
Documentation-Based Functional Constraint Generation for
Library Methods

Renhe Jiang1, Zhenzhao Chen1, Yu Pei2, Minxue Pan1*, Tian Zhang1*, Xuandong Li1

1 State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China
2 Department of Computing, The Hong Kong Polytechnic University, Hong Kong, China

SUMMARY

Although software libraries promote code reuse and facilitate software development, they increase the
complexity of program analysis tasks. To effectively analyze programs built on top of software libraries,
it is essential to have specifications for the library methods that can be easily processed by analysis tools.
However, the availability of such specifications is seriously limited at the moment: Manually writing the
specifications can be prohibitively expensive and error-prone, while existing automated approaches to
inferring the specifications seldom produce results that are strong enough to be used in program analysis.
In this work, we propose the DOC2SMT approach to generating strong functional constraints in SMT for
library methods based on their documentations. DOC2SMT first applies NLP techniques and a set of rules to
translate a method’s natural language documentation into a large number of candidate constraint clauses in
OCL. Then, it utilizes a manually enhanced domain model to identify OCL candidate constraint clauses that
comply with the problem domain in static validation, translates well-formed OCL constraints into the SMT-
LIB format, and checks whether each SMB-LIB constraint rightly abstracts the functionalities of the method
under consideration via testing in dynamic validation. In the end, it reports the first functional constraint that
survives both validations to the user as the result.
We have implemented the approach into a supporting tool with the same name. In experiments conducted
on 451 methods from the Java Collections Framework and the Java IO library, DOC2SMT generated correct
constraints for 309 methods, with the average generation time for each correct constraint being merely
2.7 minutes. We have also applied the generated constraints to facilitate symbolic-execution-based test
generation with the Symbolic Java PathFinder (SPF) tool. For 24 utility methods manipulating Java container
and IO objects, SPF with access to the generated constraints produced 51.2 times more test cases than SPF
without the access.

Received . . .

KEY WORDS: specification generation; documentation analysis; domain model; OCL; SMT

1. INTRODUCTION

Software libraries are playing an ever more important role in constructing programs nowadays.
On the one hand, code in libraries can be easily reused to accomplish common programming
tasks and improve programmers’ productivity. On the other hand, the libraries used in software
development pose new challenges to the analysis of the resultant programs: The source code of
the libraries may be hard to acquire, their compiled code may be obfuscated, and they may be
written in multiple programming languages and/or implement sophisticated engineering tricks for
performance reasons.

Since manually writing specifications for methods can be prohibitively expensive and error-
prone, researchers have proposed various techniques in the past few years to automatically infer

∗Correspondence to: State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China.

This is the Pre-Published Version.
This is the peer reviewed version of the following article: Jiang, R, Chen, Z, Pei, Y, Pan, M, Zhang, T, Li, X. Documentation-based 
functional constraint generation for library methods. Softw Test Verif Reliab. 2021; 31:e1785, which has been published in final form at 
https://doi.org/10.1002/stvr.1785. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions 
for Use of Self-Archived Versions. This article may not be enhanced, enriched or otherwise transformed into a derivative work, without 
express permission from Wiley or by statutory rights under applicable legislation. Copyright notices must not be removed, obscured or 
modified. The article must be linked to Wiley’s version of record on Wiley Online Library and any embedding, framing or otherwise making 
available the article or pages thereof by third parties from platforms, services and websites other than Wiley Online Library must be 
prohibited.



2 RENHE JIANG ET AL.

specifications for library methods, e.g., through dynamic [1, 2, 3, 4, 5] or static [6, 7] program
analysis, so that their implementation details can be abstracted away and complex program analysis
tasks may become possible or scalable. Another line of such work aims to infer specifications for
methods from their natural language descriptions, in the form of API documentations [8, 9] or code
comments [10, 11]. Pandita et al. [8] propose the ALICS approach that pioneered the application
of natural language processing (NLP) techniques to specification generation for library methods.
ALICS translates sentences in API documentations into logical expressions based on pre-defined
shallow parsing semantic templates, and generates code-contracts from the expressions by mapping
semantic classes of the predicates to programming constructs. Zhai et al. [9] present an automated
model generation (AMG) technique that produces functionally equivalent model implementations
for methods from API documentations. The AMG technique transforms grammatical trees of
sentences to produce variants and utilizes pre-defined patterns to match tree structures and generate
code snippets for the model implementations. Goffi et al. [10] propose the TORADOCU approach
that extracts specifications in the form of Java conditions for exceptional behaviors from Javadoc
code comments. TORADOCU applies NLP techniques to identify the subjects and related predicates
of sentences describing the exception conditions, and it matches the subjects and predicates to
Java code elements using approximate lexicographic matching. The Java conditions extracted with
TORADOCU can be used as the oracle in testing the exceptional behaviors. Blasi et al. [11] present
the JDOCTOR technique that extends TORADOCU to produce specifications for also preconditions
and normal postconditions. Motivated by the observation that syntactically different terms can have
a close semantics, JDOCTOR employs a neural network model to embed the semantics of words
from the comments and code element identifiers, and matches the predicates to code elements with
the smallest semantic distance. Among these techniques, TORADOCU infers only conditions for
exceptional behaviors, while the others often produce specifications that are incomplete or hard to
use in tasks like program analysis: ALICS mostly produces weak specifications such as null pointer
assertions to facilitate the verification of legal usages; Model implementations produced by AMG
and executable specifications inferred by JDOCTOR usually contain invocations to other methods
that are still challenging to analyze.

In this paper, we propose a novel approach, named DOC2SMT, to generating strong functional
constraints for library methods based on their documentations. Compared with specifications
inferred by existing techniques mentioned above, constraints generated by DOC2SMT are expected
to specify the complete normal functionalities of the methods. Particularly, the constraint generated
by DOC2SMT for a method need to specify not only what results the method should produce, i.e.,
the postconditions, but also under what conditions the method should produce those results, i.e., the
preconditions.

First, DOC2SMT applies NLP techniques to construct semantic graphs with POS tag annotations
from a method’s natural language documentation, and employs a set of permissive rules to
translate the graphs into a large number of candidate constraint clauses in OCL. Next, DOC2SMT
identifies the constraints that faithfully reflect the functionalities of a method via a novel, two-step
validation process: In static validation, a manually enhanced domain model is used to help filter out
syntactically ill-formed OCL expressions that do not comply with the problem domain; The well-
formed OCL candidate constraints are then translated into the SMT-LIB format. During dynamic
validation, whether each SMB-LIB constraint rightly abstracts the functionalities of the method
under consideration is automatically checked via testing. In the end, the first functional constraint
that validates successfully in both steps is reported to the user as a valid constraint for the method.

We have implemented the approach into a tool with the same name. To evaluate the effectiveness
and efficiency of DOC2SMT, we applied the tool to generate strong functional constraints for
451 public methods defined in 24 classes from the Java Collections Framework and the Java IO
library. DOC2SMT successfully produced valid constraints for 312 methods, and manual inspection
confirmed that the constraints for 309 of those methods were indeed correct, i.e., both sound and
complete. The average time DOC2SMT took to produce a correct constraint was merely 2.7 minutes.
We have also applied the generated constraints to facilitate symbolic-execution-based test generation
with the Symbolic Java PathFinder (SPF) tool. For 24 utility methods manipulating Java container



DOCUMENTATION-BASED FUNCTIONAL CONSTRAINT GENERATION FOR LIBRARY METHODS 3

java.util
Class TreeMap<K,V>
java.lang.Object
java.util.AbstractMap<K,V>
java.util.TreeMap<K,V>

All Implemented Interfaces
..., Map<K,V>, NavigableMap<K,V>, SortedMap<K,V>, ...

A Red-Black tree based NavigableMap implementation. The map is sorted according to
the natural ordering of its keys, or by a Comparator provided at map creation
time, depending on which constructor is used.
Methods
..., containskey, get, put, replace, size, ...

Figure 1. Part of the documentation for class TreeMap.

1 public V replace(K k, V v)
2 Replaces the entry for the specified key only if it is currently mapped to some

value.
3 Parameters:
4 k - key with which the specified value is associated
5 v - value to be associated with the specified key
6 Returns:
7 the previous value associated with the specified key, or null if there was no

mapping for the key

Figure 2. Profile of method replace(K k, V v) from TreeMap.

and IO objects, SPF with access to the generated constraints produced 51.2 times more test cases
than SPF without the access.

This paper makes the following contributions:

• We propose an approach to generating strong functional constraints for library methods from
their documentations.

• We implement the approach into a prototype tool with the same name.

• We conduct experiments on methods from the Java Collections Framework and the Java IO
library to evaluate the approach. Experimental results suggest the approach is able to produce
high-quality constraints with reasonable efficiency and scalability.

Outline. The rest of this paper is organized as the following. Section 2 illustrates from a user’s
perspective how DOC2SMT generates strong functional constraints for library methods. Section 3
explains in detail the steps involved in constraint generation with DOC2SMT. Section 4 reports on
the experiments we conducted to evaluate DOC2SMT. Section 5 reviews researches done in related
areas. Section 6 concludes the paper.
Availability. A package with DOC2SMT’s implementation and the experimental results is publicly
available for download at https://github.com/SEG-DENSE/Doc2SMT.

2. DOC2SMT IN ACTION

In this section, we use a method to demonstrate how DOC2SMT generates strong functional
constraints based on the method’s documentation from a user’s perspective.

A map is a widely-used data structure supporting fast key-based lookups. Class java.util.

TreeMap from the Java Collections Framework implements a navigable map, i.e., a map whose
elements can be easily accessed in ascending or descending key order, and it stores each pair of key

https://github.com/SEG-DENSE/Doc2SMT


4 RENHE JIANG ET AL.

Figure 3. A domain model required for generating method replace’s strong functional constraint. Public
methods that can be easily extracted from the class documentation are omitted for brevity reasons.

1 ;declare-datatypes:
2 ;Map (mk-map (key (Array K Bool)) (mapping (Array K V)))
3 ;Entry (mk-entry (key K) (value V))
4 ;declare-const:
5 ;?p0 (Map Int Int), ?p1 Int, ?p2 Int,
6 ;?r Int, ?_p0 (Map Int Int), t0 (Entry Int Int)
7 ;assertions:
8 (= t0 ((as mk-entry) ?p1 (select (mapping ?p0) ?p1)))
9 (ite

10 (and (select (key ?p0) (key t0)) (= (select (mapping ?p0) (key t0)) (value t0)))
11 (and (= (key ?_p0) (key ?p0)) (= (mapping ?_p0) (store (mapping ?p0) (key t0) ?p2)))
12 (and (= (key ?_p0) (key ?p0)) (= (mapping ?_p0) (mapping ?p0))))

Figure 4. The functional constraint generated by DOC2SMT for method TreeMap::replace(K k, V v) in
SMT-LIB. A Map object contains a key set with all the keys and a mapping that relates each key to a value.
Each Entry object is a key-value pair. Symbols ?p0, ?p1, and ?p2 refer to the three input parameters of
the method, while symbols ?_p0 and ?r refer to the receiver object and the return value at method exit,

respectively.

