
  Real-time Crowd Monitoring using Seamless 
Indoor-Outdoor Localization 

Abstract— Human identification and monitoring are critical in many applications, such as surveillance, evacuation planning. 
Human identification and monitoring are not an easy task in the case of a large and densely populated crowd. However, none of 
the existing solutions consider seamless localization, identification, and tracking of the crowd for surveillance in both indoor and 
outdoor environments with significant accuracy. In this paper, we propose a novel and real-time surveillance system (named, 
SmartISS) which identifies, tracks and monitors individuals’ wireless equipment(s) using their MAC ids. Our trackers/sensing 
units (PSUs) are the portable entities comprising of Smartphone/Jetson-TK1/PC which are enough to capture users’ devices 
probe requests and locations without users’ active cooperation. PSUs upload collected traces on the cloud server periodically 
where cloud server keeps finding the suspicious person(s). To retrieve the updated information, we propose an algorithm 
(named, LLTR) to select the optimal number of PSUs for finding the latest location(s) of the suspicious person(s). To validate 
and to show the usability of SmartISS, we develop a real prototype testbed and evaluate it extensively on a real-world dataset of 
117,121 traces collected during the technical festival held at IIT Roorkee, India. SmartISS selects PSUs with an average 
selection accuracy of 95.3%. 

Index Terms— Surveillance system, Localization, MAC, Wi-Fi, Trajectory analysis, Outlier/Anomaly detection, Smartphone 
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1 INTRODUCTION
ECENT advances in mobile devices with a wide range
of communication and low-cost location sensing

techniques have emerged as a new era of ubiquitous 
computing. Location-aware information processing mod-
ule is a kind of ubiquitous computing in which the user’s 
location can be effectively used for disaster/crisis man-
agement, public safety, and evacuation path planning and 
supportive tasks during emergency situations. In public 
safety, timeliness of information generation, processing, 
and dissemination are the most significant factors for co-
ordination, evaluation, analysis, future prevention, and 
strategies [1]. Moreover, the real-time assistance creates 
an environment of trust and credibility among people and 
mitigates the critical situations effectively. 

As the movement of crowd is highly unpredictable [2], 
[3], surveillance systems allow administrative authorities 
to monitor the crowd and their movement simultaneously 
from the remote locations. During the case of an emer-
gency, such as stampede, fire, suspicious activity, etc., 
these systems can provide the immediate and efficient 
corrective actions. Moreover, emergency situations need 
to be detected at an initial point to alleviate the risk of a 
situation evolving towards a dangerous incident. 

Human identification, tracking, and monitoring are 
not easy tasks in the case of a large and densely populat-
ed crowd. Visual sensor, like camera is used to track plac-
es of a person in the crowd while some research works 
are emphasizing on wireless technology/single position-
ing, such as, Wi-Fi enabled devices [4], Smartphone's 
GPS/General Packet Radio Service (GPRS) [5], RFID [6], 
and Bluetooth (BT)/Bluetooth Low Energy (BLE) tags [7] 
to accurately recognize and track humans in indoor and 
outdoor scenarios. 

Regardless of the current advances in the computer vi-
sion and pattern recognition techniques, it is a challeng-

ing task to get the global condition of the crowd (identifi-
cation, tracking, and monitoring) from the video footage 
during gatherings [8], [9], such as congregations, rallies, 
etc. Existing crowd monitoring systems [4], [6], [10], [11] 
based on the above-mentioned techniques work well for 
individuals and not for mass gatherings as a whole. 
Moreover, these techniques are not accurate for finding 
the location of individuals moving in indoor and outdoor 
environments seamlessly. However, single wireless tech-
nology-based localization approach is not robust for 
tracking individuals seamlessly in indoor and outdoor 
environments due to their trade-off among power con-
sumption, accuracy, and coverage area as well as single 
point of failure [12]. 

To handle the above-mentioned issues, to the best of 
our knowledge, we are the first to develop an interactive 
and intelligent real-time Smartphone-based surveillance 
system (named, SmartISS) for public safety. SmartISS uses 
the Smartphone/Jetson TK1 [13]/PC based sensing units 
to identify, monitor, and track individuals’ equipment(s) 
(Smartphones/BT/BLE) using their MAC ids (non-
participatory) and a hybrid localization technique, GPS-
Wi-Fi-Cellular (Google location API [14]). Sensing units 
upload collected individuals’ traces on the cloud server 
periodically where cloud server keeps finding the suspi-
cious person(s) using an outlier detection algorithm. 
SmartISS allows administrative authorities to find the 
latest location(s) of that suspicious person(s) in the real-
time. To find the latest locations/trajectory of a suspicious 
person only from the cloud server is not sufficient as it 
can have outdated data while querying all sensing units 
deployed in dispersed locations will increase the commu-
nication cost. To minimize the response time and com-
munication cost, selection of the appropriate sensing 
unit(s) should be optimal. Therefore, we propose an algo-
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rithm to select the optimal number of sensing units de-
ployed at geographically dispersed locations to retrieve 
required information with high sensing unit(s) selection 
accuracy and low response time. Retrieving the infor-
mation from the large database(s) in real-time is also a 
challenging task regarding computation and access time. 
Therefore, SmartISS also allows top-k query on multi-
dimensional data. Top-k query retrieves k data objects 
from the selected sensing units. As a proof-of-concept, we 
develop a prototype of the system and evaluate it exten-
sively using a real-world dataset. 

In summary, the main technical contributions of this 
paper are as follows.  

1. We propose a novel real-time intelligent surveil-
lance system (named, SmartISS) to find the suspi-
cious person(s) and his/her latest loca-
tion(s)/trajectory seamlessly in both indoor and 
outdoor environments. 

2. We propose an algorithm (named, LLTR) to select 
the optimal number of sensing units deployed at 
geographically dispersed locations for finding the 
latest location(s) of the suspicious person(s) with 
high sensing unit (s) selection accuracy and low 
response time. SmartISS also allows top-k query 
on multi-dimensional data. 

3. Extensive experiments on real prototype testbed 
having a real-world dataset of more than 117,121 
traces collected during the technical festival of 3 
days, Cognizance 2017 in IIT Roorkee, India show 
the usability and validity of SmartISS system. The 
SmartISS selects the sensing units to generate the 
trajectory of the suspicious person(s) with an av-
erage selection accuracy of 95.3 percent. 

The rest of the paper is organized as follows. In Section 
2, we discuss the related works. Section 3 covers the 
background of our proposed system. Section 4 and 5 ex-
plain the system model and system architecture, respec-
tively. In Section 6, we elaborate prototype implementa-
tion details while Section 7 describes about experimental 
evaluation. Finally, Section 8 concludes the paper. 

2 LITERATURE SURVEY 
In this section, we shall discuss the related works of 

SmartISS. 
Wirz, et al. [15] developed a Smartphone-based crowd 

monitoring system through participatory sensing. The 
system identifies the crowd density based on the individ-
uals walking speed. Koshak, et al. [16] explained how to 
leverage GPS and Geographic Information Systems (GIS) 
technologies for tracking the pedestrian movement 
through computer software during the haj pilgrimage. 
Authors have analyzed flow rates and levels of services at 
different places and instances in Makkah. Based on this 
information, volunteers can easily find out the critical 
areas and the time at which pilgrims should take precau-
tions.  

Musa, et al. [17] proposed a trajectory tracking system 
for tracking unmodified smart devices passively and to 
use access points hardware for information retrieval. 

Rose, et al. [18] presented the Argos sensor network-
based approach for exploring the usage and details of 
wireless access points for tracking Wi-Fi equipped 
transport vehicles, and the user’s wireless devices for 
behavior analysis through the emitted probe requests.  

Cheng, et al. [19] explored the previous researches 
based on spatio-temporal based users’ behavior, users’ 
physical closeness, and device association history. Hong, 
et al. [20] proposed a system to analyze the interaction 
patterns and social behavior of users carrying 
Smartphones through monitoring the Wi-Fi probes and 
null data frames emitted by Smartphones. Barbera, et al. 
[21] performed the social-network analysis and sociologi-
cal aspects of users, such as language, vendor adoption, 
etc., from the collected probe requests of wireless devices 
during the national and international events. Bonné, et al. 
[22] implemented a low-cost Raspberry Pi based system 
to capture and process the wireless signals for monitoring 
and analyzing human mobility using real-life movement 
data in the university campus and the music festival. 
Luzio, et al. [23] developed a system which analyzes the 
device owner’s social belonging information from the 
probe requests collected from the wireless devices. Wang, 
et al. [24] presented an approach to monitor the 
Smartphone’s Wi-Fi signals in real time for analyzing the 
human queues w.r.to the service/waiting time, and hu-
man flow, etc. This approach can be useful in many appli-
cations, such as dynamic workflow scheduling, shift as-
signments, etc.  

