case of limited 
data availability. Researchers introduce to reparametrize latent space z like a mixture model and then 
learn parameters of mixture model with GANs [97]. 

2. New loss function (S2). The model parameters oscillate, destabilize and never converge. A use of good 
loss function improves GANs learning to reach better optima. Several researchers proposed to tackle the 
training instability problem by finding better distance measures [35] or regularizers [28][45]. The issues 
and their solutions are as follows: 

a. New probability distance and divergence (S21). Basic GANs training is unstable as it uses JS 
divergence (JSD) which is neither continuous nor provide a usable gradient [35]. There is need of 
new probability distance and divergence for getting usable gradients everywhere. New probability 
distance and divergence can solve the mode collapse problem by stabilizing GAN training. 

b. Regularization (S22). GANs training is unstable when model distribution and data distribution 
manifolds do not overlap in the high-dimensional space, i.e., dimensionality misspecification [117]. 
Regularizing D gives an efficient direction to convolve the distributions.  

3. Alternative optimization algorithm (S3).  Basic GANs uses Simultaneous gradient Descent for finding 
Nash-equilibria which often fails to find local Nash-equilibria [38]. Some works have suggested to use 
another gradient descent optimization technique, while some have suggested modifications to 
optimization or training technique.  

In the following sections (Section 5, 6 and 7), we introduce and compare existing GANs designing and 
optimization solutions and their variants according to the proposed taxonomy. We review and critically 
discuss these solutions with their advantages and drawbacks. Furthermore, we provide a supplementary 
material which contains the loss function(s) used in the re-engineering network architecture taxonomic class 
and a comparison among new loss functions proposed for GANs. Table 1 lists the different variants proposed 
within the GANs design and optimization solutions. 

5. RE-ENGINEERED NETWORK ARCHITECTURE  
As we have already discussed in Section 4, several network architectures have been proposed to scale up the 
GANs performance, such as hierarchical GANs structure, and engineering on the latent space for generating 
high quality samples for the limited data, use of autoencoders for D for more stable training, and combination 
of any of these structures.  

Figure 8 shows the schematic illustrations of the most representative solutions within the taxonomic class of 
re-engineered network architecture. In conditional generation sub-class, conditional GANs use an auxiliary 
information on G and/or D during the generation to control the mode generation (see Figure 8(a)). In the sub-
class of generative-discriminative network pair, single and multiple pair of G and D are trained for better 
GANs performance. DCGANs uses fully convolutional downsampling/upsampling layers instead of Fully 
connected layers used in traditional GANs (see Figure 8(b)), while cascade of GANs (cGANs) consists of 
multiple GANs and gates where each GANs redirects badly modelled part of training data to next GANs for 
capturing whole distribution of the data (see Figure 8(c)). In addition, within the sub-class of joint 
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architecture, VAE-GAN (see Figure 8(d)) and ALI/BiGAN (see Figure 8(e)) have introduced an efficient 
inference mechanism which includes features from the latent space and data space, respectively. In the sub-
class of improved discriminator, energy-based GANs replaced encoder architecture for D with an 
autoencoder architecture for the stable training where D’s objective is to match autoencoder loss distribution 
instead of data distribution (see Figure 8(f)). In the sub-class of memory networks, memory within the 
network is introduced to handle the mode collapse and instability problem in unsupervised GANs framework. 
Within the sub-class of latent space engineering, latent space is reparameterized using a mixture of Gaussian 
model to get samples in the high probability regions in the latent space which supports better GANs 
performance (see Figure 8(g)).  

    
(a) Conditional generation: 

Conditional GANs 
(cGANs [34]) 

(b) Generative-
discriminative 
network pair: Training 
of single Generator 
(DCGAN [6]) 

(c) Generative-discriminative 
network pair: Training of 
multiple Generators 
(cGANs [50]) 

(d) Joint architecture: Data 
Space Autoencoders 
(VAE-GAN [78]) 

   
(e) Joint architecture: Latent Space 

Autoencoder (ALI/BiGAN [83][84]) 
(f) Improved Discriminator: 

(EBGAN [91]) 
(g) Latent Space engineering (DeLiGAN 

[97]) 

D: Discriminator, G: Generator, Z: Latent (noise) space, Xreal: Real data, Xfake: Fake data generated by G, Cclass: an auxiliary 
information, Ge: Encoder for G, Gd: Decoder for G, De: Encoder for D, Dd: Decoder for D. 

Figure 8. Schematic view of most representative GANs variants within the taxonomic class of network 
architecture GANs 

In this section, we shall thoroughly study the different designs of GANs network architectures with their 
strengths and drawbacks. 

5.1. Conditional Generation 
Conditional generation (e.g., cGANs [34]) have shown a significant improvement in generating good sample 
quality. Conditional GANs has shown a potential application for the image synthesis and image editing 
applications. In addition, a class-conditional model of images is not significant if it produces only one image 
per class. In conditional GANs (cGANs), a condition c is induced on both G and D. The main aim of cGANs 
is to generate realistic images instead of making difference between generated samples based on input 
conditions. On the other hand, in conditional GANs, condition vectors are concatenated into some layers of 
G and D (see Figure 9). For example, in fully conditional GANs (FCGAN), each layer of D including x is 
conditioned. This joint representation cannot capture the complex relationships between two distinct 
modalities [124]. To handle this issue, [53] introduced a Spatial Bilinear Pooling (SBP) approach where each 
pixel of an image is conditioned, i.e., multiplicative interaction between all elements of two vectors. 
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Moreover, an Information Retrieving GANs (IRGAN) [53] is also proposed in which latent codes are 
conditioned explicitly. IRGAN explicitly put condition information in the latent codes.  

 
Figure 9. Conditional GANs: (a) cGANs, (b) FCGAN, (c) SBP, and(d) IRGAN. Figure from [53] 

Im, et al. [54] introduced a new class of GANs based on the Recurrent Neural Networks (RNNs) instead of 
CNNs as Gs for GANs, called Generative Recurrent Adversarial Networks (GRANs). GRANs generate an 
image in a sequence of structurally identical steps without imposing a coarse-to-fine (or any other) structure 
on the generation process. The main advantage of sequential modelling in which generated output is 
conditioned on previous states repetitively is that it makes the complex data distributions modelling problem 
simple by mapping them to a sequence of easy problems. Moreover, authors also proposed new metric, called 
Generative Adversarial Metric (GAM) for evaluating adversarial networks quantitatively.  

As image data have high variations, generation of diverse images with sufficient details is quite challenging 
for GANs. Recently, some works have focused to decompose GANs into a sequence of GANs for breaking 
difficult task into tractable sub-tasks. Denton, et al. [5] integrated a conditional model on the cascade of 
convolutional GANs with the framework of Laplacian pyramid (LAPGAN) with k levels. LAPGAN model 
generates and upsamples images in multiple steps and have shown the generation of the higher quality images. 
But they suffered from the objects looking wobbly as noise added in chaining multiple models. In particular, 
to generate an image, LAPGAN model explicitly decomposes task into a sequence of conditional generations 
of levels of a Laplacian pyramid. [49] proposed another model, called Stacked GANs (SGAN) which is 
composed of a top-down stack of GANs and each stack is trained to produce low-level representations 
conditioned on high-level representations. The problem of estimating image distribution is decomposed into 
small tasks and intermediate supervision is provided by representation D at each training hierarchy. Authors 
introduced conditional loss to let G employ the high-level conditional information and an entropy loss to 
encourage each G for generating diverse representations in addition to adversarial loss (i.e., divergence 
measure). In addition, a representation Ds is proposed to be used at each hierarchy for providing the 
intermediate supervision to G at that level. Previous approaches introduced several loss terms for regularizing 
G’s output without regularizing its internal representations. SGAN architecture is similar to LAPGAN as 
both consist of a sequence of GANs but LAPGAN generates multi-resolution images from coarse-to-fine 
(i.e., a sequential adversarial network) while SGAN models multi-level representations from abstract-to-
specific. SGAN also works similar to InfoGAN [101] w.r.to the variational mutual information maximization 
technique but InfoGAN is used to forecast simply a small set of latent code, whereas SGAN predicts noise 
variables in each stack. Furthermore, InfoGAN maximizes mutual information between the output and the 
latent code, whereas SGAN maximizes the entropy of the output hi conditioned on hi+1.  

On the other hand, A cGANs must be capable to disentangle the intrinsic (latent variables) and extrinsic 
factors (known as auxiliary information), and also disentangle extrinsic factors’ components from each other, 
in the generation process. Inverse cGANs produces disentangled information-rich representation of data 
which can be employed for some downstream tasks, such as classification. To achieve such optimal 
framework, [55] proposed an Invertible cGANs (IcGAN) to learn inverse mappings to intrinsic and extrinsic 
factors for pretrained cGANs by using two standalone encoders (Es) trained post-hoc, one for each task. 
However, IcGAN suffers from the following two limitations: IcGAN prevents E from having an effect on 
factors’ disentanglement during the generation process and avoids E from learning the inverse mapping to 
intrinsic factors effectively.  

In addition, existing encoder-based cGANs models suffer from the two major shortcomings: (1) extrinsic 
factors are not encoded [79], (2) if encoded, then encode them in fixed-length continuous vectors which do 
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not have an explicit form [125]. This avoids data generation with arbitrary combinations of extrinsic 
attributes. To alleviate encoder-based cGANs issues, [56] proposed a network architecture, called 
Bidirectional cGANs (BiCoGAN) which learns inverse mappings of data samples to both intrinsic and 
extrinsic factors, and is trained simultaneously with G and D. BiCoGAN is similar to Bidirectional GANs 
(BiGANs) [84] w.r.to implicit regularization, mode coverage and robustness against mode collapse. Unlike 
conditional extension of ALI model (cALIM) [83], BiCoGAN involves both data samples and extrinsic 
attributes as inputs to encode the intrinsic features. However, it does not involve extrinsic attributes encoding 
from data samples. BiCoGAN could not produce better results as E could not perform the inverse mapping 
to extrinsic attributes and G does not include the extrinsic factors during the data samples generation. To 
handle these problems, training techniques are also introduced.  