From method summary:
a) if value->exists(value|value.k)

then replace(k) else equals(self@pre) endif
b) if value->exists(value|map(k,v))

then replace(entry(k),v) else equals(self@pre) endif
c) if value->exists(value|map(k,value))

then replace(entry(k),v) else equals(self@pre) endif
From method return value description:
d) if not(self.contains(entry(k)))

then result=null else map(k,result) endif

Figure 5. Three of the candidate OCL expressions generated by DOC2SMT from the method summary and
one from the return value description for TreeMap::replace(K k, V v). The conjunction of expressions c)

and d) constitutes a strong functional constraint for the method.

and value as an Entry internally. Method replace(K k, V v) of the class is inherited from interface
Map and it substitutes k’s currently associated value, if any, with v.

Developers of the class have written informative documentation for both the class and its public
methods, which also serves as the specifications for the class and methods. Figure 1 shows part of
the documentation for the class, and Figure 2 shows the profile information about method replace

from the same documentation. Since the information is written in natural language, it is not readily



DOCUMENTATION-BASED FUNCTIONAL CONSTRAINT GENERATION FOR LIBRARY METHODS 5

Static Validation

Method Doc

Dependency 

Parsing

Rule-Based

Translation

Phase I

(Manual)

Domain Model 

Enhancement

(Primitive)
Domain Model

Phase II

Candidate 
OCL

Candidate 
OCL

Candidate
OCL Expressions

Well-Formed
OCL

Class Doc

Valid OCLValid OCLValid OCL

Doc2smt

(Automatic)

Domain Model 

Construction

(Enhanced)
Domain Model

Start Start

Error Error Errors

Dependency 
Graph

Dynamic 

Validation
End

Candidate 
OCL

Candidate 
OCL

Well-Formed
OCL Expressions

Valid
Constraint

OCL to SMT

Error Error Errors

Candidate 
OCL

Candidate 
OCL

Candidate 
Constraints

Figure 6. An overview of the DOC2SMT approach.

consumable by most other software engineering tools. In particular, such information cannot be
used to support static program analysis. Taking the documentation for the class and a domain
model (shown in Figure 3) as the input, DOC2SMT is able to generate in a few minutes a strong
functional constraint in the SMT-LIB syntax for the method. Figure 4 gives the constraint that
DOC2SMT produces for method replace. One thing worth noting is that, to be able to reflect the
complete normal functionalities of method replace, the constraint generated for the method needs
to differentiate two situations where the method behaves differently, i.e., when k is mapped to a value
in the current map and when k is not mapped to any value in the map. More generally speaking, the
generated constraint needs to encode the preconditions of the method under consideration.

During the process, DOC2SMT generates a large number of candidate constraint clauses in OCL
as intermediate results. For example, Figure 5 shows some of those candidate clauses derived from
the method summary and the return value description, where clauses c) and d) are correct, while
clauses a and b are incorrect. The final constraint shown in Figure 4 can be derived easily from the
conjunction of the two correct candidate clauses.

Three features of DOC2SMT are key to its success. First, DOC2SMT applies a set of rules to
translate sentences in the input documentation into candidate constraint clauses in the OCL syntax.
The rules and the translation process are permissive enough to allow the sentences to be interpreted
as they were intended. Second, DOC2SMT makes use of a domain model to quickly filter out the
generated candidate constraint clauses that are syntactically ill-formed. Third, DOC2SMT ensures
via testing that only constraints that reflect the complete normal functionalities of methods are
reported to users.

3. THE DOC2SMT APPROACH

Figure 6 shows an overview of the DOC2SMT approach. Inputs to DOC2SMT include a list of
target methods and the documentations for the methods and their defining classes. For each
method, DOC2SMT first employs dependency parsing to construct dependency graphs from the
method’s profile information (Section 3.1), and then translates the graphs into a large number of
candidate constraint clauses in the OCL syntax based on a set of permissive rules (Section 3.2).
Next, DOC2SMT statically checks the validity of candidate constraint clauses in two phases
(Section 3.3). In phase I static validation, DOC2SMT utilizes an automatically constructed, primitive
domain model to help identify domain knowledge that is necessary for characterizing the method’s



6 RENHE JIANG ET AL.

Figure 7. Dependency graph for the summary of method replace.

functionalities. In phase II static validation, it uses a manually enhanced domain model to prune
out candidate clauses that are syntactically ill-formed. In the end, DOC2SMT translates the well-
formed OCL constraints into the SMT format and checks the semantical equivalence between
each remaining constraint and the method implementation via testing during dynamic validation
(Section 3.5). DOC2SMT terminates upon discovering the first constraint that survives dynamic
validation and outputs it as the strong functional constraint of the method.

The rest of this section details how DOC2SMT generates a strong functional constraint c for a
target method m from class C, based on the documentations for C and m. Here, we use P to denote
the sequence of m’s input parameters and use Q to denote the sequence of m’s output parameter. Q
includes the return value of m, if any, and the values of the input parameters at the exit of m if they
are modified by m.

3.1. Dependency Parsing of Method Summary

DOC2SMT uses the profile information of a method as the source to infer the method’s functional
constraint. More concretely, the profile information of a method includes the method’s declaration,
summary, and the descriptions of the parameters and return value, if any. For example, Figure 2
shows the profile information of method replace that DOC2SMT utilizes, including its declaration
(line 1), its summary (line 2), as well as the descriptions of parameters (lines 4 and 5) and return
value (line 7). DOC2SMT extracts the different parts of a method’s profile information from the
documentation of the method’s containing class based on manually crafted patterns.

Next, DOC2SMT employs a dependency parser to build a dependency graphGs from the method’s
summary, as was done in previous work [9, 11], and if the method returns a value, DOC2SMT also
builds a dependency graph Gr based on the description of that value. The dependency graph(s)
will be transformed and translated into set(s) of candidate constraint clauses in OCL afterwards.
A dependency graph in natural language processing gives the grammatical structure of a sentence,
where a node corresponds to a word in the sentence and may be associated with syntactic attributes
like lemma and part of speech (POS) tags, while an edge reflects the typed dependency relation
between words. For example, Figure 7 gives the dependency graph for method replace’s summary.
According to the graph, word “replaces” is a verb in 3rd person singular present form (VBZ), word
“entry” is the direct object (dobj) of “replaces”, and word “mapped” is an adverbial clause modifier
(advcl) of “replaces”.

In view that the descriptions of method parameters are often noun phrases and the parameters
are often referred to using those nouns in the documentation, DOC2SMT analyzes the parameter
descriptions to find out the relation between parameters and their referring nouns. More concretely,
given a parameter x, DOC2SMT constructs a dependency graph from x’s description, identifies the
root noun n of that dependency graph, and registers n as x’s referring noun. Consider parameter k
of method replace for example. Since the root noun in the dependency graph constructed from k’s
description is word “key”, the word is registered as the referring noun of parameter k. Accordingly,
DOC2SMT will consider occurrences of word “key” in replace’s summary as possible references
to k in its following process.

3.2. Rule-based Translation to OCL

A dependency graph gives the core text elements and their relations in a sentence. To translate a
dependency graph into constraint clauses in OCL, DOC2SMT employs a rule-based technique.



DOCUMENTATION-BASED FUNCTIONAL CONSTRAINT GENERATION FOR LIBRARY METHODS 7

Table I. Syntax of translation rules with explanations and examples. Each rule consists of a pattern and
an action. A pattern describes a graph configuration based on nodes and edges with specific features. An
action contains a sequence of plain texts and graph operations (grop). A grop is surrounded by a pair of
square brackets ([]) and defines how to build a new graph using matched parts from the original graph. Note
that the syntax of patterns is adopted from the Stanford CoreNLP Toolkit [12], while the syntax of actions

is inspired by the work of Tuong Huan et al. [13].

Nonterminal Syntax Explanation

rule pattern→action A translation rule consists of two parts: a pattern that specifies
the matching condition of the rule and an action that can be
applied to produce the translations when the rule is matched.

pattern nodedec* edgedec* A pattern specifies matching conditions w.r.t. nodes and/or
edges in a dependency graph.

nodedec {attrvalue*}=X Match a node, referred to as X, with specific attribute values.
Example: {tag:NN.*}=A.

edgedec

>dep?(X,Y)=E Match an edge, referred to as E, that is of type dep and connects
two nodes X and Y. Here both X and Y can be a nodedec.
Example: >dobj(A,{tag:NN.*})=E.

x,y>>dep?(X,Y)=E Match an edge, referred to as E, that is the last edge of a path
connecting two nodes X and Y. The length of the path should be
between x and y, and the type of E, if declared, should be dep.
Example: 0,2>>nmod.*(A,B)=F.

not edgedec Match a graph where no edge matches with edgedec. Example:
not >(A,{}).

action ([grop]|plaintext)* An action consists of a sequence of graph operations (grop
s) and/or plaintexts. A grop specifies how parts identified
in pattern matching are used during translation, while the
plaintexts are directly copied into the translation results.

grop

X Return node X declared in the corresponding pattern.
{attrvalue*} Create and return a new node with the given attributes.

Example: {lemma:index}.
copy(X)|deepcopy(X) Return a copy/deep-copy of node X. Example: copy(X)
grop1-grop2 Remove nodes and edges in grop2 from grop1 and return gopt1.
>E(grop1,grop2) Connect the root of grop2 to that of grop1 via edge E and return

grop1. Example: >E(X-Z,deepCopy(Y)).
>dep(grop1,grop2) Connect the root of grop2 to that of grop1 via an edge of type

dep and return grop1. Example: >dobj(A,B)
rep(X,grop1,grop2) Replace node X in grop2 with the result of grop1 and return grop

2. Example: rep(Z,copy(Y),X).

3.2.1. Translation Rules. DOC2SMT defines 26 rules to facilitate the translation from dependency
graphs to OCL expressions in general cases. Table I gives the syntax of the rules, and Table II
provides the complete list of general rules defined in DOC2SMT. For instance, rule TR concerns
how receiver objects of method invocations are often referred to in Java documentations and how
those objects should be represented in OCL expressions. Consider the summary of a method in class
TreeMap for example. A phrase “this treemap” appearing in the summary often refers to the receiver
object on which the method is invoked, and the keyword self should be used as its translation in
OCL. Rule TR is therefore introduced to deal with such cases, where CNs are names of the context
classes.

