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Where To: Crowd-Aided Path Selection by
Selective Bayesian Network

Chen Zhang, Member, IEEE, Haodi Zhang, Weiteng Xie, Nan Liu, Kaishun Wu, Member, IEEE,
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Abstract—With the wide usage of geo-positioning services (GPS), GPS-based navigation systems have become more and more of an
integral part of people’s daily lives. GPS-based navigation systems usually suggest multiple paths for a pair of given source and target.
Therefore, users become perplexed when trying to select the best one among them, namely the problem of best path selection. Too
many suggested paths may jeopardize the usability of the recommendation data, and decrease user satisfaction. Although the existing
studies have already partially relieved this problem through integrating historical traffic logs or updating traffic conditions periodically,
their solutions neglect the potential contribution of human experiences. In this paper, we resort to crowdsourcing to ease the pain of
best path selection. However, the first step of using the crowd is to ask the right questions. For best path selection problem, the simple
questions (e.g. binary voting) on crowdsourcing platforms cannot be directly applied to road networks. Thus, in this paper, we have
made the first contribution by designing two right types of questions, namely Routing Query (RQ) to ask the crowd to decide the
direction at each road intersection. Secondly, we propose a series of efficient algorithms to dynamically manage the questions in order
to reduce the selection hardness within a limited budget. In particular, we show that there are two factors affecting the informativeness
of a question: the randomness (entropy) of the question and the structural position of the road intersection. Furthermore, we extend the
framework to enable multiple RQs per round. To ease the pain of the sample sensitiveness, we propose a new approach to reduce the
selection hardness by reasoning on a so-called Selective Bayesian network. We compare our approach against several baselines, and
the effectiveness and efficiency of our proposal are verified by the results in simulations and experiments on real-world datasets. The
experimental results show that, even the Selective Bayesian Network provides only partial information of causality, the performance on
the reduction of the selection hardness are dramatically improved, especially when the size of samples are relatively small.

Index Terms—Crowdsourcing, Approximation Algorithm, Path Selection
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1 INTRODUCTION

W ITH the rapid development of information technology and
data science, the scale of diverse data is getting larger

and larger. For instance, the global positioning systems makes
the real-time navigation systems commonly used in daily life.
With the data collected from mobile devices, a good navigation
system gives optimal routes between given locations. In realistic
applications, however, the selection of the best path can be very
challenging, especially in those large-scaled domains. For a road
network with a large amount of paths and crossroads, it might be
difficult to maintain precise information of the entire map all the
time. To address the problem, quite a few existing studies integrate
historical traffic logs or periodically update traffic conditions.
However they usually neglect the potential contribution of human
experience.

In our previous work [1], a crowd-aided path selection frame-
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work is proposed to resort to crowdsourcing for best route selec-
tion. The framework successfully leverages the human expertise
for the task. The main idea is to first design questions in suitable
form for crowdsourcing workers, and then decide the best path
with help of the crowdsourced answers. As the query budget is
usually limited, the selection of a proper set of Human Intelligence
Tasks (HITs) is very important. A series of efficient algorithms
are also proposed in [1] to dynamically manage the questions in
order to reduce the selection hardness within a limited budget. The
sampling-based approach works for best route selection tasks but
is very sensitive to the quality and the quantity of the samples.
The main reason is that, without considering the probabilistic
causalities embedded in the spacial topology, it is actually difficult
to precisely estimate the underlying relations merely by sampling.

Therefore, this paper makes the first contribution by proposing
a natural way to build up a so-called Selective Bayesian Network
as a reasoning tool. The spacial causalities embedded in the
network can remarkably control the influence of the noises and
sampling bias. Secondly, we propose an effective and efficient
algorithm to select the most valuable set of queries for the crowd,
with the help of the Selective Bayesian Network. Finally we
compare our proposal with several baselines with varying sample
size, query batch size, error rate and budget. The experimental
result shows that our method dominates others both on simulations
and on real datasets.

1.1 Candidate Routes and Measurement
As a motivating example, some PhD student who is new to
some city needs to go to the university from her apartment every
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Fig. 1. Candidate Routes

morning. A navigation service usually suggests five different paths
to her, namely by taxi, Uber, bus, subway and ferry. Taxi and
Uber are convenient and comfortable, but quite expensive; while
buses and the subway are fairly affordable, but usually slow and
crowded; and the ferry is cheapest but also slowest. If the cost of
all paths above can be perfectly evaluated by some value function
or model, the best path is simply the shortest one. However, such
a value function or model is usually absent, as the cost may be
influenced by many dynamic factors that are difficult, sometimes
impossible, to be quantitatively modeled. Instead, there are only
statistics or observations with noises available for the estimation of
the best route. To integrate and analyze the complex, multi-sourced
statistics via a completely explicit model is quite challenging.
However, for humans, experienced drivers for instance, it might be
relatively easy to make a quick yet acceptable assessment in such
circumstances. Consequently, many systems consider the paths
preferred by humans [2], and produce not just one best path, but
rather a set of paths. However, to address the ‘Painful Options’
problem [3], a most likely best route needs to be further selected.
In some existing work [4], the task is formalized as predicting
the spatial transition patterns of the trips. Several proposals [5],
[6] have revealed that the transition patterns of traffic are usually
highly skewed and unbalanced: some paths are more likely to
be traveled than others. Thus, we follow the problem formalism
in [1], [4] and presume a set of candidate routes with a given
distribution as the input. It worth mentioning that the payment for
the help from the crowd is very important. If the cost is too high,
She should simply take a taxi without worrying about the best
path. However, the taxi drivers may also be faced with multiple
choices of routes, and also potentially need some help from some
crowd, for instance other drivers.

The motivating example above can be specifically demon-
strated by the distribution in Table 1, over a road network showed
in Figure 1. There are totally 5 candidate routes from s to t,
with the probabilities of being the best route 0.1, 0.1, 0.4, 0.1,
0.3, respectively. We first have to give a measurement to quantify
the hardness selecting the best one from these candidates. As in
many previous research work [1], [7], [8], we consider the best
route as a discrete random variable defined over the set of the
candidate paths, and use the Shannon entropy to measure the
selection hardness. For a given candidate value set S for discrete
random variable x, the entropy of x is H = −

∑
s∈S Pr(x =

s) logPr(x = s). So for a given set of candidate routes R, the
selection hardness of the best route BR, denoted by H(BR), is

H(BR) = −
∑
R∈R

Pr(BR = R) · logPr(BR = R) (1)

In the rest of the paper, we use Pr(R) as the abbreviation of
Pr(BR = R). If the distribution over the candidate paths is rela-

TABLE 1
Route Distribution and Routing Queries

Candidate Routes probability
R1=

(
(s, v1), (v1, t)

)
0.1

R2=
(
(s, v1), (v1, v3), (v3, t)

)
0.1

R3=
(
(s, v2), (v2, v3), (v3, t)

)
0.4

R4=
(
(s, v2), (v2, v4), (v4, t)

)
0.1

R5=
(
(s, v3), (v3, t)

)
0.3

Routing Queries pmf over Ci

Q1 : (s, C = {v1, v2, v3}, t) 0.2, 0.5, 0.3
Q2 : (v1, C = {v3, t}, t) 0.5, 0.5
Q3 : (v2, C = {v3, v4}, t) 0.8, 0.2

Binary Routing Query pmf over {yes, no}
BQ1 : (s, C = {v1}, t) 0.2, 0.8
BQ2 : (s, C = {v2}, t) 0.5, 0.5
BQ3 : (s, C = {v3}, t) 0.3, 0.7
BQ4 : (v1, C = {v3}, t) 0.5, 0.5
BQ5 : (v1, C = {t}, t) 0.5, 0.5
BQ6 : (v2, C = {v3}, t) 0.8, 0.2
BQ7 : (v2, C = {v4}, t) 0.2, 0.8

tively skewed, i.e. there is some route with a dominant probability
to be the best route, then the hardness of the selection is quite
low, as well as the entropy. In particular, if the candidate set is a
singleton, the entropy is 1·log1 = 0, i.e. there is no difficulty at all
to select the best route. When the distribution over the candidates
is quite balanced, the selection is quite difficult, and the entropy
value is the highest given a uniform distribution. In the example
above in Figure 1, the hardness of selecting the best route is
H(BR) = −(3·0.1·log 0.1+0.4·log 0.4+0.3·log 0.3) = 0.616.

It worth mentioning that the distribution of the candidate paths
can be obtained in multiple ways. There have been many related
research works. A straightforward idea is to use the historical
trajectory data. In [2], the distribution is inferred by mining the
frequent paths chosen by experienced drivers. It is also reasonable
to let the user to initialize the distribution according to personal
preference [9]. For a recommendation system integrated with
multiple routing algorithms, a possible way is to train and test the
algorithms on a large number of queries, and each of the methods
is assigned with a probability based on its average performance.
For some learning-based method, e.g. deep reinforcement learning
[10], the output is already a distribution of candidate choices. For
instance in [4], a deep probabilistic model is proposed to predict
the most likely traveling route on the road network, which unifies
three key explanatory factors. To enable effectively sharing the
statistical strength, they also proposed an adjoin generative model
to learn representations of k-destination proxies. In this paper, we
assume that the distribution of the routes has already been given
by some of the above methods.