Existing researches show that cGANs could not perform well for the supervised tasks, such as semantic 
segmentation, instance segmentation, line detection, etc. The possible reason can be that G is optimized by 
minimizing a loss function that does not depend directly on the real data labels. To handle the aforementioned 
issue, [57] proposed to replace D with a siamese network working on both the real data and the generated 
samples to allow G’s loss function to depend on the targets of the training examples. This approach is called 
Matching Adversarial Networks (MatAN) which can be utilized as a D network for supervised tasks. In 
addition, [58] proposed a class conditional GANs which is trained without manually annotated class labels. 
While, labels are derived automatically by applying clustering in the D’s feature space. Clustering step finds 
diverse modes automatically and requires G to cover them explicitly. 

On the other hand, some researchers proposed to use the Classifier (C), reconstructing side information  to 
increase the performance of cGAN. [59] proposed auxiliary classifier GANs (AC-GAN) where a C is used 
as D of GANs architecture and a condition is categorial class label Cclass to only G instead of additional 
condition c to both G and D. In AC-GAN, D estimates a probability distribution over both sources and Cclass. 
To generate realistic images, AC-GAN demonstrated that addition of more structure to latent space with a 
particular loss function works well. But this variant cannot perform well for the semi-supervised learning as 
D suffers from two incompatible convergence points: discrimination of real and fake data and prediction of 
class label, and G cannot produce data in a particular class. Moreover, GANs, a two-player game consumes 
high time to reach equilibrium due to high-variance gradient updates. Also, G cannot control the semantics 
of generated samples.  

To handle this issues, [60] proposed a three-player adversarial game to drive G to match the conditional 
distribution p(x|y), called Triple-GAN for both classification and class-conditional image generation in semi-
supervised learning where C results is passed to D as input. D identifies data-label pair is from the real dataset 
or not, while G and C characterize the conditional distributions between images and labels. But, TripleGAN 
does not have constraints to guarantee that semantics of interest will be captured by y and also does not have 
a structure for achieving posterior inference for z.  

Wang, et al. [61] also introduced a three-player game, called KDGAN, consists of a C, a teacher T, and a D 
in which C and T are trained from each other using distillation losses and are adversarially trained against D 
using adversarial losses. C learns the true data distribution at the equilibrium through the simultaneously 
optimization of distillation and adversarial losses. To achieve the low-variance gradient updates for speed up 
the training, samples are generated from the concrete distribution. Moreover, KDGAN achieves stable 
training when C impeccably models the true data distribution. But KDGAN suffers from G collapse when 
the class count increases. KDGAN idea is inspired by [126] in which D is used to train C for learning the 
data distribution produced by T, while in KDGAN, D trains C to learn the real data distribution directly. In 
addition, even though both Triple-GAN and KDGAN introduced three-players game, both models have some 
differences as follows: (1) In KDGAN, C and T (i.e., G) learn conditional distribution over labels given 
features, while in Triple-GAN, C and G learn a conditional distribution over labels given features and a 
conditional distribution over features given labels, respectively, (2) In KDGAN, generated samples from Gs 
are discrete data, while in Triple-GAN, generated samples include both discrete and continuous data. 
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(a) (b) 
Figure 10. (a) ControlGAN architecture [62]. (b) ControlGAN concept. Green dashed line represents C and 

orange line represents D. Grey boxes represents samples labelled with different class. Blue region, i.e., 
represents G which tries to learn data distribution and classify samples to correct labels, simultaneously.  

Furthermore, AC-GAN, TripleGAN and KDGAN use a classifier C connected to D, i.e., D chooses the 
samples condition. Therefore, these solutions can hardly deal with cGANs limitation, i.e., cGANs can 
generate images of different styles but it is not possible to generate images from two different domains, such 
as color and depth image domains. In addition, cGANs generates specific images, such as, face conditioned 
on the attribute vector, but cannot model image distribution conditioned on a part of that image or on previous 
frames [127], i.e., for image generation, major features, such as smile can be conditioned instead of detailed 
features, such as pointy nose. This occurs because D decides whether the condition/label is correct or not. 
Due to this, limitation of cGANs cannot be handled by [60][59] as if very few examples are available for a 
particular condition/label in a dataset and/or condition/label is far from the data distribution’s center where 
the samples densely exist, D distinguishes samples with such conditions fake. To handle this limitation, Lee, 
et al. [62] proposed to combine GANs with a decoder-encoder structure based architecture for controlling 
generated samples with detailed feature, called Controllable Generative Adversarial Network (ControlGAN) 
in which GANs game is formulated as three players game of G/De, D and C/E (see Figure 10). In 
ControlGAN, G tries to make fool D and be classified correctly by C. In ControlGAN, an independent 
network is used to map the features into corresponding input labels which dedicate D only for distinguishing 
real and fake samples and enhances the quality of generated data. This also allows ControlGAN to generate 
data beyond the training data. In addition, ControlGAN also uses an equilibrium parameter to balance 
between GANs and a decoder-encoder structure for stable training.  

5.2. Generative-discriminative Network Pair 
In recent years, GANs has achieved great success due to its ability to generate realistic samples, but traditional 
single-generator GANs worked well for only small images, such as MNIST but could not model the large 
images. To handle this issue, some researchers proposed to use the multiple Gs rather than a single one for 
generating high quality images by increasing the generation capacity of Gs  

In addition, some researchers advocated to use the multiple Ds while some formulated the minimax game 
using multiple Ds and Gs. We classify these approaches into three categories: (1) training of single generator 
(G), (2) training of multiple generators (Gs), and (3) training of multiple discriminators (Ds). We shall discuss 
these approaches in this section in detail. 

5.2.1. Training of Single Generator 

 
Figure 11. DCGANs Generator. A sequence of four fractionally-strided convolutions for converting 100-

dimensional uniform distribution z into a 64 × 64 pixel image. Figure from [6] 
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Basic GANs generated images are noisy and incomprehensible. GANs are unstable to train. Also, generation 
of high-resolution images is difficult. Therefore, there is need of a set of architectures resulting stable training 
for a range of datasets and allowing training of higher resolution and deeper generative models. 

Radford et al. [6] successfully designed a class of architecturally constrained deep convolutional GANs, 
called DCGANs, which has shown substantial advancements on unsupervised image representation learning, 
i.e., more stable training and generates superior quality images. The architectural changes for stable DCGANs 
are as follows: (1) Use strided convolutions (D) and fractional-strided convolutions (G) instead of pooling 
layers (see Figure 11), (2) exploit batchnorm in both G and D, (3) do not use fully connected hidden layers 
for deep architectures, (4) apply ReLU activation in all G’s layers excluding the output which uses Tanh, and 
(5) Use LeakyReLU activation in D for all layers. Even though DCGANs performed well in compared to 
basic GANs, DCGANs still suffered from some form of model instability – authors observed that as models 
training time is extended, DCGANs used to collapse a subset of filters to a single oscillating mode at times. 
It requires further investigation to handle this form of instability.  

 
Figure 12. Illustration of training process of ProgressGAN. G and D start with the low spatial resolution of 4×4 

pixels and it keeps growing as the training advances. Figure from [8]. 

Karras, et al. [8] introduced a novel training strategy for GANs, called ProgressGAN, in which low-resolution 
images are passed as input and then resolution of images is increased gradually by adding layers at each stage. 
The main idea of the proposed methodology is to grow the network of G and D step-by-step as it allows 
learning of large-scale structure of the image distribution first and then other finer details. Figure 12 
demonstrates the training process of ProgressGAN This speedup training and improves stability. On the other 
hand, new layers are fade in smoothly to avoid the unexpected shocks to the well-trained, smaller-resolution 
layers. The proposed GANs training strategy of increasing resolutions performed well on CelebA dataset 
with size 1024 × 1024 and generated most realistic looking faces. A layer of minibatch standard deviation is 
also added at the end of D for capturing the diversity in the minibatch. This idea is quite simple to capture 
minibatch statistics and resolves the issue of sensitivity to hyperparameter tuning of the original minibatch 
idea of [42]. Lin, et al. [43] presented a new GANs framework, called PacGAN, which can be used by any 
existing GANs with a slight change to D. The main aim is to pass m packed/concatenated samples from the 
same class to D to be jointly classified as either real or generated. Packing penalizes Gs with mode collapse, 
therefore, favors distribution of G with less mode collapse during training. PacGAN needs no hyperparameter 
tuning but induces a little architecture’s overhead.  

On the other hand, some researchers proposed to integrate the GANs framework with other frameworks to 
improve the generating ability of the GANs. As a result, a strong generative model with better generation 
capability is achieved instead of two separate models. [63] introduced a Bayesian framework for unsupervised 
and semi-supervised learning with GANs to improve the generative ability. In GANs, updates are implicitly 
conditioned on a set of noise samples z, but in Bayesian GANs, z is marginalized from posterior updates 
using simple Monte Carlo. Jaiswal, et al. [64] introduced a change in D’s architecture and argued to use a 
capsule networks (CapsNets) instead of standard CNNs. Results show that the learned images by CapsNets 
are more robust to changes in pose and spatial relationships of parts of objects in images. Authors also updated 
GANs objective function to CapsNets margin loss for training. CapsNets achieved good performance for the 
datasets, MNIST and CIFAR-10, while could not perform better for the complex datasets, such as ImageNet.  
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Lloyd, et al. [65] proposed a quantum adversarial game, called quantum generative adversarial networks 
(QuGANs) to show that quantum adversarial networks may have a great benefit over classical adversarial 
networks for high-dimensional data scenarios. In QuGANs, D optimizes strategy with the G’s fixed strategy 
and G optimizes strategy with the D’s fixed strategy over a fixed number of trials. QuGANs achieves Nash 
equilibrium when G finds the correct statistics while D cannot find difference between true and generated 
data. Most of the GANs models [6][42][105] for the image generation have used convolutional layers where 
convolution processes the information in a local neighborhood only and could not model long-range 
dependencies in images efficiently. Zhang, et al. [66] introduced a method for both G and D to model spatial 
relationship among separated regions in the images, called Self Attention GAN (SAGAN). Authors also 
presented two techniques, such as use of spectral normalization [116] in the G and D for stable GANs training 
(spectral normalization does not require extra hyperparameter tuning) and use of two-timescale update rule 
(TTUR) [39] for addressing slow learning in regularized Ds. In addition, to handle mode collapse and support 
stable training, [94] introduced explicit manifold learning as prior for GANs. A new target of Minimum 
Manifold Coding is further enforced for manifold learning to find simple and unfolded manifolds which 
works even in the case of the sparsely or unevenly distributed data.  