While the rules listed in Table II are general and useful in processing the profile information
of a wide range of methods, they were not meant to be comprehensive and other rules may also



8 RENHE JIANG ET AL.

Table II. Translation rules defined in DOC2SMT. For each rule, its CATEGORY, ID, and DEFINITION.
CATEGORY ID DEFINITION

Condition CT1 {}=X >({}=Y >{lemma:if}) >advcl:else{}=Z→if [Y] then [X-Y-Z] else [Z] endif
Translation CT2 {}=X >advcl:if{}=Y → if [Y] then [X-Y] else not(change()) endif

Quantifier QT1 {}=X 0,2>>({lemma:all|each}=Y >nmod:of{}=Z) → [>nmod(X-Y,>det(Z,Y-Z))]
Introduction QT2 {}=X 0,2>>({}=Y >det.*{lemma:all|each}=Z 0,2>>nmod.*{tag:NN.*}=M) → [M].[

copy(Y)]->forAll([copy(Y)]|[X-Z-M])
QT3 {}=X 0,2>>({}=Y >{lemma:some|one}=Z) → [Y-Z]->exists([copy(Y)]|[X-Z])

Boolean
Evaluation

BE1 {tag:NN.*}=X >nsubj{tag:NN.*}=Y >{lemma:between} >conj:and{tag:NN.*}=Z
→ [Y].greater([copy(X)],specifyfrominclusive) and [Y].less([copy(Z)],

specifytoinclusive)
BE2 {lemma:less|greater}=X >nsubj{tag:NN.*}=Y >>nmod.*|dep{tag:NN.*}=Z [

!>>{lemma:equal|strictly} | >>{lemma:inclusive}] → [Y].[copy(X)]([Z],
specifyinclusive)

BE3 {lemma:less|greater}=X >nsubj{tag:NN.*}=Y >>nmod.*|dep{tag:NN.*}=Z >>{lemma:
equal} ! >>{lemma:inclusive} → [Y].[copy(X)]([Z],true)

BE4 {lemma:less|greater}=X >nsubj{tag:NN.*}=Y >>nmod.*|dep{tag:NN.*}=Z >>{lemma:
strictly} ! >>{lemma:inclusive} → [Y].[copy(X)]([Z],false)

Passive PA {tag:VBN}=X {tag:NN.*}=Y {tag:VB.*}=Z >nsubj.*(X,Y) >auxpass(X,Z)
to Active → [>dobj(X-Y-Z,Y)]

Condition
Translation

CT {}=X 0,3>>conj:or{}=Y 0,3>>({}=Z >{lemma:if} >>{lemma:such}) → if [Z] then [
Y-Z] else [X-Y-Z] endif

Sentence SD1 {}=X >ccomp{}=Y → [X-Y] and [Y]
Decompose SD2 {}=X 0,2>>neg{lemma:no|not}=Z:{}=X ! >{{tag:VB.*|JJ.*} >{}=Z)→not([X-Z])

SD3 {tag:VB.*}=X >conj:and{tag:VB.*}=Y → [X-Y] and [replace(X,Y,X-Y)]

Noun Compo. NC {tag:NN.*}=X {}=Y >amod|compound(X,Y) → [Y][X-Y]

Noun NM1 {}=X 0,3>>nmod.*{tag:NN.*}=Y → [X-Y]
Modifier NM2 {}=X 0,3>>nmod.*{tag:NN.*}=Y → [Y].[X-Y]

NM3 {}=X 0,3>>nmod.*{tag:NN.*}=Y → [X-Y]([Y])
NM4 {}=X 0,3>>nmod.*{tag:NN.*}=Y → [Y]

Verb Dobj VD1 {}=X >dobj{{tag:NN.*}=Y >acl.*{}=Z) → [Y] implies [>dobj(X-Y,copy(Y))]
VD2 {}=X >dobj({tag:NN.*}=Y >acl.*{}=Z) → [Y] and [>dobj(X-Y,copy(Y))]
VD3 {}=X >dobj{tag:NN.*}=Y → [X-Y]([Y])

Verb Nsubj VN {}=X {tag:NN.*}=Y >nsubj(X,Y) → [Y].[X-Y]()

Adjective AC {tag:NN.*}=X >acl.*{tag:VB.*}=Y
Clause → [>nmod(Y,X-Y)]

Terminal TE {}=X not >nmod.*(X,{}) → [copy(X)]

This TR {lemma:CN1|CN2}=X {lemma:this|the}=Y >det(X,Y) not >(X,{word:specified})
Reference → self

*specifytoinclusive, specifyfrominclusive, specifyvalue, and specifyinclusive
are all placeholders. They are to be replaced by parameters of the method under consideration.

be essential for DOC2SMT to support the effective translation of expressions that are specific to
certain problem domains. In particular, we expect new rules need to be introduced to handle the
following two types of scenarios that often occur in library documentations. First, constraints may
be implied, instead of explicitly stated, in documentations and parts of a sentence may be omitted
when they can be easily figured out (by human readers) from the context. In such cases, extra
rules can be introduced to add the implicit or omitted information back during translation. Consider
the method summary in Figure 7 for example. Verb replace is missing its complement “with
something” and, judging from the context, “something” here should be parameter v of the method.
To make the information complete in the translation, a new rule with a placeholder could be added.
Second, certain domain specific operations can be expressed in different ways in documentations,
and additional rules can help identify and equate those expressions. For example, we could define
a new rule to stipulate that phrase there is an o in c is equivalent to phrase c contains o and
therefore it can be translated into c.contains(o). Note that DOC2SMT does not differentiate rules
based on when or how they were introduced: To support the generation of functional constraints for
more library methods, existing rules can be revised and/or extended and new rules can be added .

Given that translation rules like BE2 refer to unspecified values from the context via placeholders
like specifyinclusive, DOC2SMT applies parameter substitution to replace such placeholders with



DOCUMENTATION-BASED FUNCTIONAL CONSTRAINT GENERATION FOR LIBRARY METHODS 9

Input: G: a dependency graph;
Σ: a sorted set of translation rules

Output: Π: a set of strings as the translation result
1 function TRANSLATE(G,Σ)
2 if G.nodeCount() == 1 then
3 Π← {G.nodes().first().getLemma()} ;
4 else
5 Π← ∅ ;
6 foreach σ ∈ Σ do
7 action← σ.getAction() ;
8 matcher ← σ.getPattern().match(G) ;
9 while matcher.hasNextMatch() do

10 match← matcher.getNextMatch() ;
11 ∆← {action} ;
12 foreach grop ∈ action.getGrops() do
13 G′ ← grop.apply(G,match) ;
14 Π′ ← TRANSLATE(G′,Σ) ;
15 ∆←

⋃
δ∈∆

⋃
π∈Π′ δ[grop/π] ;

16 end
17 Π← Π ∪

⋃
δ∈∆ δ.toString() ;

18 end
19 end
20 end
21 return Π;

Figure 8. Algorithm to translate a dependency graph into a list of candidate constraint clauses in OCL.

proper values after applications of the corresponding rules. For instance, specifyinclusive should
be replaced with a boolean value that indicates whether a comparison should return true or not
when the value under consideration is equal to the threshold value. Similarly, since translation
rules like VD1 surround each object of a verb with a pair of parentheses, while all the parameters
should be placed inside a single pair of parentheses and separated with commas if we regard the
verb as denoting an operation, DOC2SMT applies parentheses elimination to remove redundant
parentheses around parameters and adding commas between them when necessary. For example,
parentheses elimination will change an invocation map(key)(value) to map(key,value). Note
that both parameter substitution and parentheses elimination are always applied at the end of the
translation process, i.e., right before the OCL expressions are generated for the whole dependency
graphs.

3.2.2. Translation Algorithm. When translating a piece of text, multiple rules may be applicable at
the same time, and different application orders of the rules most likely will lead to distinct translation
results. To avoid missing out the right translations, DOC2SMT enumerates all possible ways, instead
of prematurely committing itself to a number of selected options when doing the translation. Having
said that, DOC2SMT attempts first rules that tend to manipulate larger chunks of texts. For instance,
rule CT3 is often applied before rule PR, since the former reorganizes several phrases while the
latter replaces a single phrase.

Given a dependency graph G and a set Σ of translation rules, sorted in decreasing order of
the size of texts they manipulate, function TRANSLATE shown in Figure 8 translates G into a set
of OCL expressions in string by iterating through all the possible ways to apply the rules in Σ.
More concretely, if G contains a single node, the function simply returns the lemma of that node
(lines 2 and 3). Otherwise, the function takes each rule σ from Σ (line 6), and then repeatedly finds
subgraphs in G that match the pattern specified in σ and applies the action defined in σ to produce



10 RENHE JIANG ET AL.

the translations (lines 8 through 18). When applying an action to a matched subgraph, the function
uses a set ∆ to temporarily store the intermediate translation results produced by executing some of
the graph operations defined in action: For each grop defined in action (line 12), first the grop is
applied on the match to produce an intermediate graph G′ (line 13), then function TRANSLATE is
recursively invoked to turn G′ into a set Π′ of strings using rules from Σ, and next each string from
Π′ is used to replace the corresponding grop in ∆. All the translation results are collected into Π
(line 17) and returned (line 21).

Applying rule-based translation to Gs produces a set Es of candidate OCL expressions in string
format. When the method returns a non-void value, another set Er of candidates OCL expressions
is generated from Gr by following the same process. Without loss of generality, we assume
Er = {true} when the method return type is void.

3.3. Library Domain Model and Static Validation

Through rule-based translation, DOC2SMT often produces a large number of constraint clauses in
OCL for a method. We propose to use a domain model to help determine which constraint clauses
are appropriate and apply static validation in two phases to allow for an incremental preparation of
the model.

Since all the containing types of the target methods and the public members of those types are
clearly essential for the problem domain under consideration, DOC2SMT automatically extracts
those elements from the corresponding class documentations and builds a primitive domain model
based on them. More concretely, the primitive domain model contains 1) all the containing types
of the target methods and their supertypes, 2) all the public members of those types, and 3)
all the inheritance/implementation relations between those types. Note that DOC2SMT does not
automatically follow USE-A or HAS-A relations to include more types into the primitive domain
model, which helps keep the resultant model small. For example, the primitive domain model
constructed for method TreeMap.replace will include types like Object, Map, Entry, and TreeMap

and methods like size and empty, where Entry is a public inner class of Map.
While the primitive domain model contains important information about the problem domain, it

may miss some of the properties and operations of those types. In particular, model elements that are
not directly part of the types’ public interfaces but facilitate the expression of the types’ functional
specifications are seldom included in the primitive domain model. For example, the documentations
of quite a few methods from class Map mention the concept of “the entry for the specified key”. While
it would be desirable to have an element in the domain model to reflect this concept, it is not the
case with the primitive model since no public member of the class captures the concept. To identify
the useful, but missing, domain model elements, DOC2SMT statically checks the well-formedness
of those OCL expressions against the primitive domain model and reports validation errors due to
missing elements (i.e. properties and/or operations) from the model in descending order of their
occurrence numbers in phase I static validation. Note, however, that not all reported errors are
caused by problems with the primitive domain model. Due to the permissiveness of the translation
rules, DOC2SMT may produce inappropriate expressions that make no sense in the problem domain.
Errors reported on such expressions should simply be ignored. A user can then browse through the
list of errors, decide which errors actually indicate elements to be added to the domain model, and
manually enhance the model accordingly.

Once we have the manually enhanced domain model, phase II static validation is conducted to
prune out OCL expressions that fail to validate. For instance, clause a) in Figure 5 will be considered
invalid since it refers to a property k of value, which, however, does not exist in the domain model.
Constraint clauses that do not cause any errors in phase II static validation are referred to as well-
formed clauses.