In addition, some authors also used RFID, BT, etc., for 
identifying and tracking individuals in different envi-
ronments. Bahl, et al. [25] presented a radio-frequency 
(RF) based user locating and tracking system (RADAR) 
placed in indoor environments. Versichele, et al. [26] used 
a proximity-based Bluetooth tracking scheme to identify 
the spatio-temporal data of visitors at Ghent University 
festivities events. Furthermore, authors have also ex-
plored the statistics, such as flow maps of individuals 
attending events, individuals’ counts, and share of return-
ing individuals. Oh, et al. [27] proposed an intelligent 
surveillance system in which it gathers heterogeneous 
sensory information (visual and RFID sensors), cre-
ates/updates database information for tracking and iden-
tifying objects. The system assigns a global object number 
to each identified object for maintaining consistent infor-
mation for the same object.  

Single wireless technology cannot accurately track an 
individual who is passing through indoor and outdoor 
locations seamlessly. It is well known that GPS could not 
give high accuracy in the indoor, urban and dense area 
due to the multipath issues [28]. While, the use of Wi-Fi 
for outdoor environments do not work well in compared 
to GPS. On the other hand, cellular-based localization 
schemes perform well iff more base stations are deployed 
near to the localization area. Furthermore, RFID-based 
tracking and monitoring systems use the expensive RFID 
readers and have human body interference and low cov-
erage area related issues in the densely crowded places 
[29]. BT is also a possible solution for indoor localization 
[30] due to its low-cost and low-power consumption. But, 



 

 

BT has a low range for scanning and high discovery time 
to track the human at large crowd. While, BLE tags based 
on RSSI measurements suffer from huge location errors 
due to non-uniform shadowing [31]. To overcome the 
limitations of the RSSI, researchers proposed to use 
Channel State Information (CSI) [32]–[34] for highly accu-
rate and reliable indoor localization. Implementation of 
CSI in a smart device for location tracking requires to 
have a NIC card whose driver has been hacked to expose 
the CSI information to the respective application. Moreo-
ver, these techniques are not robust because of their trade-
off among accuracy, power consumption, and coverage 
area as well as a single point of failure.  

Experimental research to use the different sensing 
units, such as Smartphone, Jetson TK1, PC for identifying, 
tracking, and monitoring the individuals in the mass 
gatherings for surveillance is in the nascent state. Most of 
the surveillance systems are based on the video footage 
and other sensing techniques, like RFID, BT, BLE, etc., 
which require either a rich set of hardware or does not 
work for a large crowd as a whole and makes the system 
costly and complex. Moreover, developers have only pro-
vided piecemeal solutions to the crowd identification, 
tracking, and monitoring system without considering the 
overall implementation of a complete end-to-end system. 

3 BACKGROUND 
We first introduce probe requests and then, we discuss 
how sensing units capture the probe requests and inter-
cept the MAC ids.  

A sensing unit (Smartphone/Jetson TK1/PC) is used 
as a portable wireless scanner for capturing and pro-
cessing nearby wireless frames emitted by smart devices, 
such as Smartphones, BLE/BT tag, NFC equipped 
tags/devices. To find an access point (AP) to get associat-
ed, a smart/wireless device keeps sending probe re-
quests, i.e., 802.11 Management frames [35] periodically. A 
smart device keeps looking for better AP, even if it is al-
ready connected to an AP. In our case, smart devices act-
ing as sensing units with an external Wi-Fi adapter and 
working in monitor mode (named, Portable Sensing Unit 
(PSU)) captures and intercepts these probe requests pas-
sively [36]. Monitor mode means a sensing unit can cap-
ture all probe requests in its scanning range sent over the 
wireless medium, even if those probe requests are not 
destined for it. Moreover, it is not required for a sensing 
unit (i.e., PSU) to get connected with a user device (non-
participatory). 

A frame header of 802.11 Management frame compris-
es of the following main fields: Frame Type, Subtype, 
Transmitter Address, Receiver Address, etc., where the 
Transmitter Address (TA) is a MAC address of the user’s 
smart device. TA remains in the plain text (not encrypted) 
even if a device is connected to a secure network. All cap-
tured probe requests remain intact, i.e., without removing 
any frame header. Whenever a new frame is received, an 
OnFrameReceived event handler is called to process the 
received frame for finding the Automated Gain Control 
(AGC) and TA (if exists, as some frames may not contain 

TA). In addition, it is also possible to find that a received 
frame is of an AP or user’s smart device through the 
FromDS bit in the frame control field (the B9 bit). In our 
analysis, we did not use an AP’s MAC address as it is not 
related to any person.  

 
Fig. 1. PSU scanning individuals’ devices present within its sensing 

range 

Fig. 1 shows a setup of a PSU sensing individuals’ de-
vices. There is no need of any extra hardware at PSU for 
sensing probe requests and Internet access on the indi-
viduals’ devices of the persons being tracked; neither 
tracking requires any application installed on the indi-
vidual’s devices. If two or more PSUs are present in each 
other’s transmission range, they can share their data with 
each other through Wi-Fi direct. A PSU can use the Inter-
net connection of another PSU available in its proximity 
for data uploading. 

4 SYSTEM MODEL AND PROBLEM STATEMENT 
4.1 System Model 

We design and develop an intelligent surveillance sys-
tem which identifies, tracks, and monitors crowd for find-
ing the suspicious person(s) and their recent locations. 
SmartISS comprises of three main components: a set of 
PSUs P = {PSU1, PSU2,…, PSUn}, a cloud server (𝐶"#$%#$) 
and an application server (𝐴"#$%#$). These components are 
connected/communicated through Wi-Fi/3G/4G. 

The system model works as follows: SmartISS at the 
sensing side is the combination of software and hardware 
which supports the identification, tracking, and monitor-
ing of the smart devices enabled individuals available in 
the vicinity of sensing units. For achieving high location 
accuracy, PSU uses the hybrid GPS-Wi-Fi-Cellular-based 
positioning technique for tracking individuals seamlessly 
in indoor and outdoor environments. PSUs capture the 
frames transmitted on wireless media by smart devices 
from the persons in the crowd, extract the MAC ids, store 
them, and send locally processed and filtered data to 
𝐶"#$%#$ for further long-term processing.  

SmartISS system utilizes the sensed and collected data 
for anomaly detection, trajectory analysis, and emergency 
services through 𝐶"#$%#$. The 𝐶"#$%#$ uses the k-d tree and 
an efficient, in-memory k-nearest neighbor algorithm  for 
detecting the anomalies/outliers [37], [38], [39]. The 
𝐶"#$%#$ passes MAC address and the last detected location 
of that outlier to 𝐴"#$%#$ for finding the outlier’s latest lo-
cation(s) from the 𝐶"#$%#$ and PSUs deployed at different 
regions.  

The 𝐶"#$%#$ can have outdated data while, querying all 



 

 

PSUs is expensive w.r.to time and the number of messag-
es. It is a big challenge to get an accurate list of PSUs hav-
ing the information of requested MAC address. Therefore, 
we propose an algorithm to select the optimal number of 
PSUs deployed at different regions for efficiently retriev-
ing latest location(s) of an outlier. Moreover, SmartISS can 
perform top-k query on multi-dimensional localization 
data at 𝐶"#$%#$ and PSUs. In 𝐴"#$%#$, all query messages are 
handled by Extensible Messaging and Presence Protocol 
(XMPP) framework [40].  

4.2 Problem Statement 

Problem definition 
With the aforementioned system model, the formal defini-
tion of the proposed system SmartISS can be given as fol-
lows: 

Definition 1. Given n mobile/static sensing units deployed 
randomly in the task area and m MAC addresses of individuals’ 
devices captured by sensing units with detected time and loca-
tion, SmartISS finds the suspicious person(s) and selects the 
optimal number of sensing units n’ (where n’ ≤ n) deployed at 
geographically dispersed locations such that the following objec-
tives are achieved: 

1) Retrieve latest location(s) of suspicious person(s) in 
real-time with high PSU(s) selection accuracy and low 
response time. 

2) Retrieve top-k relevant data objects from multi-
dimensional data in low response time. 

Definition 2. Optimal PSUs selection problem: Given a set of 
PSUs 𝑆( and location of the suspicious person, select a subset S 
of 𝑆( such that accuracy of S is maximized over all possible 
subsets in less response time.  

