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Agglomeration spillover, Accessibility by High-Speed Rail, and Urban 1 

Innovation in China: A focus on the Electronic Information Industry 2 

Abstract3 
This study examines the impacts of different sources and types of agglomeration economies on 4 

urban innovation in the context high-speed rail (HSR), using the Electronic Information (EI) industry 5 
in China as an example. The impacts of inter-city access to different innovation factors such as 6 
knowledge sources (e.g., universities/research institutions), human capital (scientific/technical 7 
workers), input suppliers (e.g., producer services) and final markets through HSR networks are 8 
explored while local agglomeration effects and local proximity to HSR stations are controlled. 9 
Historical courier routes and stations and landform characteristics are used to construct instruments 10 
for endogenous HSR accessibility measures. Results indicate that local agglomeration benefits such 11 
as overall urban size, level of industrialization specialization and local access to top 12 
science/engineering universities/research institutions and producer service suppliers are positively 13 
associated with innovation performance in the EI sector. When longer travel time thresholds (e.g., > 14 
2 hours) are applied, inter-city access to knowledge sources, human capital, producer services and 15 
final customers through HSR network yields significant impacts on innovation outputs of Type-II 16 
large cities (population in 1-3 million). 17 

18 

1. Introduction19 
Endogenous innovation has long been considered as an important source of stimulating 20 

economic development (Fagerberg et al., 2010, Fischer and Suarez-Villa, 1999, Grossman and 21 
Helpman, 1994). It not only depends on the performance of individual actors (e.g., firms, customers, 22 
universities/research institutions, government institutions) but also the ongoing collaborations and 23 
interactions between them (Andersson and Karlsson, 2004, 2006; Giuliano et al., 2019). Cities with 24 
larger concentrations of various actors and economic activities are more likely to become the hubs 25 
of innovation (Carlino and Kerr, 2015). While the effects of spatial agglomeration on urban growth, 26 
productivity and innovation have been widely examined, empirical studies usually considered cities 27 
(or regions) as club goods and applied a “catch-all” type measures of agglomeration economies (e.g., 28 
overall size, scale of density of cities) (Rosenthal and Strange, 2003; Graham and Melo, 2011). Only a 29 
few studies have explored the underlying causal mechanisms of agglomeration economies and 30 
possibilities of those spillover effects across cities (e.g., Echeverri-Carroll and Brennan, 1999; Breschi 31 
and Lissoni, 2001; Andersson and Karlsson, 2004; Carlino and Kerr, 2015; Zheng and Du, 2020). 32 

Transportation investment also plays important roles in urban growth and innovation. Developed 33 
from new transportation technology, high-speed rail (HSR) could significantly reduce travel time and 34 
increase inter-city/inter-region connectivity, which may generate wider economic effects on cities 35 
directly or indirectly connected by it (Ureña et al., 2009, Garmendia et al., 2012, Hall, 2009). 36 
Knowledge-related sectors that have higher requirements for knowledge exchange and human 37 
interactions are expected to be more sensitive to HSR investment compared with traditional 38 
manufacturing industries (Chen and Vickerman, 2017). Yet there are only a few empirical evidence 39 
on the impacts of HSR networks on urban knowledge production or innovation outcomes (e.g., Inoue 40 
et al., 2017; Qingsong et al., 2018; Dong et al., 2020; Gao and Zheng; 2020).  The effects of HSR on 41 
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the microfoundations of agglomeration economies—the “intermediate stage” of HSR’s economic 1 
effects (Graham and Melo, 2011) — are not often discussed in empirical studies, either. 2 

This study aims to contribute to empirical studies on the relationships between transport 3 
investments, agglomeration economies and urban innovation by focusing on the role of HSR in the 4 
China context. Using the electronic information (EI) industry as an example, this study examines how 5 
HSR investment in China affects urban innovation by linking with different sources of agglomeration 6 
economies (e.g., access to different input and output markets, specialized labors, and knowledge 7 
sources) and how the spatial extents of different sources of agglomeration economies outcomes 8 
vary in the context of HSR.  Specifically, indices of transport accessibility to different resources and 9 
markets are employed to measure agglomeration economies arise from inter-city interaction 10 
opportunities associated with HSR investments. The relative locations of HSR stations within cities 11 
are also controlled to explore whether innovation activities prefer locations around HSR stations at 12 
the local level. The empirical findings would help us better understand the nature of agglomeration 13 
spillover effects and the mechanisms of transport investments in promoting urban growth and 14 
innovation.  15 

We focus on urban innovation in China.  Since 2006, the country has set up the goal of building an 16 
innovative nation and improving its indigenous innovation capacity. Cities are the basic units of 17 
implementing the innovation strategies and innovative pilot cities has been set up since 2008. In 18 
parallel to the innovation strategy, the construction of new HSR in China has been initiated in 2008. 19 
In the 2016 revised railway network plan, the role of HSR in leading China’s spatial economic 20 
development has been emphasized (Chen, 2012). Cities in China thus provide good examples to 21 
examine the economic benefits of HSR through the lens of innovation. 22 

Another contribution of this study is to test how different sources of inter-city agglomeration 23 
economies in the context of HSR vary among cities of different size classes. In theory, it is often 24 
predicted that small and medium sized cities may “borrow size” from nearby higher-order cities to 25 
draw on the agglomeration benefits of those cities (Echeverri-Carroll and Brennan, 1999). With the 26 
introduction of HSR networks, cities may experience changes in inter-city accessibility and 27 
experience economic benefits to different degrees, depending on their relative size and locations 28 
(Ureña et al., 2009). This study is the first one in China’s to explicitly examine this issue. The results 29 
add to the empirical evidence on the spatial determinants of urban innovation and HSR’s wider 30 
economic effects in China and provide some insights for future spatial planning of HSR network and 31 
innovation centers across Chinese cities. 32 

The rest of the paper is structured as follows. Section 2 reviews the literature on the role of 33 
agglomeration spillover and high-speed rail development in urban innovation. Section 3 discusses 34 
the research design, data, and methodology, Section 4 discusses the results. Section 5 concludes 35 
with the main findings and the associated policy implications. 36 

2. Literature review37 
This section reviews the theoretical foundations of agglomeration effects on urban innovation at 38 

different spatial scales (e.g., intra-city vs. inter-city) and the underlying mechanisms of how 39 
transport investments influence urban growth and innovation through agglomeration economies. 40 
Recent empirical evidence concerning the wider economic impacts of HSR in China are also briefly 41 
discussed to identify the gaps in the existing studies and derive the potential role of HSR in inter-city 42 
agglomeration economies and urban innovation.  43 
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2.1 Links between agglomeration economies and innovation 1 
Theories of agglomeration economies have long emphasized that spatial agglomeration of 2 

economic activities creates spillovers that lowered the costs of interactions and complementary 3 
activities. Tracing back to Marshall's (1920) seminal work, input sharing, labor market pooling, and 4 
knowledge spillover are three main sources of agglomeration economies on the production side. For 5 
the innovation process, spatial proximity to a greater pool of suppliers of intermediate inputs would 6 
allow firms to design and commercialize new products/process at lower costs (Helsley and Strange, 7 
2002). Proximity to labor pool may reduce firms’ training and searching costs for labors with specific 8 
skills matching their production and innovation requirements (Montgomery, 1988; Rosenthal and 9 
Strange, 2004). The third source—knowledge spillover—has the closest connection with innovation 10 
activities (Parr, 2004; Carlino and Kerr, 2015; Agrawal et al., 2017). Fischer (2001) summarized that 11 
in a localized innovation system, firms benefit from being close to their competitors and a set of 12 
actors, including suppliers, scientific workers, producer services, and industrial customers, not only 13 
because of reduced costs but also increased interactions and learning opportunities. For example, 14 
firms in large cities may have more opportunities to imitate, import, modify and diffuse new 15 
technologies from other firms and receive assistance or supports from producer service providers in 16 
the innovation process, such as financial, legal, and technical advice or accounting, marketing, and 17 
training services related to the introduction of new products or processes (Fischer, 2001). For local 18 
workers in large cities, easy access to experienced or high-human capital workers generates great 19 
learning opportunities, which also contributes to the overall stock of human capital of the city and 20 
facilitates the foster of new knowledge (Helsley and Strange, 2002; Carlino and Kerr, 2015). 21 

Universities (or other academic institutions) provide one primary source of knowledge that can 22 
spill over to local economic agents through, for example, informal face-to-face contacts between 23 
employees and university researchers and meetings/seminars (Audretsch and Feldman, 2004; 24 
Breschi and Lissoni, 2001; Lin et al., 2007). Except for those non-market social interactions, there are 25 
also market-based mechanisms of knowledge flows (Audretsch and Feldman, 2004, Breschi and 26 
Lissoni, 2001). Breschi and Lissoni (2001) summarize that knowledge is “embodied in individual 27 
scientists and research teams (p.21)”. To gain access to such knowledge and build up their 28 
innovation capacity, firms may establish transaction-intensive relationships with local academic 29 
institutions, such as obtaining consulting service and highly skilled workers from them or directly 30 
investing in local institutions’ research projects (Breschi and Lissoni, 2001). Local university 31 
researchers may also directly appropriate their own research outputs by starting up their own 32 
business or transacting those results with existing firms (Breschi and Lissoni, 2001; Audretsch and 33 
Feldman, 2004).  Another mechanism of the inter-firm knowledge diffusion is through the mobility 34 
of talented workers who embody relevant knowledge (Audretsch and Feldman, 2004; Breschi and 35 
Lissoni, 2001; Carlino and Kerr, 2015). 36 

On the consumption side, the spatial agglomeration of consumers or firms (as purchasers of 37 
business services) would support “niche markets” and increase the variety of local goods and 38 
services available (Tabuchi and Yoshida 2000; Giuliano et al., 2019). Being proximity to a large local 39 
market also allows firms to test the potential success of a prototype product and receive quick 40 
feedbacks from customers that may help improve the new products and better position the 41 
products in the markets (Feldman, 1994; Carlino and Kerr, 2015). 42 