Note that, while the well-formed clauses are in the OCL syntax, they do not necessarily
adhere to the OCL standard specification, since they may contain calls to non-pure operations
from the problem domain. For example, clause c) in Figure 5 invokes an overloaded version of
method replace, which may modify the receiver TreeMap object. We use OCL expressions as
the intermediate representation of the constraints to enable, with the help of an OCL expression



DOCUMENTATION-BASED FUNCTIONAL CONSTRAINT GENERATION FOR LIBRARY METHODS 11

Table III. Syntax-directed translation from types and operations in OCL to those in SMT-LIB.

OCL SMT-LIB

Integer/Real/String/Boolean Int/Real/String/Bool
SequenceType (declare-datatypes (T)((List (mk-list (elements (Seq T))))))
SetType (declare-datatypes (T)((Set (mk-set (mapping (Array T Bool))))))

*, +, -, / *, +, -, /
and, or, not, implies and, or, not, =>
src->forall(var|body) (forall ((x var-type))(=> (select x in src)(body)))
src->select(var|body) (forall ((x var-type))(and (select x in src)(ite body (select x

in result)(not (select x in result)))))
src->exists(var|body) (exists ((x var-type))(and (select x in src)(body)))
if c then e1 else e2 endif (ite c e1 e2)

1 entry(Object)
2 (= ?r ((as mk-entry) ?p1 (select (mapping ?p0) ?p1)))

Figure 9. SMT-LIB constraint for meta-operation entry from class TreeMap.

validator, the easy identification of valid relations among types, properties, and operations in the
problem domain and to effectively prune out most invalid relations suggested by the permissive
translation process OCL2SMT implements.

Let Ws and Wr be the set of well-formed clauses from Es and Er (Ws ⊆ Es,Wr ⊆ Er),
respectively. Since a functional constraint is expected to satisfy all the requirements specified in
both the method summary and the method return value description, DOC2SMT computes a set
C = {(e1) and (e2) | e1 ∈Ws, e2 ∈Wr} as the set of candidate constraints for the method. Each
candidate constraint c ∈ C is a predicate on P and Q.

3.4. OCL to SMT

Candidate constraints are then translated to the SMT-LIB [14, 15] format via a syntax-directed
process [16]. Table III lists the rules that DOC2SMT applies to translate the built-in OCL types
and operations into declarations and expressions in SMT-LIB. Note that literal values and variables
are not changed during the translation, while invocations to non-built-in operations in OCL are
translated into SMT-LIB expressions that encode the semantics of the operations, using a technique
similar to the one proposed by Jiang et al. [17]. Consider an operation f that has a specification S
in SMT-LIB and is invoked in a candidate constraint for example. To translate the invocation to f to
SMT-LIB, DOC2SMT first instantiates S using a unique variable for each input and output formal
parameter of f and then binds the corresponding actual parameters with those unique variables.

The translation of operations like entry in Figure 5.c, however, need special treatments, since
the semantics of those operations is neither readily available nor producible by DOC2SMT. We
refer to such operations as meta-operations. DOC2SMT automatically identifies meta-operations
and demands their semantics to be provided in SMT-LIB as part of the enhanced domain model.
For example, Figure 9 gives the required semantics of meta-operation entry from class Map, where
?p0 and ?p1 are placeholders for the receiver and parameter objects, respectively, while ?r is the
placeholder for the return value of the operation.

3.5. Dynamic Validation and Valid Constraints

Given a candidate constraint c for methodm, c is a correct, i.e., both sound and complete, functional
constraint if and only if both the following two conditions C1 and C2 are fulfilled.

Condition C1 stipulates that c(p, q) is a necessary condition for m(p) = q, i.e., m(p) = q ⇒
c(p, q). Intuitively, condition C1 requires that, for each pair of p and q, they should satisfy
constraint c if the output of m(p) is q. All pairs of p and q satisfying m(p) = q, however, are
infeasible to exhaustively enumerate in practice, therefore DOC2SMT relaxes the condition and



12 RENHE JIANG ET AL.

checks in dynamic validation whether c(p, q) is necessary for m(p) = q w.r.t. a limited number of
samples. Specifically, DOC2SMT implements a random algorithm [18] to automatically generate a
representative group T1 of tests for m and checks, for every test t ∈ T1, whether the input values p1

and output values q1 of t satisfy c, i.e., whether c(p1, q1) holds. If that is the case, condition C1 is
satisfied w.r.t. T1.

Condition C2 stipulates that c(p, q) is a sufficient condition for m(p) = q, i.e., c(p, q)⇒ m(p) =
q. Intuitively, condition C2 requires that, for each pair of p and q, using p as the input to invoke m
should produce q as the result if p and q satisfy constraint c. Similarly, since it is often infeasible
to enumerate all such pairs of ps and qs, DOC2SMT checks in dynamic validation whether c(p, q) is
sufficient for m(p) = q w.r.t. a limited number of samples. In particular, DOC2SMT utilizes the off-
the-shelf constraint solver Z3 [19] to gather a set S1 of solutions for c and checks, for each solution
〈ps, qs〉 ∈ S1, whether the output of m upon input ps is equal to qs. If that is the case, condition C2
is satisfied w.r.t. S1.

If both conditions C1 and C2 are satisfied w.r.t. the considered samples, DOC2SMT reports c
as valid. Although dynamic validation does not provide full guarantee the valid constraints are
indeed correct, because the validity is only w.r.t. a limited number of input/output pairs, most of
the generated valid constraints actually turned out to be sound and complete in our experimental
evaluation described in Section 4.

If given enough time, DOC2SMT may be able to report multiple valid constraints for some
methods. However, the tool terminates immediately after the first valid constraint is found during
dynamic validation mainly because we feel the necessity for DOC2SMT to generate multiple valid
constraints is limited in practice. First, since the correctness of each valid constraint needs to be
determined manually, we are more interested to have the correct constraints as the first results
returned by DOC2SMT. Second, given that each valid constraint produced by DOC2SMT should hold
on all the test inputs and outputs gathered via automated test generation, those valid constraints often
have quite similar or even equivalent semantics, especially when a good number of tests are used
for their validation. Having said that, we plan to experimentally evaluate the differences between,
and the usefulness of, multiple valid constraints in the future to get a broader view of the tool’s
capabilities.

3.6. Implementation Details

We have implemented the approach described above into a tool, also named DOC2SMT. The tool
employs the Stanford CoreNLP Toolkit [12] to build the dependency graphs and find matches
for patterns in translation rules. Domain models are constructed based on the Eclipse Modelling
Framework [20] (EMF). The Eclipse OCL Toolkit [21] is used to statically validate constraint
clauses against domain models and translate candidate constraints into the SMT-LIB format.

It, however, is important to note that DOC2SMT is not tightly bound to any of the specific tools
it uses. Other tools providing similar functionalities can be easily integrated into DOC2SMT and
replace existing components.

4. EVALUATION

We conduct an experimental evaluation on DOC2SMT to address the following research questions:

RQ1: How effective is DOC2SMT? In RQ1, we carefully analyze for how many methods
DOC2SMT is able to generate functional constraints and what is the quality of the generated
functional constraints;

RQ2: How efficient is DOC2SMT? In RQ2, we focus on the costs of applying DOC2SMT to
generate functional constraints;

RQ3: How scalable is DOC2SMT? In RQ3, we apply DOC2SMT to generate functional constraints
for additional methods and measure the required amount of manual effort in terms of the
numbers of translation rules and domain model elements that need to be manually added.



DOCUMENTATION-BASED FUNCTIONAL CONSTRAINT GENERATION FOR LIBRARY METHODS 13

Table IV. Subject methods used in experiments to answer RQ4. For each CONTEXT class, the number
of subject methods selected from the class (#M) and the SUBJECT CLASSES used in the class. Class
Collections is from package java.util, class IOUtils is from package org.apache.commons.io, while all

the other context classes are from package org.apache.commons.collections4.

CONTEXT #M SUBJECT CLASSES

Collections 8 Collection, List
CollectionUtils 2 Collection, Set, HashSet
ListUtils 5 Collection, Set, HashSet, List, ArrayList, Map, HashMap
MapUtils 1 Map
IOUtils 8 Reader, Writer, InputStream, OutputStream

TOTAL 24 -

RQ4: How useful are the generated constraints? In RQ4, we apply the functional constraints
generated by DOC2SMT for all the subject methods to facilitate symbolic-execution-based
test generation and assess the usefulness of the constraints in terms of how many more tests
they can help produce.

4.1. Subjects

To answer RQ1 and RQ2, we choose 19 common container classes from the Java Collections
Framework† (JCF) as our subject classes. The container classes are notorious for their complexity
that affects program analysis. To answer RQ3, we choose 5 frequently used classes from the java

.io package of JDK as additional subject classes. These IO classes are widely used in applications
to access external data. All the 24 subject classes are among the most widely used libraries and
they significantly increase the complexity of program analysis tasks. Columns CLASS and #M of
Tables V and VII list the 24 subject classes and the number of subject methods chosen from each
class. To answer RQ4, we gather in total 24 utility methods from the JCF and the Apache Commons
project‡ that manipulate only objects of the subject classes studied in RQ1, RQ2, and RQ3. Table IV
gives basic information about the context classes of those methods and the subject classes used in
each context class.

4.2. Experimental Protocol

To answer RQ1 and RQ2, for each subject method from the 19 Java collections classes, we first use
a simple script to extract its profile information from the corresponding class documentation and
introduce necessary rules to DOC2SMT so that it can effectively translate the profile information
of the subject methods into OCL. Then, we construct a primitive domain model by automatically
extracting types and their public members from the class documentations, identify important
missing elements from the primitive domain model by running phase-I static validation and
gathering missing element errors reported by DOC2SMT whose occurrence numbers were greater
than 10. Next, we add model elements that are truly missing to produce an enhanced domain model
and obtain syntactically well-formed OCL candidate constraint clauses by running phase-II static
validation. In the end, we apply DOC2SMT to translate the obtained OCL constraints to SMT-LIB
and dynamically validate them against the corresponding method implementations via testing.

To answer RQ3, we repeat the above process on methods from the 5 Java IO classes, but using
all the available translation rules and the enhanced domain model from the previous experiments as
the basis. Such setting is in line with how DOC2SMT is supposed to be used in practice. That is,
both the translation rules and the domain model used in earlier applications of DOC2SMT could be
accumulated and reused to make future applications of the tool less expensive.

We decide whether a valid SMT-LIB constraint produced by DOC2SMT is correct or not through
manual inspection. We are aware that manual assessment may cause a major threat to the construct

†https://docs.oracle.com/javase/8/docs/technotes/guides/collections/
‡https://commons.apache.org/

https://docs.oracle.com/javase/8/docs/technotes/guides/collections/
https://commons.apache.org/


14 RENHE JIANG ET AL.

Figure 10. Enhanced domain model used in the experiments. Note that public methods defined in the types
have been omitted for space reasons.

validity of our findings. To mitigate the threat, two authors independently examine the quality of
each valid constraint reported by DOC2SMT, and a constraint is only marked as correct if both
authors agree that the constraint properly captures all the normal functionalities of the corresponding
method.