To sense m individuals, we have a total number of n 
PSUs. Each individual will be tracked atleast by a PSU 
deployed randomly in the task area. So, there will be a 
collection of k sets (i.e., 1 ≤	𝑘	≤ 2,) of PSUs, where each set 
will have the tracking information of some individuals 
𝐼𝑁/ where 1 ≤	𝑖	≤ m.   

Finding the optimal solution to the PSU selection prob-
lem is NP-hard. We prove the NP-hardness of the optimi-
zation problem by giving a polynomial-time reduction 
from the NP-hard set cover problem. 

Theorem 1. The optimal PSU selection algorithm is NP-
hard. 

Proof: Recall that there are total 2, sets of PSUs (n is 
finite), where each set will have the tracking information 
of atleast an individual, i.e., each individual corresponds 
to a set of 𝑆(. Then, the decision version of the optimal 
PSU selection problem can be transformed into the fol-
lowing set cover problem: given the universal set of PSUs 
𝑆(  = {𝑢3, 𝑢5, … , 𝑢,}, and a collection 𝐶  of 2,  sets whose 
union comprises the universe, determine whether there 
are subset 𝐶8 ⊆ 𝐶, such that every element in 𝑆( belongs to 
atleast one member in 𝐶8? 

The decision version of the optimal PSU selection 
problem is equivalent to that of the set cover problem [41] 
which is NP-complete. Therefore, optimal PSU selection 

problem is NP-hard. 

5 SYSTEM ARCHITECTURE 

 
Fig. 2. SmartISS architecture 

Fig. 2 shows the proposed SmartISS system architecture. 
SmartISS system works in a hierarchical fashion where 
the sensing units (static/dynamic) deployed at the lowest 
layer collects probe requests from the smart devices of the 
individuals. Then, sensing units intercept MAC addresses 
and store them for a period of time with the detected loca-
tion and timestamp at which that probe request is cap-
tured. Whenever 𝐶"#$%#$ detects any outlier, it passes that 
information to the 𝐴"#$%#$ for finding the latest location(s) 
of the detected outlier. The functionality of the SmartISS 
system is divided into three main phases: 1) data collec-
tion and local data processing at sensing units (Pro-
cessing@PSUs); 2) remote data processing at 𝐶"#$%#$ (Pro-
cessing@C;<=><= ); and 3) data retrieval at 𝐴"#$%#$  (Pro-
cessing@A;<=><=). We shall discuss these phases sequen-
tially in the next sections. 

5.1 Processing@PSUs 
Whenever an individual reaches the sensing range of any 
sensing unit deployed at geographically different loca-
tions, PSU (both dynamic and static) captures the probe 
requests emitted by individual’s devices. Then, PSU ex-
tracts the MAC address from probe request and maintains 
an entry in its internal memory with the following attrib-
utes <SU_id, MAC_address, Location, Detected_at> where 
SU_id denotes the sensing unit’s name, MAC_address is 
MAC id of individual’s device, Location is the location of 
the PSU and Detected_at is time of individual’s device 



 

 

detection. After uploading a file to 𝐶"#$%#$, PSU deletes the 
corresponding file from its internal memory. If uploading 
fails, it retries to upload the file when the network con-
nection is available again. The file can be uploaded using 
either Wi-Fi or mobile data as decided by the operating 
system. There is NO relation between PSUs deployment 
and location accuracy. One PSU is enough for scanning an 
individual MAC address, appending other information 
and uploading that data to the 𝐶"#$%#$. When a PSU inter-
cept a MAC address from a probe request, PSU adds its 
own current location in that record.  

As PSU adds its location at the users’ location traces 
and PSU uses multiple wireless technologies, GPS-Wi-Fi-
Cellular (Google Location API) for finding its current lo-
cation, the granularity of the location accuracy depends 
on the Google Location API. As per the statistics [42] of 
the Google Location API, the maximum accuracy of the 
Smartphone Galaxy Nexus is 10 m, and 40 m approxi-
mately when the location update interval is set to 5 sec-
onds (high accuracy) and 20 seconds (balanced power), 
respectively. Suppose, the location accuracy of a PSU is 10 
m and the range of a PSU scanning is 30 m. Then we can 
say that in worst case, a user will be in the range (user’s 
location accuracy) of 30 ± 10 m (PSU_scanning_range ± 
PSU_location_accuracy) which is well commensurate with 
the peak demand of a Smartphone-based surveillance 
system.  

For security and privacy purpose, we apply Rivest Ci-
pher 4 (RC4) [43] to the filtered MAC addresses. Encrypt-
ed MAC addresses are put into a temporary file along 
with timestamps of their detection. Only the authorized 
persons are able to access the real MAC address of any 
person’s smart device. Furthermore, for handling the du-
plicate MAC addresses, all entries in the PSUs are main-
tained in the HashMap. Whenever a MAC address is add-
ed to the cache HashMap, it is passed to the MAC detec-
tion logger. It saves the MAC address, current location, 
and timestamp in a temporary file named temp. When the 
number of records in one file reaches above a certain 
threshold (e.g., 50), the temporary file is renamed to the 
current UNIX timestamp and the file is enqueued for up-
load. A new file name temp is created for storing new rec-
ords. The records are saved in JSON format to upload 
without any modification. Instead of uploading a single 
record to the 𝐶"#$%#$, we store few records in the internal 
storage of the application and then send it to the 𝐶"#$%#$ at 
once. It saves battery power and network bandwidth. 
However, the data at 𝐶"#$%#$ would be a little bit outdated. 

Furthermore, in recent times a MAC address randomi-
zation technique has been proposed to secure 
Smartphones from being stalked as these phones pass 
through Wi-Fi environments. Smart devices use globally 
unique MAC address when a device is connected or at-
tempts to connect to an AP. SmartISS handles the MAC 
randomization through the association/authentication 
frames [44] and discard the locally assigned MAC ad-
dresses. As we deploy SmartISS in the smart campus (all 
area is covered through Wi-Fi) IIT Roorkee, Smart devices 
remain associated or want to get associated with the APs, 
therefore, association/authentication frames-based ap-

proach is the best solution in our application scenario for 
dealing with MAC randomization in real-time. In addi-
tion, SmartISS can also easily opt for other MAC deran-
domization attacks, such as UUID-E reversal, device sig-
nature, Karma attack, and control frame attack [45], [46]. 
5.2 Processing@𝐂𝐒𝐞𝐫𝐯𝐞𝐫  
Each location has a semantic significance associated with 
the activity. The presence of a student in a semantic loca-
tion refers that the student is performing that activity. For 
instance, the library implies self-study, lecture hall implies 
attending classes, and canteen implies eating. Most of the 
time, there is a certain periodicity, frequency, and order in 
which a student visits these locations. This contains in-
formation that can be utilized to build powerful predic-
tors of future behavior. Any change or deviation from this 
ordinary behavior is an anomaly/outlier. 

PSUs keep uploading collected data to  𝐶"#$%#$ at a pre-
specified time interval, and then 𝐶"#$%#$ applies outlier 
detection algorithm on the uploaded data. The 𝐶"#$%#$ 
detects anomalies/outliers in the current location dataset 
using dynamic k-d tree (k-dimensional tree) with the near-
est neighbor algorithm. A K-d tree is a space partitioning 
data structure (binary search tree) where data in each 
node is organized in a k-dimensional space. K-d trees are 
appropriate in range and nearest neighbor searches. 

Given the location coordinates of individuals collected 
through SmartISS, we need to find out the location coor-
dinates which are not close to the other points. We divide 
the whole area of IITR (1.48 km2) into grid cell of 53 x 53 
m where we have total 28 x 28 cells. Then, we put all col-
lected records during a time interval in the grids. We iter-
ate all grid cells to find out single traces in grid cells. 
Then, we find out neighbors of those single detected 
points using Euclidean distance (can be available in the 
neighbor grid cells) where we set Euclidean distance for 
outlier detection to 30 m. If no one exists in neighbor cells 
for those single detected points, then those points are re-
ferred as an anomaly. Furthermore, some rooms in each 
event locations were accessible to only organizing team 
members, and during the experiments, those areas are 
considered as restricted areas. If a new MAC address (apart 
from registered MAC addresses of security personals and 
authorities) is present in any restricted area, then that 
MAC address is also considered as an anomaly. 