5.2.2. Training of Multiple Generators  
Ensembles have already shown potential for improving the results of discriminative CNNs. Wang, et al. [50] 
explored the usage of ensembles of GANs and proposed a framework having the cascades of the GANs, 
called cGANs, in which G focuses on capturing the whole data distribution instead of the principal mode of 
the data. cGANs consists of multiple GANs where a G in each GANs tries to capture current data distribution 
which previous GANs could not captured efficiently. For selecting data, which is passed to the next GANs, 
it is considered that for badly modeled data x, the D value D(x) should be high, i.e., D is confident that x is 
real data. Gate function is used to re-direct the data to the next GANs. If D value D(x) is greater than a pre-
determined threshold value tr, then x will be used in the next GANs. However, additive procedure of cGANs 
is not motivated by the theoretical analysis of optimality conditions. Further, Tolstikhin, et al. [51] have 
shown through the empirical analysis that cGANs heuristic fails to address the mode collapsing problem. 
They introduced a meta-algorithm, called Adaptive GAN (AdaGAN) similar to AdaBoost [129] in which 
each iteration corresponds to learning a weak generative model w.r.to a re-weighted data distribution. The 
assigned weight keeps changing to handle the hard samples. AdaBoost reweighs the training data and trains 
new Gs incrementally to get a mixture covering the whole data space. AdaGAN can be used on the top of a 
G architecture, such as a Gaussian mixture model, VAE [3], WGAN [35], UnrolledGAN [45] or mode-
regularized GANs [46], which have been developed to handle the mode collapse problem. However, training 
multiple Gs in an iterative manner is computationally expensive. In addition, AdaBoost assumes that GANs 
based on single-generator can produce realistic images for some modes, such as dogs or cats but cannot 
capture other modes, such as giraffe [51]. So, by removing the images of dogs or cats manually from the 
training data and train a next GANs over this data can create a better mixture. But, in practice, this assumption 
does not work as single-generator GANs produces images of unrecognizable objects for diverse datasets, 
such as ImageNet.  

 
Figure 13. Multi-Agent Diverse GAN (MAD-GAN). The D outputs k + 1 softmax scores signifying the probability 
of its input sample being from either one of the k Gs or the real distribution [67]. 

Ghosh, et al. [67] introduced a novel adversarial architecture consisting of a C and multiple Gs trained by a 
multi-class D which differentiate among fake and real samples with the identification of the G generated fake 
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sample, called MAD-GAN. The idea is to approximate data distribution using a mixture of multiple 
distributions where each distribution captures a subset of data modes separately from those of others (see 
Figure 13). The idea of using multiple Gs is same as a mixture model where each G learns one data mode. In 
addition, objective function penalizes Gs for generating fake samples while does not encourage Gs to focus 
in generating variety of modes. Experimental results have shown that MAD-GAN performed extremely well 
for the highly challenging diverse-class dataset. Hoang, et al. [68] extended the concept of multi-generator 
GANs, called MGAN, where a set of Gs are trained simultaneously (share parameters) to approximate data 
distribution using a mixture of multiple distributions with the encouragement to specialize in different modes 
in the distribution. MGAN uses an additional model to classify (rather than modifying D) which G generated 
fake input where output of the classifier is further used as penalty term to force diversity among Gs. The 
objective function of MGAN focus to minimize the JSD between the mixture of distributions induced by the 
Gs and the data distribution and to maximize the JSD among Gs. Ghosh, et al. [69] presented a multi-agent 
GANs framework of multiple Gs communicating through message passing, called MPM GANs, for better 
image generation. Objectives are to pass messages among Gs for capturing different data modes and promote 
competition among the Gs and tries to make other G better than the current G. Ge, et al. [70] proposed a 
training algorithm, called Fictitious GANs in which D is trained on the mixed outputs from a series of trained 
Gs. Fictitious GANs is a meta-algorithm which can be used on the top of existing GANs variants. 

Another direction for handling mode collapse and support more stable training is to train multiple Gs and Ds 
in GANs as use of mixture guarantees existence of approximate equilibrium. Arora, et al. [71] proposed to 
train multiple Gs and Ds with different parameters, called MIX+GAN and optimize the minimax game with 
weighted average reward function over all pairs of G and D. But, training of MIX+GAN is computationally 
expensive as solution lacks parameter sharing and enforcing divergence among Gs is missing.  

5.2.3. Training of Multiple Discriminators 
Nguyen, et al. [72] proposed to use two Ds for yielding constructive gradient signals for G. In single generator 
dual discriminator architecture (D2GAN), one D works on the KL divergence to reward samples from the 
true data distribution while another D works on the reverse KL divergence to reward samples generated by 
G where G tries to fool both two Ds. This helps to avoid mode collapse problem. The combined use of KL 
divergence and reverse KL divergence into a unified objective function attempts to diversify the estimated 
density in learning multi-modes effectively. However, they tend to increase instability because the goals of 
two antithetical Ds conflict. Durugkar, et al. [73] also used several Ds for boosting the learning of G and 
stabilize GANs, called Generative Multi-Adversarial Network (GMAN). In GMAN, either average loss of 
all Ds or a D with minimum loss is used to train G. The main idea is to accelerate training of G to a more 
robust state irrespective of the choice of cost function.  

Despite the GANs progress, GANs is unstable in the case of high-dimensional data as real data distribution 
can have the possibility to be focused in a small fraction of the ambient space. Due to this, D can easily 
classify almost all generated samples as fake and does not provide meaningful gradients to D. Neyshabur, et 
al. [74] proposed a different approach to handle the instability in which G is trained against an array of Ds 
where each D handles different, randomly-chosen, low-dimensional projection of the data, (StabGAN). 
Existing similar approaches either train ensemble of GANs [50] or ensemble of Ds [73] while in this, low-
dimensional projection of the data is provided to D so that D cannot reject generated samples perfectly, i.e., 
provides meaningful gradients to G during training. Instead of combining each D’s output directly, each D’s 
loss is calculated individually and then an average of all D’s loss is calculated. Moreover, G learns real data 
distribution to fool all Ds simultaneously.  

In the previous two works, G’s output depends on the feedback given by a specific set of Ds which is not a 
robust solution for handling mode collapsing and compromises the extensibility of framework. As a solution, 
Mordido, et al. [75] proposed to apply dropout mechanism by dynamically selecting feedback from ensemble 
of Ds that change at each batch for G’s learning and to promote variety in its output, called Dropout-GAN. 
On the other hand, the drop of a particular D’s loss selected with a probability d before updating parameters 
of G, supports variability in the solution. In this case, G fools a dynamic set of Ds at every batch instead of 
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one or a static set of Ds. Therefore, this solution can be known as regularization as it targets to encourage 
more generalizability on the fake samples produced by G. Durugkar et al. [73], and Nguyen, et al. [72] 
approaches limit the extensibility as they condition the D’s architecture for promoting variety either by having 
convolutional architecture for D or by having different architectures for each D, while, the use of dropout 
approach does not compromise extensibility of the solution. In addition, to handle the issue of mode collapse 
in GANs, [76] proposed to assign a different portion of each minibatch, called microbatch, to a D. D’s task 
of distinguishing between real and fake data is also gradually changed to discriminating samples from inside 
or outside its assigned microbatch with the use of a diversity parameter α. G is asked to generate diversity in 
each minibatch so that it is hard for each D to discriminate microbatch. Existing approaches of multiple 
discriminators perform single-objective optimization on some simple consolidation of the losses, e.g., an 
arithmetic average. [130] extended this single-objective optimization problem to multi-objective in which 
losses provided by different models are minimized simultaneously.  

Chavdarova and Fleuret [77] proposed an alternative way for GANs training, called SGAN, in which a global 
pair of G0 and D0 is trained indirectly, i.e., D0 is trained with Gi, i = 1, …, N, and G0 is trained with Di, i = 1, 
…, N. The main advantage of such training procedure is as follows: (1) global networks continue to learn 
with higher probability even if a particular local pair’s training worsens; and (2) High computation can be 
performed in parallel which makes the time overhead less important factor. Compared to [51], SGAN can be 
used by any existing GANs framework as it runs in parallel and yields a single G. 

5.3. Joint Architecture 
GANs can generate more visually compelling sample images in compared to (V)AEs but in GANs, more 
complex loss functions are used than (V)AEs. However, basic GANs lacks an efficient inference mechanism. 
On the other hand, even though GANs produces more natural-looking images, instabilities in optimization 
induce mode collapse problem. To alleviate the above-mentioned issues with the GANs, recently, some 
research works have introduced to use the feature learning which includes features from the latent space and 
data space for improving GANs. The main idea to employ feature learning is that features from different 
spaces are complementary for producing realistic images. Combining the strengths and weaknesses of both 
(V)AE and GANs approach have provided a promising research direction for the unsupervised, supervised 
and reinforcement learning.  