Though the role of spatial proximity in facilitating opportunities of interaction among economic 43 
agents or actors has been emphasized, the exact spatial extents of agglomeration economies are not 44 
well identified in theories. For example, studies on innovation systems define the geographic 45 
boundaries of an innovation system ranging from nations, regions, and metropolitan areas/cities 46 
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(Andersson and Karlsson, 2006).  Empirical studies suggest that the spatial extent of different 1 
sources of agglomeration economies differ. For example, labor market pooling and home market 2 
effect are usually defined at the metropolitan/city-wide scale because commuters or consumers 3 
mostly accept a travel distance within a city/metropolitan area (Andersson and Karlsson, 2004; 4 
Giuliano et al., 2019).  The spatial extent of input sharing effects may vary with the production 5 
technology, the types of goods and services transported, and the associated transport costs (Scott 6 
1988, Drucker 2012). 7 

Similarly, knowledge spillover effects may also be spatially localized (e.g., at the neighborhood 8 
level). This may be because the transfer of tacit knowledge such as skills and routines that are 9 
context-based typically demands direct and repeated face-to-face interactions, the opportunities of 10 
which are likely to decay quickly with distance (Drucker 2012; Giuliano et al., 2019). Based on the 11 
above discussions, knowledge flows may also occur through transaction relationships such as 12 
purchasing of consulting or training services from universities and mobility of scientific or other 13 
skilled workers. This implies that such spillover effects may not be strictly spatially constrained 14 
within a city or region (Echeverri-Carroll and Brennan, 1999; Audretsch and Feldman, 2004; Breschi 15 
and Lissoni, 2001; Carlino and Kerr, 2015). The relative importance of local (e.g., city-wide) and non-16 
local (e.g., inter-urban) knowledge spillover, however, is associated with the position of a city in the 17 
urban hierarchy (Andersson and Karlsson, 2004): while firms in larger or higher-order (larger) cities 18 
can rely on local knowledge sources and human capital pool, those in smaller or lower-order cities 19 
may benefit from spillover effects from higher-order cities by establishing knowledge linkages with 20 
other firms or universities in those cities. Another important channel for firms in small and medium-21 
sized regions to access new knowledge and information is through the “customer-deliverer links” to 22 
other (larger) regions, which provide information about consumer demands of a broader market and 23 
the technical solutions of meeting those demands (Andersson and Karlsson, 2006). 24 

2.2 Transportation infrastructure, inter-city accessibility, and innovation 25 
Agglomeration economies and innovation depend on interactions between firms, workers, and 26 

other facilities which is facilitated by spatial proximity and likely to decrease with distance because 27 
transport movements across space are time and resources consuming (Andersson and Karlsson, 28 
2004; Graham and Melo, 2011). Transportation infrastructure would influence the sources of 29 
agglomeration economies and innovation by substituting spatial proximity and easing access to 30 
various resources and actors (Graham and Melo, 2011). On the one hand, transportation 31 
improvements may strengthen agglomeration economies by facilitating flows of people, goods, and 32 
information within a city/region (Graham and Melo, 2011; Agrawal et al., 2017).  On the other hand, 33 
transportation improvements may extend the geographic scope of agglomeration benefits and 34 
enhance inter-city interactions (Andersson and Karlsson, 2004). 35 

Some of the benefits from transportation improvements are more related with input sharing and 36 
labor marketing pooling and final market access. For example, by reducing the costs of transporting 37 
inputs and outputs, transportation investments such as road and rail improvements may ease access 38 
to suppliers of intermediate inputs, service providers, and customers within a city (Graham and 39 
Melo, 2011) as well as open up new resources/inputs and larger and more differentiated markets 40 
outside of the city (Holl, 2004). While the former may reduce the uncertainties of innovation process 41 
within a city, the expanded market access may further incentivize firms to find market niches of new 42 
products and services more easily (Garrison and Souleyrette II, 1994, 1996). Similarly, by increasing 43 
the speed of commuting trips, transportation improvements may also ease access to skilled labors 44 
within a city as well as extend spatial borders of labor markets outside of cities (Andersson and 45 
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Karlsson, 2004). Both benefits mean that firms’ costs of searching for talents with knowledges and 1 
skills required for production and innovation process are reduced. 2 

By increasing the circulation of people, transportation improvements may also facilitate 3 
knowledge diffusion and spillover at different spatial scales. When inter-city (or inter-region) 4 
transport costs are relatively high, knowledge production and diffusion are likely to be confined by a 5 
time distance threshold such as workers’ daily commuting (Andersson and Karlsson, 2004). 6 
Improvements of transport infrastructure such as highways or HSR reduce the costs of human 7 
interactions across cities, thus speeding up the communication and sharing of knowledge and ideas 8 
(Dong et al., 2020; Gao and Zheng, 2020).  Dong et al. (2020) suggests two channels through which 9 
transportation improvements impacts inter-city knowledge diffusion. First, increased inter-city 10 
circulation of population would not only allow better matching among high skilled workers cities 11 
along the transportation network to form new research teams, but also enhance the collaborations 12 
among existing research teams working at the inter-city level (Dong et al., 2020).  Second, high-13 
skilled workers who originally reside in large cities may migrate to small ones that have good 14 
connections to the large cities to enjoy the lower living costs there while being able to easily meet 15 
and interact with their cohorts at large cities, thus increasing the aggregate productivity and human 16 
capital in the connected small cities (Dong et al., 2020). Agrawal et al. (2017), on the other hand, 17 
suggest that road improvements may also contribute to innovation by intensifying the intra-city 18 
knowledge flows even without attracting new labors into a city. 19 

As a new mode of transportation, HSR generates economic effects that have some distinct 20 
features.  First, unlike highways or conventional railways (CR) with frequent station stops, HSR 21 
introduces “discontinuous” spatial impacts (Vickerman, 2015). It not only widens the gaps between 22 
HSR and non-HSR cities, but also generates differential impacts across the cities connected by it 23 
(Ureña et al., 2009; Garmendia et al., 2012).  While higher-orders (larger) cities may benefit from 24 
expanded access to various resources such as capital, labor, and services and enlarged markets 25 
through HSR network, lower-order (smaller) cities are likely to be further peripheralized as HSR 26 
facilitates the outflows of labor, capital, and other resources from those cities into larger cities, 27 
which may weaken their own innovation capacity (Hall, 2009; Garmendia et al., 2012; Yin et al., 28 
2015). Second, mainly serving the transport of passengers, HSR does not generate equal effects 29 
across industries but favors those sectors that are sensitive to human interactions and knowledge 30 
exchange, such as business services and advanced manufacturing sectors (Cheng et al., 2015, Shao et 31 
al., 2017, Wang et al., 2020). 32 

2.3 Urban economic impacts of HSR in China 33 
Empirical studies of the HSR effects in China mostly focus on the direct impacts of HSR 34 

investment on transport accessibility or travel time (e.g., Yang et al., 2018) and the wider economic 35 
impacts such as the overall urban productivity, population, and economic growth (e.g., Cheng et al., 36 
2015; Liu and Zhang, 2018; Jiao et al., 2020; Li et al., 2020; Dong et al., 2021; Ma and Liu, 2021), 37 
urban spatial structure (e.g., Wang et al., 2019), urban land use growth (Pan et al., 2020), or 38 
industrial evolution (Zhu et al., 2019; Xiao and Lin, 2021).  While the catalyst role of HSR in 39 
promoting overall urban growth is usually found, results on the HSR effects on industrial structure 40 
are still disputed. For example, Zhu et al. (2019) found that better HSR accessibility increases the 41 
chances of a city to introduce new industries that are less related to existing industrial base and 42 
render the industrial evolution pattern to be more path-breaking. Focusing on high-tech sectors, 43 
Xiao and Lin (2021) instead found that HSR has resulted in the introduction of high-tech firms in a 44 
ctiy to be more depenent on the city’s existing industrial base. Direct empirical evidence on the 45 
impacts of HSR networks on innovation and knowledge production are relatively few (e.g., Gao and 46 
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Zheng, 2020, Dong et al., 2020, Wang et al., 2020) and mostly focus on the overall innovation 1 
performance (e.g., Cheng and Liu, 2015).  These indicate that the role of HSR in facilitating the 2 
growth and innovation of knowledge- or tech-intensive sectors in China deserves to be further 3 
explored. Moreover, the relationship between HSR investment and sources of agglomeration 4 
economies—the intermediate stage of HSR’s economic effects—are not explicitly examined in 5 
empirical studies. This study contributes to the studies on urban innovation and HSR’s economic 6 
benefits in China by filling these gaps.  7 

3. Research Design 8 
This study uses the EI industry as an example to explore the innovation benefits of HSR 9 

investments in China. The EI industry is chosen because it is usually considered as a tech-intensive 10 
sector and thus more likely to be sensitive to the transport costs of passengers. The industry was put 11 
as one of the 10 pillar industries according to the 12th Five-Year Plan of China and took 1/4 to 1/3 of 12 
the invention patents in recent years (Fudan Institute of Industrial Development et al., 2017, Meng 13 
and Li, 2002). Based on the literature review, the following hypotheses are tested:  14 

Hypothesis 1: Both at the intra-city (local) and inter-city (non-local) access to various innovation 15 
factors including knowledge sources (e.g., universities/research institutions), specialized labors, 16 
producer service suppliers, and consumer markets (through HSR network) matter in the innovation 17 
performance of the EI sector across Chinese cities. 18 

Hypothesis 2: Large cities are more likely to benefit from inter-city agglomeration spillover effects 19 
(through HSR network) than small cities in terms of innovation outcomes of the EI sector.  20 

3.1 Conceptual model  21 
This study follows knowledge production function (KPF) approach initiated by (Griliches, 1979). 22 

Cities are used as the basic units of analysis in the KPF to model the relationships between 23 
innovation inputs and outputs (Acs et al., 2002b, Moreno et al., 2005). Specifically, innovation 24 
outputs (I) of the EI sectors in city i is modelled a function of research and development (R&D) input 25 
levels (R) and a vector of factors (Z) that potentially facilitates knowledge production and exchange:  26 

                         𝐼𝐼 = 𝑅𝑅𝛼𝛼 ∙ 𝑍𝑍𝛽𝛽 ∙ 𝑒𝑒                                        (1) 27 

where e is a random independent and identically distributed error term.  28 

Deriving from studies of agglomeration economies as well as the innovation system (Fischer, 29 
2001), this study identify the following categories of key factors (Z variables) (see Figure 1): (1) 30 
production sectors, which are the central actors in the innovation system; (2) scientific sectors, 31 
which include universities and research institutions specialized in science and engineering disciplines 32 
as well as workers specialized in science and technical service sectors; (3) producer service sectors, 33 
which provide financial, legal, or marketing assistance for firms’ innovation process; (4) customer 34 
markets; (5) institution/policy sectors, which facilitate the informal or formalized linkages between 35 
actors in an innovation system. Factors (1)-(4) capture different sources of agglomeration economies 36 
including access to competitors and professional service suppliers (input sharing, knowledge 37 
spillover), scientific or other specialized workers and universities/research institutions (labor 38 
marketing pooling, knowledge spillover), and final customers (market access). To test the 39 
hypotheses, different agglomeration economies are measured at both intra-city and inter-city scales. 40 
Given that HSR mainly facilitates passenger flows, this study mainly looks at 4 sources of inter-city 41 
agglomeration economies (related with Factors (2)-(4)) that are mostly linked to opportunities of 42 
human interactions (see Figure 1).  43 
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1 