1.2 Crowd-Aided Best Path Selection
To leverage human expertise for the route selection, we need
to first determine a HIT (Human Intelligent Task) design. We
follow the design of the crowdsourcing task and the queries in
our previous work [1]. A Human Intelligence Task (HIT) is in the
form of a Routing Query, which is a tuple (vst, C, vtg), where
vst is the starting vertex of the query, C is the set of candidate
directions, and vtg is the target vertex. Intuitively, such a query
Q is asking that, if the current position is at the starting vertex
vst, in order to reach the target vertex vtg , which direction in
the candidate set C should be chosen. In Table 1, there are three
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routing queries: Q1, Q2 and Q3, each of which contains a starting
vertex, a target vertex, and a candidate set of next directions. For
instance, Q2 is a query about which direction to choose to get to t,
if one is currently at v1. There are two choices available, either to
go through v3 and then to t, or directly go to t. The crowdsourcing
task is to give an answer, denoted by AQ2

, which is either v3 or t.
Please notice that there is a probability mass function (pmf)

available in the table, which decides the probabilities of different
crowdsourced answers for some given Q. The probability mass
function needs to submit to the distribution of the candidate routes
RS. Once the distribution is given, the pmf can be determined.
The distribution and the pmf can be regarded as the long-term
statistics. For example, without any observation at a specific time,
the probability of the best route in Figure 1 to be R1 is statistically
0.1, and the probability of A(Q1) = v1 is statistically 0.2.
However, if a crowdsourcing worker has been placed in a specific
environment where the best route is already deterministic, which
is R3 for instance, i.e. with the observation BR = R2, the prob-
ability of A(Q1) = v1 then becomes 0, and Pr(A(Q1) = v2)
is 1, if noises are not concerned. It is commonly accepted that
crowdsourcing works best when the human intelligent tasks can
be decomposed into very simple pieces [11]. So asking which
closely next direction is the best choice, as what we did, is much
better than generally asking which route is the best one. Moreover,
the knowledge about the traffic condition sometimes comes from
real-time observation, which is usually partial - a human driver
despite his/her rich experience is only able to observe the traffic
condition in a limited scope. With the simple pieces of the tasks,
the crowdsourcing workers can make use of their expertise or real-
time observation easily.

The crowdsourced answers for the simple tasks are then
collected and integrated for updating the distribution of the
routes. In [1], the query above can be further decomposed
into smaller pieces, namely binary routing queries (BRQ). Each
Q = (vst, C, vtg) can be broken down into BQs, each of which
contains a singleton candidate direction set, and the answer is
either yes or no. For instance, Q1 in Table 1 is decomposed
into BQ1, BQ2 and BQ3, and Q2 is decomposed into BQ4

and BQ5. A binary routing query set is easier for the crowd to
answer, yet in expressiveness and efficiency it is equivalent with
the corresponding routing query set. The framework of crowd-
aided route selection [1] is as follows: given a route set R and a
budget limit B of RQ numbers,

1) select k queries (denoted as Sk) to ask the crowd, to
reduce the selection hardness as much as possible,

2) update the probabilities of all routes in R according to the
crowdsourced k answers (denoted as ASk

),
3) repeat 1 and 2 until budget of B is used up, and then

report the most likely best route.

In [1], the selection of the best set of queries is done by a sampling-
based approach, which estimates the mutual information between
BR andASk

by sampling. It neglects spacial relationship between
BR and ASk

, resulting that the performance is very sensitive to
the quality and size of the sample set. In this paper we propose a
method to address the problem.

1.3 Challenges and Contributions
We present the challenges in the following aspects.

• Idleness of topological information: a main challenge
is how to utilize the spacial information in the map, to

accelerate the hardness reduction of selecting the best
route. Generally, the routing queries that are given to the
crowd are not independent with each other, which makes it
very difficult to precisely evaluate different combinations
of queries. It is crucial to find an efficient way to make
use of the topological causalities among the queries when
we compute the mutual information between the selection
hardness and the crowdsourced answers.

• Uncertainty from noises and sampling bias: existing
sampling-based algorithm suffers from the possible noises
in the crowdsourced answers and sample insufficiency. As
the answers from the crowd are not always correct, the
bias in the samples might be magnified by the noises,
in particular when the sample size is not large enough.
Thus, we need to find an effective mechanism to control
the uncertainty brought about by the error of the crowd.

• Computational complexity on large maps: suppose that
we have already known how to leverage the spacial infor-
mation for the route selection, the efficiency is another
important concern. As the given map might be quite large
in reality, the designed algorithm has to be highly efficient
for online usage.

To address the problems above, we propose a new approach for
crowd-aided route selection. We summarize our new contributions
as follows:

• Firstly, we give the exact solution for selecting the optimal
k RQs in the framework of crowd-aided route selection.
We propose a so-called Selective Bayesian Network for
representing and leveraging the knowledge of spacial
causalities, and propose a natural method to build the
networks, as described in detail in Section 4.2.

• Secondly, we propose an efficient algorithm that selects
most valuable routing queries and then suggests best
routes, by reasoning on the Selective Bayesian Network,
which successfully reduces the uncertainty yielded by the
sampling bias and the noises in the crowdsourced answers,
as presented in Sections 4.3 and 4.4.

• Thirdly, we modularize the algorithm to enable topological
information reuse, thus improve the efficiency of the
hardness reduction, as illustrated in Section 4.4.

• Finally, we compare different algorithms both on synthetic
data and real-world road networks with varying sample
size, query batch size, error rate and budget. It turns out
that our approach dominates others, as shown in Section 5.

2 DEFINITIONS AND PROBLEM STATEMENT

In this section, we present the core definitions and related nota-
tions, then formally state the problem.

Definition 2.1. Given a source vertex s and a target vertex t
over a directed graph G, a candidate route is a sequence of edges
R = (e1, . . . , en), such that s is the head of e1, t is the tail of en,
and the sequence e1, . . . , en is a directed path in G.

For a given vertex v and a candidate path R, if R goes through
v, we denote it as R → v, and R 6→ v denotes that R does not
go through v. For an edge e = (vi, vj) in G such that R → vi
and R → vj , i.e. R goes through edge e, we simply denote it as
e ∈ R.
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Definition 2.2. Given a source vertex s and a target vertex t, R
denotes the set of all candidate routes from s to t. The best route,
denoted by BR, is defined as a discrete random variable with
sample space R. Each candidate route R ∈ R has a probability
Pr(R) of being the best one, and

∑
R∈R Pr(R) = 1.

Definition 2.3. Given a Route Set RS with the source vertex s
and the target vertex t, a Routing Query Q is defined as a triple
(vst, C, t), where vst is the starting vertex of the query, indicating
an intersection, and C = {v1, ..., v|C|} is the set of all successors
of vst in R, namely, all possible directions of moving from vst
towards t. In the rest of the paper, by default |C| ≥ 2, i.e. only
those vertices with at least two successors are worth querying
about.

Given a route set R, we use Q to denote the set of all queries
in R. For a set of queries Sk ∈ R that is selected to ask,
suppose that Sk = {Q1, Q2, . . . , Qk} the crowdsourced answer
set ASk

∈ CSk
, where CSk

= CQ1×. . .×CQk
. The error rate of

the crowdsourcing workers is denoted by ε. Table 2 summarizes
the notations. In Figure 1 and Table 1, R = {R1, R2, R3}, and
suppose that BR = R4. Let k = 2 and Sk = {Q1, Q3}. As v1
is the starting vertex of Q2 and BR 6→ v1, the crowdsourcing
worker gives random answer according to the probability mass
function over C2, namely, v3 with probability 0.5, or otherwise v4.
For the starting vertex v2 of Q3, BR → v2 and (v2, v4) ∈ BR,
a worker with error rate ε answers v4 with probability (1− ε), or
answers t with probability ε.

Similar as in [1], we use the Shannon Entropy, which is a
non-parametric measurement that requires no assumption about
external factors, to measure the hardness of selecting BR from R.

Definition 2.4. Given a path set R = {R1, R2, ..., R|R|}, the
hardness of selecting the best path BR, denoted by H(BR), is
defined as the Shannon Entropy of BR,

H(BR) = −
∑
R∈R

Pr(R) log(Pr(R))

We formally state the problem definition as follows.

Definition 2.5. (Problem definition) Given a path set R and a
budget B of the number of queries, without exceeding the budget,
we aim to design strategies to crowdsource routing queries in
order to maximally reduce the selection hardness H(BR).

3 BASIC RQ-BASED METHOD

In this section, we present a complete solution to select and
crowdsource RQs in order to reduce the selection hardness. First,
we use the expected reduction of selection hardness as the metric
to evaluate RQs, and derive necessary formulas to enable the
computation. Second, we study how to efficiently select the best
RQ. Third, we present how to utilize conflicting crowdsourced
answers. Lastly, we put these together to develop the framework
of the RQ-based method, which reduces the selection hardness
using a sequence of RQs.