The combination of two architectures (AEs and GANs), i.e., encoder-decoder architecture, supports 
numerous benefits, such as can be used to reconstruct data (i.e., inpainting [111][112]), can be used for 
representation learning. AE-GANs can be primarily grouped into two methodologies: (1) combining AEs and 
GANs as data space AEs to learn a mapping from the data to the latent space and back to the data space; (2) 
combining AEs and GANs as latent space AEs, i.e., autoencoding the latent/noise space. In this section, we 
shall discuss both encoder-decoder architectures in detail.  

5.3.1. Data space autoencoders  

 

Figure 14. Overview of VAE-GAN. VAE is combined with GANs by collapsing Dec and G. Figure from [78] 

Larsen, et al. [78] trained VAE and GANs jointly, called VAE-GAN that uses learned representations to 
measure similarities in data space as element-wise metrics do not generate high resolution and realistic images 
(see Figure 14). In VAE-GAN, VAE decoder and the GAN’s G are merged and trained jointly. The 
replacement of element-wise metric with feature-wise metric generates better image samples. VAE-GAN 
uses the combination of KL divergence and reconstruction loss (i.e., distance measure) for training the 
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inference model. For this, optimization via backpropagation requires exact form of prior distribution and re-
parameterization tricks. As GANs updates G with the reconstruction loss, GANs can successfully handle the 
mode collapse issue as G will able to reconstruct every input x. Both VAE and GANs cannot be applied for 
unsupervised conditional generation tasks as both cannot find disentangled mappings.  

[79] introduced an adversarial autoencoder (AAE) that uses the GANs for performing variational inference. 
Matching the aggregated posterior to the prior guarantees that samples generated from prior space will be 
more realistic. In AAE, encoder (E) is used to map the data distribution to the prior distribution while decoder 
(Dec) is used to learn a deep generative model for mapping the imposed prior to the data distribution. Both 
adversarial and autoencoder network in AAE are trained together in two parts: reconstruction phase in which 
AE updates E and Dec for minimizing the reconstruction error of the inputs, and regularization phase in 
which adversarial network updates its discriminative network to discriminate real and fake data. This 
regularization does not guarantee that G will have capability to approximate data distribution accurately and 
handle the mode missing problem. Further, Mescheder, et al. [80] proposed a new training technique, called 
Adversarial Variational Bayes (AVB), to train VAEs adversarially for having the flexible inference model. 
Another line of research is the new adversarial learning for VAE: joint distribution of data and codes [81]. 
One possible solution is to feed observed data through E to produce codes while another solution is to draw 
latent codes from a prior and propagate through Dec to manifest data.  

[46] introduced a mode regularized GANs (MDGAN) related to VAE-GAN [78] in terms of training an VAE 
jointly with the GANs model. However, VAE in VAE-GAN is used to generate samples whereas MDGAN’s 
autoencoder based losses used as a regularizer to penalize missing modes which improves GAN’s training 
stability and sample qualities. For getting more stable gradients, MDGAN used distance between real data 
and reconstructed data as a regularizer. MDGAN uses two Ds, one to discriminate between data and 
reconstructions (i.e., manifold) for learning a good AE and one to distinguish between two distributions, i.e., 
diffusion. Authors also proposed a set of evaluation metrics for evaluating diversity of modes and distribution 
fairness of the probability mass. Training of MDGAN is composed of two steps, a mode regularization step 
to reduce the model’s variance and a diffusion step to reduce instability. However, MDGAN uses an 
additional autoencoder as well as a two-step training procedure which can be computationally expensive.  

Tran, et al. [82] proposed two novel distance constraints for improving the G’s training, called Dist-GAN, by 
an AE. First, latent-data distance constraint to impose compatibility between latent sample distances and the 
corresponding data sample distances so that G does not generate samples close to each other. Second, D-
score distance constraint to align the distribution of fake data with the real data so that G can generate data 
similar to real ones. Dist-GAN is applicable to any prior distribution as it limits AE by the data and latent 
sample distances. Dist-GAN using only a D network while MDGAN [46] requires two Ds. To alleviate the 
mode collapse, VAE-GAN [78] considers the reconstructed data as fake, MDGAN also uses this similarly in 
the manifold step, while Dist-GAN employs them as real data, which is crucial to control D for avoiding 
gradient vanishing. Moreover, both VAE-GAN and MDGAN use reconstruction loss regularization for G, 
while Dist-GAN uses additional regularization for AE.  

Furthermore, in GANs, the effective likelihood is not known and intractable, and GANs are based on density 
ratio estimation [47], [104], [133], [134] which provides a tool to overcome intractable distributions. One 
possible solution to handle the intractability of the marginal likelihood issue is not to compute it ever, and 
learn about the model parameters via a tool indirectly [31]. To implement this solution, Rosca, et al. [31] 
introduced α-GANs using the variational inference for training in which the synthetic likelihood is used 
instead of intractable likelihood function of basic GANs and an implicit function used instead of the unknown 
posterior distribution. This study combines variational lower bound on the data likelihood with the density 
ratio trick to understand the VAEs and GANs connection. The use of the density ratio allows GANs for the 
marginal likelihood intractability through its relative behavior w.r.to the real distribution. This trick is very 
useful to deal with implicit distributions or likelihood-free models as it only needs data from the two 
distributions without accessing to their analytical forms. Moreover, α-GANs uses adversarial loss with a data 
reconstruction loss to handle both the issue of samples blurriness and mode collapse.  



	 21	

Unlike α-GANs, VAE-GAN applies the analytical KL loss for minimizing the distance between prior and 
posterior of the latent and does not elaborate its connection to density ratio estimation. In addition, α-GANs 
is end-to-end unsupervised model which maximizes a lower bound on the real data likelihood and do not use 
any pre-trained classifier or a feature matching loss. 

5.3.2. Latent space autoencoders 
Data space autoencoders autoencode data points in which a reconstruction loss is calculated on input and 
encoded images. But selecting appropriate loss function is a challenging task. Otherwise, combining 
autoencoder with adversarial learning could be enough for better image generation. While selecting a loss 
function for autoencoder on noise vector z is an easy task as z are drawn from a standard normal distribution. 
In addition, the biggest question in GANs is “can GANs be used for unsupervised learning of rich feature 
representations for random data distributions?”. The possible reason is that G supports the mapping of latent 
space to generated data, i.e., an inverse mapping from data to latent representation is not supported by GANs. 
Inverse mapping is extremely important as it presents an information-rich representation of x, that can be 
employed as input for downstream tasks (such as, classification) [83][84]. To handle this issue, a new 
autoencoder-type adversarial architecture is required which supports unsupervised learning with both 
generation and inference.  

Unlike prior AEs and adversarial networks hybrids, it is required to setup the adversarial game directly 
between the E and G with no trained external mappings in the process of learning. To handle the above-
mentioned issues, another class of methods proposed in which methods learn to map latent space to the data 
space and backward. The main advantage of these methods over data space autoencoders is that the noise 
vectors can be reconstructed easily as the distribution from which they are chosen is known. 

 
Figure 15. Bidirectional Generative Adversarial Networks (BiGAN) [84]. 

Dumoulin, et al. [83] introduced an approach similar to adversarial autoencoder, called Adversarially Learned 
Inference (ALI), in which inference is performed by starting an adversarial game between E and Dec/G 
through a D that works on x and z space. D, Dec/G, and E are parametric deep (multi-layer) network. In ALI, 
both G and E are trained together, and D is trained to discriminate between two joint distributions over image 
and latent spaces produced either by E on the real data or by G to the latent prior. Donahue, et al. [84] 
proposed the same model as ALI, called Bidirectional GANs (BiGAN), and explored the benefits of learned 
features for supervised and semi-supervised tasks. In addition, unlike adversarial autoencoder, ALI does not 
optimize explicit reconstruction loss and D receives joint pairs of samples (x, z) rather than z samples (see 
Figure 15). ALI and BiGAN learn bidirectional mapping between the data and latent space while basic GANs 
learns a unidirectional mapping from latent to data space. In this case, gradients should propagate from D to 
E and Dec which can be achieved through reparameterization trick [3][135][136]. For the sampling, a random 
variable is computed as a deterministic transformation of some z such that its distribution is the desired 
distribution. As gradient propagation into the E and Dec depend on the reparametrization trick, ALI and 
BiGAN are not directly applicable to either applications with discrete data or to models with discrete latent 
variables. ALI and BiGAN can match joint distributions of Dec and E and performs inference by sampling 
from E’s conditional that also matches the Dec’s posterior. However, achieving equilibrium of the jointly 
adversarial game is difficult as the dependency structure between data and codes is not explicitly specified 
[85]. Therefore, inference in ALI is not always effective. Unlike ALI, decomposed adversarial learned 
inference (DALI) [85] breaks the problem of matching the joint distributions into two sub-problems - 
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matching priors on the latent codes and conditionals on the data explicitly. Due to this constraint, DALI gets 
better generation capability.  

On the other hand, most of the applications require to handle multiple source of information, i.e., multiple 
views. For example, in traffic prediction, multiple views, such as traffic data, weather data, Point-of-Interest 
data, etc., are needed for efficient prediction. Multi-view machine learning is a long-studied problem where 
most of the existing studies have focused on the classification viewpoint and assume that all the views are 
present all the time. To handle this issue, Chen, et al. [86] proposed an extended architecture of BiGAN, 
called conditional-views BiGAN (CV-BiGAN) which supports to model a conditional distribution P(y|.). 
Authors proposed another model on the top of the CV-BiGAN architecture, called multi-view BiGANs (MV-
BiGAN) which can predict in case of one or few views availability and updates its prediction if new views 
are available. For the stable MV-BiGAN model, authors have also proposed a regularization term to add new 
views to existing views for controlling the uncertainty over the outputs. Belghazi, et al. [87] attempts to 
extend ALI [83], named HALI, by achieving better perceptual matching in the reconstructions, and by being 
capable to reduce the observables using a sequence of composed features maps. Unlike VAE-GAN, HALI 
offers more meaningful reconstructions with different levels of fidelity and minimizes perceptual 
reconstruction error implicitly during adversarial training. [88] proposed a novel autoencoder-type 
architecture, called Adversarial Generator-Encoder (AGE) Network which comprises two parametric 
mappings: E and G. E maps data x to latent space z while G maps z to x. E and G game is useful in matching 
distributions. In AGE, E encodes data into codes taken from the prior. During the time of encoding, Dec tries 
to generate samples where encoded samples will match to the prior distribution. As E and Dec do not depend 
on D, it reduces the computational complexity and the converge time in comparison to the previous models 
utilizing a bidirectional mapping. 