The anomaly information is published into the 𝐶"#$%#$. 
Since the admin authorities are registered with 𝐶"#$%#$; 
they can take efficient corrective actions immediately 
once a suspicious person is detected. After finding the 
outlier(s), 𝐶"#$%#$ passes the information <MAC id, location 
coordinates, and timestamp> to 𝐴"#$%#$ for getting the latest 
locations of a detected outlier. The format of the query is 
as follows: <last_n’, attributes_list, MAC_address> where 
last_n’ is the number of recent locations of the outlier to 
retrieve, attributes_list contains a list of n’, detected_at, and 
SU_id, while MAC_address is MAC id of the outlier’s de-
vice. 

5.3 Processing@𝐀𝐒𝐞𝐫𝐯𝐞𝐫 
Whenever an outlier (O) is detected at 𝐶"#$%#$, it passes 



 

 

outlier’s MAC address and the last detected location to 
𝐴"#$%#$ where 𝐴"#$%#$ sends it to the XMPP server. E.g., 
last_3&location&detected_at&SU_id&MAC_address. 𝐴"#$%#$ 
deals with the XMPP server and 𝐶"#$%#$ while XMPP serv-
er deals with PSUs only. XMPP forwards the original 
message to selected PSUs list to get up-to-date infor-
mation about outlier. 

Optimal PSU selection algorithm is used to find the 
latest trajectory of the detected outlier(s). Each individual 
will have followed a specific route instead of visiting all 
deployed PSUs. To get the latest location(s) of outlier 
from PSUs, the selection of appropriate PSU(s) should be 
optimal. The primary challenge to query is how to choose 
the most accurate list of PSUs. If all PSUs are queried, it 
will increase the communication cost and time. Similarly, 
a query to a random number of PSUs does not ensure 
availability of requested data. To query only the 𝐶"#$%#$ is 
also not sufficient as 𝐶"#$%#$ can have outdated data. To 
handle the problems as mentioned above, it is required to 
design and develop a new intelligent approach to query 
the appropriate PSUs for low response time with high 
PSU selection accuracy. Therefore, we propose an algo-
rithm to select the optimal number of PSUs deployed at 
different regions for retrieving latest locations of a partic-
ular MAC address (named, LLTR) efficiently.   

 
Fig. 3. A query and results propagating through the network 

To select the appropriate list of PSU(s), we use the 
XMPP communication to make our SmartISS system fast 
and reliable. XMPP server uses the dynamic k-d tree. It 
then uses requested MAC address to search the k-nearest 
neighbors using the Nearest Neighbor (NN) approach. 
Now, XMPP server sends the top-k query to the selected 
PSUs. Selected PSUs compute the local top-k data objects 
and forward the response to XMPP server. When a re-
sponse arrives at XMPP server from the list of selected 
PSUs, XMPP server decodes the message into dictionary 
object and returns a response to the 𝐴"#$%#$.  

When 𝐴"#$%#$  gets a response from XMPP server, it 
checks the response message to ensure that it has a result 
of all attributes mentioned in the query. If the response 
contains incomplete results, then 𝐴"#$%#$ parses the same 
query into SQL and sends it to the 𝐶"#$%#$. After getting a 
response from the 𝐶"#$%#$, 𝐴"#$%#$ merges this data with 
the previous incomplete response and sorts them (see Fig. 
3). Then, sorted response based on Detected_at is provided 
to the administrative authorities. Furthermore, a map 
matching module projects each location onto a correspond-
ing road segment where those points were truly generat-
ed and produces the trajectory on the basis of timestamps.  

In the next sub-section, we shall discuss our proposed 

Latest Locations Retrieval (LLTR) algorithm.  

Proposed LLTR Algorithm 
In this section, we discuss the algorithm used for retrieval 
of latest locations of the queried outlier (see Fig. 4). In 
Table 1, we list the variables used to describe the pseudo-
code of LLTR algorithm.  

TABLE 1  
VARIABLES USED IN LLTR ALGORITHM 

Variables Significance 
𝑴𝑨𝑪𝒂𝒅𝒅𝒓𝒆𝒔𝒔 MAC id of detected anomaly/outlier A 

𝑳𝒍𝒐𝒄 Last detected location of anomaly/outlier A 
𝒏′ # of requested locations 
𝑹𝑷𝑺𝑼 List of responses when 𝐿YZ[ == null 
𝑹𝛟 # of empty responses 
𝑹𝑷𝑺𝑼′  List of responses when 𝐿YZ[ ≠ null 
𝑹𝛟~  # of non-empty responses in 𝑅_"`′  
𝑹𝑷𝑺𝑼′′  List of responses when 𝐿YZ[ ≠ null and 𝑅ϕ

~ = = 1 
𝑹𝑷𝑺𝑼′′′  List of responses when 𝐿YZ[ ≠ null and 𝑅ϕ

~ ˃ 1 
𝑹𝛟′  # of responses when 𝐿YZ[ ≠ null 
𝑹𝛟′′  # of responses when 𝐿YZ[ ≠ null and 𝑅a~ = = 1 
𝑹𝛟′′′ # of responses when 𝐿YZ[ ≠ null and 𝑅ϕ

~ ˃ 1 
𝑨𝒍𝒍𝑷𝑺𝑼 List of all PSUs 
𝑲𝑷𝑺𝑼 Contains the list of k-nearest PSUs 
𝑪𝒍𝒐𝒄 Current location of the PSU which provided the data 
𝑹𝑳𝒍𝒐𝒄 Recent location of the anomaly/outlier A 

 
Whenever 𝐶"#$%#$ detects an outlier, it checks the outli-

er’s timestamp, i.e., detected_at. If the difference between 
the detected_at and the current timestamp is less than a 
threshold, then the returned location from the 𝐶"#$%#$ is 
considered as a recent location. Otherwise, to find the last 
n’ location(s), 𝐶"#$%#$ provides 𝑀𝐴𝐶dee$#ff of detected out-
lier and its last detected location (Lhij) to 𝐴"#$%#$. If 𝐿YZ[ is 
null, then query is passed to the XMPP server for further 
query to all PSUs (Alll;m) simultaneously and waits for 
their responses (Rl;m). When 𝑅_"` arrive from the PSUs, 
they are aggregated and return to the 𝐴"#$%#$. 

 
1. Search the 𝑀𝐴𝐶dee$#ff and find the 𝐿YZ[ from the 𝐶"#$%#$ 
2. if 𝐿YZ[ == ϕ then 
3.       𝑅_"` ← Query 𝐴𝑙𝑙_"` in parallel  
4.       Send 𝑅_"` to 𝐴"#$%#$  
5. else  
6.       Build a dynamic k-d tree for 𝐴𝑙𝑙_"` 
7.       𝐾_"` ← find nearest (𝑛′ – 1) PSUs of 𝐿YZ[ using k-NN 
8.       𝑅_"`′  ← query to 𝐾_"` and 𝐿YZ[  
9.       if 𝑅r~== ϕ then            // No record found 
10.             𝑅r ← 𝑛′ 
11.             Send 𝑅r to 𝐴"#$%#$ 
12.       else if 𝑅r~ == 1 then    // Only one record found 
13.                   𝑅r ← (𝑛′ – 1)  
14.                   𝐶YZ[ ← loc. of PSU which provided data of 𝑅r~ 
15.                   if 𝐶YZ[ == 𝐿YZ[ then 
16.                         Send 𝑅_"`′  and 𝑅r to 𝐴"#$%#$ 
17.                   else  
18.                         𝐾_"` ← find 𝑅r nearest PSUs of 𝐶YZ[ by k-NN 
19.                        𝑅_"`′′ ← query to 𝐾_"` in parallel  
20.                         𝑅r ← (𝑛′ - 𝑅r88 - 1)  
21.                         Send 𝑅_"`′ , 𝑅_"`′′  and 𝑅r to 𝐴"#$%#$ 
22.       else                            // More than one record found 
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23.             𝑅r ← (𝑛′ - 𝑅r~) 
24.             Sort 𝑅_"`′  in descending order on the basis of time t 
25.             𝑅𝐿YZ[ ← 𝑅_"`′  [0] // First index of an array 
26.             if 𝑅𝐿YZ[ == 𝐿YZ[ then 
27.                    Send 𝑅_"`′ 	and 𝑅r to 𝐴"#$%#$ 
28.             else 
29.                   𝑅𝐿YZ[	 ← 𝑅_"`′  [1] // Second index of an array 
30.                   𝐾_"` ← find 𝑅r nearest PSUs of 𝑅𝐿YZ[ by k-NN 
31.                   𝑅_"`′′′  ← query to 𝐾_"`   
32.                   𝑅r ← (𝑛′ - 𝑅r~ - 𝑅r888) 
33.                   Send 𝑅_"`′ , 𝑅_"`′′′  and 𝑅r to 𝐴"#$%#$ 

Fig. 4. LLTR algorithm 

If a record already exists in the 𝐶"#$%#$ for the detected 
outlier, 𝐶"#$%#$ returns the 𝐿YZ[ of the 𝑀𝐴𝐶dee$#ff and for-
wards the query to 𝐴"#$%#$ which further forwards it to 
XMPP server. Then, XMPP builds a dynamic k-d tree and 
searches the nearest (𝑛′	– 1) PSUs of 𝐿YZ[ using the k-NN 
approach. Now, XMPP server queries both list of PSUs 
recognized through k-NN and PSU at 𝐿YZ[ and waits for 
the response(s) (𝑅_"`′ ). If no information found, then 
XMPP server returns null to 𝐴"#$%#$. If atleast one infor-
mation found for the requested query, then XMPP server 
finds the current location (𝐶YZ[) of the PSU which provid-
ed that data. If 𝐶YZ[  is equal to 𝐿YZ[  then XMPP server 
sends the response to previous query (Rl;m′ ) with missing 
number of information (Ra) calculated as (𝑛′ - 1) to 
𝐴"#$%#$. Now, 𝐴"#$%#$ will ask 𝐶"#$%#$ for the remaining 𝑅r 
locations. It will aggregate both XMPP server and 𝐶"#$%#$ 
response and return the aggregated response to the ad-
min authorities. 