Figure 1 Conceptual framework of urban innovation* 2 
*Extended from the the Regional Innovation System framework by Fischer (2001)3 

4 

Following previous studies (e.g., Melo et al., 2009; Graham and Melo, 2011), the 3 sources of 5 
inter-city agglomeration economies are operationalized by transport accessibility measures. 6 
Transport accessibility is a term that accounts for the availability of opportunities of interactions 7 
across space as well as the transport costs for accessing those opportunities (Andersson and 8 
Karlsson, 2004; Yang et al., 2018). To reflect the role of HSR network, this study applies gravity-type 9 
transport accessibility indices, with the train time mainly through the HSR network used for 10 
discounting the travel impedance between cities (see detailed discussions in Section 3.4.2). 11 

In addition to the inter-city accessibility effects, this study also tests whether there are additional 12 
innovation benefits associated with being close to HSR stations. Previous studies indicate that 13 
economic activities are likely to be concentrated near the inter-regional transport infrastructure 14 
such as HSR stations (e.g., Pan et al., 2020) or highways (e.g., Holl, 2004), which may potentially 15 
generate more urban growth and ultimately innovation. 16 

3.2 Differential effects of accessibility by city size 17 
To test how the effects of inter-city accessibility by HSR vary by city size, a categorical variable 18 

approach is applied here. Using the natural log form of innovation outputs for a city (i) and 19 
differentiating between local and non-local effects of innovation factors, equation (1) is modified as: 20 

𝑙𝑙𝑙𝑙𝐼𝐼𝑖𝑖 = 𝐶𝐶 + 𝛼𝛼𝑅𝑅𝑖𝑖 + ∑ 𝛽𝛽𝑔𝑔𝑍𝑍_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑔𝑔 + ∑ 𝛽𝛽𝑗𝑗1𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝑗𝑗 + ∑ 𝛽𝛽𝑚𝑚𝑍𝑍_𝐴𝐴𝐴𝐴𝑐𝑐𝑖𝑖𝑚𝑚 + ∑ 𝛽𝛽𝑗𝑗2(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑒𝑒𝑖𝑖𝑖𝑖 ∗𝑗𝑗21 
 𝑍𝑍_𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖) + 𝜀𝜀𝑖𝑖    (2) 22 

where 𝑍𝑍_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖 represents g number of the local determinants of innovation for city i; 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖  23 
are the dummy variables representing the size category (“j”) of city i; 𝑍𝑍_𝐴𝐴𝐴𝐴𝑐𝑐𝑖𝑖 represents a vector of 24 
transport accessibility variables; 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑒𝑒𝑖𝑖𝑖𝑖 ∗ 𝑍𝑍_𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖 are interactive terms capturing the variations of 25 
accessibility effects by city size classes; 𝜀𝜀𝑖𝑖 is the random error term. 26 
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3.3 Endogeneity and instrumental variables 1 
Previous studies have emphasized the possible endogeneity between HSR investments and 2 

urban growth (Chen and Haynes, 2015; Li et al. 2020; Pan et al., 2020; Zhang et al. 2020). For 3 
example, it is likely that the construction and planning of HSR network in China favor those cities 4 
with high innovation capacities. Furthermore, there might be unobserved and persistent factors that 5 
affect both HSR investment and urban innovation. To deal with the potential endogeneity issue, 6 
instrumental variables are employed to control for the potential bias due to the endogeneity of HSR 7 
investments. 8 

Instruments are expected to be associated with changes in inter-city accessibility by HSR or 9 
proximity to HSR stations but do not directly lead to changes in urban innovation. The first type of 10 
instrument variables is constructed based on the courier routes and stations in the Ming Dynasty of 11 
China (1368 – 1644 AD). The courier_q4 instruments are dummy variables representing the four 12 
quintiles of the number of courier stations each city hosted during the Ming Dynasty. The 13 
Acc_courier instruments are defined as follows: 14 

𝐴𝐴𝐴𝐴𝐴𝐴_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑟𝑟𝑖𝑖 = ∑ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑟𝑟𝑗𝑗/𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖𝑗𝑗≠𝑖𝑖 , 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖 ≤ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜       (3) 15 

where 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑟𝑟𝑗𝑗 represents the number of courier stations in city j, 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖 represents the 16 
shortest distance between city i and j along courier routes of the Ming Dynasty, and 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜  is 17 
the maximum distance defined in consistent with the travel time thresholds of the inter-city 18 
accessibility variables (see discussions in Section 3.4.2).  Data on historical couriers are obtained 19 
from the CHGIS Dataverse of Harvard University (Berman and Zhang 2017). Constructed based on 20 
historical data of more than 370 years ago, these instruments can be reasonably considered as 21 
exogenous to urban innovation at present. 22 

The second type of instrumental variables are constructed based on the geomorphological 23 
characteristics surrounding cities. The geomtype instruments are defined by the ratio of land area 24 
for a particular type of landform to the total land area within a certain distance buffer of each city. 25 
The distance thresholds are defined in the same way as those in equation (3). Data on 26 
geomorphology are obtained from China’s National Catalogue Service For Geographic Information 27 
(www.webmap.cn). The area shares of different landform types surrounding cities are combined to 28 
avoid the high correlation between the measures. Based on the preliminary examination of the 29 
correlation between the geomtype instruments and the endogenous variables (i.e., proximity to HSR 30 
stations, inter-city accessibility measures), the final model use 4 geomtype instruments (see 31 
Appendix I for detailed definitions).  It is intuitively obvious that landforms do influence the difficulty 32 
of HSR construction but do not directly relate to urban innovation.  In addition, interaction terms 33 
between courier_q4 and geomtype variables are used as instruments for 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑒𝑒𝑖𝑖𝑖𝑖 ∗ 𝑍𝑍_𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖 34 
variables in Equation (2). 35 

3.4 Data and variables 36 
The study areas include 75 prefectural-level or above cities that were supported to be built as 37 

innovative pilot cities since 2008 (see Figure 2). These cities include the 4 municipalities, 27 38 
provincial capital cities, and 44 other cities from 17 provinces of China1. The chosen pilot cities were 39 
prioritized to receive multiple levels of resources and policy supports from China’s Ministry of 40 
Science and Technology and National Development and Reform Commission in terms of, for 41 
example, creating innovative policy environments, cultivating, and introducing talents through 42 

1 The list of innovative pilot cities and the starting years of each city being approved as a pilot city is derived from: 
https://www.now168.com/article/20180804/2968.html  

http://www.webmap.cn/
https://www.now168.com/article/20180804/2968.html
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funding major projects, and constructing key innovation bases in those cities (Zhang, 2015). 1 
Compared with most of other non-pilot cities, the innovative pilot cities are on average more 2 
economically and politically advantaged; they are more likely to share similar economic background 3 
and institutional/policy environment to promote innovation activities, thus minimizing the 4 
unobserved heterogeneity effects. 5 

Using the 2015 population statistics, the 75 study areas are categorized into 4 classes referring to 6 
the criteria by the State Council of China: small and medium sized cities (population in 0.2-1 million), 7 
Type-II large cities (population in 1-3 million), Type-I large cities (population in 3-5 million), and 8 
mega-cities (population larger than 5 million). 9 

Based on the definition by China’s Ministry of Industry and Information Technology, the EI 10 
sectors are defined as composed of EI manufacturing and Software and Information Technology (IT) 11 
service sectors. The EI manufacturing sectors refers to the “Computer, Communications, and other 12 
Electronic Equipment Manufacturing” industry in the framework of Industrial Classification for 13 
National Economic Activities released by the National Statistical Bureau of China2. This definition 14 
matches the definition by China’s Intellectual Property Bureau. The EI service sector refers to the 15 
Information Transmission, Computer Service and Software industry in China’s Industrial 16 
Classification. 17 

Innovation performance across cities is measured by patent data. Though patent statistics are 18 
usually considered as intermediate instead of final outputs of innovation (Griliches, 1979, Hall et al., 19 
2001), they are considered as good indicators of examining new technological knowledge creation 20 
(Acs et al., 2002a, Wong et al., 2018) as the codified part of technological knowledge has been 21 
recorded (Wong et al., 2018). Patent data for the 75 pilot cities Chinese cities were queried from the 22 
Patent Information Service Platform (PISP) (http://chinaip.sipo.gov.cn/) for the 2016-2018 period. 23 
Invention patents are fundamental to the urban economy in the long run (Sun, 2000). This study 24 
thus uses invention patents to represent urban innovation outcomes and apply the natural log form, 25 
“ln(invention +1)” (Wang et al., 2020),  to run KPF models for urban innovation outputs. The three-26 
year average of invention patent counts for each city are used to eliminate possible variations of 27 
market conditions within each city over the study period. 28 

The 3rd National Economic Census National Economic Census data (2013) is used to construct the 29 
R&D inputs and all measures related with employment statistics3. The 2015 China City Statistical 30 
Yearbook and China City Construction Statistical Yearbook are used to retrieve other socio-31 
demographic and infrastructure statistics for constructing the other city-level variables. Using the 32 
lagged form of the above explanatory variables reduce the possible reverse causality issue: urban 33 
factors such as agglomeration externalities and environment measures in the past years (prior to 34 
2016) is correlated with factors in the present year (2016-2018), but not caused by innovation 35 
outcomes in the present year. 36 

3.4.1 Measures of key factors of innovation at the city-wide level 37 
R&D inputs are a key component of the KPF and are measured as the R&D expenditure in the EI 38 

sector divided by the total number of employees in the sector aggregated at the city level 39 
(R&DperEmp). Urbanization economies are measured by the total population size categories of each 40 
city (CitySize). Localization economies are measured by the percentage of each city’s employment in 41 

2 Source: http://www.stats.gov.cn/tjsj/tjbz/hyflbz/   
3 The National Economic Census of China are conducted by the National Statistics Bureau of China every 4-5 
years. 