[89] has shown that latent space-based encoding, which is learned independently of the generated data, does 
not support good quality reconstruction and enhances the chance of mode collapse in the generated data 
space. To address this, authors proposed a Variational Encoder Enhancement to GANs, called VEEGAN, to 
map both the real and generated data space to a fixed distribution in a variational framework. VEEGAN 
proposed to use an additional reconstructor network (Rn) where G and Rn are trained jointly using an implicit 
variational principle to encourage Rn for mapping the data distribution to a Gaussian and for approximately 
inverting G’s act. As a result, this forces G to map from the noise distribution to the true data distribution. 
Like VEEGAN, [137] also tried to enforce diversity in latent space. [137] used the last layer of D as a feature 
map for studying real and fake data distribution. Authors used the Bures distance between covariance 
matrices in feature space for matching real and fake batch diversity. The results show that matching the 
diversity handles the issue of mode collapse and also generate good sample quality.  

Unlike MDGAN [46], VEEGAN uses the reconstruction loss in the latent domain instead of the data domain 
and generates good quality images. Also, MDGAN and VEEGAN improve inference mapping through this 
reconstruction loss in compared to ALI [83] and BiGAN. Even though, these methods perform well in 
compared to data space autoencoders, still they do not support the learning of disentangled relation between 
latent space and data as data is inverted to a semantically useless fixed noise distribution. To handle the issue 
of bidirectional mapping, Bang, et al. [90] introduced a naïve weakly bidirectional mapping approach, called 
manifold guided generative adversarial network (MGGAN), in which a guidance network is induced with the 
basic GANs framework for learning all modes of data distribution. In MGGAN, E and G are not connected, 
i.e., they are trained separately. This separation is assumed effective w.r.to performance as both can focus on 
their own objectives. In MGGAN, bidirectional mapping is used to regularize G training so that G cannot 
fool D by producing the same or similar samples corresponding to a single major mode of true data 
distribution. [83][84][46][89] also proposed encoder based architecture to support the bidirectional mapping 
and mapped 𝑝$'('  into low dimensional manifold space. Even though network architecture is similar to 
MGGAN, existing bidirectional mapping is designed to map 𝑝$'(' into 𝑝) (i.e., inference mapping), while 
MGGAN maps 𝑝$'(' onto meaningful manifold space; called manifold mapping. Moreover, authors claimed 
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that MGGAN learns the meaningful landscape in latent space; therefore, MGGAN does not overfit the 
training data. 

5.4. Improved Discriminator 
To handle the bad gradients problem during the GANs training, D is replaced with autoencoder where D 
assigns low energy to training data while high energy to samples generated by G. G and D objectives are 
generalized to consider real-valued “energies” as input instead of probabilities [91].  

 
Figure 16. EBGAN architecture which replaces D with an autoencoder. Figure from [91] 

Some researchers proposed to project GANs as energy-based model in which a function is built to map [138] 
each point of an input space to a single scalar, called energy. In energy-based models, energy surface is 
modelled like preferred patterns get assigned low energies and undesirable patterns are getting assigned high 
energies. Zhao, et al. [91] presented an Energy-based GANs (EBGAN) in which an autoencoder is used for 
D and implemented an energy function on D to assign low energies to regions near the data manifold and 
higher energies to other regions (see Figure 16). Moreover, to stabilize the EBGAN training, a hinge loss is 
used as objective function so that D can remove synthetic samples with energy over a margin m. Obtaining 
an appropriate value of m is a vital factor for effective training and it highly depends on both architecture 
selection and data complexity. On the other hand, EBGAN has proposed to reduce total variation (TV) 
distance between the real and generated data distributions. TV distance has same regularity as JSD. Therefore, 
EBGAN can also have the same problems as basic GANs, not able to train D till optimality which causes bad 
gradients. On a contrary, to restrict D from degenerating to uniform prediction, [139] proposed a regularized 
EBGAN with entropy loss to generate many possible outputs from the same conditional input. Berthelot, et 
al. [92] extended EBGAN, called BEGAN by introducing a loss function matching the fake data’s energy to 
a fraction of the true data’s energy.  

Then, Wang, et al. [93] proposed a new robust training procedure, called Margin Adaptation for Generative 
Adversarial Networks (MAGANs), to maintain the equilibrium between D and G through hinge loss margin 
using the expected energy of the target distribution. EBGANs, MAGANs and BEGANs take care of the 
expected energy of real and fake data for generating realistic samples and for controlling training. But, 
BEGANs is more stable, easy to train and robust to hyperparameter variations. Unlike EBGANs, MAGANs 
do not use any new hyperparameter and eliminate the dependence on the margin hyperparameter. 
Convergence of MAGAN to global optima is easier than both EBGANs and BEGANs. Moreover, MAGAN 
converges to its global optimum when distribution of real and generated data match exactly, while BEGANs 
provide no such guarantee. In addition, to handle mode collapse and support stable training, [94] introduced 
explicit manifold learning as prior for GANs in which a manifold preserving reconstruction loss is used 
during G’s training. Reconstruction loss is one of the efficient ways to guarantee not missing information in 
GANs. Even EBGAN replaced D loss with reconstruction loss for showing other energy functions 
performance. A new target of Minimum Manifold Coding is further enforced for manifold learning to find 
simple and unfolded manifolds which works even in the case of the sparsely or unevenly distributed data.  

Another line of research is to improve generative power of G when a huge size of training data is unavailable. 
In this case, existing energy-based models cannot perform as GANs requires to learn enough features for 
unsupervised learning. To handle above-mentioned issue, Deepearthgo, et al. [95] proposed to train a G by 
learning two mapping functions simultaneously, called Max-Boost-GAN. This improves the power of G 
without expanding network’s size. Besides this, cost of GANs does not increase. In addition, to get better 
gradients when G is distant from convergence, authors have introduced a margin loss in GANs objective. 
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5.5. Memory Networks 
One of the architecture solutions introduced memory within the network to handle the mode collapse and 
instability problem in unsupervised GANs framework.  

[96] discussed two main causes of instability in the unsupervised GANs framework, namely structural 
discontinuity problem and forgetting problem. First, basic GANs use a unimodal continuous latent space (e.g. 
Gaussian distribution). Due to this, it cannot handle structural discontinuity between different classes and 
suffers from the mode collapse problem. E.g., in basic GANs, both building and cats are embedded into a 
common continuous latent distribution while both do not share any intermediate structure. Second, D forgets 
the past generated samples by G during the training as D often focuses only on latest input images. This 
forgetting behavior causes instability as loss functions of G and D computed on the basis of each other’s 
performance.  

To handle the aforementioned problems, [96] introduced a memory network for the unsupervised GANs 
training, called MemoryGAN. To handle the structure discontinuity problem, memory network learns 
representation of training samples and helps G to better understand the underlying class. The forgetting 
problem can be handled by learning to memorize distribution of the data generated by G, including rare ones. 
MemoryGAN introduces a life-long memory into D to increase the model’s memorization capacity explicitly 
instead of adding regularization terms [128] or modifying GANs algorithms [89]. In addition, MemoryGAN 
is quite similar to one of the unsupervised GANs frameworks, InfoGAN [101], but InfoGAN learns latent 
cluster information of data into small-sized model parameters implicitly.  

The objective of MemoryGAN depends on InfoGAN, where MemoryGAN also adds a mutual information 
loss between 𝐾�  and 𝐺(𝑧, 𝐾�	) . This loss computes structural similarity between the sampled memory 
information and generated sample. 𝐼� is the expectation of negative cosine similarity.  

𝐿- = 	−𝔼@∽BCDED[log𝐷(𝑥)] +	 𝔼(),�)∽B(M,�) Nlog O1 − 	𝐷R𝐺(𝑧, 𝐾�	)TUV + 𝜆𝐼� 	 

𝐿. = 	𝔼(),�)∽B(M,�) Nlog O1 − 	𝐷R𝐺(𝑧, 𝐾�)TUV + 𝜆𝐼� 	 

5.6. Latent Space Engineering 
Existing works to handle the issues of GANs focused on the use of a fixed latent distribution, either a 
unimodal Normal [4][6][35][83] or a factored multimodal distribution [101][140] with uniform mode priors. 
But still, these distributional selections for the latent space leads a dissimilarity between the modes of 
generated and real data distributions (has a non-uniform mode prior). This case is possible when every data 
mode denotes a class and class distribution is imbalanced [98]. Therefore, for better performance, some 
researchers have proposed approaches for learning a better distribution of noise.  

Gurumurthy, et al. [97] proposed an architecture to handle the mode collapse problem in the case of diverse 
and limited training data, called DeLiGAN. DeLiGAN reparametrizes the latent generative space as a mixture 
model and learns the parameters of mixture model along with GANs. The primary aim of this work is to 
increase modeling power of the prior distribution rather than increasing the model depth. Mishra, et al. [98] 
introduced to construct the latent space (additive noise) in such a way that it matches to its target distribution 
w.r.to number of modes and modal mass or mode priors, called NEMGAN. Authors provided a solution for 
“How to learn the latent space distribution in a GANs framework such that modal properties of the true and 
the generated space are matched?”. Furthermore, [99] introduced to use the multiplicative noise instead of 
additive noise for better visual quality and diversity of generated features, and explored for the unsupervised 
learning of features. 