3.1 RQ Selection Metric

In order to design an effective strategy for selecting RQs, it is
essential to define a metric to estimate the importance of RQs
before they are answered. Since the final objective is to reduce

TABLE 2
Summary of Notations

Notation Meaning
R or Ri a candidate route
R→ v R goes through vertex v
R 6→ v R does not go through vertex v

R Route Set: the set of all candidate routes for a pair
of source and target

BR the best route for a given R
Q = (vst, C, t) a routing query with starting vertex vst, constant

target t and direction set C
AQ the correct answer of query Q
Q the set of all queries for a given R
Sk a subset of Q containing k queries
ASk

the k answers of queries in Sk

CSk
the Cartesian product of direction sets of the
queries in Sk: CQ1

× · · · × CQk

BQ = (vst, C, t) a Binary routing query with |C|=1
H(BR) the selection hardness among candidate routes
∆HQ the expected reduction of selection hardness by

asking the crowd with query Q
∆HSk

the expected reduction of selection hardness by
asking the crowd all the queries in Sk

ε the error rate of a crowdsourcing worker
X⊥Y |Z X is independent of Y given Z, where X,Y, Z

are random variables

the selection hardness, we use the probabilistic expectation of
selection hardness conditioned on individual RQs as the metric.

For an arbitrary routing query Q :=< vst, D, t >, let AQ

be the ground truth answer of the Q. Probabilistically, AQ is a
discrete random variable with sample space D. Therefore, the
expectation of selection hardness after receiving AQ, denoted as
EH(BR|AQ), is that

EH(BR|AQ)

=
∑
vi∈D

Pr(AQ = vi)H(BR = R|AQ = vi)

=
∑
vi∈D

Pr(AQ = vi)
∑
Rj∈R

(Pr(BR = Rj |AQ = vi)

logPr(BR = Rj |AQ = vi))

(2)

There are two parameters used in Equation 25 : Pr(AQ =
vi) (i.e. the probability that vi is the correct answer of Q) and
Pr(BR = Rj |AQ = vi) (i.e. the probability that Rj is the best
path, given that vi is the correct answer of Q). Now we derive
formulas to compute these two parameters.

Computation of Pr(AQ = vi): Recall that RQ is a question
asking how to move forward starting from vst. Hence, AQ = vi
indicates e := (vst, vi) ∈ BR, given BR goes through vst. Then
we have

Pr(AQ = vi) = Pr(e ∈ BR|BR→ vst)

=
Pr(BR→ vst|e ∈ BR)Pr(e ∈ BR)

Pr(BR→ vst)

Please note that vst is the head of edge e, so given the condition
that e is on the best path (i.e. e ∈ BR), the best path must go
through vst, that is, Pr(BR → vst|e ∈ BR) = 1. Hence, we
have

Pr(AQ = vi) =
Pr(e ∈ BR)

Pr(BR→ vst)

Following the Law of Total Probability [12], we have Pr(e ∈
BR) =

∑
R∈R Pr(e ∈ BR ∩BR = R) =

∑
R∈R∧e∈R Pr(R)
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and Pr(BR → vst) =
∑

R′∈R Pr(R
′ → vst ∩ BR = R′) =∑

R′∈R∧R′→vst
Pr(R′). Finally, we have

Pr(AQ = vi) =

∑
R∈R∧e∈R Pr(R)∑

R′∈R∧R′→vst
Pr(R′)

(3)

Equation 3 computes the probability that AQ taking each element
of D, hereby we have the probability mass function (pmf) [12] of
AQ.

Computation of Pr(BR = Rj|AQ = vi): The main diffi-
culty of deriving Pr(BR = Rj |AQ = vi) is to determine the
correlation between ‘BR = Rj’ and ‘AQ = vi’. We observe
that this correlation is closely related to ‘BR→ vst’, i.e. whether
the best path goes through the starting point of RQ. Therefore,
we expand Pr(BR = Rj |AQ = vi) with the Law of Total
Probability as follows:

Pr(BR = Rj |AQ = vi) =

Pr(BR→ vst)Pr(BR = Rj |AQ = vi, BR→ vst)

+ (1− Pr(BR→ vst))Pr(BR = Rj |AQ = vi, BR 9 vst)
(4)

where we have Pr(BR→ vst) =
∑

R∈R∧R→vst
Pr(R).

We derive Pr(BR = Rj |AQ = vi, BR → vst) and
Pr(BR = Rj |AQ = vi, BR 9 vst) by respectively analyzing
two exclusive conditions - BR→ vst and BR 9 vst.

Condition BR→ vst: First, we analyze the situation that vst
is on the best path BR. For each vi ∈ D, if edge e := (vst, vi)
is on the best path, then vi must be the best direction going from
vst to t, i.e. the ground truth answer AQ should be vi. Therefore,
we have e ∈ BR⇒ AQ = vi.

Similarly, if AQ = vi and BR → vst, we can ensure that
e ∈ BR. So (AQ = vi ∧ BR → vst) ⇒ e ∈ BR. Overall, we
conclude that e ∈ BR if and only if (AQ = vi ∧ BR → vst),
i.e.

(AQ = vi ∧BR→ vst)⇔ e := (vst, vi) ∈ BR (5)

Therefore, we have

Pr(BR = Rj |AQ = vi, BR→ vst)

= Pr(BR = Rj |e := (vst, vi) ∈ BR)

=
Pr(e ∈ BR|BR = Rj)Pr(Rj)

Pr(e ∈ BR)

=


0 e /∈ Rj

Pr(Rj)∑
R∈R∧e∈R Pr(R)

otherwise

(6)

Condition BR 9 vst: Second, we consider the condition
when the best path does not go through vst. Note each vertex in D
indicates a path that is possibly the best direction going from vst
to t, and we are interested in the best path from the source vertex
s to t. Therefore, the answer to RQ gives us useful information
only if vst is known to be on the best path. In other words, if vst
is not on BR, how to move from vst towards the target does not
affect the distribution of BR, since one will not even go to vst
in the first place. Probabilistically, BR and AQ are independent
given that ‘BR does not go through vst’. Formally, we have

AQ⊥BR|BR 9 vst (7)

where we adopt ⊥ to denote the operator indicating two random
variables are conditionally independent [13].

From Formula 7, we have

Pr(BR = Rj |AQ = vi, BR 9 vst)

=


0 Rj → vst

Pr(Rj)∑
R∈R∧R9vst

Pr(R)
otherwise

(8)

Then, equipped with Equation 8 and 6, we have completed the
derivation of parameters used in Equation 30.

Finally, by substituting Equation 30 and 3 into Equation 25,
we can compute the expectation of selection hardness for asking
each RQ.

3.2 Choosing the best RQ
A naive approach of selecting the best RQ is to traverse all the
RQs. However, this is very costly since the computation w.r.t.
RQ requires accessing all the paths in R. When the number of
candidate paths is large, the computational cost will be higher.
Fortunately, we found that the expected reduction of selection
hardness for RQ :=< vst, D, t > is only related to the paths
going through vst. We conclude this discovery with the following
theorem.

Theorem 3.1. For a given path set R and a given RQ :=<
vst, D, t >, let ∆HRQ be the expected reduction of selection
hardness by asking RQ to the crowd, we have that ∆HRQ is
equivalent to ‘the entropy of RQ’ multiplying ‘the probability of
the best path going through vst’, i.e.

∆HRQ = H(BR)− EH(BR|AQ)

= −(
∑

R→vst

Pr(R))
∑
vi∈D

Pr(AQ = vi) logPr(AQ = vi)

(9)

Proof. Please see the appendix in [1].

Theorem 3.1 reflects two factors influencing the importance of
a RQ - ‘the entropy of the RQ’ and ‘the probability of the best path
going through vst’. Intuitively, the former indicates the amount of
information gain by asking this question, so the higher the entropy,
the more important the question; the latter indicates the structural
position of the question, representing how useful the information
gain is for determining the best path. It worth noticing that, the
common practice ‘asking the most uncertain question’ does NOT
apply in our problem, as shown in the following example.

3.3 Utilization of Conflicting Crowdsourced Answers
The essential objective of crowdsourcing is to use the answers
to adjust the probability distribution of the best path. However,
crowdsourced answers may be mistaken or subjective. As a result,
different workers may return conflicting answers for the same
question. To handle this issue, we must allow each crowdsourced
answer to be wrong with a probability. This probability can be esti-
mated by the error rate of the worker. For a RQ :=< vst, D, t >,
let vC be the result returned by a crowdsourcing worker with error
rate ε.

Now we present how to use crowdsourced answers to adjust
the probability of each candidate path Ri. That is to derive the
formula to compute Pr(BR = Ri|vC returned by the crowd).
To do this, we need to consider three exclusive cases: 1)Ri 9 vst,
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i.e.Ri does not go through vst, soRi is not affected by the answer
of the RQ; 2) (vst, vC) ∈ Ri, i.e. Ri goes through vst and vC ,
which indicates that the crowdsourced answer is supportive for
Ri; 3) Ri → vst ∧ (vst, vC) /∈ Ri, i.e. Ri goes through vst but
not vC , which indicates that the crowdsourced answer is against
for Ri.