In each application of DOC2SMT in our experiments, the tool spends at most 2 minutes on each
phase of static validation, it generates at most 100 different tests for each method, it finds at most 100
solutions for each candidate constraint in dynamic validation, and the time out for each invocation
to Z3 is set to 20 seconds. We record the following measures for the run of DOC2SMT on each
method:

#OCL: number of OCL constraint clauses generated from method profile information;
#OCLWF: number of well-formed constraint clauses in OCL retained after static validation;
#OCLDV: number of well-formed candidate constraints that have been dynamically validated until a

valid one is found;
#SOLU: number of solutions the Z3 solver produces for all the candidate constraints;
#TEST: number of tests generated for all the methods;

T: wall-clock running time of DOC2SMT;
TG: wall-clock time for OCL expression generation;

TSV: wall-clock time for static validation;
TDV: wall-clock time for dynamic validation;

To answer RQ4, we employ two symbolic-execution-based test case generation tools, namely
Symbolic Pathfinder (SPF) and Enhanced SPF (ESPF), to generate test cases for the 24 utility
methods. SPF [22] is built on the top of the Java PathFinder (JPF) model checker, while ESPF [23]
extends SPF and is able to make use of available method specifications in SMT during its analysis. In
particular, ESPF modified the interpretation of invoke instructions in SPF in such a way that, when
an invocation to a method with specification in SMT is encountered, the specification is incorporated
directly in the same way as is done during the translation from OCL to SMT (Section 3.4).

Each test case generation session with (E)SPF starts with a single initial test for the method under
consideration in our experiments. During test generation, (E)SPF gathers the path conditions of the
executed tests, flips the values of their branch conditions to form new path conditions, and sends



DOCUMENTATION-BASED FUNCTIONAL CONSTRAINT GENERATION FOR LIBRARY METHODS 15

Table V. Results produced by DOC2SMT on 19 Java collections classes. For each subject CLASS, the number of methods
processed (#M), the numbers of valid (#V) and correct (#C) functional constraints in SMT-LIB produced (SMT), and the

other measures defined in Section 4.2. All times are in seconds.

CLASS #M SMT #OCL S-V D-V TIME

#V #C #OCLWF #M’ #OCLDV #SOLU #TEST T TG TSV TDV

Collection 19 9 9 604K 160 13 32 644 900 2253.6 0.7 3.5 2246.7
AbstractCollection 14 8 8 569K 125 12 31 602 1200 3073.1 15.1 24.4 3033.6
Set 16 11 11 2737K 142 13 25 812 1100 2802.0 0.7 113.0 2576.0
AbstractSet 3 2 2 33K 19 2 2 133 200 444.2 0.3 2.6 441.3
HashSet 9 8 8 65K 37 8 8 530 800 1354.2 0.3 6.0 1342.3
SortedSet 7 5 5 862K 16 5 5 410 500 1085.3 0.5 39.4 1045.5
NavigableSet 15 14 13 4657K 137 14 22 1193 1400 3047.6 11.9 390.2 2645.5
TreeSet 27 24 23 4831K 192 25 34 1884 2400 5275.5 1.7 380.0 4515.4
List 28 17 17 13901K 206 21 28 704 1418 1720.4 1.6 377.0 966.4
AbstractList 16 10 10 1552K 82 12 18 376 824 864.2 2.0 58.3 803.9
AbstractSequentialList 7 5 5 98K 33 6 12 191 331 526.9 0.5 4.5 522.0
ArrayList 31 16 16 14415K 234 20 27 758 1362 1799.8 1.2 377.0 1045.9
LinkedList 40 34 33 13864K 483 37 48 1473 3152 2538.5 1.7 297.8 1942.9
Map 25 15 15 10077K 222 18 21 908 1439 3263.1 10.1 425.8 2411.5
AbstractMap 16 12 12 797K 93 13 13 686 1158 2084.6 1.6 79.9 2003.2
HashMap 24 15 15 10141K 213 18 23 839 1445 4019.8 9.2 410.1 3199.6
SortedMap 9 7 7 840K 17 8 8 369 700 944.5 0.9 32.6 911.0
NavigableMap 21 19 19 5204K 159 19 19 1478 1900 4188.8 2.8 780.7 3405.3
TreeMap 40 33 33 8506K 288 35 39 2223 3245 7325.5 3.7 948.3 5428.9

Total 367 264 261 93753K 2858 299 415 16213 25474 48611.6 66.5 4751.1 40486.9

each new path condition to the Z3 solver. If the solver can find a solution to the new path condition
and a test can actually be constructed using the solution to exercise a new path, a new test has been
generated. In this way, (E)SPF is able to produce a group of new tests, each covering a distinct path
than the initial test does. Here, we configure SPF and ESPF to run on each method until either 100
different tests have been generated or a 2-minute time limit has been reached, and we record the
number of new tests generated. Our choice of such stop criterion is motivated by the “small-scope
hypothesis” [24], which claims that many defects can be triggered with small inputs and witnessed
using short executions.

Our experiments were conducted on a desktop computer running Ubuntu 16.04 on a Intel Core
i7-6700 CPU (3.4GHz) and 16G RAM.

4.3. Experimental Results

In this section, we report the experimental results and answer the four research questions.

4.3.1. RQ1: Effectiveness. Table V shows that, in total, DOC2SMT was able to generate valid
constraints for 264 of the 367 subject methods, and 261 of the 264 valid constraints were
unanimously considered correct. In other words, functional constraints generated by DOC2SMT
achieved an overall recall of 71.1% and an overall precision of 98.9%. Such results strongly suggest
that DOC2SMT is not only highly applicable but also effective in producing high quality constraints
for library methods.

The constraints DOC2SMT generated for methods NavigableSet::descendingSet, TreeSet::
descendingSet and LinkedList::pollLast were valid but incorrect. The first two methods should
return a set of the same elements from the original set but with a reversed navigation order. Since we
did not provide the meta-operation to properly test the equality of navigable set objects, DOC2SMT
had to make do with the semantics of a more general comparison operator defined for set objects
during dynamic validation. The criteria for valid constraints were therefore weaker than what they
should be, allowing the incorrect constraints to survive the dynamic validation. The third method
should retrieve and remove the last element of a list, or return null if the list is empty. For the
method, DOC2SMT failed to generate any test that can expose the discrepancy between the result
constraint and the method’s semantics in its current settings. While DOC2SMT also generated the



16 RENHE JIANG ET AL.

correct constraint for the method, the constraint was further down the list of all candidates and
therefore missed by the tool.

DOC2SMT failed to produce any valid constraint for 103 methods. We manually checked those
methods and identified four reasons for the failures: 1) DOC2SMT failed to produce any well-formed
constraint clause for 67 methods due to incomplete domain model. More concretely, iterator types
like Spliterator and Listiterator, function types like BiFunction and Predicate, and other types
with specifications that are highly implementation-dependent like Comparator were not included in
the enhanced domain model, which caused unsuccessful generation of functional constraints with
DOC2SMT on 19, 21, and 27 methods, respectively. For example, since type Comparator is not part
of the domain model, while method TreeMap::comparator returns an object of type Comparator,
DOC2SMT could not generate any candidate constraint clause in OCL for the method that passes
the static validation; 2) For 10 other methods, while DOC2SMT was able to generate the correct
candidate constraints, the constraints were pruned out during dynamic validation since the Z3
solver was not able to find any solution to them. For example, while the generated constraint for
method TreeMap::values correctly stipulates that the result collection contains all the symbols in
the map that are associated with a particular key, it is regarded invalid since Z3 returned unknown

when solving the constraint; 3) Due to limitations in the linguistic analysis, DOC2SMT was
not able to properly handle the method profile information and produced only invalid constraints
on 11 methods. For example, when dealing with method TreeMap::replace(K key, V oldvalue

, V newvalue), DOC2SMT did not correctly understand the corresponding documentation and
failed to generate the correct constraint "if map(k,oldvalue) then replace(entry(k),newvalue) else
equals(self@pre) endif"; One possible way to (at least partially) overcome this limitation is to
utilize the semantic information derived from a method’s implementation to help infer the method’s
semantics, as was proposed by Blasi et al. [11]. 4) DOC2SMT failed to generate any constraint
that encode the complete semantics on 15 methods, because some aspects of the corresponding
semantics was only implied, rather than explicitly provided, in the documentations. As the result,
even if DOC2SMT was able to generate constraints that faithfully reflect the documentations, the
constraints were invalidated during dynamic validation. For example, the documentation for method
Set::toarray explicitly requires that the result should contain all elements in the set, but not
that the result should only contain elements from the set. Therefore, the constraints generated by
DOC2SMT reflect only the weak specification given in the method documentation and failed to
validate dynamically because they admit solutions that do not comply with the actual dynamic
behaviors of the method.

As listed in Table V, DOC2SMT generated over 90 million candidate constraint clauses for
the 367 subject methods, among which only 2858 constraint clauses for 299 methods validated
successfully against the enhanced domain model and were well-formed. After dynamically checking
679 (=415+264) constraints, DOC2SMT reported valid results for 264 methods. These numbers
suggest that DOC2SMT explored a fairly large space in constructing candidate constraint clauses,
and its remaining steps were effective in pruning out the invalid constraint clauses and reporting
only the ones of high quality.

DOC2SMT generated valid constraints for 264 of the 367 subject methods and 261 of those
generated constraints were correct, achieving a recall of 71.1% and a precision of 98.9% overall.

4.3.2. RQ2: Efficiency. Since functional constraint generation with DOC2SMT is not fully
automated, we examine the efficiency of the tool from two different aspects, i.e., the time costs
for running the DOC2SMT tool and the manual effort required to prepare some of the necessary
inputs.