In DCGANs, z is sampled from a Gaussian distribution and then G maps whole normal distribution to the 
images. Due to this, DCGANs cannot reflect the inherent structure of the training data. To handle this issue, 
Zhong, et al. [100] proposed a Decoder-Encoder structure by transforming the original Gaussian noise z to 
an informative one z’. Authors have shown the analysis that proposed solution accelerate the training process 
and enhance the quality of generated images. Authors also proposed hidden-space loss function to make 
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model robust. On the other hand, some researchers proposed that the noise vector z used in GANs formulation 
can be used by G in any manner. Due to this, it is feasible that z can be utilized in highly entangled way which 
can cause individual dimension of z to not correspond to semantic features of the data. Therefore, z can be 
divided into two parts instead of the use of a single unstructured noise vector [101]. First, z as a source of 
incompressible noise and second, c is a latent code to target the salient structured semantic features of the 
data distribution. This is a simple modification to GANs objective to learn interpretable and disentangled 
representations. Authors have also claimed that InfoGAN is able to disentangle both discrete and continuous 
latent factors without any extra training time. Further, [101] proposed an information-theoretic regularization 
to maximize mutual information between a small subset of the z and the G’s distribution, called Information 
Maximizing Generative Adversarial Networks (InfoGAN). The unsupervised disentangled representation 
learned by InfoGAN outperforms existing supervised label information works [142][143]–[145][79]. In 
addition, a latent-code reconstruction based penalty is used in the cost function. Like VEEGAN [89], 
InfoGAN uses an AE over the latent codes, while in InfoGAN, reconstructor network are not trained on the 
true data distribution. Unlike VEEGAN, in InfoGAN, a latent code part is reconstructed. Unlike VEEGAN, 
InfoGAN requires some stabilization tricks as basic GANs.  

6. NEW LOSS FUNCTION 
Learning in implicit generative models, or likelihood-free models comprises of two steps: comparison and 
estimation. The comparison step uses the density ratio or difference estimators, while in estimation step, 
parameters of generative models are learned. For learning, two sets of samples drawn from the true data 
distribution and the model distribution are compared, this process is known as density estimation-by-
comparison. To compare the true data distribution p(x) with model distribution q(x), two methods are used 
density difference p(x)-q(x)) and the density ratio p(x)/q(x). The density ratio estimation can be further 
categorized into three general approaches: class-probability estimation, divergence minimisation and ratio 
matching, while density difference estimation involves moment matching. The density ratio trick is widely 
used [4][133][79], [80], [146], [147][148] where class probability estimation is the most popular approach.  

Basic GANs is based on the class probability estimation where density ratio can be computed by building a 
classifier to distinguish observed data from that generated by the model. Density ratio includes samples only 
from two distributions, therefore, makes it suitable for handling with implicit distributions or likelihood-free 
models. Divergence minimization minimizes the divergence between the p(x) and q(x) and uses it as an 
objective to drive learning in the generative model. Ratio matching directly minimises the error between the 
true density ratio and an estimate of it. Moment matching compares the moments of the two distributions by 
minimising their distance. Several works have been introduced based on the divergence minimisation [103], 
ratio matching [104], and moment matching [52].  

Statistical divergences, such as KL divergence, Reverse-KL divergence and JSD, measure the difference 
between two given probability distributions and belong to f-divergence class of probability distance metrics 
(used in basic GANs [4], f-GAN [103], b-GAN [104]). Integral Probability Metrics (IPMs) is another class 
which involves Wasserstein distance (used in WGAN, WGAN-GP [35][113]) and Maximum Mean 
Discrepancy (MMD) (used in MMDGAN [52]). The difference between f-divergences and IPMs is that f-
divergences computes distance using p(x)/q(x), i.e., density ratio, while IPMs uses the difference, p(x) - q(x), 
i.e., density difference.  

Several methods have been proposed for improving the quality of gradients and providing additional 
supervision to G and D. New probability distance and divergence are introduced to handle the issue of 
vanishing gradients and non-convergence in training. In addition, some techniques have been proposed to 
introduce different kinds of regularization on weights or gradients for stable training, including gradient 
regularization, spectral-norm regularization [49], etc. 

In this section, we shall discuss more stable alternatives of the objective functions for G and D and objective 
function with the regularization in detail. 
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6.1. New Probability Distance and Divergence 
In this sub-section, we shall discuss popular probability distances and divergences used in the context of 
learning distributions to improve the GANs training stability and mode collapse problem.  

  
(a) (b) 

Figure 17. ρ(Pθ, P0) as a function of θ, (a) ρ is the EM distance (b) ρ is the JSD. The EM plot is continuous 
and gives a usable gradient everywhere, whereas JS plot is not continuous and does not give a usable 

gradient. Figure from [35]. 
Arjovsky, et al. [35] proposed a loss function which also acts as a measure of convergence, called Wasserstein 
Generative Adversarial Networks (WGAN). WGAN has non-zero gradients everywhere and the 
implementation includes removing the sigmoid function in the objective and adding weight clipping to the 
D’s network. To accelerate the GANs training and make the training process stable, WGAN introduced to 
reduce the JSD with an efficient approximation of Earth-Mover (EM) distance [149] as shown in Figure 17. 
EM distance is continuous and differentiable. This new metric is effective in solving mode collapse by 
stabilizing GANs training. WGAN allows to train the critic till optimality which supports the equilibrium 
between G and D. A well-trained critic provides high quality gradients which are used to train G. However, 
WGAN can be unstable when gradients of the loss function are large. Thus, too large weights are clipped 
after each SGD update. Even though WGAN supports stability and better mode coverage, it suffers from 
slow training. Moreover, tuning weight clipping and hyperparameters is a tedious task. 

[102] discussed that assuming model should have infinite capacity in basic GANs causes training issues as it 
constrains a model to lie in Lipschitz continuous function space. In the case of WGAN, Lipschitz condition 
is from the Kantorovich-Rubinstein duality and only the critic is constrained. Loss sensitive GAN (LS-GAN) 
[102] used a weight-decay regularization technique so that weights of a model to lie in a bounded area to 
guarantee the Lipschitz function condition. Like WGAN, LS-GAN also uses a Lipschitz constraint in which 
it assumes that the density of real samples is Lipschitz continuous, i.e., nearby data do not suddenly change.  

Guo, et al. [37] proposed a new class of statistical divergence, Relaxed Wasserstein (RW) divergence for the 
large-scale computations. RW divergence is the Wasserstein divergence parametrized by the class of strictly 
convex and differentiable functions containing different curvature information. RWGANs are robust and 
converge faster than WGAN. [103] introduced f-GAN to minimize the variational estimate of f-divergence 
where it formulates training D as a density ratio estimation (like GANs [4]). The main objective of f-GAN is 
to minimize the f-divergence between the true data distribution p(x) and the model distribution q(x). In 
addition, [104] proposed to use density ratio estimation based on the Bregman divergence, called b-GAN. 
The objective of b-GAN is the direct estimation of the true density ratio without estimating p(x) and q(x) 
independently. Basically, GANs are trained using a distribution discrepancy measure, such as information-
theoretic divergences, integral probability metrics (IPM), and Hilbert space discrepancy metrics. Tao, et al. 
[105] studied these training metrics in connection and introduced a novel metric, called χ2- GAN, for stable 
training and reduced mode collapse.  

In Original GANs, D uses a sigmoid cross entropy loss for differentiating real samples from the fake samples. 
If D classifies a generated sample as real, then G will stop updating even though generated sample is far from 
the real data distribution. In this case, sigmoid cross entropy loss will not push generated samples towards 
real data distribution as classification role is done. To handle this issue, Mao, et al. [40] proposed the Least 
Squares Generative Adversarial Networks (LSGANs) that uses least squares loss function (l2 loss) instead of 
sigmoid cross entropy loss to stabilize the learning process and to reduce the possibility of mode collapse. 
For handling vanishing gradients problem, samples are penalized on the basis of their distances to decision 
boundary to generate more gradients to update G. Authors have also shown that minimizing loss function of 
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LSGANs minimizes the Pearson χ2 divergence. However, LSGANs could not achieve good performance for 
generating diverse images with real datasets. [107] introduced to use Softmax cross-entropy loss, called 
Softmax GANs, instead of the classification loss in the basic GANs. In basic GANs, D uses a logistic loss 
which saturates quickly, and its gradient vanishes if it is simple to differentiate between real samples and 
generated samples. As gradient vanishes, G stops updating. In Softmax GANs, gradient is always non-zero 
unless the Softmax distribution matches the target distribution. In addition, Saliman, et al. [106] introduced 
a GANs variant, called Optimal Transport GANs (OT-GAN), for minimizing a newly proposed metric, mini-
batch energy distance to compute the distance between the G’s generated and real data distribution. However, 
OT-GAN suffers from large amounts of computation and memory.  

Traditional GANs is related to Noise Contrastive Estimation (NCE) in which a binary classification task is 
defined between true and noise samples with a logistic loss, while Softmax GANs is related to Importance 
Sampling version of GANs in which Importance Sampling replaces the logistic loss with a multi-class 
Softmax and cross-entropy loss. Furthermore, [108] introduced to exploit the features learned by D to handle 
the issue of mode collapse and instability. A reconstruction loss is added with GANs objective function in 
which real data features generated by D is fed into G for real data generation. Authors claimed that in order 
to enhance the generated sample quality, proposed reconstruction loss can be applied with other regularization 
loss function, such as gradient penalty. [109] proposed a GANs training approach in which D is trained using 
a maximum margin formulation to improve the D’s capability, i.e., a better G. 