If 𝐶YZ[ is not equal to 𝐿YZ[ then XMPP server finds the 
𝑅r nearest PSUs of 𝐶YZ[ by k-NN and queries them in par-
allel. XMPP server collects the response (Rl;m′′ ) and for-
wards 𝑅_"`′′ , 𝑅_"`′  and 𝑅r (computed as (𝑛 - 𝑅r′′  - 1)) to the 
𝐴"#$%#$. If the information found in response is more than 
1 then empty set is calculated as (𝑛′ - 𝑅r~). XMPP server 
sorts 𝑅_"`′  in descending order on the basis of timestamp 
and set the recent location (RLhij) to location of the first 
PSU of the sorted response list. Now, if 𝑅𝐿YZ[ is equal to 
𝐿YZ[ , then XMPP server updates the 𝑅𝐿YZ[ to the location 
of second PSU in the list of response. Moreover, XMPP 
server finds the 𝑅r nearest PSUs of 𝑅𝐿YZ[ by k-NN, issues 
the query to these PSUs and waits for the response (𝑅_"`′′′ ). 
Further, XMPP calculates the 𝑅r	 through (𝑛8- 𝑅r~ - 𝑅r′′′) 
and send the 𝑅_"`′′′ , 𝑅_"`′ , and 𝑅r to 𝐴"#$%#$.  

The time complexity of building a k-d tree is O(n * log 
n) where n is the total number of PSUs. A search opera-
tion in k-d tree using k-NN takes O(k * log n) complexity. 
To search a record within a PSU takes only O(1) complexi-
ty as we are using HashMap for data storage. Therefore, if 
there are total m outliers detected, then the time complexi-
ty will be m * (O(n * log n ) + O(k * log n)) 
=> m * (n + k) * O(log n). 

6 PROTOTYPE IMPLEMENTATION DETAILS 
This section explains the detailed implementation of the 
SmartISS testbed. 

We use a Jetson TK1 as a dynamic PSU [13] (see Fig. 5 
(a)) which is NVIDIA’s embedded Linux development kit 

having 192 CUDA cores, 2 GB RAM, 16 GB storage and 
Linux4Tegra OS. Jetson is basically used for the high-
performance computing with low power consumption. It 
is most suitable for continuous operation under heavy 
workloads. We also use three different Smartphones 
(Samsung Galaxy S4 (SG_S4), Dell Venue 8 (DV_8) and 
Google Nexus 5 (GN_5)) as dynamic PSUs (see Fig. 5 (c)). 
Furthermore, a Linux-based desktop computer (Dell Pre-
cision T5600 system 64 GB RAM, Intel Xeon processor E5-
2600 family, and 3 TB HDD) is used as a static sensing 
unit (deployed at UGPC lab, CSE Dept.) (see Fig. 5 (b)). 
For the location updates, we set the two properties mini-
mum time elapsed, and minimum distance traveled to 1000 
ms and 0, respectively. It means PSU will get the location 
update at every 1000 ms time interval. The location accu-
racy of a PSU is approximately equal either a PSU is static 
or moving at slow speed (i.e., walking) [47]. Moreover, it 
is very important to know that location accuracy keeps 
wandering even if a PSU is static at the same location and 
in an outdoor environment. 

 

 
(a) Jetson TK1-based PSU (b) Linux-based PSU 

 
(c) Smartphone-based PSU 

Fig. 5. Different types of PSUs 

TABLE 2  
HARDWARE SPECIFICATIONS OF SMARTPHONE-BASED PSUS 

Device Processing  
Capability 

Cores 
(Family) Wireless Features 

SG_S4 

Universal 5410 
1.6GHz 

GPU: PowerVR 
SGX544MP3 

4 (Cor-
tax-A15) 

Wi-Fi 802.11 
a/b/g/n/ac, Dual-
band, Wi-Fi Direct, 

GSM/HSPA,  
Bluetooth 4.0 

GN_5 

Qualcomm 
Snapdragon™ 
800, 2.26 GHz, 
GPU: Adreno 
330, 450MHz 

4 (Krait-
400) 

Dual-band, Wi-Fi Di-
rect, GSM/CDMA/ 
HSPA/LTE, Wi-Fi 

802.11 a/b/g/n/ac, 
Bluetooth 4.0 

DV_8 
Intel® Atom™ 

CPU Z3480 2.13 
GHz 

2 (Bay 
Trail) 

Wi-Fi 802.11 b/g/n, 
GSM/HSPA, Bluetooth 

4.0 
 
Table 2 shows the hardware specifications of the 



 

 

Smartphone-based PSUs. We use two types of external 
Wi-Fi adapters, Alfa AWUS036H [48], and a Tenda 
W311M [49]. These adapters provide the Wi-Fi scanning 
capability to the PSUs. The scanning range of Alpha and 
Tenda adapters are approximately 50–60 m, and 10–12 m, 
respectively. Alfa adapter-based PSU can detect smart 
devices within the range of 50-60 meters in Line-of-Sight 
(LoS) while, in crowded areas and other factors, such as 
microwaves, atmosphere, radio-frequency interference, 
buildings, metal construction, and trees, etc., a PSU can 

practically detect Smartphones within the range of 25-30 
meters (radius) accurately. The Android version for 
SG_S4, DV_8, and GN_5 are Lollipop (5.0.1), Kit Kat 
(4.4.4), and Marshmallow (6.0.1), respectively. Also, the 
battery capacities of SG_S4, GN_5, and DV_8 are 2600 
mAh, and 2300 mAh, and 4100 mAh, respectively. To 
handle the power consumption issue of dynamic PSUs, 
we use the Y-cable in the USB host mode to provide the 
support of an external battery. 

 
Fig. 6. Data flow among various modules of SmartISS 

Fig. 6 shows the complete data flow of the SmartISS. To 
implement the 𝐶"#$%#$, we use Intel® Core™ i7-3770 CPU 
@ 3.40 GHz, 64 GB RAM, and 2 TB storage. 𝐶"#$%#$ is im-
plemented using Django web framework and MySQL. We 
develop anomaly detection module in Python. 

All records from PSUs to 𝐶"#$%#$ are uploaded using 
the cURL HTTP POST method which supports multiple 
protocols, such as HTTP, FTP, HTTPS, SMTP, etc. The im-
plementation of in-memory cache at both PSU and 𝐶"#$%#$ 
site is done using the Redis® [50] in-memory data struc-
ture store (database cache) to make the system time-
efficient. Sometimes, it is also possible that a PSU stops 
uploading data to the 𝐶"#$%#$ due to some external factors, 
such as PSU software update, upload the erroneous data 
and upload data with low information. 𝐶"#$%#$  keeps 
checking that each PSU is uploading its data timely. 
𝐶"#$%#$ also keeps monitoring the data quality and raises 
the alarm if uploaded data has lots of missing parameters 
and outliers. 

Within the 𝐶"#$%#$, we implement XMPP server and 
𝐴"#$%#$. XMPP server uses the XMPP framework which is 
based on client-server model. It uses XML which is an 
open source. 𝐴"#$%#$ is implemented using the Python. 
The Socket TCP protocol supports the communication 
between 𝐶"#$%#$ and 𝐴"#$%#$. 𝐴"#$%#$ creates a new separate 
thread to handle each query concurrently. 