We list the details for all three cases as follows.
Case 1) BR 9 vst: According to Equation 7, the answer of

RQ is independent of BR given BR 9 vst, so we have
Pr(BR = Ri|vC returned by the crowd) = Pr(BR =
Ri) = Pr(Ri);

Case 2) (vst, vC) ∈ Ri : According to Bayes’ theorem

Pr(BR = Ri|vC returned by the crowd)

=
Pr(Ri)Pr(vC returned by the crowd|BR = Ri)

Pr(vC returned by the crowd)

(10)

We have

Pr(vC returned by the crowd) =

Pr(AQ = vC)(1− ε) + (1− Pr(AQ = vC))ε

Pr(vC returned by the crowd|BR = Ri) =

Pr(crowd answers the RQ correctly) = 1− ε

(11)

So, in case of (vst, vC) ∈ BR, we have

Pr(BR = Ri|vC returned by the crowd) =

Pr(Ri)(1− ε)
Pr(AQ = vC)(1− ε) + (1− Pr(AQ = vC))ε

(12)

where Pr(AQ = vC) is derived in Equation 3.
Case 3) Ri → vst ∧ (vst, vC) /∈ Ri: Analogous to case 2),

since (vst, vC) /∈ Ri and (vst, vC) /∈ BR, we know that vC is
an incorrect answer of RQ conditioning on BR = Ri, i.e. the
crowd answers RQ correctly. So,

Pr(vC returned by the crowd|BR = Ri) =

Pr(crowd answers the RQ incorrectly) = ε

Then we have

Pr(BR = Ri|vC returned by the crowd) =

Pr(Ri)ε

Pr(AQ = vC)(1− ε) + (1− Pr(AQ = vC))ε

(13)

To conclude the above analysis, we achieve the following
close-form formula for using crowdsourced answer to adjust the
probability distribution of the best path:

Pr(BR = Ri|vC returned by the crowd) =
Pr(Ri) Ri 9 vst

Pr(Ri)(1− ε)
Pr(AQ = vC)(1− ε) + (1− Pr(AQ = vC))ε

(vst, vC) ∈ Ri

Pr(Ri)ε

Pr(AQ = vC)(1− ε) + (1− Pr(AQ = vC))ε
otherwise

(14)
Actually, by considering Ri as a binary random variable,

Pr(Ri|vC) is the probability of BR = Ri conditioning on
event “vC is answered by the crowd”. Therefore, when more
answers are received, the probability of BR = Ri would be
recursively adjusted by Equation 14, conditioning on each received
answer and error rate of the corresponding worker. Please note
that different workers may have different error rates. Furthermore,
after the probabilities of candidate paths are adjusted by one

Input: A path set R, URQ, a total budget B
while B 6= 0 do

for each RQi ∈ URQ do
calculate ∆HRQi via Theorem 3.1;

end
RQmax ← argmaxRQi∈URQ

∆HRQi ;
Ask RQmax to crowd and receive the corresponding

answer vC ;
for each Rj ∈ R do

Pr(Rj)← Pr(BR = Rj |vC) via Formula 14);
end
B ← B − 1;

end
Algorithm 1: The Framework of RQ-based Method

answer, the probability distribution of each AQ is also updated
by recomputing Equation 3. So, when the next answer is received,
the adjustment is conducted with the updated probability of each
Ri.

It is easy to perform the algebraic manipulations to show that,
for any two answers vC and v′C , we have

Pr(BR = Ri|vC returned by the crowd,

and then v′C returned by the crowd)

=Pr(BR = Ri|v′C returned by the crowd,

and then vC returned by the crowd)

=Pr(BR = Ri|vC and v′C are returned by the crowd)
(15)

The above equation resolves three issues of concern. The first
is the sequence of answers received from workers. Equation 15
indicates that, given two crowdsourced answers, the final result of
R is independent of the sequence of the answers being utilized. In
other words, the final result of Ri is the probability of BR = Ri

conditioning on the event that “both answers are received”. The
second issue is that, the same RQ may be answered differently by
multiple workers. Particularly, in Equation 15, v′C and vC may be
conflicting answers for the same RQ from two workers. In this
case, by recursively executing Equation 14 twice, the effect of vC
and v′C are gracefully aggregated based on different error rates of
workers. Third, after the utilization of crowdsourced answers, the
sum of probabilities of all candidate paths should always be one.
As follows, we show how to use a crowdsourced answer with a
running example.

3.4 The Framework of RQ-based Method
In this subsection, we provide the complete framework of our pro-
posed RQ-based method. Algorithm 1 illustrates this framework,
which consists of two iterative phases:

• Choosing the best RQ - select the best RQ based on the
current probabilities of candidate paths, and post it to the
crowd;

• Utilization of Conflicting Crowdsourced Answers - adjust
the probabilities of all candidate paths according to the
crowdsourced answers.

In Algorithm 1, these two phases are iteratively performed
B times due to the given budget. In each iteration, we firstly
calculate the expected reduction of selection hardness, ∆HRQ,
for each RQ via Theorem 3.1. Then, the one with maximum
∆HRQ is selected and published to the crowd. Second, we receive
the answer vC , and adjust the probabilities of all candidate paths
through Formula 14, hereby reduce the selection hardness.
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Fig. 2. Crowd-aided route selection with Selective Bayesian Network

3.5 BRQ: A Different Question Type
In the RQ-based method, each RQ is a multiple choice question.
For a high-degree vertex, it would be constructed into a multiple
choice with too many options to be answered by a crowdsourcing
worker. As suggested in [14], [15], crowds are good at tasks
broken down into small pieces (often with a YES/NO answer).
Motivated by this, we consider an extension that uses an easier
type of questions, namely BRQ, as defined by the following
Definition 3.1.

Definition 3.1 (Binary Routing Query (BRQ)). For a given
RQ :=< vst, D = {v0, ..., v|D|}, t >, a Binary Routing Query
BRQ is triple < vst, vd, t >, where vd ∈ D.

From the perspective of a crowdsourcing worker, a BRQ is a
question of the form “From vst to t, should I go to the direction of
vd?” The bottom part of Table 1 lists all the BRQs for the R. It is
obvious that each RQ can be easily decomposed in to |D| distinct
BRQs. As a new type of questions, BRQs can easily fit into the
Algorithm 1. Analogous to the RQ-based method, we also focus
on studying how to select the best BRQ in this extension.

Finding the best BRQ: As shown in Theorem 3.1, the
significance of an RQ is determined by its information gain and
topological position. For BRQs, we reach similar result, as shown
with the following theorem.

Theorem 3.2. For a given path set R and a given BQ :=<
vst, vd, t >, let ∆HBQ be the expected reduction of selection
hardness by asking the BRQ to the crowd, we find that ∆HBQ is
equivalent to ‘the entropy of the BRQ’ multiplying ‘the probability
of the best path going through vst’, that is

∆HBRQ = H(BR)− EH(BR|ABQ)

= −(
∑

R→vst

Pr(R))[Pr(ABQ = vd) logPr(ABQ = vd)

+ (1− Pr(ABQ = vd)) log (1− Pr(ABQ = vd))]
(16)

Proof. Please see appendix in [1].

4 SELECT THE BEST SET OF RQS WITH SELEC-
TIVE BAYESIAN NETWORK

In this section, we present the crowd-aided route selection with
Selective Bayesian Network. Figure 2 shows the architecture of the
system. As a centric part of the framework, the Selective Bayesian
Network repeatedly selects the best set Sk of k routing queries
from the query set Q, according to current probabilities of the
routes in R. Each selected Sk is given to the crowd, and the k

answers with noises are then collected from the crowd to update
the probabilities and the network. When the budget runs out, the
system returns the most likely best route.

4.1 RQ Set Selection Metric

Before we formally introduce our approach, we first give the
metric. The final objective is to reduce the selection hardness,
so we still use the probabilistic expectation of selection hardness
conditioned on given set of routing queries as our metric. If the
queries are given to the crowd one by one, for a routing query
Q = (vst, C, t), suppose that the ground truth answer for Q
is AQ. The answer AQ is actually a discrete random variable
with sample space C . The expectation of selection hardness after
receiving AQ, denoted as EH(BR|AQ), is that

EH(BR|AQ)

=
∑
v∈D

Pr(AQ = v)H(BR|AQ = v)

=
∑
v∈D

Pr(AQ = v)
∑
R∈R

(Pr(BR = R|AQ = v)

logPr(BR = R|AQ = v))

(17)

If the problem is to select the best single query Q from Q,
such that the expected selection hardness is maximally reduced,
the expected reduction of the selection hardness ∆HSk

is

∆HQ = H(BR)− EH(BR|AQ)

= −
∑
R∈R

Pr(R) log(Pr(R))−
∑
v∈D

Pr(AQ = v)H(BR|AQ = v)

(18)
and we have the optimization problem argmaxQ∈Q ∆HQ. As a
main conclusion of our work in [1], ∆HQ can be characterized
by two features, namely the entropy of Q, and the probability of
the best path going through vst, where vst is the starting vertex of
Q.