On the other hand, previous GANs training approaches have employed gradient descent on the cost of each 
player simultaneously in which gradient descent enters a stable orbit instead of converging to the desired 
equilibrium point [150]. Feature matching can handle GANs training stability by having G’s new objective 
as it avoids GANs from overtraining on current D [42]. The new objective allows G to produce data 
equivalent to the statistics of the real data instead of directly maximizing the output of D. D is used only to 
state the statistics that are worth matching. Feature matching is similar to techniques that use maximum mean 
discrepancy [151]–[153] for G’s network training [128][129]. Several feature matching based GANs have 
been proposed with an aim to improve convergence.  

Salimans, et al. [42] proposed three techniques for fast convergence of GANs game, called IGAN: feature 
matching, minibatch features and virtual batch normalization (VBN). A new objective function in feature 
matching does not work on directly boosting D’s output, while it involves G to generate data that matching 
statistics of the real data and D is used only to identify the statistics worth matching. Feature matching’s 
objective performs well for classification but could not generate indistinguishable samples. In addition, the 
idea of minibatch features is equivalent to batch normalization [156] while VBN is a direct extension of batch 
normalization. Minibatch discrimination allows D to process the correlations between training data points in 
one batch, rather than handling them separately. Minibatch discrimination works well for generating realistic 
images, but it could not predict labels accurately. Moreover, minibatch discrimination is computationally 
complex and highly sensitive to the selection of hyperparameters [43]. VBN can handle this issue, but it has 
high computational complexity as it involves running forward propagation on two minibatches of data which 
can be used only in G network. In addition, IGAN uses the same network architecture as DCGAN, but training 
of IGAN is more advanced.   

IGAN works only for semi-supervised learning, so for unsupervised learning, [47] proposed to attach G’s 
training criterion with a second training objective which directs G in the direction of data by explicitly 
modeling data density in addition to D. The second training objective is calculated in the space of features 
learned by D to make it computationally inexpensive by not having separate convolutional network for it. 
Then, in that space, denoising autoencoder is trained to estimate energy gradient of data on which it is trained. 

The parametrization used in WGAN suffers from l1 mean feature matching problem. To handle this issue, 
[110] extended the concept of WGAN by matching second order moment feature through the singular value 
decomposition concept. [110] used the mean feature matching and covariance matching GANs (McGAN) 
for stable training and reduced mode collapse and used the Integral Probability Metrics (IPM) loss as it 
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correlates with the generated samples’ quality. McGAN also maximizes an embedding covariance 
discrepancy between real samples and generated samples. McGAN matches second order moment from the 
primal-dual norm perspective which requires matrix (tensor) decompositions because of exact moment 
matching [157] and hard to scale to higher order moment matching. In contrast, Maximum Mean Discrepancy 
GANs (MMDGAN) [52] can match high-order moments with kernel tricks by giving up exact moment 
matching. MMD distance is derived from the Generative moment matching networks (GMMN) [154] and is 
an alternative to Wasserstein distance. MMDGAN uses the adversarial kernel learning techniques instead of 
Gaussian kernels which can better represent the feature space. But still, the computational complexity of 
MMDGAN increases as number of sample increases. [111] introduced a new manifold-matching GANs 
(MMGAN) to stabilize GANs training by discovering two manifolds for the vector representations of real 
and fake images in which real and fake images are statistically identical, if they are equal. To match the two 
manifolds, authors have proposed a loss function to train G. In addition, for enhancing diversity in generated 
samples, authors have proposed kernel tricks for getting better manifold structures, moving-averaged 
manifolds across mini-batches, and a correlation matrix based regularizer. 

Bellemare, et al. [112] has pointed that WGAN suffers from the biased gradients. As a solution, they proposed 
an energy function without the biased gradients, called CramerGAN, where Cramer distance is related to the 
kernel embedded space distance of MMDGAN.  

6.2. Regularization 
In this sub-section, we shall discuss regularization strategies proposed to stabilize GAN training.  

[113] proved that the usage of weight clipping in WGAN for imposing a Lipschitz constraint on the critic 
generates lower-quality samples or fails to converge. Authors proposed another solution to WGAN’s weight 
clipping which is to penalize the norm of gradient of the critic w.r.to its input, called Wasserstein Generative 
Adversarial Networks – gradient penalty (WGAN-GP). Further, [36] extended WGAN-GP concept to any 
separable complete normed space, called Banach Wasserstein GANs (BWGAN). The main difference is that 
the l2 norm is replaced with a dual norm. In addition, authors generalized the WGAN-GP theory to Banach 
spaces to allow features selection for G.  

On the other hand, [114] have present a theoretical claim that BWGAN is not good for GANs training and 
then propose a less restrictive regularization. While, [115] have shown that gradient penalty in WGAN-GP 
cannot support stable training as GP often does not check the continuity of region near the real data. To 
handle this issue, authors proposed training in WGAN-GP which explicitly checks the continuity condition 
using two perturbed version of x, near any observed real data point x.		

[116] have shown that in WGAN-GP, weight clipping reduces the rank of the weight matrix which reduces 
the features used by D to distinguish the distributions. To handle this issue, authors proposed spectral 
normalization technique which does not affect the rank of the weight matrix and stabilize the training of D 
networks. Authors have an analysis that spectral normalization for GANs outperforms other regularization 
techniques, such as weight normalization [158], weight clipping [35], and gradient penalty [113].  

A geometric mismatch is not beneficial for f-GAN as the resulting f-divergence is not finite [48]. As a solution 
[143][144], it is suggested to use an alternative family of distance functions, IPMs which includes 
Wasserstein distance and RKHS-induced maximum mean discrepancies. On the other hand, [117] has 
proposed noise-induced regularization scheme to make f-GAN models robust against dimensional 
misspecifications. [118] proposed a GANs variant for stable training which builds on the IPM framework 
and normalizes the critic with its second moment, like χ2-GAN. Fisher GANs relies on a more sophisticated 
augmented Lagrangian to optimize the same objective for both the critic and G, while χ2-GAN decouples the 
critic and G objectives, requiring simpler (unconstrained) SGD type updates. Fisher GANs reduce the 
distance between two distributions as well as in-class variance. Moreover, it does not add any weight clipping 
or gradient penalty.  
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On the other hand, some researchers introduced to add regularization term to objective function for easily 
converging the objective function to the global optima.  

[38] revisited the basic GANs algorithm for finding the Nash-equilibrium and proposed to add a 
regularization term to the loss function for handling the non-convergence of simultaneous gradient ascent 
based on the Jacobian of the gradients for both D and G. Authors have identified theoretically, key elements 
responsible for the failure of the SGD to achieve Nash-equilibria. Then, authors introduced a new design for 
the GANs training on the basis of insights driven from the SGD failure analysis. Further, to address the 
convergence issue in the training of GANs, [45] introduced a surrogate objective for G’s update which unrolls 
D to regularize its updates. But, computational cost of unrolling step is high, which makes it unsuitable for 
the large-scale datasets. Authors also present two techniques, inference via optimization, and pairwise 
distance distributions for generating diverse samples.  

[119] and [120] introduced a regularized penalty for G and D, respectively, to achieve better convergence in 
the GANs algorithm. [121] analyzed the convergence of GANs training for finding the main reason(s) of the 
mode collapse. Then proposed gradient penalty approach, called DRAGAN to avoid the local equilibria 
which causes sharp D’s gradients nearby some real data points.  

Further discussion. The selection of appropriate distance measure plays a vital role in the training of 
generative networks. The major difference between these distances is the impact on the convergence of 
sequences of probability distributions. As discussed earlier, several GANs variants have been proposed for 
minimizing the probability distances/divergences between real and generated data distribution, such as JSD, 
f-divergence, maximum mean discrepancy (MMD) and Wasserstein distance. Some approaches also used 
probability measure for distance calculation. Cramer distance, a family of IPMs, calculates the distance 
between probability distributions of generated and real data in D’s activations. Divergences based strategies 
try to ensure the existence of Nash-equilibria. 

In most of the works, objective functions are derived from the Wasserstein distance instead of f-divergences 
for improving the stability in the GANs training. Wasserstein distance does not support the theoretical 
guarantee, but it is computationally efficient. In addition, moment matching based approaches have handled 
the issue of vanishing gradients, but these approaches are computationally expensive than training a classifier. 
While, the use of gradient penalty [113] and spectral normalization [116] are beneficial in the high-capacity 
architectures. Several solutions have been proposed to regularize the GANs for handling the issue of 
vanishing gradients and non-convergence where most of the works are theoretically formulated. Gradient-
norm based regularization enhance local stability. However, regardless of the progress, stable GANs training 
is an open challenge which requires a careful balance during the adversarial optimization. 

7. ALTERNATIVE OPTIMIZATION ALGORITHM 
Previous approaches in GANs used gradient descent techniques which mainly focus on finding low value of 
cost function instead of Nash equilibrium of a game. These algorithms may fail to converge when find the 
Nash equilibrium [133]. Introducing a stable algorithm for GANs training is a long-awaited problem and 
numerous solutions have been introduced. In this section, we shall discuss optimization approaches 
introduced to address the issues in GANs using Simultaneous Gradient Descent.  

[38] analyzed the main reasons associated with simultaneous gradient ascent algorithm failure in finding local 
Nash-equilibria of smooth games. Authors have shown through theoretical analysis that the main factors are 
the presence of eigenvalues of the Jacobian of the associated gradient vector field with zero real-part and 
eigenvalues with a large imaginary part. The second case makes saddle-point problems more challenging 
than local optimization problems. To handle these problems, [38] proposed a robust algorithm using 
consensus optimization to find Nash-equilibria of smooth two-player games. The proposed algorithm is 
orthogonal to other strategies making the GANs framework better, such as using new distances, or 
regularization. These solutions assume the existence of Nash-equilibria while proposed algorithm works with 
their computation and the numerical difficulties occurring in practice. The proposed solution is an 
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approximation to the implicit Euler method for integrating the gradient vector field where implicit Euler 
method has strong stability properties [161] which can be translated into convergence theorems for local 
Nash-equilibria. However, in implicit Euler method, solution of a nonlinear equation in each iteration is 
required. Moreover, it can be extended by having better approximations to the implicit Euler method. 
Alternatively, the proposed work can be seen as second order method where it can be extended by revisiting 
second order optimization methods [162] in the context of saddle point problems. Authors claimed that it is 
a first step to understand main factors of GANs training and different objective functions. The main aim of 
the work is to stabilize GANs training on different architectures and divergence functions. The results show 
that the proposed algorithm achieves stability in the training and handles the issue of mode collapse 
successfully. However, stability suffers in the case of deeper architectures as gradients can have different 
scales in such architectures. Also, if regularization parameter set to high, proposed method can make unstable 
stationary points of the gradient vector field stable and may lead to poor solutions.  