http://chinaip.sipo.gov.cn/
http://www.stats.gov.cn/tjsj/tjbz/hyflbz/
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the EI production and service sectors (EIEmp). Local competition of firms is measured as the number 1 
of employees in the EI manufacturing and service sectors divided by the number of EI firms of a city 2 
(AvgSize).  The level of industrial diversity of each city (DIVINX) is measured by the Herfindahl-3 
Hirschman Index: 4 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑋𝑋𝑖𝑖 = �𝑠𝑠𝑖𝑖𝑖𝑖2
18

𝑗𝑗=1

 5 

where 𝑠𝑠𝑖𝑖𝑖𝑖 is the employment share of industry j for city i.  The 18 main categories of non-agricultural 6 
industries defined by China’s National Bureau of Statistics are used in the construction of HHI. A 7 
lower value of 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 means a more diversified industrial structure for a city.  8 

The scientific sector in the urban innovation system is measured by two variables: 9 
universities/research institutions (Univ) and workers specialized in science sectors (SciTech). Using 10 
the results of the 3rd round of national subject evaluation (2012) conducted by China’s Ministry of 11 
Education4, the Univ variable is constructed as the number of universities and research institutions 12 
which received more than 75 scores in science/engineering disciplines of each city divided by the 13 
city’s total urban population.  Local specialized workers (SciTech) are measured by the share of 14 
employees in Scientific Research and Technical Service sectors of a city. Similarly, the producer 15 
service sector (ProdSrv) is measured by the employment share of Finance, Real Estate, and Leasing 16 
and Business Services sectors of each city. Local customer markets for the EI sector (ICTUser) are 17 
defined as the total number of subscribers of ICT products (i.e., broadband, telephone, and mobile 18 
devices) divided by the total population of each city in 2015.   19 

The institutional/policy environment of a city is proxied by the number of years a city has been 20 
approved to be an innovative pilot city until 2019 (PilotYrs) 5. For example, Shenzhen is the first 21 
approved innovative pilot city in 2008 and is assigned a value of 11 for the PilotYrs variable.  The 22 
earlier a city is approved as an innovative pilot city, the longer years of national supports for 23 
innovative activities it may receive, and the higher level of its innovation outputs is expected.  24 

3.4.2 Measures of inter-city agglomeration economies  25 
The gravity-based accessibility measure (Hansen, 1959) is used here to combine the influence of 26 

transport costs and spillovers of agglomeration effects from other cities (Holl, 2004; Melo et al., 27 
2009). A city i’s access to key innovation factors outside of its boundary, including 28 
universities/research institutions (Univ), science/technical workers (SciTech), producer services 29 
(ProdSrv) and final customers (ICTUser) of other cities is expressed as follows: 30 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑣𝑣𝑖𝑖 = �𝑈𝑈𝑈𝑈𝑈𝑈𝑣𝑣𝑗𝑗/𝑇𝑇𝑖𝑖𝑖𝑖
𝑗𝑗≠𝑖𝑖

, 𝑇𝑇𝑖𝑖𝑖𝑖 ≤ 𝑇𝑇𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜  31 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑖𝑖 = �𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ𝑗𝑗/𝑇𝑇𝑖𝑖𝑖𝑖
𝑗𝑗≠𝑖𝑖

, 𝑇𝑇𝑖𝑖𝑖𝑖 ≤ 𝑇𝑇𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜  32 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑣𝑣𝑖𝑖 = �𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑣𝑣𝑗𝑗/𝑇𝑇𝑖𝑖𝑖𝑖
𝑗𝑗≠𝑖𝑖

, 𝑇𝑇𝑖𝑖𝑖𝑖 ≤ 𝑇𝑇𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜  33 

 
4 Source: http://www.cdgdc.edu.cn/xwyyjsjyxx/xxsbdxz/index.shtml   
5 Source:  https://www.now168.com/article/20180804/2968.html  

http://www.cdgdc.edu.cn/xwyyjsjyxx/xxsbdxz/index.shtml
https://www.now168.com/article/20180804/2968.html
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𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟𝑖𝑖 = �𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑟𝑟𝑗𝑗/𝑇𝑇𝑖𝑖𝑖𝑖
𝑗𝑗≠𝑖𝑖

, 𝑇𝑇𝑖𝑖𝑖𝑖 ≤ 𝑇𝑇𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜  1 

where 𝑇𝑇𝑖𝑖𝑖𝑖  is the train time between cities i and j mainly through the HSR network. 2 

The GIS data of China’s High-Speed Railway Stops and Network (2016) are queried from the open 3 
data source of Harvard World Map Repository (see Figure 2). The dataset contains the geographic 4 
(e.g., length, location) and other information (e.g., Chinese names, the range of maximum speed 5 
(km/h), conditions) of China’s HSR links/nodes as of 2016 (Li, 2016). The travel time for each HSR 6 
network segment is calculated as the ratio of the length and the lower bound of the maximum speed 7 
range of the railway line.  In this way, we assume that HSR operates in a normal condition without 8 
constant interruptions or accidents, which is reasonable given the high reliability of HSR operation in 9 
China after 2015.  The inter-station travel time through HSR between is then estimated as the 10 
shortest-path travel time on the HSR networks. The medium train time of all pairs of train stations 11 
within the boundaries of respective origin and destination cities are used as the inter-city HSR travel 12 
time. However, cities without HSR stations may also experience increased inter-city accessibility 13 
from HSR investments (e.g., Yang et al., 2018).  To include those cities not accommodating a HSR 14 
station (as of 2016), we assume that persons travel from a conventional railway (CR) station located 15 
closest to the centroid of their home city to the nearest HSR train station connected by CR network 16 
(or vice versa). The travel speed on the CR network between the chosen CR station and the nearest 17 
HSR train station is set as 100 kilometers per hour (as of 2015). Data on China’s network lines and 18 
stations in 2015 is queried and compiled from open data sources of China’s National Catalogue 19 
Service For Geographic Information (www.webmap.cn) and Open Street Map. Table 1 indicates the 20 
summary statistics of the estimated inter-city train time. 21 

22 

http://www.webmap.cn/
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1 
Figure 2  75 prefectural-level or above innovative pilot cities and HSR networks in mainland 2 

China* 3 

*National boundary of China and boundaries of prefectural level or above administrative units4 
in China are obtained from China’s National Catalogue Service For Geographic Information5 

(www.webmap.cn), using the 1:1 million national basic geographic database of 2020 6 

http://www.webmap.cn/


13 

Table 1  Summary Statistics of rail network travel time between pairs of cities designated as 1 
innovative pilot cities at origin or destinations (hours) 2 

min p5 p10 p25 p50 p90 p95 max 
Excluding cities not 
having a HSR train 
station (HSR travel 
time) 

0.17 1.24 2.07 3.64 5.44 9.97 11.27 15.82 

All cities (mixed 
HSR-conventional 
rail travel time) 

1.43 1.71 2.67 4.77 7.03 11.20 19.78 42.23 

3 

The inter-city train time thresholds are set as 2, 3.6, and 4.8 hours, which correspond to the 10th 4 
and 25th percentile train time estimated based on the HSR networks and the 25th percentile train 5 
time estimated based on the mixed HSR and CR network, respectively. The 2-hour travel time is the 6 
maximum threshold where HSR travel is expected to be more advantageous than air travel (Ureña et 7 
al., 2009). Using the average lower-bound speed of HSR lines in China (265 km/h as of 2016), the 3.6-8 
hour time distance threshold approximates 1000-kilometer distance threshold below which HSR 9 
travel remains competitive to air travel (Ureña et al., 2009). The 4.8-hour time threshold 10 
approximates the estimated HSR train time between Beijing and Shanghai (5 hours as of 2016), the 11 
two core cities in China. This time threshold is chosen to ensure that the catchment areas of the two 12 
core cities via HSR networks do not overlap each other. The three inter-city travel time thresholds 13 
are used to construct the 4 types of accessibility variables and the corresponding interaction terms, 14 
which are then included separately in the regression analyses due to the concerns of multi-15 
collinearity. The correlation between inter-city accessibility variables and local agglomeration 16 
measures are also checked and the highest correlation coefficient is less than 0.5, suggesting that 17 
the two types of variables measure agglomeration economies at different spatial scales. Using the 18 
same average speed of HSR lines (265 km/h), the distance thresholds for constructing the 19 
Acc_courier and geomtype instruments for inter-city accessibility variables measured at the 2-hour, 20 
3.6-hour, and 4.8-hour train time thresholds are defined as 530-km, 954-km, and 1272-km 21 
respectively. 22 

3.4.3 Measures of proximity to HSR station 23 
The additional location advantages of being close to HSR stations are measured by 3 dummy 24 

variables representing whether a city has at least one HSR station within 10 km (proxHSR_10km), 10-25 
20 km (proxHSR_10_20km), or beyond 20 km (nonproxHSR, reference category) of its (geometric) 26 
center, respectively.  The HSR station proximity variable and inter-city accessibility variables have a 27 
weak correlation of around 0.38, showing that the two types of measures capture HSR-based 28 
accessibility at different spatial scales. 29 

3.4.4 Control variables 30 
Dummy variables representing the economic region a city is located (EconRgn) are included in the 31 

model to control for the unobserved regional-level heterogeneity effects. Four economic zones—32 
East, West, Central and Northeast regions defined by the Statistic Bureau of China6 are used here 33 
(see Figure 2). The four regions vary significantly in terms of socio-economic development levels and 34 
HSR investments. The East region is used as the reference group in the regression analyses because 35 
takes the largest share of HSR length and stations in China (Wang et al., 2020). The region also has 36 

6 Source: http://www.stats.gov.cn/ztjc/zthd/sjtjr/dejtjkfr/tjkp/201106/t20110613_71947.htm 

http://www.stats.gov.cn/ztjc/zthd/sjtjr/dejtjkfr/tjkp/201106/t20110613_71947.htm
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the largest gains in inter-city transport accessibility thanks to the introduction of HSR network in 1 
China after 2008 (Yang et al., 2018). 2 