∆HQ = H(BR)− EH(BR|AQ)

= −(
∑

R→vst

Pr(R))
∑
v∈C

Pr(AQ = v) logPr(AQ = v) (19)

The former feature above indicates the information gain by asking
the query Q. The higher entropy the query Q has, the more
information the answer AQ gives. The latter feature represents
the structural importance of the query, indicating how important
the information gain is for determining the best route. The two
features well captures the essence of crowd-aided route selection
with a single best routing query - to select the query with
high uncertainty and high spacial importance. However, in a
crowdsourcing environment, we usually need to ask multiple
questions each round to reduce latency. If we consider giving k
queries per round to the crowd, the problem becomes to select
the best combination of k routing queries, Sk, from Q, such
that the expected selection hardness is maximally reduced, i.e.
the optimization problem

argmax
Sk⊆Q,|Sk|≤k

∆HSk
(20)

where
∆HSk

= H(BR)− EH(BR|ASk
) (21)

Now the key problem is how to precisely estimate and ef-
ficiently compute the expected reduction of selection hardness
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after receiving a set of crowdsourced answers. Generally, selecting
Sk from Q that maximizes ∆HSk

is NP-Hard, but we can
approximate it. From the perspective of information theory [16],
∆HSk

can be considered as the mutual information between BR
and ASk

. The existing work did not give an explicit solution for
∆HSk

above, and the metric was roughly estimated by sampling
and the following formula,

∆HSk
≈ ˆ∆HSk

=
∑

BR,ASk

fq(BR,ASk
) log

fq(BR,ASk
)

fq(BR) · fq(ASk
)

(22)
where fq(BR) =

∑
ASk

fq(BR,ASk
) and fq(ASk

) =∑
BR fq(BR,ASk

). To find a better approximation and finally
solve the problem, we introduce the Selective Bayesian Network.

4.2 Selective Bayesian Network
The baseline sampling-based method in [1] uses two relaxations,
one of which calculates approximate solution by greedy strategy,
and the other one uses random sampling to estimate the probabil-
ities. If the sampling rate is high enough, the algorithm will give
acceptable result in the sense of precision. However, if the sizes of
the route set R and corresponding query set Q are relatively large,
the performance of the sampling-based algorithm dramatically
declines due to sampling insufficiency. In the following, we give
an alternative approach based on Selective Bayesian Network.

Given a set of candidate routes R, we can construct a
corresponding Selective Bayesian Network for the computation
of selection hardness reduction ∆HSk

. It is obvious that any
route that contains a directed loop is not the best route. For
instance, for a route R = v1v2 . . . vt where vi = vj for some
i, j ∈ [1, t], i 6= j, R contains a loop vivi+1 . . . vj . Obviously,
R is dominated by another route R′ = v1v2 . . . vivj+1 . . . vt. For
any given route R ∈ R, checking the existence of a loop is an
linear-time task, and it’s trivial to improve the paths with loops
by simply eliminating all loops from them. In the following, we
assume that the graph constructed by R is a directed acyclic graph
(DAG), and call R a directed acyclic graph for convenience.

Definition 4.1. Given a set of routing queries R that is acyclic,
its Selective Bayesian Network, denoted by N (R), is a DAG that
consists of:

Nodes There is a node vi in N (R) for each vertex vi
in R, annotated with the probability of Pr(vi) =
Pr(BR → vi), where BR is the best route. In the
rest of the paper, we also use vi as a random variable
standing for BR → vi, and ¬vi for BR 6→ vi,
with probabilities Pr(vi) and 1−Pr(vi) respectively.
Each node vi (except the source node s) is labeled by
a conditional probability table PT (vi). The compu-
tation of the probability table PT will be introduced
later.

Edges There is a directed edge (vi, vj) ∈ N (R) for each
directed edge (vi, vj) ∈ R. In the following, we call
vi a parent of vj , and vj a child of vi. Notice that
it is possible for a node to have multiple parents and
multiple children.

Definition 4.2. For a route set R, its Selective Bayesian Network
N (R), and a node v ∈ N (R), we call a set of literals o a priori
observation of v if o is in following form:

o =
{
li | (vi, v) ∈ N (R), li ∈ {vi,¬vi}

}
,

and define the positive part of the observation o as o+ =
{vi | vi ∈ o}, and the negative part of the observation o as
o− = {¬vi | ¬vi ∈ o}.

We denote the set of all priori observations of v by O(v). In
Figure 1, for instance,

• o1 = {¬v1, v3,¬v4} is a priori observation of vertex t,
i.e. o1 ∈ O(t), with the positive part o+1 = {v3} and the
negative part o−1 = {¬v1,¬v4},

• o2 = {s, v2} is a priori observation of vertex v3, i.e.
o2 ∈ O(v3), with the positive part o+2 = {s, v2} and
negative part o−2 = ∅.

Definition 4.3. For a node v in N (R), an observation o of v, a
set of answers ASk

for routing query set Sk ⊂ Q, and a route
R ∈ R, we say R submits to o, denoted as R |= o, if

(∀vx ∈ o+.R→ vx) ∧ (∀vy ∈ o−.R 6→ vy),

We say R submits to ASk
, also denoted as R |= ASk

, if for each
query Q = (vst, C, t) in Sk, suppose vans is the answer of Q
given by ASk

, we have R→ vst ⊃ R→ vans.

The “⊃” above is the implication in classic logic, indicating if the
route R goes through vst, then it has to goes through vans. Now
we give the computation of the probability table, denoted by PT ,
of N (R).

Lemma 4.1 (Computation of probability table PT ). For each
node vi ∈ N (R),

1) Initialization: for each observation o ∈ O(vi), set

Pr(vi|o) =

∑
R∈R∧R→vi∧R|=o

Pr(R)∑
R∈R∧R|=o

Pr(R)

Pr(¬vi|o) = 1− Pr(vi|o)

(23)

2) Completion: for those observation o ∈ O(vi) such that
6 ∃R ∈ R.R |= o, set Pr(vi|o) = 0 and Pr(¬vi|o) = 0.

Note that after the initialization step in Lemma 4.1, the
probability table PT is not complete. For instance, Figure 3 shows
the the Selective Bayesian Network for the example in Figure 1
with the routing queries in Table 1 (with negative conditional
probabilities omitted). In the figure, for node v3, the conditional
probability Pr(v3|sv1v2) is still undefined after initialization,
since there is no path that submits to the observation of v3:
o = {s, v1, v2}. So, in the completion step, we complete the
probability table PT (v3) by simply setting Pr(v3|s, v1, v2) = 0
and Pr(¬v3|s, v1, v2) = 1, and other necessary conditional
probabilities.

We give some more examples of the supportive probabilities:

• For a node vi in R, there is only one outgoing edge from
vi. Namely, in the routing query RQ =< vi, Di, t >,
Di is a singleton, say Di = {vout}, we have Pr(AQ =
vout) = 1, though such a query is usually omitted in URQ.

• For a node vi in R, there is only one incoming edge
towards vi, say vst. The corresponding supportive prob-
abilities will be,

Pr(vi|{vst}) = Pr(A<vst,D,t> = vi)

Pr(vi|{¬vst}) = 0

Pr(¬vi|{vst}) = 1− Pr(A<vst,D,t> = vi)

Pr(¬vi|{¬vst}) = 1
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Fig. 3. Initialization of the Selective Bayesian Network

TABLE 3
Supportive probabilities

Example supportive probabilities
Pr(v1|{s}) 0.1 Pr(¬v1|{s}) 0.9
Pr(v1|{¬s}) 0 Pr(¬v1|{¬s}) 1
Pr(v2|{s}) 0.1 Pr(¬v2|{s}) 0.9
Pr(v2|{¬s}) 0 Pr(¬v2|{¬s}) 1
Pr(v3|{s}) 0.8 Pr(¬v3|{s}) 0.2
Pr(v3|{¬s}) 0 Pr(¬v3|{¬s}) 1
Pr(v4|{v2, v3}) 0 Pr(¬v4|{v2, v3}) 1
Pr(v4|{v2,¬v3}) 1 Pr(¬v4|{v2,¬v3}) 0
Pr(v4|{¬v2, v3}) 0.5 Pr(¬v4|{¬v2, v3}) 0.5
Pr(v4|{¬v2,¬v3}) 0 Pr(¬v4|{¬v2,¬v3}) 1
Pr(t|{v1, v3, v4}) 0 Pr(¬t|{v1, v3, v4}) 1
Pr(t|{v1, v3,¬v4}) 0 Pr(¬t|{v1, v3,¬v4}) 1
Pr(t|{v1,¬v3, v4}) 0 Pr(¬t|{v1,¬v3, v4}) 1
Pr(t|{v1,¬v3,¬v4}) 1 Pr(¬t|{v1,¬v3,¬v4}) 0
Pr(t|{¬v1, v3, v4}) 1 Pr(¬t|{¬v1, v3, v4}) 0
Pr(t|{¬v1, v3,¬v4}) 1 Pr(¬t|{¬v1, v3,¬v4}) 0
Pr(t|{¬v1,¬v3, v4}) 1 Pr(¬t|{¬v1,¬v3, v4}) 0
Pr(t|{¬v1,¬v3,¬v4}) 0 Pr(¬t|{¬v1,¬v3,¬v4}) 1

The set of all predecessors pre(v) for each v ∈ R
pre(s) : ∅ pre(v1) : {s} pre(v2) : {s}
pre(v3) : {s} pre(v4) : {v2, v3} pre(t) : {v1, v3, v4}

• For the example in Table 1, the corresponding conditional
probabilities is shown in Table 3.