  
(a) Main Activity (b) Wi-Fi Scanning 
Fig. 7. User Interfaces of Smartphone-based PSU 

 

 
(a) BLE and Bluetooth Tags 

(optional) 
(b) BLE/Bluetooth embedded 

Smartwatches (optional) 
Fig. 8. Users’ devices in case Smartphones are not available 

 

A PSU can perform three types of scanning BLE, Blue-
tooth Classic (BC) or Wi-Fi (Fig. 7(a)). Fig. 7(b) represents 
the Wi-Fi scanning activity and the user interface which 
shows RSSI measurements, detected MACs, time of detec-
tions and detection frequency. 

Users’ devices are Smartphones having Wi-Fi and/or 
BT support. If users are without Smartphones, SmartISS 
can track individuals having BLE/BT tags, and BLE/BT 
enabled smartwatches (see Fig. 8 (a) and (b)). 
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7 EXPERIMENTAL EVALUATION 
The SmartISS system is developed from the scratch and 
extensively tested in both indoor and outdoor scenarios. 
In this section, we elaborate our dataset and experimental 
details with in-depth analysis of our results. 

7.1 Background of prototype testbed  
Experiments are performed in and around the Indian In-
stitute of Technology, Roorkee (IITR) campus, India 
(Exp@IITR). IITR is a research and academic institute in 
Uttarakhand state, India. It has 1.48 km2 area housing 
with several objects, such as administrative buildings, 
academic departments, library, student hostels, post of-
fice, schools, shops, banks, cafeterias canteen, etc.  

Indoor localization means location logging and pro-
cessing are performed inside the institute buildings, e.g., 
Library, Academic departments, etc., at IITR. Whereas, 
outdoor scenario means identifying and tracking individ-
uals’ locations and other information in open are-
as/grounds, roads/streets, and open space of buildings, 
etc. The indoor-outdoor scenario is the combination of the 
both above-mentioned scenarios in which buildings, 
roads, grounds, etc., are tracked in a random fashion. 

 
Fig. 9. Individuals’ presence scanning using SmartISS for a particu-

lar path (MAC - Central Library - CSE Dept. - RB_Hostel - MAC) 
during Cognizance IITR (for 3 days) 

Fig. 9 illustrates individuals’ traces on the map using 
SmartISS. We deploy SmartISS system and then collect 
data for a technical festival of IITR, Cognizance - 2017 
held on 24 - 26 March 2017. SmartISS track all those devic-
es for which the Wi-Fi/BLE/BT is turned ON. We set all 
PSUs to monitor frames on channel 6. The maximum rec-
ords uploaded per file are set to 100 and the duplicate 
detection rate of frames is fixed to 5 minutes which re-
duces the detection of same MAC ids upto a great extent. 
We have eight volunteers to collect the data using PSUs 
(4/4 volunteers for day/night). Volunteers keep moving 
most of the time in the specific regions and walk in and 
around campus.  

Fig. 10 shows the event-wise individuals’ traces on the 
map for three days during the Cognizance technical 
event. Fig. 11 shows the number of events held at the dif-
ferent locations of the IITR campus. As shown in Fig. 10, 
we deploy our PSUs in that pattern. One volunteer with 

the PSU keeps moving in the MAC area, one in the LBS 
ground area while one volunteer with PSU keeps moving 
around the Mgmt. Dept., LHC, and Hobby club. One vol-
unteer keeps moving around the IITR campus in random 
fashion. The moving node for the campus can be a drone, 
robot, patrolling/security person, etc. One static PSU is 
deployed in the UGPC lab, CSE dept. building. 

 
 

Fig. 10. PSUs’ deployment in 
different areas and Individuals’ 

traces collected during all 3 
days’ events of Cognizance at 

IITR 

Fig. 11. Events statistics during 
Cognizance at IITR 

In our database, total records stored are approximately 
117,121 in which the unique MAC records are 14,672. We 
collect data through Wi-Fi and BT scanning where total 
traces collected through Wi-Fi and BT are 116,089 and 
1,032, respectively. Total records consist of data from both 
static and dynamic PSUs.  

7.2 Dataset analysis 
We perform some basic analysis on the captured data, like 
the total number of individuals detected by a PSU, day-
wise and time-wise presence of individuals at the differ-
ent event locations, and distribution of individuals in the 
various events. 

We further analyze the collected data to find the mobil-
ity pattern of the people during the event. Fig. 12 (a) 
shows the total MAC ids detected by all sensing units in 
and around the IITR campus for the entire time span of 3 
days. Fig. 12 (b) and (c) show the day-wise and hour-wise 
distribution of distinct MAC ids, respectively during the 
event. Highest visiting frequencies detected for the morn-
ing and evening sessions are day-1 with 6,880 and day-2 
with 2,900 number of individuals, respectively. The low-
est visiting frequency in and around the IITR campus is 
during the time 18-20 (24-hours format) for all three days. 
Fig. 12 (d) shows the total number of individuals present 
at the different event locations. Hobby Club, and Mgmt. 
Dept. are the locations where detection of individuals’ 
MAC addresses is high in compared to other locations. It 
also shows the average pause time which is average time 
spent by the individuals at that particular location. We 
extend our analysis to find the total number of individu-
als and a common number of individuals present in 3 
days (Fig. 12 (e) and (f)). 
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(a)  (b)  (c) 

   
(d) (e) (f) 

Fig. 12. Data Analysis during Cognizance Technical Festival through 4-dynamic and 1-static PSU(s) 

  
Fig. 13. Top 5 individuals for 
spending maximum time in 

and around events locations 
during Cognizance at IITR 

Fig. 14. Average visiting fre-
quency of an individual in IITR 
campus during the time interval 

(in hours), Cognizance, IITR 

Fig. 13 shows the average hours spent by the top 5 in-
dividuals in and around the event locations. The visiting 
frequency sequences of an individual in and around the 
event locations for the fixed time intervals is shown in Fig. 
14. It also shows the working pattern and hours spent in 
the events. The selected person spends more time during 
the day hours of 12-16 and 16-20. 

To further find the visiting patterns of an individual, 
we draw the day/hour-wise heatmap of an individual’s 
visiting frequency in the events (see Fig. 15). The analysis 
depicts that the individual remains highly active during 

the period of 19-21 (2 hours) on the first day of cognizance 
festival. Fig. 16 shows the visualization of the trajectory of 
an individual during Cognizance event at IITR. 

 
Fig. 15. Day-Hour wise visiting frequency of an individual in 

the IITR campus during Cognizance event for 3 days 

 
Fig. 16. Trajectory (RB_Hostel - LHC - Mgmt._Dept. - CSE Dept.) of 
an individual during Cognizance on day-1 retrieved from database 

   
(a) Time Point Sequence (b) Time Interval Sequence (c) Discretized Time Interval Sequence 

Fig. 17. Data preprocessing 

We inspect the time delay between all consecutive 
probe requests from same device (Samsung, Apple iPh-
one, Google Nexus, Dell, etc.) in the direct line of sight 

which are stationary and within the range of the adapter 
and realize that for more than 95% of packets time delay 
between the current packet and the previous packet is 
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below 15 minutes. So, to achieve a false negative rate of 
less than 5%, we set a segment time st equal to 15 minutes. 
If devices are not placed in the direct line of sight and are 
not static, then the average rate of false negatives rate for 
st equal to 15 minutes increases to 38% due to packet loss. 

Fig. 17 (a) shows Time Point Sequences (PS), where 
each vertical bar (|) shows the instantaneous timestamp 
when the probe requests corresponding to the MAC ad-
dress m is received. We can observe that many probe re-
quests are received in short time span. However, storing 
information about closely spaced probe requests from 
each m is redundant and costly. As we are more interested 
in analyzing the time interval during which the smart de-
vice was present in the vicinity, we obtain Time Interval 
Sequence (IS) for every MAC address m from it’s corre-
sponding PS. 

Fig. 17 (b) shows IS, where each filled rectangle shows 
the time interval when the probe request corresponding to 
the MAC address m is received. To obtain IS from PS, we 
inspect the time delay between consecutive probe requests 
in PS. If the time delay is below a threshold st, then the 
later packet extends the previous interval otherwise it 
spawns a new interval. The ISs reduce the storage re-
quirement. However, performing piece-wise analysis on 
IS is difficult as the intervals are of varying length (i.e., 
duration). So, the ISs are discretized into sequence of 
regularly sampled equal sized unit intervals of length λ. 
We set λ equal to st/2 so that any gap between intervals 
which is more than st minutes is captured. Fig. 17 (c) 
shows Discretized Interval Sequences (DIS).  