The level of foreign direct investments (FDI) is expected to have a positive relationship with urban 3 
innovation. Here the FDI intensity ratio — the total FDI in a city normalized by the gross domestic 4 
product (GDP) of the city in the same year (2015) — are used in the regression model to facilitate 5 
the comparison of results between cities of different economic scales.  Urban amenity may also 6 
contribute positively to innovation by attracting high-human capital workers (Giuliano et al, 2019) 7 
and is represented by the percentage of green covered area in the total built up areas of a city 8 
(GreenCov).  Finally, the urban road network density (RdNwDen) is used to represent the intra-urban 9 
transport accessibility, which is expected to positively influence urban innovation by promoting 10 
economic efficiency (e.g., Yao et al., 2022) and facilitating human interactions within a city (e.g., 11 
Andersson and Karlsson, 2004; Agrawal et al, 2017). 12 

 Table 2 shows the definition and descriptive statistics of all variables. 13 

14 
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Table 2   Definition and summary statistics of dependent and independent variables (N=75) 1 

Variable Description Statistics     
Dependent variables Mean Std. Dev. min max 
lnInvnt Natural log of (invention 

patent +1) (invention = 3 
year averages of invention 
patent counts in 2016-
2018) 

5.69 1.87 1.67 10.22 

Independent variables      

CitySize City size classification 
(based on population 
within districts under the 
jurisdiction of a city in 
2015) 

Freq. Percent   

Small and medium 
sized cities 

Population in 200,000 and 
1 million 

10 13.33   

Type II large cities Population in 1-3 million 39 52   

Type I large cities Population in 3-5 million 14 18.67   

Mega cities Population larger than 5 
million 

12 16   

EconRgn The 4 economic zones Freq. Percent   
East region 

 
37 49.33   

Central region 
 

16 21.33   
West region 

 
17 22.67   

North-east region   5 6.67   
Key factors of innovation at the city-wide level  Mean Std. Dev. min max 
R&DperEmp Total R&D expenditure in 

the EI sector/Total 
employees in the EI sector 
(10,000 RMB/person, 
2013) 

0.63 0.68 0 3.39 

TotEmpDen Overall employment 
density of a city (Number 
of employees per square 
kilometre, 2013)  

370.26 652.80 6.31 4858.99 

EIEmp Share of employment in 
the EI sector in the total 
employment (2013) 

0.04 0.04 0 0.21 

DIVINX Industrial diversity of a city 
measured by Herfindahl 
index (HHI) (value range: 
[1/18, 1], 2013) 

0.21 0.10 0.08 0.61 

AvgSize The average size of firms in 
the EI sector (Number of 
employees/Number of 
firms, 2013) 

48.60 29.06 16.03 149.53 
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Table 2 (Continued. 1) 
Variable Description Statistics 
Key factors of innovation at the city-wide level Mean Std. Dev. min max 
Univ_pop Number of 

universities/research 
institutions specialized in 
science and engineering 
disciplines (scored A- or 
above)/Population 

0.003 0.004 0 0.02 

SciTech Percent of employment in 
science and technical 
service sector in the total 
employment (2013) 

0.02 0.01 0.01 0.09 

ProdSrv Percent of employment in 
producer service sector in 
the total employment 
(2013) 

0.08 0.04 0.03 0.27 

ICTUser Subscribers of ICT devices, 
including telephones, 
mobile phones, and 
broadband /Total 
population (%, 2015) 

2.19 1.53 0.76 10.11 

PilotYrs Number of years approved 
as innovative pilot city 
(until 2018) 

7.41 3.30 2 12 

Other urban environment factors Mean Std. Dev. min max 
FDI_GDP Total FDI/ Gross Domestic 

Product (GRP) of a city 
(10,000 USD/10,000 RMB, 
2015) 

0.02 0.02 0 0.11 

GreenCov Green covered area as of 
percentage of land area in 
built district (%, 2015) 

41.20 5.16 26.57 61.58 

RdNwDen Density of road network in 
built district 
(kilometer/square 
kilometer) 

6.22 2.48 0.32 14.57 

Proximity to HSR stations Freq. Percent 
proxHSR_10km Distance from city center 

to the nearest HSR station 
<10 km 

15 20 

proxHSR_10_20km Distance from city center 
to the nearest HSR station 
in 10-20 km 

17 22.67 

nonproxHSR Distance from city center 
to the nearest HSR 
station >20 km 

43 57.33 

Inter-city accessibility measures based on HSR Mean Std. Dev. Min Max 
AccUniv_2h Using a 2-hour time 

threshold 
10.09 12.85 0 51.57 
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Table 2 (Continued.2)      
Variable Description Statistics     
Inter-city accessibility measures based on HSR Mean Std. Dev. min max 

AccUniv_3.6h Using a 3.6-hour time 
threshold 

14.02 14.51 0 56.17 

AccUniv_4.8h Using a 4.8-hour time 
threshold 

17.33 15.64 0 62.54 

AccSciTech_2h Using a 2-hour time 
threshold 

583119.1 596633.3 0 2356995 

AccSciTech_3.6h Using a 3.6-hour time 
threshold 

851744.2 730468.8 0 2606586 

AccSciTech_4.8h Using a 4.8-hour time 
threshold 

1067893 828287.6 0 2854792 

AccProdSrv_2h Using a 2-hour time 
threshold 

2085138 2315475 0 9752173 

AccProdSrv_3.6h Using a 3.6-hour time 
threshold 

2953073 2610487 0 10500000 

AccProdSrv_4.8h Using a 4.8-hour time 
threshold 

3639071 2871103 0 11200000 

AccICTUser_2h Using a 2-hour time 
threshold 

11702.12 10002.35 0 38652.51 

AccICTUser_3.6h Using a 3.6-hour time 
threshold 

17151.98 12793.8 0 44569.75 

AccICTUser_4.8h Using a 4.8-hour time 
threshold 

21318.89 14745.66 0 49663.67 

 1 

4. Results and discussions 2 
This section discusses the regression results of urban innovation outputs in the EI sector.  We 3 

examined the correlation coefficients between pairs of explanatory variables and experimented with 4 
different specifications to avoid the multicollinearity issue. The final model includes a set of variables 5 
that are not closely correlated with each other while being able to address different dimensions of 6 
innovation factors as defined in the conceptual model. The city size categorical variables as the 7 
measure of urbanization economies are also used as surrogates for the local market size of ICT 8 
device consumers (ICTUser). The per capita number of universities/research institutions with top 9 
rankings in science and engineering disciplines in a city (Univ) is positively related with the share of 10 
science and technology workers (SciTech) and is used in the model to represent the city-level 11 
scientific sector.  12 

The OLS and generalized methods of moments (GMM) estimators are used to estimate the 13 
determinants of innovation outcomes. The OLS models are conducted in preliminary tests7.  The 14 
adjusted R-square for all models are around 0.85 - 0.87, indicating that the sets of explanatory 15 
variables explain most of the variations in urban innovation in the EI sector across the study areas. 16 
We also run Moran’s I tests for spatial correlation among the residuals (Moran, 1950), with the 17 
spatial weight matrix defined by the inverse distance between the cities. The results indicate that 18 
the values of Moran’s I for residuals of all regression models do not significantly differ from 0. This 19 

 
7 Results using OLS are not reported but are available upon request.  
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implies that the spatial spillover effects across neighboring cities have been absorbed by the 1 
accessibility variables in the model. 2 

The Hansen J statistic (1982) are used to test the validity of GMM model (including the validity of 3 
instrumental variables and the overidentification restrictions) (Baum, 2006). Results indicate that the 4 
null hypothesis that all instruments are uncorrelated with the error terms cannot be rejected in all 5 
models, suggesting that the validity of the final models (see Table 3). The GMM C statistics are used 6 
to test for the endogeneity of inter-city accessibility and HSR station proximity variables (Baum, et 7 
al., 2003, Baum, 2006). Results indicate that the null hypothesis of their exogeneity is only weakly 8 
rejected (at p<0.1 level) when AccSciTech_4.8h is used as the inter-city accessibility variable in the 9 
regression model. Considering the potential endogeneity issue, instrumental variables are used for 10 
all models. The following discussions uses results using GMM with heteroskedastic errors and 11 
instruments (IV-GMM) and focus on those significant explanatory variables (p<0.1).  The asymptotic 12 
T-test statistics (Allison, 1999) are applied to examine if there exist significant differences in the13 
estimated coefficients for the same independent variable across different model specifications. The 14 
results indicate that none of the T-test statistics are significant (results not shown). 15 

16 
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Table 3    Results for urban innovation in the EI sector (N=75) a 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
R&DperEmp 0.562*** 0.502*** 0.514*** 0.503*** 0.518*** 0.503*** 0.549*** 0.552*** 0.572*** 0.534*** 0.518*** 0.544*** 

(4.12) (6.55) (4.32) (6.17) (6.69) (4.49) (7.09) (4.49) (5.50) (6.90) (4.10) (5.24) 
CitySize (reference group: mega cities) 
Small and medium 
sized cities 

-3.159*** -3.624*** -3.249*** -3.348*** -4.248*** -3.485*** -3.237*** -3.493*** -3.389*** -3.306*** -3.978*** -3.474***

(-5.08) (-5.25) (-3.85) (-5.11) (-5.76) (-4.71) (-4.89) (-4.46) (-4.39) (-4.54) (-3.90) (-4.35) 
Type II large cities -2.532*** -2.651*** -2.536*** -2.779*** -3.020*** -2.827*** -2.432*** -2.843*** -2.571*** -2.569*** -3.218*** -2.764***

(-7.45) (-8.11) (-7.49) (-6.29) (-7.19) (-6.49) (-6.42) (-5.59) (-6.71) (-5.69) (-4.56) (-5.86) 
Type I large cities -1.060* -0.958* -1.053* -1.258* -1.173* -1.246* -1.075* -1.347* -1.101* -1.03 -1.494* -1.134*

(-2.13) (-2.46) (-2.10) (-2.13) (-2.24) (-2.18) (-2.22) (-2.22) (-2.23) (-1.89) (-1.99) (-2.14)
Key local agglomeration factors 
EIEmp 8.221* 11.81*** 9.394** 6.706* 10.52*** 8.743*** 6.739 9.436*** 8.810** 7.172* 10.07*** 9.384*** 

(2.53) (4.65) (3.05) (2.00) (4.98) (3.39) (1.85) (3.53) (3.07) (2.23) (3.92) (3.57) 
DIVINX 6.726*** 3.465* 4.973** 7.314*** 3.634** 4.908** 6.108** 5.009*** 4.865** 7.061*** 4.548*** 5.122*** 