Simultaneous Gradient Descent is similar to use no-regret dynamics for each player where in game theory, it 
is assumed that this limits the oscillatory behavior in zero sum games. In the case of convex-concave zero-
sum games, average of the weights of the two players establishes an equilibrium and not the last-iterate. But, 
average the neural nets weights is not allowed as zero-sum game defined by training two deep networks 
against each other is not a convex-concave zero-sum game. Therefore, it is important to get training 
algorithms making the last iterate of the training be very close to the equilibrium, instead of only the average. 
[122] proposed to use a variant of gradient descent, called Optimistic Mirror Descent (OMD) for WGAN 
training which achieves faster convergence rate to equilibrium. Gradient Descent (GD) dynamics are bound 
to cycle while the last iterate of OMD dynamics converges to an equilibrium. OMD considers that in zero-
sum game, another player is also training through similar algorithm; OMD predicts the strategy of another 
player to achieve faster regret rates. Results show that OMD gets smaller KL divergence w.r.to the true 
underlying distribution compared to GD variants. Experiments have also shown that GD suffers from limit 
cycles even tested in a simple distribution learning setting (learning the mean of a multi-variate distribution). 
In addition, OMD converges pointwise. an optimistic variant of Adam is also introduced which shows better 
performance than Adam.  

In recent times, actor-critic learning has been applied for stochastic approximation. [123] used the two time-
scale update rule (TTUR) which guarantees that training achieves a local Nash equilibrium when the critic 
learns faster than the actor. [39] used the same approach and train the GANs by TTUR to reach the local 
Nash equilibrium where D and G both have different learning rates. The main idea is that D converges to a 
local minimum when G is fixed. If changes in G are quite slow, still D still converges, since G perturbations 
are small. In addition, performance also enhances as D must first learn new patterns before transferring to G. 
On the other hand, Adam stochastic approximation is used to handle the issue of mode collapse where Adam 
stochastic optimization is introduced as a heavy ball with friction (HBF) dynamics in which Adam try to get 
flat minima and avoids small local minima. TTUR enhances learning of DCGANs and WGAN-GP and 
outperforms basic GANs training for various image datasets.  

GANs is difficult to train as optimal weights of the loss functions in GANs relate to saddle points, and not 
minimizers. Alternative SGD methods used for zero-sum games either do not reliably converge to saddle 
points or if converges, they are highly sensitive to learning rates. Standard alternating SGD methods generally 
moves between minimization and maximization steps. It is possible that minimization step overpower 
maximization step where iterates will “slide off” the edge of saddle and it will lead to instability. To handle 
this issue, [41] proposed modified stochastic gradient descent, called prediction step to stabilize adversarial 
networks in which maximization step can exploit information about minimization step. Authors have also 
shown that proposed algorithm converges to saddle points and is stable with a wider range of training 
parameters than plain SGD methods. This supports faster training with larger learning rates. A theoretical 
proof is also provided to show that prediction step is asymptotically stable for solving saddle point problems.  
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8. DISCUSSION AND RESEARCH DIRECTIONS 
According to the proposed taxonomy (in Table 1), we can see that the rapidly growing body of research 
focused on GANs now comprises several novel solutions for handling the challenges of GANs. Here, we 
look at what could be explored in future research to further improve the existing works. 

8.1. GANs Design and Optimization Solutions 
GANs has shown its potential for generating natural images, still it goes through the problem of mode 
collapse as discussed earlier, i.e., G collapses and could capture only limited varieties of modes in the data. 
GANs commonly fails to learn some of the modes trained on the multi-modal distribution data. Most of the 
time, GANs could not converge to true equilibrium and settles for sub-optimal local solutions. Due to mode 
collapse, samples produced by the trained generative model often lack diversity. In addition, we can say that 
mode collapse is connected to instable GANs training which leads to another main challenge in GANs. 

Despite the promising achievements, GANs is still hard to train due to several common problematic unstable 
training and convergence behaviors, such as vanishing gradients, mode collapse, and diverging or oscillatory 
behavior. These issues in GANs training often hinders further research and applicability in this area. In recent 
times, to alleviate the above-mentioned issues, existing studies have proposed several solutions, such as 
designing more stable network architectures, modifying the learning objectives, regularize objectives, 
training strategies, tuning hyperparameters, etc. However, in most of the cases, their achievement is often the 
result of sacrificing the image quality and image diversity where these issues have trade-off relationships.  

Most of the existing works have focused either on image quality or on image diversity. One possible research 
direction can be to work on image quality without suffering from the low image diversity. Furthermore, to 
handle the issue of GANs training instability, existing methods still depend on heuristics which are very 
sensitive to amendments. This is one of the main reasons that restricts applicability of these approaches in 
new domains. On the other hand, we observe that most of the existing works have proposed to solve only one 
training issue at a time and often do not include theoretical analysis. Another important research direction is 
to have a theoretical framework/analysis for handling issues in GANs training process with the aim of 
exploring more tractable formulations and to make training stable and straightforward.  

In addition, proposed solutions differ in the training improvement scale. Most of the models can achieve 
similar results by improving the hyperparameters settings and computational resources. Therefore, we can 
say that majority of related works mainly emphasized on achieving state-of-the-art accuracy instead of state-
of-the-art efficiency. Developing solutions having the algorithmic improvements over existing works can be 
a future direction.  

To handle the GANs challenges, existing approaches are focused on three major directions: re-engineered 
network architecture, new objective functions and optimization algorithms as discussed in Section 5, 6 and 
7. Objective function GANs variants often show more improvement in training than architectural GANs but 
still they cannot boost mode diversity in the generated visual samples. Several GANs design and optimization 
solutions have been proposed in these three directions where proper selection of architecture, objective 
functions and optimization techniques have improved GANs training stability. In addition, objective 
functions are sensitive to the use of optimization strategies, hyperparameter selection, and number of training 
steps which can be explored in the future research for the different GANs.  

On the other hand, research on using other technologies for improving the GANs training, such as online 
learning [163], game theory variants, etc., is still at the early stage. A combination of proper architecture, loss 
function and optimization techniques can prove to yield superior results and can be a future research direction 
to explore.  

8.2. Applications 
Generation of realistic images has broad range of practical applications, such as face aging, face editing, pose 
estimation, entertainment, etc. Recently, GANs has gained momentum for generating naturalistic images 
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through adversarial training. Apart from it, GANs has also shown its potential for several other applications, 
such as Steganalysis [164], information retrieval [165], spatio-temporal data prediction, such as 
transportation [166], autonomous driving [167]–[169], speech enhancement [170], single-cell RNA-sequence 
imputation [171], etc. Exploring GANs applicability for new application domains can be a future direction. 
Moreover, the support of GANs for maintaining ethics in AI is new research direction.  

8.3. Evaluation Metrics 
Generative models were evaluated based on the model likelihood which is intractable. Basic GANs used a 
proxy for log-likelihood, i.e., Parzen window estimate for evaluation [172]. Theis, et al. [30] presented that 
likelihood estimation is often incorrect for Parzen window estimate. GANs lacks the meaningful measure for 
evaluating the GANs output. Due to this issue, it is very challenging to compare different GANs variants and 
still based on the visual assessment of generated images.  

Furthermore, because of the lack of robust and consistent metrics, it is difficult to evaluate which GANs 
algorithm(s) outperforms other algorithms. A good evaluation is needed as it will allow to choose appropriate 
algorithm from a very large set. Also, to have better algorithms and their understanding, like which 
modifications are critical, and which algorithms cannot make a significant difference in practice [172]. To 
overcome above-mentioned issues, researchers have proposed several evaluation methods for GANs 
[154][155]. Moreover, different applications choose different evaluation metrics as different applications 
require different trade-offs between different measures. It is better to know a combination of training and 
evaluation metrics for the target application. 

9. SUMMARY AND CONCLUSION 
Recently, GANs has gained significant attention for generating realistic images and has become important in 
modern world applications, such as image generation, domain adaptation, etc. However, GANs is hard to 
train and training faces two main challenges, mode collapse, non-convergence and stability. The possible 
solutions to handle these GANs challenges are to design an efficient model by choosing appropriate network 
architecture, by using suitable objective function or by selecting proper optimization techniques. Within these 
solutions, many different GANs variants have already been proposed with diverse characteristics, but still 
some issues remained unsolved.  

Research on GANs is quite broad and several designing and training solutions of GANs handling these 
challenges lay ahead. In this paper, we recapitulate the basic GANs framework and survey the developments 
of solutions for better design and optimization of GANs. More concretely, we proposed a novel taxonomy of 
GANs design and optimization techniques based on re-engineered network architectures, new objective 
functions and alternative optimization algorithms and discussed how existing works deal with these 
challenges. We mapped the existing works to the taxonomy for finding the research gaps in GANs. Our work 
provides a panorama of current progress and an in-depth analysis of the reviewed methods to serve both 
novices and experienced researchers. In addition, the new taxonomy aims to build a problem-solution 
structure with a hope to suggest a guideline when readers are selecting their research topics or developing 
their approaches. Based on insights gained, we proposed promising directions that the researchers can pursue 
in the future.  
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