4.3 Select the Best Routing Query Set

A straightforward heuristic solution to select the best query set
is to select the top-k questions which have the highest expected
reduction of selection hardness in Equation 19. However, such a
solution neglects the correlation among the queries in Sk. The
correlation can be estimated by sampling, but the precision de-
pends on the sample qualification and quantity. With the Selective
Bayesian Network, we have the spacial casual information about
the nodes, so we can make use of the spacial causalities to compute
the expected uncertainty reduction.

Let Sk be a set of k routing queries, Sk = {Q1, . . . , Qk},
where each query is in the form Qi = (vist, Ci, t), Let ASk

be
the k ground-truth answers of the queries in Sk, which is actually
a discrete random variable with sample space C1× . . .×Ck. The
probability of ASk

is is actually the joint probability

Pr(ASk
= vSk

) = Pr(AQ1
= v1Sk

, . . . , AQk
= vkSk

) (24)

where the vector vSk
∈ C1 × . . . × Ck and viSk

is the i-
th coordinate of vSk

, which is the ground-truth answer for Qi.

Therefore, the expectation of selection hardness after receiving
ASk

is

EH(BR|ASk
)

=
∑

vSk
∈C1×...×Ck

Pr(ASk
= vSk

)H(BR = R|ASk
= vSk

)

=
∑

vSk
∈C1×...×Ck

Pr(ASk
= vSk

)
∑

R∈RS

(Pr(BR = R|ASk
= vSk

)

logPr(BR = R|ASk
= vSk

))

=
∑

vSk
∈C1×...×Ck

Pr(AQ1
= v1Sk

, . . . , AQk
= vkSk

)

∑
R∈RS

(Pr(BR = R|AQ1
= v1Sk

, . . . , AQk
= vkSk

)

logPr(BR = R|AQ1
= v1Sk

, . . . , AQk
= vkSk

)
(25)

As stated previously, ∆HSk
can be regarded as the mutual

information between BR and ASk
. Actually, for a set of queries

Sk = {Q1, Q2, . . . , Qk}, some of the queries are independent
with BR, and with other queries, given the ground truth and
the spacial information. Suppose that Qi = (vist, C

i, t), if exists
some 1 ≤ i, j ≤ k such that BR → vist and BR 6→ vjst,
then Pr(AQj ) is conditionally independent with Pr(BR) and
Pr(AQi), i.e.

∀vp ∈ Ci,∀vq ∈ Cj

Pr(AQi , AQj |BR→ vist, BR 6→ vjst)

= Pr(AQi
|BR→ vist, BR 6→ vjst)

· Pr(AQj
|BR→ vist, BR 6→ vjst)

= Pr(AQi
|BR→ vist, BR 6→ vjst) · Pr(AQj

)
(26)

Now, for a candidate route set R, we can finally calculate ∆(HSk
)

for a given set Sk of queries, by using the Selective Bayesian
network N (R) and the following theorem.

Theorem 4.2. For a candidate route set R, its Selective Bayesian
Network N (R) and a given query set Sk, the expected reduction
of selection hardness ∆HSk

is

∆HSk
= −

∑
S+
k (R) 6=∅

Pr(R) logPr(v1R, v
2
R, . . . , v

|S+
k (R)|

R )

(27)
where S+

k (R) = {Q = (vst, C, t) | Q ∈ Sk, R →
vst} and viR = R ∩ Ci by supposing that S+

k (R) =
{Q1, Q2, . . . , Q|S+

k (R)|} and Qi = (vst, Ci, t).

Proof. Please see in appendix in supplemental file.

The joint probability Pr(v1R, v
2
R, . . . , v

|S+
k (R)|

R ) in Theo-
rem 4.2 can be calculated by reasoning on N (R):

Pr(v1R, v
2
R, . . . , v

|S+
k (R)|

R ) =

|S+
k (R)|∏
i=1

Pr(viR|parent(viR))

(28)
where parent(viR) = {v | (v, viR) ∈ N (R)}, namely, the set of
all parents of node viR in the network N (R).

Thus, instead of estimating ∆HSk
by sampling, the Selective

Bayesian Network N (R) is capable to select the best Sk with
Equations 27 and 28. In practice, however, exploring all possible k
combinations and reasoning on them is quite expensive. So in our
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algorithm, we also use two relaxations to improve the efficiency,
which will be discussed in Section 4.4.

4.4 The Framework of the Algorithm
The best routing query set selected by the Selective Bayesian
Network is given to the crowd. The probability of the ground-truth
answer of a routing query Q is computed by

Pr(AQ = v) = Pr((vst, v) ∈ BR|BR→ vst)

=
Pr(BR→ vst|(vst, v) ∈ BR)Pr((vst, v) ∈ BR)

Pr(BR→ vst)

=

∑
R∈R∧(vst,v)∈R Pr(R)∑
R′∈R∧R′→vst

Pr(R′)

(29)

The above equation can be used to compute the pmf for a given set
of route R. For instance, in Figure 1, for the routing query Q3, we
have pmf (Q3, v3) = Pr(AQ3

= v3) = Pr(R3)/(Pr(R3) +
Pr(R4)) = 0.4/(0.4 + 0.1) = 0.8.

With the answers ASk
collected from the crowd, the probabili-

ties of the routes in R can be updated. According to the conclusion
in [1], the final result of the best route distribution is independent
of the sequence of the answers being utilized. So the answers
in ASk

can be used to update the distribution one by one. With
each answer AQ = v in ASk

, suppose that Q = (vst, C, t), the
probability of R ∈ R being the best route is updated by following
equation

Pr(BR = R|AQ = v) =

Pr(BR→ vst)Pr(BR = R|AQ = v,BR→ vst)

+ (1− Pr(BR→ vst))Pr(BR = R|AQ = v,BR 6→ vst)
(30)

where Pr(BR → vst) =
∑

R∈R∧R→vst
Pr(R). In practice, we

reasonably assume that the crowd workers do not always give
correct answers, so let ε be the error rate of the crowd. The
utilization needs to be replaced by

Pr(BR = R|v returned by the crowd) =
Pr(R) R 6→ vst

Pr(R)(1− ε)
Pr(AQ = v)(1− ε) + (1− Pr(AQ = v))ε

(vst, v) ∈ R

Pr(R)ε

Pr(AQ = v)(1− ε) + (1− Pr(AQ = v))ε
otherwise

(31)
We formally introduce our algorithm. The framework of the

algorithm is as follows, given a route set R and a budget limit B,

1) Build the Selective Bayesian Network N (R).
2) Repeatedly use N (R) to select query set Sk to ask the

crowd and receive k answers.
3) Update the probabilities of all routes in R with the

crowdsourced k answers.
4) Repeat 2 and 3 until the budget B is used up, and then

report the most likely best route.

Please note that in implementation we modularize the algo-
rithm into offline part and online part. The Selective Bayesian
Network is built offline for efficiency. The spacial relations be-
tween the routes and the vertices are also computed offline, and
then stored in a spacial information table Tsi(R), which supports
queries of form “R → v?” within linear time. As stated above,
precise reasoning on all possible combinations of Sk in each
round is too expensive, so we use two relaxations. The first one

Input: A path set R and its query set Q, the number k of
queries per round and the total budget B

Output: The most likely best route
Build the Selective Bayesian network N (R) according to

Lemma 4.1
while B 6= 0 do

Set Sk = ∅
while |Sk| < k do

for each Q ∈ Q do
Calculate ∆HSk∪Q with N (R) and Theorem 4.2

end
Set Qmax = argmaxQ∈Q ∆HSk∪Q

Add Qmax into Sk and remove it from Q
end
Ask queries in Sk to crowd and receive the

corresponding answers ASk

for each answer v ∈ ASk do
for each R ∈ R do

Set Pr(R) = Pr(BR = R|v) with Formula 31
end

end
Set B = B − k
if B < k then

k = B
end

end
return the route R with the maximum Pr(R)
Algorithm 2: k-selection with Selective Bayesian Net

is the same with the sampling-based approach in [1], namely, to
approximate the best Sk by incrementally selecting queries, as in
Lines 5 - 9 in Algorithm 2. The second relaxation is use sampling-
based reasoning instead of precise reasoning, when calculating
∆HSk

in Line 6. Although the joint probabilities needed in the
calculation is also estimated by sampling, the precision is higher
with the help of the spacial causalities embedded in N (R). There
are lots of samplers available, including Gibbs [17], Hamiltonian
Monte Carlo [18], Metropolis-Hastings [19], etc. In our work, we
use the basic Gibbs sampling for the reasoning on N (R).

5 EXPERIMENTAL EVALUATION

In this section, we report the experimental study to validate
the effectiveness and efficiency of our proposals. First, we use
synthetic data and a simulated crowd to explore wide rages of
values for the parameters. Second, we conduct an experiment with
real-world datasets to verify our conclusions on the synthetic data.

In the experiments, we compare the performances of the
following three categories of algorithms.

1) (ours-k=x) k-selection with Selective Bayesian Network,
with k = 1, 2, 4, our method proposed in Section 3.

2) (baseline-k=x) sampling-based algorithm proposed in
[1], with k = 1, 2, 4.