(3.70) (2.55) (3.01) (3.51) (2.72) (3.06) (2.91) (3.30) (3.02) (3.72) (3.34) (3.42) 
Univ_pop 146.2*** 111.1*** 142.2*** 154.4*** 130.8*** 145.7*** 155.2*** 121.1*** 157.3*** 157.0*** 122.2*** 158.7*** 

(5.05) (3.54) (5.11) (5.50) (4.80) (5.57) (5.85) (4.10) (6.11) (5.88) (3.83) (5.78) 
ProdSrv 9.577** 4.268* 7.066** 10.35*** 6.811** 7.801*** 9.859*** 6.872** 7.843** 10.21*** 5.913* 7.418** 

(3.18) (1.97) (2.98) (3.56) (2.87) (3.34) (3.60) (2.72) (3.25) (3.70) (2.40) (3.19) 
Inter-city accessibility 

Acc_Univ Acc_SciTech Acc_ProdSrv Acc_ICTUser 
2h 3.6h 4.8h 2h 3.6h 4.8h 2h 3.6h 4.8h 2h 3.6h 4.8h 

All groups -0.0129 -0.0413 -0.035 9.76E-08 -1.09E-06* -7.00E-07 5.10E-09 -1.10E-07 -1.50E-07 -1.00E-06 -3.00E-05 -3.00E-05
(-0.41) (-1.37) (-1.54) -0.15 (-2.15) (-1.65) -0.03 (-0.74) (-1.43) (-0.04) (-0.95) (-1.50) 

Small and medium 
sized cities -0.0165 0.0466 0.0347 -8.10E-

07 1.00E-06 7.00E-07 -9.80E-
08 8.59E-08 1.60E-07 -3.00E-05 3.00E-05 3.00E-05

(-0.30) -1.02 -0.79 (-0.65) -1.73 -0.9 (-0.31) -0.45 -0.87 (-0.48) -0.74 -0.84
Type II large cities 0.0352 0.0693* 0.0624* 3.90E-07 1.6E-06** 1.26E-06* 1.8E-07 2.75E-07 2.97E-07* 3.89E-05 6.38E-05 5.68E-05* 
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Table 3 (Continued.) 
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
(1.00) (2.05) (2.21) (0.52) (2.78) (2.32) (0.96) (1.79) (2.37) (0.99) (1.90) (2.27) 

Type I large cities -0.0184 -0.00132 0.0234 -5.10E-07 4.00E-07 5.00E-07 2.77E-09 -8.15E-08 1.30E-07 -2.00E-05 -5.00E-06 2.00E-05
(-0.52) (-0.04) -0.73 (-0.82) -0.66 -0.95 -0.02 (-0.54) -0.95 (-0.50) (-0.15) -0.85 

Other Urban environment factors 
FDI_GDP 17.77** 13.08* 16.65** 14.22** 14.29** 16.88*** 13.83** 9.229* 15.14*** 14.38** 8.47 15.42*** 

(2.62) (2.13) (3.04) (2.64) (2.88) (3.40) (2.65) (1.99) (3.45) (2.89) (1.78) (3.59) 
GreenCov 0.0416** 0.0332 0.0398* 0.0438** 0.0371 0.0381* 0.0407** 0.0377* 0.0334* 0.0437*** 0.0396* 0.0382* 

(3.15) (1.67) (1.99) (3.20) (1.66) (2.47) (3.04) (2.25) (1.97) (3.35) (2.57) (2.55) 
_cons 3.294** 3.570** 3.642** 3.528** 3.765** 3.877** 3.359** 3.668** 3.833** 3.218* 4.150** 3.815** 

(2.86) (3.17) (3.24) (3.00) (3.26) (3.38) (2.84) (3.14) (3.31) (2.56) (3.26) (3.15) 
adj. R-sq 0.813 0.801 0.816 0.816 0.836 0.847 0.845 0.842 0.855 0.855 0.861 0.863 
J test statistics 6.859 12.356 11.19 7.36 12.435 12.429 7.791 15.146 9.296 1.22 1.65 1.53 
J test statistics p 
value (H0=valid 
model) 

0.81 0.338 0.428 0.769 0.332 0.332 0.732 0.176 0.595 0.2684 0.1988 0.2163 

t statistics in parentheses: Underlined p<0.1; * p<0.05; ** p<0.01; *** p<0.001 

a. Only results that are significant (p < 0.1) in at least one of the models are shown in the table.
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4.1 R&D expenditure 
Consistent with the expectations of the knowledge production function, cities with larger R&D 

inputs in the EI sector are found to have innovation outputs of the sector. The estimated coefficients 
for the R&DperEmp variable range from 0.5 to 0.57, suggesting that one unit increase in R&D 
expenditure intensity (10,000 RMB per employee) is associated with about 65 (=100*exp(0.5)-1) to 
77 (=100*exp(0.57)-1) percent increase in the yearly invention patent counts in the EI sector (as of 
2016-2018).   

4.2 Local (city-wide) level agglomeration effects 
The overall economic size of a city is also positively associated with innovation in the EI sector. 

The dummy variables representing the three size classes of cities all have significant and negative 
coefficients in all models. This means that mega cities (population larger than 5 million) have a 
“premium” in terms of generating innovation activities relative to cities of all other size classes, all 
else being equal. The estimated premiums of innovation outputs for mega cities over small and 
medium cities is largest, about 96-98 percent, followed by Type-II large cities (about 91-96 percent), 
and is smallest on Type-I large cities (about 65-78 percent). This is consistent with the theoretical 
expectation that cities with stronger urbanization economies have higher innovation capacity.  

Localization economies, measured by the employment share of the EI sector in a city, also have 
positive and significant effects on urban innovation outputs of the EI sector. A 0.01-unit (1 
percentage point) increase in the share of employment in the EI sector in a city is associated with 
7.7-12.5 percent increase in the annual invention patent counts of the EI sector in a city during the 
2016-2018 period. The positive and significant signs for the 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 variable in all regression models 
indicate that the less diversified a city’s industrial structure (i.e., the higher values of 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷), the 
higher innovation performance of the city in the EI industry. These results differ from Jacob’s 
argument (1969) that a more diversified urban economy facilitates cross-fertilization of ideas across 
different industries and ultimately promotes innovation.  To promote urban innovation in the EI 
sector, cities may need to foster employment concentration and specialization in the sector instead 
of pursuing a relatively balanced distribution of employment across industrial categories. 

Local access to universities and research institutions received 75 or above scores in science or 
engineering disciplines, which is used to represent a main knowledge source for the EI sector, exhibit 
positive and significant effects on the innovation outputs of the sector. Local access to producer 
services, represented by the share of employment in the producer service sectors is also found to 
have positive impacts on innovation outputs of the EI sector in a city. Local competition of firms in 
the EI sector show no significant impacts on the innovation performance of the sector.  

4.3 Inter-city agglomeration spillover effects 
     The effects of different sources of agglomeration economies on innovation outputs, including 
access to key knowledge sources (i.e., top-ranking science or engineering academic institutions), 
high-human capital or specialized labors (i.e., scientific/technical workers), producer service sectors-- 
an important supplier of intermediate input for innovation, and final markets are tested at both the 
intra-city and the inter-city scale.  

Innovation outcomes (of the EI sector) do not exhibit any association with the AccUniv variable 
measured at the 2-hour threshold train time for any type of cities. For Type-II large cities (population 
in 1-3 million), their innovation outputs of the EI sector are positively associated with access to top 
rankings science and engineering universities/research institutions in other cities through HSR 
network. The average marginal effects of AccUNIV measured based on the 3.6-hour train time 
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threshold is about 7.1 percent, which is about 1.1 times of the marginal effects of AccUNIV 
measured based on the 4.8-hour train time threshold (see Columns (1)- (3) in Table 3).  

Similarly, innovation outputs for cities of any size classes are not found to be significant 
associated with access to human capital of other cities within the 2-hour train time threshold. When 
the train time distance threshold for the inter-city access measure is extended to 3.6 hours, cities of 
different size classes show different responses. While the estimated coefficient for AccSciTech at the 
3.6-hour threshold is negatively significant, the coefficients for interaction terms between 
AccSciTech and the dummy variables for small and medium sized cities and Type-II large cities are 
positively significant with absolute values larger than that for AccSciTech_3.6h. In other words, 
small-medium sized cities and Type-II large cities benefit from inter-city access to specialized 
workers and human capital within 3.6-hour time threshold in terms of innovation outputs of the EI 
sector; every additional 100,000 unit increase in the AccSciTech_3.6h variable is associated with 2.7 
and 5.2 percent increase in the yearly invention counts in the two types of cities, respectively (see 
Columns (4)- (6) in Table 3).  By contrast, innovation outputs in cities with larger than 3 million 
population (including Type-I large cities and mega cities) are negatively affected by AccSciTech_3.6h 
and the estimated marginal effects (with a 100,000-unit increase in the variable) is about 1 percent. 
The negative impacts of inter-city access to scientific and technical workers on innovation outcomes 
of Type-I large cities (population in 3-5 million) and mega cities (population larger than 5 million) 
deserves to be explored in future studies. One possible explanation is that scientists and technicians 
in those large cities with better access to their peers within a reasonable travel time might have a 
higher propensity to move out of large cities to other lower-ranked cities to enjoy lower rents and 
living costs while forming or maintaining collaboration with their colleagues (Dong et al., 2020), 
which in the long run may reduce the innovation capacity of large cities. Moreover, cities of 1-3 
million population also benefit from inter-city access to scientific and technical workers at an 
extended train time threshold of 4.8 hours; the average marginal effects of the AccSciTech_4.8h 
variable (with a 100,000-unit increase) is about 13.4 percent, which is about 1.6 times larger than of 
the marginal effects of the AccSciTech_3.6h variable.  

Type-II large cities are also the only class of cities showing positive and significant coefficients on 
the inter-city access to producer service workers measures based on the 3.6- and 4.8-hour train time 
threshold; every additional 100,000 unit increase in the two accessibility variables are associated 
with 2.7 and 3 percent increases in urban innovation outputs of the EI sector, respectively. However, 
compared with the impacts of access to science and technical workers within the 3.6-hour and 4.8-
hour train time on Type-II large cities, the estimated effects of AccProdSrv_3.6h and 
AccProdSrv_4.8h are smaller by about 0.5 and 0.8 times, respectively.    

Type-II large cities also respond positively to inter-city access to ICT device subscribes of other 
cities within the 3.6- and 4.8-hour train time threshold in terms of innovation outputs; the estimated 
marginal effects of the inter-city access measures (with a 1,000-unit increase) are 6.6 and 5.8 
percent, respectively.  For cities of other size class, their innovation outcomes are not significantly 
correlated with extended market access through HSR network.  