Table V also shows the amount of time DOC2SMT took to produce the valid constraints and its
breakdown into the amount of time spent on each of the three main steps, i.e., candidate constraint
generation, static validation, and dynamic validation. It took DOC2SMT around 13.5 hours in total
to produce the results, averaging to 42.6 minutes for each class or 3.1 minutes for each correct
constraint. Among the three main steps, dynamic validation is by far the most time-consuming,



DOCUMENTATION-BASED FUNCTIONAL CONSTRAINT GENERATION FOR LIBRARY METHODS 17

Table VI. Additional translation rules for translating the documentations of the 19 Java collection classes.
CATEGORY ID DEFINITION

Pronoun
Replacement

PR {}=X {tag:NN.*}=Y {lemma:it|they}=Z 0,2>>(X,Y) 0,2>>(X,Z) not 0,2>>(Y,Z) → [
rep(Z,deepCopy(Y),X)]

Quantifier
Introduction

QT {}=X 0,2>>({}=Y >det.*{lemma:all|each}=Z ! 0,2>>nmod.*{}) → [copy(Y)]->forAll
([copy(Y)]|[X-Z])

Sentence SD {tag:VB.*}=X >conj:but{{tag:VB.*}=Y >neg{}=Z)
Decompose → [replace(Y,X-Y,Y-Z)]

Boolean
Evaluation

BE1 {tag:NN.*}=X >nsubj{lemma:index}=Y >{lemma:between} >conj:and{tag:NN.*}=Z →
[copy(X)] <= [Y] and [Y] < [copy(Z)]

BE2 {lemma:range}=X >nsubj{tag:NN.*}=Y >nmod:from({tag:NN.*}=Z >nmod:to{tag:NN
.*}=M) → [Y].greater([copy(Z)],specifyfrominclusive) and [Y].less([copy(M)],
specifytoinclusive)

BE3 {tag:NN.*}=X >amod.*{lemma:greatest|least}=Y 0,2>>amod.*{}=Z : {}=Y ! ==
{}=Z → [X-Y-Z]->select([copy(X)]|[>nsubj(Z,X-Y-Z)])->collect(x|x.oclAsType(
Integer))->[copy(Y)]().oclAsType(Object)

Adjective AC {}=X >ref{lemma:whose} >acl.*{{tag:NN.*}=Z >nsubj{}=M)
Clause → [>nsubj(Z-M,>nmod:of(M,copy(X)))]

Special
Structure

SS1 {lemma:be}=X {lemma:there}=Y {tag:NN.*}=Z >expl(X,Y) >nsubj(X,Z) →
contains([Z])

SS2 {tag:VB.*}=X >=M {lemma:element}=Y >nmod:at {}=Z → [>M(X-Y-Z,>dobj({
lemma:get;tag:NN},Z))]

Implicit
Constraint

IC1 {lemma:replace}=X >dobj {lemma:entry}=Y ! >nmod.* {} → [X-Y]([Y],
specifyvalue)

IC2 {lemma:index}=X >nmod:of {}=Y→ [>dobj({lemma:indexof;tag:NN},Y)]
IC3 {lemma:element}=X >nmod:at {}=Y→ [>dobj({lemma:get;tag:VB},Y)]
IC4 {word:contained}=X >nsubj {}=Y >nmod.* {tag:NN.*}=Z→ [>nmod(Y,Z)]
IC5 {lemma:view}=X 0,2>>nmod:of {lemma:collection|.*list|.*set}=Y →

result.element->forAll(element|contains(element)) and [Y]
IC6 {lemma:view}=X 0,2>>nmod:of {lemma:.*map}=Y → result.entry->forAll(

entry|contains(entry)) and [Y]
IC7 {lemma:view}=X 0,2>>nmod:of {tag:NN.*}=Y > {lemma:collection|set} →

result.element = [copy(Y)]
IC8 {lemma:set}=X >ref {lemma:whose} >acl:relcl ({}=Y >nsubj {}=Z) →

[X-Y].[copy(Z)]->forAll([copy(Z)]|if [Y] then result.contains([copy(
Z)]) else not(result.contains([copy(Z)])) endif)

IC9 {lemma:map}=X >ref {lemma:whose} >acl:relcl ({}=Y >nsubj {}=Z) →
[X-Y].[copy(Z)]->forAll([copy(Z)]|if [Y] then result.containskey([
copy(Z)]) else not(result.containskey([copy(Z)])) endif)

accounting for 83.3% of the overall generation time, since it involves generating and running many
tests on each method.

Manual effort was required in our experiments to devise the domain specific translation rules,
to enhance the primitive domain model, and to craft SMT constraints encoding the semantics of
meta-operations. To support the translation of the methods’ profile information into OCL, besides
of using 23 existing rules from Table II, we had to introduce 18 extra translation rules, as listed in
Table VI. In other words, we had to manually prepare 43.9% of the translation rules required in
these experiments. DOC2SMT constructed a primitive domain model with 22 types and 367 public
operations automatically extracted from the documentations and phase-I static validation of OCL
constraint clauses against the primitive domain model reported 261 missing element errors, of which
44 had occurrence numbers greater than 10. Since manual examination revealed that 37 of the errors
indeed reflected elements that should be part of the domain model but were missing, we added 24
properties and 13 operations to the model and produced an enhanced domain model for the classes,
as shown in the blue part of Figure 10. We also identified 26 meta-operations in the enhanced domain
model and had to manually specify their semantics in SMT-LIB.

In the end, 197, 244, and 84 methods where DOC2SMT produced correct constraints required
at least one extra translation rule, one added domain model element, and the semantics of one
new meta-operation for DOC2SMT to produce their results, respectively. In view that the generated
constraints were of high quality and that the results of the manual effort can be reused in processing
other Java library documentations in the future, we consider the overall costs for functional



18 RENHE JIANG ET AL.

Table VII. Results produced by DOC2SMT on 5 IO classes.

CLASS #M SMT #OCL S-V D-V TIME

#V #C #OCLWF #M’ #OCLDV #SOLU #TEST T TG TSV TDV

File 50 21 21 928K 32 24 26 2100 2100 319.0 55.5 72.7 190.7
Reader 10 6 6 2K 14 6 6 600 600 79.5 18.8 2.0 58.7
Writer 10 10 10 2K 19 10 10 1000 1000 116.6 2.0 1.0 113.7
InputStream 9 6 6 8371K 17 6 6 600 600 260.3 3.5 185.2 71.5
OutputStream 5 5 5 314K 9 5 5 500 500 76.5 1.1 13.1 62.3

Total 84 48 48 9617K 91 51 53 4800 4800 851.9 80.9 274 496.9

Table VIII. Additional translation rules for translating the documentations of the 5 Java IO classes.

CATEGORY ID DEFINITION

Sentence SD1 {tag:VB.*}=X >conj:and{tag:VB.*}=Y → [Y]
Decompose SD2 {tag:VB.*}=X >conj:and{{}=Y >cop{tag:VB.*})→[X-Y] and [replace(X,Y,X-Y)]

SD3 {}=X >cop{}=Y >nsubj{}=Z → [Z].[Y][X-Y-Z]
SD4 {tag:VBN}=X >nsubjpass{}=Y >auxpass{tag:VB.*}=Z → [Y].[X-Y-Z]
SD5 {tag:VBN}=X >nsubjpass{}=Y >advmod{tag:JJ}=Z → [Y].[Z][X-Y-Z]

Noun Mod. NM {}=X 0,3>>nmod.*{tag:NN.*}=Y → [Y].[X-Y]()

Special SS1 {}=X >dobj {tag:NN.*}=Y→ [Y].[X-Y]()
Structure SS2 {tag:NN.*}=X >amod {}=Y >amod {}=Z→ [Z]

SS3 {} >nsubj({lemma:number}=X >det|amod {}=Y >nmod:of {tag:NN.*})→ [Y]

Implicit
Constraint

IC1 {tag:VBN}=X >aux {lemma:can}=Y >auxpass {tag:VB.*}=Z → [>xcomp(X-Y,{
lemma:able;tag:JJ})]

IC2 {tag:VB.*}=X >xcomp {lemma:able;tag:JJ}=Y→ [X-Y][Y]
IC3 {}=X >ccomp ({}=Y >mark {tag:IN}=Z)→ [Y]

constraint generation with DOC2SMT as moderate. We leave a more systematic and quantitative
analysis of DOC2SMT’s efficiency for future work.

DOC2SMT generated correct constraints for 261 methods in 13.5 hours, averaging to 3.1 minutes
per correct constraint. A moderate amount of manual work was required to produce such results.

4.3.3. RQ3: Scalability. Table VII gives the results produced by DOC2SMT on 5 Java IO classes in
the same measures as reported in Table V. In total, DOC2SMT was able to generate valid constraints
for 48 of the 84 subject methods, and all of those valid constraints were unanimously considered
correct, producing an overall recall of 57.1% and an overall precision of 100.0%. It took DOC2SMT
14.2 minutes in total to produce the results, averaging to 2.8 minutes for each class or 17.7seconds
for each correct constraint. During the process, DOC2SMT generated over 9 million candidate
constraint clauses for the 84 subject methods, among which only 91 constraint clauses for 51
methods validated successfully against the enhanced domain model and were well-formed. After
dynamically checking 102 (=53+48) constraints, DOC2SMT reported valid results for 48 methods.
The average generation time per valid constraint on IO classes was significantly shorter than that
on collections classes. We conjecture such difference is due to two main reasons. First, most of
the generation time with DOC2SMT is spent on dynamic validation, while DOC2SMT generated
many more well-formed constraint clauses in OCL for methods from collections classes and needed
more time to prune out the invalid ones via testing. Second, constraints generated for methods from
collections classes were more complex than those for methods from IO classes, and therefore using
Z3 to solve those constraints took longer time.

The effective translation of the methods’ profile information into OCL utilized in total 31
translation rules, among which 19 were existing (i.e., from Tables II or VI) and 12, or 38.7%,
were new. Table VIII lists all the newly introduced rules. Recall that we had to manually prepare
43.9% of the translation rules required in experiments on methods from collections classes. The
different percentages clearly show that many of the translation rules can be reused in processing
new documentations, and that the required effort for manually preparing the extra translation rules
decreases significantly in later applications of DOC2SMT.



DOCUMENTATION-BASED FUNCTIONAL CONSTRAINT GENERATION FOR LIBRARY METHODS 19

Table IX. Comparison between SPF and ESPF in test case generation.

METHOD %COV ESPF SPF

#TEST ∆%COV T (MS) #TEST ∆%COV T (MS)

Collections.indexedBinarySearch 33.3% 15 66.7% 659 6 8.4% 120
Collections.reverse 25.0% 2 60.7% 175 0 0 71
Collections.max 57.1% 9 32.2% 4741 0 0 68
Collections.rotate 12.5% 12 50.0% 33352 9 31.3% 634
Collections.rotate 27.3% 13 45.1% 25084 9 45.1% 233
Collections.indexOfSubList 43.2% 98 56.8% 4442 0 0 42
Collections.lastIndexOfSubList 33.3% 93 66.7% 9094 0 0 41
Collections.disjoint 47.2% 19 41.1% 3070 0 0 42
CollectionUtils.containsAll 12.5% 96 87.5% 120084 0 0 72
CollectionUtils.containsAny 36.2% 17 38.4% 2388 0 0 81
ListUtils.intersection 11.3% 7 19.0% 98181 0 0 89
ListUtils.subtract 38.6% 99 61.4% 10347 0 0 52
ListUtils.union 45.8% 0 0 845 0 0 54
ListUtils.retainAll 32.5% 99 67.5% 45248 0 0 40
ListUtils.removeAll 47.6% 99 52.4% 24428 0 0 52
MapUtils.invertMap 32.5% 5 35.6% 3782 0 0 49
IOUtils.toByteArray 27.3% 12 61.4% 1055 0 0 47
IOUtils.writeChunked 10.8% 96 89.2% 8723 0 0 53
IOUtils.copyLarge 55.6% 83 35.3% 10624 0 0 56
IOUtils.copyLarge 40.2% 7 38.0% 24357 0 0 88
IOUtils.contentEquals 12.5% 94 87.5% 7945 0 0 55
IOUtils.skip 35.2% 85 36.9% 11543 0 0 69
IOUtils.read 66.7% 89 27.8% 9851 0 0 51
IOUtils.readLines 22.1% 79 54.2% 16885 0 0 64

Total 33.6% 1228 50.5% 476903 24 3.6% 2223

DOC2SMT constructed a primitive domain model with 9 types and 84 public operations
automatically extracted from the documentations. Phase-I static validation of OCL constraint
clauses against the primitive domain model reported 184 missing element errors, of which 25 had
occurrence numbers greater than 10. Since manual examination revealed that 24 of the errors indeed
reflected elements that should be part of the domain model but were missing, we added 10 properties
and 14 operations to the model and produced an enhanced domain model for the classes. Figure 10
shows the whole enhanced domain model that we produced at the end of the experiments, where
the elements we added to support the handling of the 5 Java IO classes are marked in red. We
also identified and provided specifications in SMT-LIB for 15 meta-operations. The numbers of
manually added domain model elements and manually specified meta-operations in experiments on
IO classes are 64.9% and 57.7% of those numbers in experiments on collections classes. Such result
complies well with the fact that collections types are more complex than IO types. In particular, the
average number of methods defined in each IO type is 12.0 (=84/7), which is 68.7% of the average
number of methods defined in each collections type, i.e., 17.5 (=367/21).