The statistics, such as average stay time, number of vis-
itors, and frequency reveal semantics of a particular loca-
tion [51]. Thus, we deploy a PSU in the UGPC lab, CSE 
Dept. to find out the average day-wise visiting pattern of 
frequent visitors. MAC addresses are classified into three 
groups: new visitor, if a visitor is traced for the first time on 
a particular day, frequent visitor who frequently detected 
by nearby PSUs in the time span of a day, and non-frequent 
visitor who is not detected in a day.  Generally, these visi-
tors are outsiders who visit only occasionally, such as dur-
ing special events. 

To understand the location semantics, we apply feature 
engineering on the collected Wi-Fi records. Fig. 18 (a), (b), 
and (c) show the day-wise pattern for frequent visitors at 
CSE Dept. For each time segment of λ, we further catego-
rize each sub-group into Passthrough (if visitors pass from 
the location before, during and after the slot), Entry (if 
visitor has arrived at the venue during the given slot), and 
Exit (if visitor left the venue). 

For analyzing this, we need to track an individual’s 
MAC id for N time slots before and after the current time 
slot. 

1. A MAC id is a Passthrough if it is not detected in 
the N time slots before or after the given slot but 
detected only during the given time slot. 

2. A MAC id is considered as Entry at a location if it 
is not detected in the N time slots before the given 
time slot but detected during the given time slot 
and in any of the N time slots after the given time 
slot.  

3. A MAC id is called Exit at a location if it is detect-
ed in some of the N time slots before the given 
time slot and also detected during the given time 
slot but not in any of the N time slots after the giv-
en slot. 

 
(a) Day-1 

 
(b) Day-2 

 
(c) Day-3 

Fig. 18. Average visiting frequency by top 5 frequent visitors 
for 3 days at UGPC lab, CSE Dept. during Cognizance 

 

7.3 Information retrieval from APs 
We further broaden our analysis and use an Android-
based APlogger application [52] for finding the mobility 
pattern of individuals in the IITR campus. APlogger in-
stalled on Smartphones maintains the traces of APs avail-
able in the surrounding region with the current GPS loca-
tion of Smartphone and the timestamp at which APs are 
detected.  

We install APlogger on four Smartphones (GN_5, 
SG_S4, and two DV_8). A record in APlogger maintains the 
following fields: <Lat., Long., timestamp, Smartphone model, 
SSID, BSSID, RSSI, Security mode, frequency> where Lat. 
and Long. are the GPS location of a Smartphone having 
APlogger, timestamp is the time at which an AP location is 
traced, model is the model of the Smartphone used for AP 
sensing, SSID is the AP’s name, BSSID is the MAC address 
of an AP, RSSI is the signal strength of detected AP, securi-
ty mode is the type of security used in AP and frequency 
shows the signal frequency of an AP. However, we use 
only three fields for the analysis, <Lat., Long.>, timestamp, 
and SSID. 



 

 

 
 

Fig. 19. Plotting of Wi-Fi 
hotspots discovered on Google 

Map 

Fig. 20. Location of top 20 
individuals in IITR during 

Cognizance using APlogger 

  
Fig. 21. Number of individuals detected by different APs during 

Cognizance 

Student volunteers with the Smartphones having AP-
logger app walked in and around the IITR campus for 15 
days and collect a list of 733 APs (hotspots). We plot the 
total number of detected APs on the Google Map as 
shown in Fig. 19. To estimate the AP’s location, we average 
the location of all the occurrences of an SSID in the col-
lected data. As shown in Fig. 19, the location with a higher 
concentration of Wi-Fi hotspots are offices, departments, 
and laboratories areas as these infrastructures require Wi-
Fi networks for Internet usage. Residential areas have less 
number of Wi-Fi networks. On the other hand, play-
grounds or open areas have almost no Wi-Fi networks. 

To find the visiting pattern in the IITR campus during 
Cognizance festival, we find top 20 most frequently visit-
ed individuals from the collected data and plot their traces 
on Google map (see Fig. 20). We also analyze the visited 
number of smart devices (MACs) at each AP using the 
APlogger app and PSUs as shown in Fig. 21. Through the 
analysis of probe requests, we collect 1,41,695 probe rec-
ords (72,802 are directed probes, and 68,893 are broadcast-
ed) in total through the PCAP app on PSUs. 

7.4 Simulation results 
The generation of probe requests depends on several fac-
tors, such as device OS, version, the model, etc., [36]. Fig. 
22 shows the number of probe request generation when-
ever a Smartphone is associated (A) and not associated (NA) 
with any AP. The result shows that a Smartphone gener-
ates less number of probe requests when Smartphone’s 
display screen is locked, and it is A to an AP. On the other 
hand, generation of probe requests are high when 
Smartphone's display is on, and the phone is NA with any 
AP. Results also represent that Smartphones, such as 
GN_5 and SG_S4 generate probe requests even they are 

not A to any AP, and their display screens are off. 

 
Fig. 22. Number of probe requests generated when a mobile is A / 

NA with AP 

We conduct experiments to observe the performance of 
Jetson TK1 based PSU against frame processing success 
ratio (Rsucc) which is a ratio between successfully pro-
cessed frames (generated and sent by all smart devices in 
the vicinity of sensing area) at a PSU to the total number 
of frames generated by all smart devices covered by the 
same PSU.  

For simulation experiment, we develop a Linux-based 
Wi-Fi frame injector using the PCAP library [53]. The Wi-
Fi frame injector is installed on Dell Precision T5600 sys-
tem having 64 GB RAM, Intel Xeon processor E5-2600 
family, and 3 TB HDD. The injector works as individual 
devices to test the processing capability of the PSU. The 
injector adjusts the following parameters: MAC ids (same 
and / or different), the delay between the frames, number 
of frames to transmit, types of frames (Data & Request to 
Send (RTS)). We use Jetson TK1 as a PSU to capture and 
intercept the frames transmitted from nearby individual’s 
devices. 

  
(a) 1000 frames (b) 5000 frames 

Fig. 23. PSU's processing capability with same MAC ids 

  
(a) 1000 frames (b) 5000 frames 

Fig. 24. PSU’s uploading capability with unique MAC ids 

To analyze the processing capability of a PSU, Wi-Fi in-
jector transmits 1000 frames/sec with the same MAC ids 
at the different transmission intervals (100 to 100,00 micro-
seconds) (see Fig. 23 (a)). After that, Wi-Fi injector gener-
ates 5000 frames/sec having same MAC ids at the fixed 
transmission interval (see Fig. 23 (b)). The average num-
ber of frames captured by a PSU are 933 and 4712 for 1000 
and 5000 frames/sec, respectively. Therefore, the Rsucc of 
Jetson is 93.3% and 94.24% for 1000 and 5000 frames/sec, 
respectively. Another experiment is performed for the 



 

 

1000 and 5000 frames/s having unique MAC ids at differ-
ent transmission intervals ranging from 100 to 100,000 
micro-seconds (see Fig. 24 (a)) and at the fixed transmis-
sion (see Fig. 24 (b)), respectively, to find the PSU capabil-
ity of handling the numbers of individuals’ devices at the 
same time. The average number of frames uploaded by 
the PSU are 932 out of 1000 and 4704 out of 5000. There-
fore, the Rsucc of Jetson is 93.2% for 1000 frames and 
94.08% for 5000 frames. 

 
(a) Using Alfa Adapter 

 
(b) Using Tenda Adapter 

Fig. 25. Impact of the distance on the probe requests received by 
PSUs 

To find the impact of distance on the number of probe 
requests received by PSUs, we perform an experiment for 
10 mins for Alfa and Tenda adapters as shown in Fig. 25 
(a) and (b), respectively. The more distance decreases the 
probability of an individual's device detection but still 
that number is enough sufficient to detect the presence of 
individuals by PSUs. 

 
Fig. 26. PSUs deployment to find the impact of number of 

PSUs and their scanning range on the system performance 

 

Furthermore, to find the impact of the number of PSUs 
and their scanning range on the system performance, such 
as number of outlier detection, we establish a scenario in 
the CSE Dept., IITR. We divide the whole area of CSE 
building in 30 x 30 m grid cells. We take two sensing 
range of a PSU: 30 meters (Alfa Adapter) and 10 meters 
(Tenda Adapter). We take 22 PSUs and deploy in the CSE 
Dept. building indoor (only ground floor) and outdoor as 
shown in Fig. 26. PSUs 1-9 are static while PSUs 10-11 
keep moving in the clockwise and anti-clockwise direc-

tion, respectively. 
We track individuals in the CSE building for a week (04 

- 10 Sep., 2018) during the peak time period 11:00 - 12:00. 
For finding the impact of the number of PSUs, we take 
three cases: Case 1 (C1_R) having the outliers detected by 
1-5 PSUs, Case 2 (C2_R) having the outliers detected by 1-
5 and 10-11 PSUs and Case 3 (C3_R) having the outliers 
detected by all PSUs where R represents the PSU’s scan-
ning range 30/10 m. We perform all experiments at the 
same time.   