In sum, the effects of the different sources of inter-city agglomeration economies on urban 
innovation are significant when the train travel time are defined beyond the 2-hour threshold and 
mostly accrue to Type-II large cities. These results may be explained by Wolffram’s theory (2003) 
that transportation investment generates larger economic effects on those cities or regions where 
transportation infrastructure is less developed. Compared with the other three classes of cities, 
Type-II large cities on average have the smallest values of all the inter-city accessibility variables. This 
is because this city group have the largest number of cities without HSR stations (as of 2016), which 
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resulted in elongated average train travel time to other cities and reduced inter-city accessibility for 
this group. However, Type-II large cities still occupies advantageous locations in China’s railway 
network (composed of HSR and CR). Table 4 shows that compared with cities of other size classes, 
Type-II large cities on average have the shortest railway network distance and straight-line distance 
to other cities. It is expected that the introduction of HSR stations in those Type-II cities would offer 
new location advantages to those cities and further extend the input and output markets for them, 
which would further improve the innovation capacity and growth potential of those cities. 

Table 4   Descriptive statistics of inter-city travel time and distance via railway network 

Small and 
Medium 
Sized cities 

Type-II large 
cities 

Type-I large 
cities 

Mega 
Cities 

Inter-city distance via railway network 
min 71 63 63 71 
mean 574 532 622 558 
sd 290 261 256 271 
max 1055 1055 1055 1055 
Inter-city train time 
min 0.2 0.2 0.3 0.2 
mean 2.1 2.2 2.3 2.1 
sd 1.0 0.9 0.9 1.0 
max 3.6 3.6 3.6 3.6 
Inter-city straight-line distance 
min 56 40 40 56 
mean 387 355.5 425 397 
sd 225 198 194 208 
max 838 911 866 911 

4.4 Other control factors 
Consistent with the findings of previous studies (e.g., Chen et al., 2017, Mei & Qi, 2019), the 

level of FDI intensity in a city is positively associated with urban innovation in the EI sector. This 
implies that the more open the urban economy, the more likely that the city would have a higher 
innovation capacity in high-tech sectors. Cities with higher share of green spaces areas in the built-
up area are also found to have higher innovation outputs of the EI sector. As discussed above, the 
positive impacts of urban amenities on innovation activities may be through attracting talented 
workers with high human capital, which play a key role in urban innovation especially in high-tech 
sector like EI.  

Dummy variables presenting the relative location of HSR stations to cities’ (geometric) centers 
are not found to exert significant impacts on urban innovation in the EI sector. In other words, the 
accessibility advantages associated with the introduction of HSR have been mostly captured by the 
inter-city accessibility variables and there are no specific preferences for locations near HSR stations 
for innovation activities in the EI sector during the study period.  

The estimated coefficients on the number of years a city being approved as an innovative pilot 
city are not found to be significant in all the regression models. These results imply that for those 
cities already chosen as innovative pilot cities, the effects of policy and institutional supports on 
innovation activities of the EI sector over 2016-2018 are relatively homogeneous after other key 
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factors of the innovation process have been controlled. However, future studies may be interested 
in further exploring the role of policy and institutional supports in innovative activities. 

Finally, cities of the four economic zones are not found to differ significantly in terms of 
innovation outputs in the EI sector after the local urban agglomeration and environmental factors 
and inter-city accessibility effects have been accounted for.  

5. Conclusion
This study explores the effects of HSR investment on urban innovation through different sources

of agglomeration spillover effects, using the EI sector across 75 innovative pilot Chinese cities as an 
example. Three sources of inter-city agglomeration economies that are closely related with 
passenger flows are operationalized by transport accessibility variables measured at the 2-hour, 3.6-
hour, and 4.8-hour train time thresholds and their differential effects across cities of different size 
classes are tested through a categorical variable approach.  Using an IV-GMM estimator, results 
indicate that while local agglomeration economies exert positive impacts on innovation outputs of a 
city’s EI sector, as expected, inter-city accessibility through HSR network mostly influence innovation 
outputs of Type-II large cities (population in 1-3 million).  On both the production and consumption 
side of agglomeration economies, access to a greater pool of top science/engineering institutions 
and producer service suppliers, and a greater market for final demands outside of a city within train 
time thresholds of 3.6- and 4.8-hours exert significant impacts on innovation outputs of the EI sector 
for Type-II large cities but not for cities of other size classes. Considering inter-city access to high-
human capital workers within the 3.6-hour train time, Type-II large cities are more sensitive to the 
accessibility effects in terms of innovation outcomes than small and medium-sized cities (population 
in 0.2-1 million). However, no additional location advantageous of proximity to HSR stations at the 
local level are found after accounting for the effects of inter-city accessibility by HSR.  

These results add to the empirical evidence on the mechanism of HSR effects on urban 
innovation through extending and enhancing different sources of agglomeration economies at the 
inter-city scales.  While the local accommodation of key agglomeration and innovation factors such 
as top academic institutions and producer service suppliers are important to urban innovation in the 
EI sector, HSR network may open up new knowledge sources, specialized labor pool, and input and 
output markets for cities with a population less than 3 million, which may finally enhance innovation 
outputs of the EI sector. The effective spatial extents of inter-city agglomeration effects may go 
beyond the 2-hour train time threshold of which HSR travel usually outcompetes air travel. 

The results also provide some policy implications on urban innovation and HSR development in 
China.  While cities with strong urbanization and/or localization economies may still be the future 
growth pole of the EI sector, non-top-tier Chinese cities, especially Type-II large cities, may also have 
the potential to be developed into future innovation hubs of high-tech sectors like the EI sectors if 
their connections to other cities endowed with knowledge sources or markets through HSR network 
can be further improved. To further facilitate urban innovation in China, future HSR network plan 
may not only emphasize the connections between higher-order cities, but also further compress the 
time distance and enhance inter-city accessibility between lower-order cities and high-order cities as 
well as among lower-order cities of different specializations at a larger spatial scale.  

There are several limitations of this study. First, though IV-GMM estimators are used to cope with 
the endogeneity issue, this study is cross-sectional in nature and focuses on associations instead of 
causality. Future research may fully explore the bi-directional causation between innovation and 
inter-city accessibility through HSR network with the use of longitudinal data. Second, this study 
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focuses on the EI sector, which has long been considered as a highly innovative industry and can be 
most sensitive to reduced costs of knowledge and human capital flows. Future research may be 
extended to other traditional industries that are not considered high-tech and explore whether and 
to what extent the introduction of HSR may bring growth and innovation benefits to those industries 
by compressing inter-city travel time and improving non-local knowledge and market access. 



26 
 

Reference 
ACS, Z. J., ANSELIN, L. & VARGA, A. 2002a. Patents and innovation counts as measures of regional 

production of new knowledge. Research Policy, 31, 1069-1085. 
ACS, Z. J., FITZROY, F. R. & SMITH, I. 2002b. High-technology employment and R&D in cities: 

Heterogeneity vs specialization. The Annals of Regional Science, 36, 373-386. 
AGRAWAL, A., GALASSO, A. & OETTL, A. 2017. Roads and innovation. Review of Economics and 

Statistics, 99, 417-434. 
ALLISON, P. D. 1999. Comparing logit and probit coefficients across groups. Sociological Methods & 

Research, 28, 186-208. 
ANDERSSON, M. & KARLSSON, C. 2004. The role of accessibility for the performance of regional 

innovation. In: CHARLIE KARLSSON, P. F., SVEN-ÅKE HÖRTE (ed.) Knowledge spillovers and 
knowledge management. Edward Elgar Publishing. 

ANDERSSON, M. & KARLSSON, C. 2006. Regional innovation systems in small and medium-sized 
regions. The emerging digital economy. Springer. 

AUDRETSCH, D. B. & FELDMAN, M. P. 2004. Knowledge spillovers and the geography of innovation. 
Handbook of regional and urban economics, 4, 2713-2739. 

BAUM, C. F., SCHAFFER, M. E. & STILLMAN, S. 2003. Instrumental variables and GMM: Estimation 
and testing. The Stata Journal, 3, 1-31. 

BAUM, C. F. 2006. An introduction to modern econometrics using Stata, Stata press. 
BERMAN, L. & ZHANG, W. 2017. V6 Ming Dynasty Courier Routes and Stations. V1 ed.: Harvard 

Dataverse. 
BRESCHI, S. & LISSONI, F. 2001. Knowledge spillovers and local innovation systems: a critical survey. 

Industrial and corporate change, 10, 975-1005. 
CARLINO, G. & KERR, W. R. 2015. Agglomeration and innovation. Handbook of regional and urban 

economics. 
CHEN, C.-L. 2012. Reshaping Chinese space-economy through high-speed trains: opportunities and 

challenges. Journal of Transport Geography, 22, 312-316. 
CHEN, C.-L. & VICKERMAN, R. 2017. Can transport infrastructure change regions’ economic fortunes? 

Some evidence from Europe and China. Regional Studies, 51, 144-160. 
CHEN, Q., YAN, T., & LIU, X. 2017. The Impact of Technological Innovation Human Resource 

Agglomeration on Regional Innovation Capability. Journal of Tongji University (Natural 
Science). 45, 1722-1730. 

CHEN, Z., DONG, B., PEI, Q. & ZHANG, Z. 2022. The impacts of urban vitality and urban density on 
innovation: Evidence from China's Greater Bay Area. Habitat International, 119, 102490. 

CHEN, Z. & HAYNES, K. E. 2015. Regional impact of public transportation infrastructure: A spatial 
panel assessment of the US Northeast megaregion. Economic Development Quarterly, 29, 
275-291. 

CHENG, Z. & LIU, J. 2015. Industrial Agglomeration, Spatial Spillovers and Manufacturing 
Innovation——Spatial Econometric Analysis Based on Chinese Cities’ Data. Journal of Shanxi 
University of Finance and Economics, 37,34-44. 

CHENG, Y.-S., LOO, B. P. & VICKERMAN, R. 2015. High-speed rail networks, economic integration and 
regional specialisation in China and Europe. Travel Behaviour and Society, 2, 1-14. 

CHENG, Z. & LIU, J. 2015. Industrial Agglomeration, Spatial Spillovers and Manufacturing 
Innovation——Spatial Econometric Analysis Based on Chinese Cities’ Data. Journal of Shanxi 
University of Finance and Economics, 37, 34-44. 