Manual effort was necessary for DOC2SMT to generate all of the 48 correct constraints.
Specifically, 37, 48, and 23 of the 48 methods required at least one extra translation rule, one added
domain model element, and the semantics of one new meta-operation for DOC2SMT to produce
their results, respectively.

The percentage of translation rules that need manual preparation decreases significantly in later
applications of DOC2SMT; The amount of other manual effort required when applying

DOC2SMT is in proportion to the complexity of the involved classes.

4.3.4. RQ4: Usefulness in test generation. Table IX lists, for each utility method, the code coverage
achieved by the single input test (%COV) as well as the number of new tests generated (#T), the extra
percentage of code covered by the new tests (∆%COV), and the total generation time in milliseconds
(T), using SPF and ESPF, respectively. Here, code coverage is measured at the level of bytecode
instructions.

Overall, ESPF generated 1228 new tests for the 24 utility methods, increasing the overall code
coverage from 33.6% to 84.1%, while SPF was only able to generate 24 new tests for 3 methods,



20 RENHE JIANG ET AL.

increasing the overall code coverage from 33.6% to 37.2%. Particularly, SPF was not able to generate
any new test on 21 methods, and it could not generate enough new tests to cover more than
80% of the method code on any of the remaining 3 methods. In contrast, ESPF generated new
tests to cover over 80% of the code for 15 methods, and it even achieved 100% code coverage
with the new tests on 9 methods. The reason for such huge difference is that SPF always uses
concrete, instead of symbolic, values when encountering objects for which it cannot generate
symbolic expressions. Under such a circumstance, no symbolic path condition will be constructed
from an execution of the code, therefore no new inputs can be generated to drive the execution
along a different path. Functional constraints produced by DOC2SMT, however, enabled ESPF to
symbolically interpret method invocations on container and IO objects and to gather symbolic path
conditions corresponding to various executions, which in the end enabled the generation of many
more tests for the utility methods. The test generation time with ESPF was 214.5 times of that with
SPF, which is understandable since little symbolic execution, and analysis in consequence, was done
during the execution of the latter.

Such experimental results provide initial, but clear, evidence that the constraints generated by
DOC2SMT can effectively facilitate symbolic-execution-based test case generation.

Functional constraints generated by DOC2SMT helped symbolic-execution-based test generation
produce 51.2 times more new tests for 24 utility methods.

4.4. Limitations

We observe several important limitations in generating strong functional constraints for library
methods with DOC2SMT.

The first limitation has to do with the types of information DOC2SMT utilizes in constraint
generation. We focus on deriving strong functional constraints from method profiles only in
this work, while other parts of the methods’ documentations often contain valuable information
about the semantics of those methods too. Therefore, one interesting direction we plan to
explore in the future is to extend the DOC2SMT approach to take the whole documentations
into account in generating the constraints. The second limitation is due to inconsistent or even
incorrect documentations. DOC2SMT assumes natural language documentations provide correct
specifications for library methods. However, previous research has shown that a significant amount
of documentations are inconsistent or incorrect w.r.t. the source code [25, 26, 27]. To overcome
this limitation, existing techniques for detecting and repairing such inconsistent or incorrect
documentations could be integrated with DOC2SMT so that constraint generation is only applied
to documentations that faithfully reflect the semantics of their corresponding methods. The third
limitation is related to the expressiveness of OCL and SMT-LIB as modeling languages. DOC2SMT
first translates natural language documentations to OCL and then produces the final constraints in
the SMT-LIB format, so it is only natural that DOC2SMT cannot generate constraints beyond the
expressing power of the two modeling languages. Note, however, that, since DOC2SMT is designed
and implemented in a way to enable easy replacement of existing modules with new ones, we do not
expect it to be difficult to incorporate more powerful modeling languages and their analysis tools,
when they become available, into DOC2SMT.

5. RELATED WORK

We review in this section research studies that have been done in the area of specification inference
and are closely related to this work.

Various techniques have been proposed to infer specifications for programs. Some approaches
infer API specifications by statically mining API usage patterns from the client code and
constructing common constraints as the specifications [28, 6, 29], while others detect invariants
by dynamically running a program and using machine learning algorithms to analyze the execution
traces [1, 2]. Recently, researchers proposed new techniques to infer specifications in a “guess and



DOCUMENTATION-BASED FUNCTIONAL CONSTRAINT GENERATION FOR LIBRARY METHODS 21

validate” fashion [30, 31, 32]. Such a technique executes a target program with initial inputs, guesses
invariants from the execution traces, looks for counter-examples to invalidate the guessed invariants,
and adapts the guesses based on the counter-examples. The process is repeated until the guessed
invariants would validate, i.e., no counter-examples can be found. There have also been approaches
that try to improve specification quality by combining dynamic analysis with static analysis [3] or
by exploiting other information, e.g., programmer-written contracts and second-order constraints,
in programs [4, 33].

Much work has been done to generate specifications from code comments and documentations
written in natural language. ALICS [8] is the first approach that analyses API documents to generate
code contracts. It translates sentences in API documentations into logical expressions based on pre-
defined shallow parsing semantic templates, and generates code-contracts from the expressions by
mapping semantic classes of the predicates to programming constructs. Tan et al. [34] propose the
@tComment approach to determine whether the exceptions thrown by a target API when some
parameters are null are consistent with the document description. Goffi et al. [10] propose the
TORADOCU approach that extracts specifications in the form of Java conditions for exceptional
behaviors from Javadoc code comments. TORADOCU applies NLP techniques to identify the
subjects and related predicates of sentences describing the exception conditions, and it matches
the subjects and predicates to Java code elements using approximate lexicographic matching. The
Java conditions extracted with TORADOCU can be used as the oracle in testing the exceptional
behaviors. DASE [35] extracts constrains that should be satisfied by valid arguments to help
symbolic execution engines explore different execution paths. Zhai et al. [9] propose to construct
model implementations for Java APIs based on documentations. The model implementations are
simpler compared to the original ones and hence easier to analyze. Blasi et al. [11] present the
JDOCTOR technique that extends TORADOCU to produce specifications for also preconditions and
normal postconditions. Motivated by the observation that syntactically different terms can have a
close semantics, JDOCTOR employs a neural network model to embed the semantics of words from
the comments and code element identifiers, and matches the predicates to code elements with the
smallest semantic distance.

While these techniques extract useful results, the specifications they infer are often weak,
in the sense that they are sound but incomplete, or hard to use in tasks like static program
analysis. To the best of our knowledge, DOC2SMT is the first NLP-based approach to generating
specifications that are good enough to be directly utilized by static program analysis techniques
like symbolic execution, which hold a high expectation for the soundness and completeness
of its input specifications. Compared with method implementations, method documentations
usually contain high level description of methods’ functionalities. Correspondingly, compared with
inferring specifications by statically or dynamically analyzing the method source code, generating
specifications from code documentations has the advantage of not having to deal with the low level
details.

DOC2SMT was inspired by the work that uses model-driven techniques to facilitate the
documentation analysis. Text2Test [36] builds models from use case specifications and it facilitates
the revision of use cases based on the construction and analysis of models. The UMTG [37]
approach applies NLP techniques to generate use case models from specifications and derives
system test cases from the generated models. OCLgen [38] complements UMTG by automatically
generating the OCL constraints to capture the pre- and post-conditions of use case steps. GUEST
[13] is a rule-based approach to extract goal and use case models from natural language requirements
documents. Bajwa et al. [39, 40] extract OCL constraints from documents based on Semantic
Business Vocabulary and Rules (SBVR).

Compared with these techniques, DOC2SMT extracts constraint clauses in OCL from method
documentations that programmers often write in plain English, prunes out syntactically ill-formed
constraint clauses with the help of a manually enhanced domain model, and translates the well-
formed OCL constraint clauses to the SMT-LIB format. Our idea of using a domain model to
manage domain knowledge in this paper was inspired by UMTG, and the design of DOC2SMT’s
translation rules was inspired by the goal extraction rules proposed in GUEST.



22 RENHE JIANG ET AL.

Given the wide use of UML/OCL as modeling language in industry, various studies have
investigated the translation of UML/OCL models to other specification languages for verification or
analysis purposes. For example, Soeken et al. [41] turn the verification of UML/OCL models into a
SAT problem by encoding those models in Boolean formula, while Anastasakis et al. [42] advocate
the use of Alloy for analyzing UML/OCL models and systematically study the transformation of
those models to Alloy. In our work, DOC2SMT employs a set of syntax-oriented rules to translate
well-formed constraint clauses in OCL to SMT-LIB. Since SMT-LIB natively supports more
data-types and operations, the translation from OCL expressions to SMT-LIB is easier and more
straightforward than that from OCL to Boolean formula. Unlike the general UML/OCL models that
UML2Alloy needs to process, the constraint clauses generated by DOC2SMT from natural language
involve only a limited subset of OCL constructs, which makes DOC2SMT’s translation from OCL
to SMT-LIB much less complex than the translation of UML/OCL to Alloy with UML2Alloy.

6. CONCLUSIONS

In this paper, we propose the DOC2SMT technique to generate strong functional constraints from
natural language documentations for library methods. DOC2SMT was able to generate correct
constraints for 309 public methods from 24 Java classes, and the average generating time is just
2.7 minutes for each correct constraint. The generated constraints also enabled symbolic-execution-
based test generation to produce 51.2 times more new tests for 24 utility methods.

ACKNOWLEDGEMENTS

This research is supported by the National Natural Science Foundation of China (61972193),
the Hong Kong RGC General Research Fund (GRF) under Grant PolyU 152002/18E, and the
Fundamental Research Funds for the Central Universities of China (14380027).