The total number of records collected through this ex-
periment are 1007, 1311, and 1685 for the cases C1_30, 
C2_30 and C3_30, respectively. For the cases C1_10, C2_10, 
and C3_10, total number of records collected are 550, 645, 
and 862, respectively. The unique number of records up-
loaded at the 𝐶"#$%#$ are 209, 253, and 253 for the cases 
C1_30, C2_30, and C3_30, respectively and 104, 189, and 
206 for the cases C1_10, C2_10, and C3_10, respectively.    

The outlier detection for the scanning range 30 m are 
11, 15 and 15 for the Case C1_30, C2_30, and C3_30, re-
spectively while for scanning range 10 m, outlier detected 
are 6, 9 and 11 for the Case C1_10, C2_10, and C3_10, re-
spectively. The number of outlier detection rate for the 
case C2_30 and C3_30 are equal while the case C2_10 and 
C3_10 have a difference of 2 outliers. For the high scan-
ning range, SmartISS is able to capture equal number of 
outliers for PSUs’ deployment scenarios in C2_30 and 
C3_30 while in case of low scanning range, the perfor-
mance of the SmartISS is reducing w.r.to outliers' detection 
for similar PSUs’ deployment scenarios. Through these 
results, we can observe that even though two PSUs are 
deployed at the end of a road segment (having no ex-
it/turn in middle), they must be covering the entire mov-
ing path (width) of their own deployed area.  

Increased number of PSUs are reducing the efforts to 
capture the data and increasing the tracking data of users. 
As far as the whole area is covered through sparse de-
ployment of static and mobile PSUs, more number of 
PSUs than that will increase the duplicate detection of the 
individuals’ traces for SmartISS. Even though it is known 
that the more tracked data you have, it is better, but data 
redundancy can reduce the data quality if not handled 
properly. 

7.5 Performance Metrics 
In this section, we formally discuss the performance met-
rics used for evaluating the proposed SmartISS system. 

1. PSU Selection Accuracy (𝐏𝐀): It is the selection of 
the optimal number of PSU(s) from the total num-
ber of PSUs for retrieving the requested data. 
𝑃x= (Optimal number of PSUs selected / Total 
number of PSUs) * 100 

2. Response Time: It is the time interval between the 
instant at which the query is sent and the moment 
at which the A;<=><=  receives corresponding re-
sponse. 

7.6 Experiment@IITR 
We perform the experiments into two categories: 
Exp@OutlierDetection and Exp@TrajectoryAnalysis for eval-
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uating the features and functionalities of SmartISS in real 
time. 

Exp@OutlierDetection 
In this experiment, the average time taken to process and 
find out an anomaly from the location data through k-d 
tree with k-NN is 0.110 msec. For better understanding 
and to show the efficacy of the SmartISS in real time, we 
find outliers for a music event in LBS ground where ap-
proximately 2000 individuals gathered at the day-2 (20:00 
– 22:00 time). SmartISS detects 2 outliers at time 20:19:33. 
To find the scalability of the SmartISS, we calculate the 
response time and accuracy for the outliers detected dur-
ing the 3 days of the technical festival.  

Exp@TrajectoryAnalysis 
In order to analyze the performance of the proposed LLTR 
algorithm w.r.to other similar schemes, we pick the five 
PSU-selection approaches for finding the current location 
of the detected outlier(s): Random 1 PSU (R1_PSU), Ran-
dom 2 PSU (R2_PSU), 1-NN PSU (1-NN_PSU), 2-NN PSU 
(2-NN_PSU) and all PSU selection (All_PSU). In R1_PSU, 
we select one PSU randomly among the list of PSUs to 
find the current location of the requested outlier while, in 
R2_PSU, we select two PSUs randomly. In 1-NN_PSU, 
XMPP server finds the 1-nearest neighbor of the requested 
MAC address and queries to both 1-nearest PSU and the 
PSU which uploaded location of requested MAC most 
recently to the 𝐶"#$%#$ . While, in 2-NN_PSU, 2-nearest 
neighbors are selected instead of one. In All_PSU, all PSUs 
are selected.  

 
(a)  2 outliers at time t (@day-2 (20:00 – 22:00 time)) 

 
(b) 98 outliers in 3 days 

Fig. 27. PSU(s) selection accuracy and average response time of 
different approaches for finding latest location (for n’ = 3) of 98 

outliers 

Fig. 27 (a) and (b) show the comparison of the PSU se-
lection accuracy of various approaches to find the latest 
location of the outlier. To find the efficacy of the system, 
we analyze SmartISS performance only in an event in 
which 2 outliers are detected at a time t (where t = 20:19:33 
as discussed above) (see Fig. 27 (a)). The PSU selection 
accuracy of LLTR, R1_PSU, R2_PSU, 1-NN_PSU, 2-
NN_PSU and All_PSU are 95.3%, 30.3%, 57.4%, 78.1%, 
87.2% and 100%, respectively. The average response time 
of LLTR, R1_PSU, R2_PSU, 1-NN_PSU, 2-NN_PSU, and 

All_PSU are 0.962 sec., 0.763 sec., 1.13 sec., 0.961 sec., 0.994 
sec., and 2.231 sec., respectively. 

Furthermore, we extend our analysis to check the 
scalability and accuracy of SmartISS, we pass the 98 que-
ries at the same time (98 outliers for three days) to the 
𝐴"#$%#$ (see Fig. 27 (b)). The PSU selection accuracy of 
LLTR, R1_PSU, R2_PSU, 1-NN_PSU, 2-NN_PSU and 
All_PSU are 93.2%, 34.1%, 53.5%, 72.1%, 85.1% and 100%, 
respectively. The average response time of LLTR, R1_PSU, 
R2_PSU, 1-NN_PSU, 2-NN_PSU, and All_PSU are 1.153 
sec., 0.878 sec., 1.137 sec., 0.974 sec., 1.045 sec., and 2.556 
sec., respectively. The time taken by 1-NN_PSU is equal to 
R1_PSU as both are querying only one PSU. The time tak-
en by 2-NN_PSU is more than 1-NN_PSU and R1_PSU 
while less than All_PSU. Moreover, the average response 
time of LLTR is reduced to 25.89% compared to All_PSU. 

Although All_PSU approach has 100% accuracy for 
finding the latest location of 98 outliers while the average 
response time is high in compared to other approaches. 
The proposed algorithm, LLTR has low response time for 
finding latest location at the expense of only a little differ-
ence in accuracy. Experimental results show that this trade 
is worthy.  

8 CONCLUSION AND FUTURE WORKS 
In this paper, we designed and implemented a novel intel-
ligent surveillance system (named, SmartISS) for public 
safety. SmartISS collects the unique MAC ids of the indi-
viduals emitted from their wireless devices and uses an 
outlier detection algorithm to detect individual(s) mobili-
ty against the normal behavior of the crowd. The outlier 
information is further used to find the recent locations of 
the suspicious person. It is not sufficient to query only the 
𝐶"#$%#$ for finding the latest locations of suspicious person 
as 𝐶"#$%#$ can have outdated data. Therefore, we proposed 
an algorithm to select the optimal number of sensing units 
deployed at geographically dispersed locations. To vali-
date and to show the usability of SmartISS, we developed 
a real prototype testbed and evaluated it extensively in 
both indoor and outdoor environments on a real-world 
dataset of more than 117,121 traces collected during the 
technical festival, Cognizance 2017 held at IIT Roorkee 
campus, India.  

On a broader canvas, the SmartISS demonstrated the ef-
ficacy of sensing units for the surveillance of individuals 
in both indoor and outdoor scenarios. SmartISS provided 
a high level of accuracy and insights which participatory 
mobile sensing can not achieve in gatherings, such as con-
gregations, rallies. We believe that many other insights of 
practical interest (e.g., frequent region detection, quantify-
ing how many individuals can visit the specific location in 
the near future, etc.) can be estimated using the SmartISS 
system. Moreover, our results show that certain aggregate 
insights (e.g., events popularity, flow of the mass) can be 
accomplished even with very low levels of analysis.  

In future, we shall extend this work for large-scale sce-
narios, such as vehicular traffic control, evacuation path 
planning, and post-disaster recovery. 
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