3) (random) a naive algorithm - to select a random set of
queries, with k = 1, 2, 4, to ask the crowd in each round.

In the rest of the paper, for the random selection, we only plot k =
1, and omit k = 2, 4, because the three curves almost coincides
in all settings - selecting one random query is basically the same
with selecting multiple random queries per round.

5.1 Simulation on Synthetic Data
We compare the performances of the above algorithms with the
error rate of the crowd ε = 0.1, 0.2, 0.3, and the total sample size
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(a) ε = 0.1, µ = 120k (b) ε = 0.1, µ = 60k (c) ε = 0.1, µ = 30k

(d) ε = 0.2, µ = 120k (e) ε = 0.2, µ = 60k (f) ε = 0.2, µ = 30k

(g) ε = 0.3, µ = 120k (h) ε = 0.3, µ = 60k (i) ε = 0.3, µ = 30k

Fig. 4. Error rate ε = 0.1, 0.2, 0.3 and sample size µ = 30k, 60k, 120k

µ = 30k, 60k, 120k. The route sets with a best route distributions
are randomly generated, and for each of them, the corresponding
query set and pmf are then calculated. Then several best routes
are sampled according to the distribution, and for each best route,
we run the competing algorithms separately and finally plot the
results, as shown in Figure 4. We summarize the experimental
result in following aspects.

Varying sample size. The sample size for probability estima-
tion, µ, is set to 30k, 60k and 12k, respectively. The performances
are directly effected by the sample size, as during the computation,
some required probabilities are estimated with the samples. In the
result in Figure 4, it is obvious that our method is much less
sensitive about the sample size compared with the baseline. With
the decrease of the sample size, the advantage of our proposal
becomes more significant.

Varying number of queries per round. The number of rout-
ing queries to select each round, k, is set to 1, 2 and 4. As shown
in Figure 4, smaller k tends to be more effective on reducing the
selection hardness, for both our proposal and the baseline. This is
partially because the bigger k is, the more complex the correlation
among the queries is, thus the less precisely the sample estimates
the joint probabilities, if we fix the sample size. Another reason
is that each routing query is selected based on the previously
crowdsourced answers. The bigger k is, the less frequently the
best route distribution is updated by the crowd. Interestingly, for
our method, when k is increasing, the performance degradation
is relatively small, in terms of the descent rate and the minimum
number of queries to bringH(BR) down to 0. The only exception

is in the roughest setting, ε = 0.3, µ = 30k, yet our approach
even with k = 4 is still better than the baseline with k = 1.

Varying error rate. The error rate of the crowd, ε, is set to
0.1, 0.2 and 0.3. For all the algorithms, the lower ε is, the faster the
performance converges. For a crowd with higher accuracy, smaller
amount of the queries are necessary to suggest a best route.

Different algorithms. The result in Figure 4 shows that for
any combination of ε, µ, k, our approach dominates the baseline
and the random algorithms. In most cases, our approach with k =
4 shows even better performance than the baseline with any k.

We can conclude that the k-selection with the Selective
Bayesian Network is much less sensitive about the sample size
µ, the query batch size k and the error rate of the crowd ε. The
spacial causalities provided by the Selective Bayesian Network
make the routing query selection much more stable and robust.

5.2 Verification on Real Data
We use five real-world road-network datasets, namely, California
Road Network (CA), San Francisco Road Network (SF), Road
Network of North America (NA), City of San Joaquin County
Road Network (TG) and City of Oldenburg Road Network (OL)
[20], [21]. The road networks in these datasets are obtained from
Digital Chart of the World Server. Although each of the above
datasets contains a lot of nodes and paths, the data is actually
not dense enough in terms of routing queries. For a given pair of
locations, the number of intersections of different routes is usually
small, which makes the total number of routing queries small.
So in the experiment we use a data augmentation to supplement
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(a) CA (b) SF (c) NA (d) TG (e) OL

Fig. 5. Comparison on real datasets: CA, SF, NA, TG and OL

Fig. 6. Precision with budget B=10, 20, 30, 60

Fig. 7. Average time cost

necessary routing queries to deal with the query sparsity of the
data. With the data augmentation, we construct 25 route sets (5
from each dataset), and each route set contains more than 60
routing queries. For each route set, we calculate the distribution
of the best route according to the normalized costs of the routes,
and then sample the best route according to the distribution for 10
runs of algorithms, with k=1,2 and 4 respectively. We test totally
750 runs on the real-world road networks for each algorithm. As
shown in Figure 5, the result is consistent with synthetic data. Our
best route selection with the Selective Bayesian Network performs
better on all datasets.

5.3 Effectiveness and Time Cost
Below we conduct experiments to exhibit the goodness of paths
selected by the crowd. It worth mentioning that for these 25 route
sets from real-world data, the precision of each algorithms except
random is quite high, after asking 60 routing queries. So we vary
the budget B=10, 20, 30, 60, to test the performances of the
algorithms when the budget is limited. As shown in Figure 6,
our method performs better than others in terms of precision. In

most cases, the precision of our method is close to 100% even
with a budget of only 10 queries.

Moreover, we also test the average time cost of our algorithm
with k=1, 2 and 4, on all the datasets. As shown in Figure 7, for
all the route sets from the real data, our algorithm successfully
selects 60 best routing queries and then suggests a best route with
nearly 100% precision within 90 seconds, which is impressive for
a crowdsourcing framework.

6 RELATED WORKS

6.1 Crowdsourcing
The recent development of crowdsourcing brings us a brand
new opportunity to engage human intelligence in the process
of answering queries (see [22] as a survey). Crowdsourcing
provides a new problem-solving paradigm [23], [24], which has
been blended into several research communities. In particular,
crowdsourcing-based data management techniques have recently
attracted much attention in the database and data mining commu-
nities. From a practical viewpoint, [25] proposed and developed
a query processing system using microtask-based crowdsourcing
to answer queries. Moreover, in [26], a declarative query model is
proposed to cooperate with standard relational database operators.
In addition, from the viewpoint of theoretical study, many funda-
mental queries have been extensively studied, including filtering
[27], max [28], sorting [29], join [29], [30], and so on. Besides,
crowdsourcing-based solutions of many complex algorithms have
also been developed, such as categorization based on graph search
[15], clustering [31], entity resolution [32], [33], analysis over
social media [34], and tagging in social networks [35], trip
planning [36], pattern mining [37] etc.

6.2 Path Recommendation with Crowd
Finding the most desirable path has now been receiving tremen-
dous research interest for decades [38], [39], [40]. The most
popular topic in this area is shortest path finding, which has been
extensively studied for over fifty years. If the weight on each
edge represents travel time, shortest path finding becomes fastest
path finding. Such as, the authors in [38] introduce a favorite
route proposal scheme to provide route recommendations, and
the scheme they proposed can generate better recommendations
than alternative learning algorithms. Specifically, the work in [41]
considers the availability of routes for different users. Two efficient
algorithms are proposed in [42], which uses minimum on-road
travel cost function. The authors in [39] improve the performance
of batch shortest path algorithms they proposed by revisiting
the problem of query clustering, and three query decomposition
methods are proposed for fast query clustering.
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In addition, approaches in [43], [44], [45], [46] predict the
future trajectory by introducing deep learning models. To help
route decision, the approach in [43] uses RNN to build a trajectory
model, assuming that the itinerary of the destination link is a
known parameter. In [4], a deep probabilistic model is presented,
which unifies three key explanatory factors for most likely route
prediction. Moreover, in order to effectively share the statistical
strength, an adjoint generative model is proposed to learn repre-
sentations of k-destination proxies.

To the best of our knowledge, this is the first work studying
the path selection problem with the help of crowd. The essential
objective is to make it easier for users to select the best path
among a number of candidates. The authors in [47] propose a
system to leverage crowds’ knowledge to improve the quality
of recommended routes. This paper distinguishes itself with [47]
from the following aspects: first, we ask the crowd to identify
the direction at each road intersection; second, we adjust the
distribution of recommended paths, rather than identify the very
best one.

7 CONCLUSION AND FUTURE WORK

A GPS-based navigation system usually suggests multiple paths
for a pair of given source and target. Therefore, a struggling
problem for users is to select the best one among them, namely
the best path selection problem. Too many suggested paths may
jeopardize the usability of recommendation data, and decrease
user satisfaction. Although existing studies have partially solved
this problem through integrating historical traffic logs or updating
traffic conditions periodically, their solutions neglect the potential
contribution of human experiences. In this paper, we resort to
crowdsourcing to ease the pain of best path selection. In particular,
we design two types of questions, namely Routing Query (RQ)
and Binary Routing Query (BRQ), to ask the crowd to decide the
direction at each road intersection. We consider the problem of
selecting the best k RQs. Furthermore, we propose a series of
efficient algorithms, which dynamically manage the questions in
order to reduce the selection hardness with a limited budget of
questions. Finally, we verified the effectiveness and efficiency of
our proposed approaches through experiments with synthetic and
real-world datasets.