REFERENCES

1. Ernst MD, Cockrell J, Griswold WG, Notkin D. Dynamically discovering likely program invariants to support
program evolution. Proceedings of the 21st International Conference on Software Engineering, ICSE ’99, ACM:
New York, NY, USA, 1999; 213–224.

2. Csallner C, Tillmann N, Smaragdakis Y. Dysy: Dynamic symbolic execution for invariant inference. Proceedings of
the 30th International Conference on Software Engineering, ICSE ’08, ACM: New York, NY, USA, 2008; 281–290.

3. Nimmer JW, Ernst MD. Automatic generation of program specifications. SIGSOFT Softw. Eng. Notes Jul 2002;
27(4):229–239.

4. Polikarpova N, Ciupa I, Meyer B. A comparative study of programmer-written and automatically inferred contracts.
Proceedings of the Eighteenth International Symposium on Software Testing and Analysis, ISSTA ’09, ACM: New
York, NY, USA, 2009; 93–104.

5. Wei Y, Furia CA, Kazmin N, Meyer B. Inferring better contracts. Proceedings of the 33rd International Conference
on Software Engineering, ICSE ’11, ACM: New York, NY, USA, 2011; 191–200.

6. Ramanathan MK, Grama A, Jagannathan S. Static specification inference using predicate mining. Proceedings of
the 28th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI ’07, ACM:
New York, NY, USA, 2007; 123–134.

7. Singleton JL, Leavens GT, Rajan H, Cok D. An algorithm and tool to infer practical postconditions. Proceedings
of the 40th International Conference on Software Engineering: Companion Proceeedings, ICSE ’18, ACM: New
York, NY, USA, 2018; 313–314.

8. Pandita R, Xiao X, Zhong H, Xie T, Oney S, Paradkar A. Inferring method specifications from natural language api
descriptions. 2012 34th International Conference on Software Engineering (ICSE), 2012; 815–825.

9. Zhai J, Huang J, Ma S, Zhang X, Tan L, Zhao J, Qin F. Automatic model generation from documentation for java
api functions. 2016 IEEE/ACM 38th International Conference on Software Engineering (ICSE), 2016; 380–391.

10. Goffi A, Gorla A, Ernst MD, Pezzè M. Automatic generation of oracles for exceptional behaviors. Proceedings
of the 25th International Symposium on Software Testing and Analysis, ISSTA 2016, Association for Computing
Machinery: New York, NY, USA, 2016; 213–224.

11. Blasi A, Goffi A, Kuznetsov K, Gorla A, Ernst MD, Pezzè M, Castellanos SD. Translating code comments to
procedure specifications. Proceedings of the 27th ACM SIGSOFT International Symposium on Software Testing
and Analysis, ISSTA 2018, Association for Computing Machinery: New York, NY, USA, 2018; 242–253.



DOCUMENTATION-BASED FUNCTIONAL CONSTRAINT GENERATION FOR LIBRARY METHODS 23

12. Manning CD, Surdeanu M, Bauer J, Finkel J, Bethard SJ, McClosky D. The Stanford CoreNLP natural language
processing toolkit. Association for Computational Linguistics (ACL) System Demonstrations, 2014; 55–60.

13. Nguyen TH, Grundy J, Almorsy M. Rule-based extraction of goal-use case models from text. Proceedings of the
2015 10th Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2015, ACM: New York, NY, USA,
2015; 591–601.

14. de Moura L, Bjørner N. Z3-a tutorial 2011.
15. Barrett C, Fontaine P, Tinelli C. The SMT-LIB Standard: Version 2.6. Technical Report, Department of Computer

Science, The University of Iowa 2017. Available at www.SMT-LIB.org.
16. Aho AV, Lam MS, Sethi R, Ullman JD. Compilers: Principles, Techniques, and Tools (2nd Edition). Addison-

Wesley: Boston, MA, USA, 2006.
17. Jiang R, Chen Z, Zhang Z, Pei Y, Pan M, Zhang T. Semantics-based code search using input/output examples. 2018

IEEE 18th International Working Conference on Source Code Analysis and Manipulation (SCAM), 2018; 92–102.
18. Meyer B, Ciupa I, Leitner A, Liu LL. Automatic testing of object-oriented software. Proceedings of the 33rd

Conference on Current Trends in Theory and Practice of Computer Science, SOFSEM ’07, Springer-Verlag: Berlin,
Heidelberg, 2007; 114–129.

19. de Moura L, Bjørner N. Z3: An efficient smt solver. Tools and Algorithms for the Construction and Analysis of
Systems, Ramakrishnan CR, Rehof J (eds.), Springer Berlin Heidelberg: Berlin, Heidelberg, 2008; 337–340.

20. Steinberg D, Budinsky F, Paternostro M, Merks E. EMF: Eclipse Modeling Framework 2.0. 2nd edn., Addison-
Wesley Professional, 2009.

21. Christian D, Adolfo SBH, Axel U, Edward W, contributors. Ocl documentation 2018.
22. Pǎsǎreanu CS, Mehlitz PC, Bushnell DH, Gundy-Burlet K, Lowry M, Person S, Pape M. Combining unit-

level symbolic execution and system-level concrete execution for testing nasa software. Proceedings of the 2008
International Symposium on Software Testing and Analysis, ISSTA ’08, ACM: New York, NY, USA, 2008; 15–26.

23. Chen Z, Jiang R, Zhang Z, Pei Y, Pan M, Zhang T, Li X. Enhancing example-based code search with functional
semantics. Journal of Systems and Software 2020; 165:110 568.

24. Andoni A, Daniliuc D, Khurshid S, Marinov D. Evaluating the "small scope hypothesis" 10 2002; .
25. Zhou Y, Gu R, Chen T, Huang Z, Panichella S, Gall H. Analyzing apis documentation and code to detect directive

defects. Proceedings of the 39th International Conference on Software Engineering, ICSE ’17, IEEE Press, 2017;
27âĂŞ37, doi:10.1109/ICSE.2017.11. URL https://doi.org/10.1109/ICSE.2017.11.

26. Wen F, Nagy C, Bavota G, Lanza M. A large-scale empirical study on code-comment inconsistencies. Proceedings
of the 27th International Conference on Program Comprehension, ICPC ’19, IEEE Press, 2019; 53âĂŞ64, doi:
10.1109/ICPC.2019.00019. URL https://doi.org/10.1109/ICPC.2019.00019.

27. Zhou Y, Wang C, Yan X, Chen T, Panichella S, Gall H. Automatic detection and repair recommendation of
directive defects in java api documentation. IEEE Transactions on Software Engineering 2020; 46(9):1004–1023,
doi:10.1109/TSE.2018.2872971.

28. Kremenek T, Twohey P, Back G, Ng A, Engler D. From uncertainty to belief: Inferring the specification within.
In Proceedings of the Seventh Symposium on Operating Systems Design and Implemetation, USENIX Association,
2006; 161–176.

29. Nguyen HA, Dyer R, Nguyen TN, Rajan H. Mining preconditions of apis in large-scale code corpus. Proceedings
of the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering - FSE 2014, vol.
16-21-Nove, ACM Press: New York, New York, USA, 2014; 166–177.

30. Zhang L, Yang G, Rungta N, Person S, Khurshid S. Feedback-driven dynamic invariant discovery. Proceedings
of the 2014 International Symposium on Software Testing and Analysis, ISSTA 2014, Association for Computing
Machinery: New York, NY, USA, 2014; 362–372.

31. Nguyen T, Antonopoulos T, Ruef A, Hicks M. Counterexample-guided approach to finding numerical invariants.
Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2017, Association
for Computing Machinery: New York, NY, USA, 2017; 605–615.

32. Li J, Sun J, Li L, Le QL, Lin SW. Automatic loop-invariant generation anc refinement through selective sampling.
2017 32nd IEEE/ACM International Conference on Automated Software Engineering (ASE), 2017; 782–792.

33. Li K, Reichenbach C, Smaragdakis Y, Young M. Second-order constraints in dynamic invariant inference.
Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2013, Association
for Computing Machinery: New York, NY, USA, 2013; 103–113.

34. Tan SH, Marinov D, Tan L, Leavens GT. @tcomment: Testing javadoc comments to detect comment-code
inconsistencies. 2012 IEEE Fifth International Conference on Software Testing, Verification and Validation, 2012;
260–269.

35. Wong E, Zhang L, Wang S, Liu T, Tan L. Dase: Document-assisted symbolic execution for improving automated
software testing. 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering, vol. 1, 2015;
620–631.

36. Sinha A, Jr SMS, Paradkar A. Text2test: Automated inspection of natural language use cases. 2010 Third
International Conference on Software Testing, Verification and Validation, 2010; 155–164.

37. Wang C, Pastore F, Goknil A, Briand L, Iqbal Z. Automatic generation of system test cases from use case
specifications. Proceedings of the 2015 International Symposium on Software Testing and Analysis, ISSTA 2015,
ACM: New York, NY, USA, 2015; 385–396.

38. Wang C, Pastore F, Briand L. Automated generation of constraints from use case specifications to support system
testing. 2018 IEEE 11th International Conference on Software Testing, Verification and Validation (ICST), 2018;
23–33, doi:10.1109/ICST.2018.00013.

39. Bajwa IS, Bordbar B, Lee MG. Ocl constraints generation from natural language specification. 2010 14th IEEE
International Enterprise Distributed Object Computing Conference, 2010; 204–213, doi:10.1109/EDOC.2010.33.

40. Bajwa IS, Bordbar B, Anastasakis K, Lee M. On a chain of transformations for generating alloy from nl
constraints. Seventh International Conference on Digital Information Management (ICDIM 2012), 2012; 93–98,
doi:10.1109/ICDIM.2012.6360153.

https://doi.org/10.1109/ICSE.2017.11
https://doi.org/10.1109/ICPC.2019.00019


24 RENHE JIANG ET AL.

41. Soeken M, Wille R, Kuhlmann M, Gogolla M, Drechsler R. Verifying uml/ocl models using boolean satisfiability.
2010 Design, Automation Test in Europe Conference Exhibition (DATE 2010), 2010; 1341–1344, doi:10.1109/
DATE.2010.5457017.

42. Anastasakis K, Bordbar B, Georg G, Ray I. Uml2alloy: A challenging model transformation. Proceedings of the
10th International Conference on Model Driven Engineering Languages and Systems, MODELS’07, Springer-
Verlag: Berlin, Heidelberg, 2007; 436âĂŞ450.


	Introduction
	Doc2smt in Action
	The Doc2smt Approach
	Dependency Parsing of Method Summary
	Rule-based Translation to OCL
	Translation Rules.
	Translation Algorithm.

	Library Domain Model and Static Validation
	OCL to SMT
	Dynamic Validation and Valid Constraints
	Implementation Details

	Evaluation
	Subjects
	Experimental Protocol
	Experimental Results
	RQ1: Effectiveness.
	RQ2: Efficiency.
	RQ3: Scalability.
	RQ4: Usefulness in test generation.

	Limitations

	Related Work
	Conclusions