There are many further research directions to explore. First, an
immediate interesting topic is how to create one HIT with multiple
RQ/BRQ questions. To do this, our exact formulation has to
be modified since some questions would have been answered
by the same worker, so the assumption that each question is
independently answered does not hold. In future works, we would
be interested in examining the trade-off between this decrease in
data quality and the cost savings due to larger HITs. Second,
although we proposed in this paper an efficient approach to
recommend the best path by k-RQ selection, we omitted the take
into account manpower scheduling problem in crowdsourcing and
the delay to get the answers of the crowd. It will be more practical
and interesting to design and conduct some real-world experiments
to further verify our framework. Last, in our approach, we did not
consider the cases that some workers failed to return their answers.
In our current framework, we can simply ignore a crowdsourcing
worker if no answer is returned. In other words, the worker fails
to provide any useful observation to lower the uncertainty of the
best path. But it is more interesting to model the failure rate of

returning answers to see what happens. We leave these interesting
topics for future work.
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APPENDIX

Proof of Theorem 4.2

Proof. Suppose Sk = {(v1st, C1, t), . . . , (v
k
st, Ck, t)}, and

CSk
= C1 × C2 × . . .× Ck.

EH(BR|ASk
)

=
∑
R∈R

∑
vSk
∈CSk

Pr(ASk
= vSk

)(Pr(BR = R|ASk
= vSk

)

logPr(BR = R|ASk
= vSk

))

=
∑
R∈R

∑
vSk
∈CSk

[
Pr(ASk

= vSk
)

Pr(BR = R)Pr(ASk
= vSk

|BR = R)

Pr(ASk
= vSk

)

log
Pr(R)Pr(ASk

= vSk
|BR = R)

Pr(ASk
= vSk

)

]
Now, for a given vSk

∈ CSk
, we calculate the above equation part

by part according to different types of R.

• For those paths such that ∀vist.R 6→ vist, ASk
is indepen-

dent with BR = R, and AQi
= vi is also independent

with each other for i = 1..N , i.e.

X1 =
∑

∀vi
st.R 6→vi

st

∑
vSk
∈CSk

[
Pr(ASk

= vSk
)

Pr(BR = R)Pr(ASk
= vSk

|BR = R)
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= vSk

)
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)

]
=

∑
∀vi

st.R 6→vi
st

∑
vSk
∈CSk

[
Pr(ASk

= vSk
)

Pr(BR = R)Pr(ASk
= vSk

)

Pr(ASk
= vSk

)

log
Pr(BR = R)Pr(ASk

= vSk
)

Pr(ASk
= vSk

)

]
=

∑
∀vi

st.R 6→vi
st

∑
vSk
∈CSk

Pr(ASk
= vSk

)Pr(R) logPr(R)

=
∑

∀vi
st.R 6→vi

st

Pr(R) logPr(R)

• For those paths such that ∀vistR → vist, given that R
goes through all starting vertices of the queries in Sk, the
probability of ASk

= vSk
is actually the joint probability,

Pr(ASk
= vSk

) = Pr(R → A1, R → A2, . . . , R →
Ak) = Pr(A1, A2, . . . , Ak). So, Pr(ASk

= vSk
|BR =

R) = Pr(A1, A2, . . . , Ak|BR = R), where Ai is the
node in BN(G) corresponds the answer of RQi. Thus,
we have,

X2 =
∑

∀vi
st.R→vi

st

∑
vSk
∈CSk

[
Pr(ASk

= vSk
)

Pr(BR = R)Pr(ASk
= vSk

|BR = R)

Pr(ASk
= vSk

)

log
Pr(BR = R)Pr(ASk

= vSk
|BR = R)

Pr(ASk
= vSk

)

]
=

∑
∀vi

st.R→vi
st

∑
vSk
∈CSk

[
Pr(BR = R)Pr(ASk

= vSk
|BR = R)

log
Pr(BR = R)Pr(ASk

= vSk
|BR = R)

Pr(ASk
= vSk

)

]
=

∑
∀vi

st.R→vi
st

[
Pr(BR = R)Pr(ASk

= R ∩ CSk
|BR = R)

log
Pr(BR = R)Pr(ASk

= R ∩ CSk
|BR = R)

Pr(ASk
= R ∩ CSk

)

]
=

∑
∀vi

st.R→vi
st

Pr(BR = R) log
Pr(BR = R)

Pr(ASk
= R ∩ CSk

)

where

R ∩ CSk
= {viR | viR ∈ Ci, (v

i
st, v

i
R) ∈ R},

namely, the set of k answers for Sk which are consistent
with R.
Suppose that R ∩ CSk

= {v1R, v2R, . . . , vkR}, we have,

X2 =
∑

∀vi
st.R→vi

st

Pr(BR = R) log
Pr(BR = R)

Pr(ASk
= R ∩ CSk

)

=
∑

∀vi
st.R→vi

st

Pr(R)log
Pr(R)

Pr(v1R, v
2
R, . . . , v

k
R)

where Pr(v1R, v
2
R, . . . , v

k
R) can be calculated by the se-

lection Bayesian network N (R).
• For those paths R such that ∃vist.R→ vist and ∃vjst.R 6→

vjst, i.e. some of the starting vertices of Sk are in the path
R, while the other are not. We denote the corresponding
queries with these two categories of starting vertices by
S+
k (R) and S−k (R):

S+
k (R) = {Q = (vst, C, t) | Q ∈ Sk, R→ vst}
S−k (R) = {Q = (vst, C, t) | Q ∈ Sk, R 6→ vst}

We have,

X3 =
∑

∃vi
st.R→vi

st

∃vj
st.R 6→vj

st

∑
vSk
∈CSk

[
Pr(ASk

= vSk
)

Pr(BR = R)Pr(ASk
= vSk

|BR = R)

Pr(ASk
= vSk

)

log
Pr(BR = R)Pr(ASk

= vSk
|BR = R)

Pr(ASk
= vSk

)

]

=
∑

∃vi
st.R→vi

st

∃vj
st.R 6→vj

st

∑
vSk
∈CSk

[

Pr(AS+
k (R) = vS+

k (R))
∏

RQ∈S−k (R)

Pr(AQ = vRQ
Sk

)

Pr(BR = R)Pr(AS+
k (R) = vS+

k (R)|BR = R)

Pr(AS+
k (R) = vS+

k (R))

log
Pr(BR = R)Pr(AS+

k (R) = vS+
k (R)|BR = R)

Pr(AS+
k (R) = vS+

k (R))

]
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=
∑

∃vi
st.R→vi

st

∃vj
st.R 6→vj

st

[ ∑
v
S
−
k
∈C

S
−
k

(R)

∏
v∈v

S
−
k

Pr(AQ = v)
]

∑
v
S
+
k
∈C

S
+
k

(R)

[
Pr(AS+

k (R) = vS+
k (R))

Pr(BR = R)Pr(AS+
k (R) = vS+

k (R)|BR = R)

Pr(AS+
k (R) = vS+

k
)

log
Pr(BR = R)Pr(AS+

k (R) = vS+
k (R)|BR = R)

Pr(AS+
k (R) = vS+

k (R))

]
=

∑
∃vi

st.R→vi
st

∃vj
st.R 6→vj

st

[
Pr(BR = R)

Pr(AS+
k (R) = R ∩ CS+

k (R)|BR = R)

log
Pr(BR = R)Pr(AS+

k (R) = R ∩ CS+
k (R)|BR = R)

Pr(AS+
k (R) = R ∩ CS+

k (R))

]

=
∑

∃vi
st.R→vi

st

∃vj
st.R 6→vj

st

Pr(R) log
Pr(R)

Pr(AS+
k (R) = R ∩ CS+

k (R))

where
R ∩ CS+

k (R) = {vp | ∃vst s.t.
< vst, D, t >∈ Sk, vp ∈ D, (vst, vp) ∈ R}

Let R ∩ CS+
k (R) = {v1R, v2R, . . . , v

|S+
k (R)|

R }, we have

X3 =
∑

∃vi
st.R→vi

st

∃vj
st.R 6→vj

st

Pr(R) log
Pr(R)

Pr(v1R, v
2
R, . . . , v

|S+
k (R)|

R )

Finally, the expected reduction of selection hardness is

∆HSk

=H(BR)− EH(BR|ASk)

=H(BR) +X1 +X2 +X3

=−
∑
R∈R

Pr(R) log(Pr(R)) +
∑

∀vi
st.R 6→vi

st

Pr(R) logPr(R)

+
∑

∀vi
st.R→vi

st

Pr(R)log
Pr(R)

Pr(v1R, v
2
R, . . . , v

k
R)

+
∑

∃vi
st.R→vi

st

∃vj
st.R 6→vj

st

Pr(R) log
Pr(R)

Pr(v1R, v
2
R, . . . , v

|S+
k (R)|

R )

=−
∑

∀vi
st.R→vi

st

Pr(R) logPr(v1R, v
2
R, . . . , v

k
R)

−
∑

∃vi
st.R→vi

st

∃vj
st.R 6→vj

st

Pr(R) logPr(v1R, v
2
R, . . . , v

|S+
k (R)|

R )

=−
∑

∃vi
st.R→vi

st

Pr(R) logPr(v1R, v
2
R, . . . , v

|S+
k (R)|

R )

=−
∑

S+
k (R) 6=∅

Pr(R) logPr(v1R, v
2
R, . . . , v

|S+
k (R)|

R )
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