DONG, L., DU, R., KAHN, M., RATTI, C. & ZHENG, S. 2021. “Ghost cities” versus boom towns: Do 
China's high-speed rail new towns thrive? Regional Science and Urban Economics, 103682. 

DONG, X., ZHENG, S. & KAHN, M. E. 2020. The role of transportation speed in facilitating high skilled 
teamwork across cities. Journal of Urban Economics, 115, 103212. 

DRUCKER, J. M. 2012. The spatial extent of agglomeration economies: Evidence from three US 
manufacturing industries. US Census Bureau Center for Economic Studies Paper. 



27 

DURANTON, G. & PUGA, D. 2001. Nursery Cities: Urban Diversity, Process Innovation, and the Life 
Cycle of Products. The American Economic Review, 91, 1454-1477. 

DUSCHL, M., SCHIMKE, A., BRENNER, T. & LUXEN, D. 2011. Firm growth and the spatial impact of 
geolocated external factors: Empirical evidence for German manufacturing firms. Working 
paper series in economics. 

ECHEVERRI-CARROLL, E. L. & BRENNAN, W. 1999. Are innovation networks bounded by proximity? 
Innovation, networks and localities. Springer. 

FAGERBERG, J., SRHOLEC, M. & VERSPAGEN, B. 2010. Innovation and economic development. 
Handbook of the Economics of Innovation. Elsevier. 

FELDMAN, M. P. 1994. The Geography of Innovation, Boston, Kluwer Academic Publishers. 
FISCHER, M. M. 2001. Innovation, knowledge creation and systems of innovation. The annals of 

regional science, 35, 199-216. 
FISCHER, M. M. & SUAREZ-VILLA, L. 1999. Innovation, Networks and Localities: An Introduction. 

Innovation, Networks and Localities. Springer. 
FUDAN INSTITUTE OF INDUSTRIAL DEVELOPMENT, FIRST FINANCE RESEARCH INSTITUTE, R. I. O. C. E. 

& FUDAN UNIVERSITY 2017. China City and Industry Innovation Capability Report 2017. 
GAO, Y. & ZHENG, J. 2020. The impact of high-speed rail on innovation: An empirical test of the 

companion innovation hypothesis of transportation improvement with China’s 
manufacturing firms. World Development, 127, 104838. 

GARMENDIA, M., RIBALAYGUA, C. & UREÑA, J. M. 2012. High speed rail: implication for cities. Cities, 
29, S26-S31. 

GARRISON, W. L. & SOULEYRETTE II, R. R. 1994. The Relationship between Transportation and 
Innovation. Transportation Quarterly, 48, 257-265. 

GARRISON, W. L. & SOULEYRETTE II, R. R. 1996. Transportation, innovation, and development: the 
companion innovation hypothesis. Logistics and Transportation review, 32, 5-38. 

GIULIANO, G., KANG, S. & YUAN, Q. 2019. Agglomeration economies and evolving urban form. The 
Annals of Regional Science, 63, 377-398. 

GORDON, I. R. & MCCANN, P. 2000. Industrial clusters: complexes, agglomeration and/or social 
networks? Urban studies, 37, 513-532. 

GRAHAM, D. J. & MELO, P. C. 2011. Assessment of wider economic impacts of high-speed rail for 
Great Britain. Transportation Research Record: Journal of the Transportation Research 
Board, 2261, 15-24. 

GRILICHES, Z. 1979. Issues in assessing the contribution of research and development to productivity 
growth. The bell journal of economics, 92-116. 

GROSSMAN, G. M. & HELPMAN, E. 1994. Endogenous innovation in the theory of growth. Journal of 
Economic Perspectives, 8, 23-44. 

HALL, B. H., JAFFE, A. B. & TRAJTENBERG, M. 2001. The NBER Patent Citation Data File: Lessons, 
Insights and Methodological Tools. National Bureau of Economic Research Working Paper 
Series, No. 8498. 

HALL, P. 2009. Magic Carpets and Seamless Webs: Opportunities and Constraints for High-Speed 
Trains in Europe. Built Environment (1978-), 35, 59-69. 

HANSEN, L. P. 1982. Large sample properties of generalized method of moments estimators. 
Econometrica: Journal of the econometric society, 1029-1054. 

HE, B.-J., ZHAO, D.-X., ZHU, J., DARKO, A. & GOU, Z.-H. 2018. Promoting and implementing urban 
sustainability in China: An integration of sustainable initiatives at different urban scales. 
Habitat International, 82, 83-93. 

HELSLEY, R. W. & STRANGE, W. C. 2002. Innovation and input sharing. Journal of Urban Economics, 
51, 25-45. 

HOLL, A. 2004. Transport Infrastructure, Agglomeration Economies, and Firm Birth: Empirical 
Evidence from Portugal. Journal of Regional Science, 44, 693-712. 



28 

INOUE, H., NAKAJIMA, K. & SAITO, Y. U. 2017. The Impact of the opening of high-speed rail on 
innovation, Research Institute of Economy, Trade and Industry (RIETI). 

IVARSSON, I. & ALVSTAM, C. G. 2005. The effect of spatial proximity on technology transfer from 
TNCs to local suppliers in developing countries: The case of AB Volvo in Asia and Latin 
America. Economic Geography, 81, 83-111. 

JIAO, J., WANG, J., ZHANG, F., JIN, F. & LIU, W. 2020. Roles of accessibility, connectivity and spatial 
interdependence in realizing the economic impact of high-speed rail: Evidence from China. 
Transport Policy, 91, 1-15. 

LI, Y. 2016. China High Speed Railways and Stations (2016). V1 ed.: Harvard Dataverse. 
LI, Y., CHEN, Z. & WANG, P. 2020. Impact of high-speed rail on urban economic efficiency in China. 

Transport Policy, 97, 220-231. 
LI, C., GAO, X., HE, B.-J., WU, J. & WU, K. 2019. Coupling Coordination Relationships between Urban-

industrial Land Use Efficiency and Accessibility of Highway Networks: Evidence from Beijing-
Tianjin-Hebei Urban Agglomeration, China. Sustainability, 11, 1446. 

LIN, J.-J., FENG, C.-M. & LEE, Y.-N. 2007. Influence of accessibility on innovation: Empirical study of 
electronics industry in northern Taiwan. Transportation research record, 1994, 74-79. 

LIU, L. & ZHANG, M. 2018. High-speed rail impacts on travel times, accessibility, and economic 
productivity: A benchmarking analysis in city-cluster regions of China. Journal of Transport 
Geography, 73, 25-40. 

MA, J. T. & LIU, T. Y. 2021. Does the high‐speed rail network improve economic growth? Papers in 
Regional Science. 

MARSHALL, A. 1920. Principles of Economics, 8th ed., London, Macmillan. 
MEI, C. & QI, X. 2019. Spatial Distribution and Influencing Factors of Innovation Output in Beijing-

Tianjin-Hebei Region—Spatial Statistics and Econometric Analysis Based on 13 Cities. Journal 
of Hebei University (Philosophy and Social Science), 44, 108-115. 

MELO, P. C., GRAHAM, D. J. & NOLAND, R. B. 2009. A meta-analysis of estimates of urban 
agglomeration economies. Regional Science and Urban Economics, 39, 332-342. 

MENG, Q. & LI, M. 2002. New economy and ICT development in China. Information economics and 
policy, 14, 275-295. 

MONTGOMERY, M. R. 1988. How Large Is Too Large? Implications of the City Size Literature for 
Population Policy and Research. Economic Development and Cultural Change, 36, 691-720. 

MOODYSSON, J. & JONSSON, O. 2007. Knowledge collaboration and proximity the spatial 
organization of biotech innovation projects. European urban and regional studies, 14, 115-
131. 

MORAN, P. A. 1950. Notes on continuous stochastic phenomena. Biometrika, 37, 17-23. 
MORENO, R., PACI, R. & USAI, S. 2005. Spatial spillovers and innovation activity in European regions. 

Environment and planning A, 37, 1793-1812. 
MORGAN, K. 2004. The exaggerated death of geography: learning, proximity and territorial 

innovation systems. Journal of economic geography, 4, 3-21. 
OERLEMANS, L. & MEEUS, M. 2005. Do Organizational and Spatial Proximity Impact on Firm 

Performance? Regional Studies, 39, 89-104. 
PAN, H., CONG, C., ZHANG, X. & ZHANG, Y. 2020. How do high-speed rail projects affect the 

agglomeration in cities and regions? Transportation Research Part D: Transport and 
Environment, 88, 102561. 

PARR, J. B. 2004. Economies of scope and economies of agglomeration: The Goldstein-Gronberg 
contribution revisited. The Annals of Regional Science, 38, 1-11. 

QINGSONG, H., LIU, Q., YANG, Z. & ZHANG, L. 2018. China Railway High-Speed: The Impact of 
Transportation Infrastructure on Corporate Innovation. Available at SSRN 3153965. 

RALLET, A. & TORRE, A. 2004. Proximity and localization. Online Paper available at http://139.124, 
177.



29 

ROSENTHAL, S. S. & STRANGE, W. C. 2004. Evidence on the nature and sources of agglomeration 
economies. Handbook of regional and urban economics, 4, 2119-2171. 

SMĘTKOWSKI, M. 2018. The role of exogenous and endogenous factors in the growth of regions in 
Central and Eastern Europe: the metropolitan/non-metropolitan divide in the pre-and post-
crisis era. European Planning Studies, 26, 256-278. 

STORPER, M. & VENABLES, A. J. 2004. Buzz: face-to-face contact and the urban economy. Journal of 
economic geography, 4, 351-370. 

SUN, Y. 2000. Spatial Distribution of Patents in China. Regional Studies, 34, 441-454. 
UREÑA, J. M., MENERAULT, P. & GARMENDIA, M. 2009. The high-speed rail challenge for big 

intermediate cities: A national, regional and local perspective. Cities, 26, 266-279. 
VICKERMAN, R. 2015. High-speed rail and regional development: the case of intermediate stations. 

Journal of Transport Geography, 42, 157-165. 
WANG, L., ACHEAMPONG, R. A. & HE, S. 2020. High-speed rail network development effects on the 

growth and spatial dynamics of knowledge-intensive economy in major cities of China. Cities, 
105, 102772. 

WANG, S., WANG, J. & LIU, X. 2019. How do urban spatial structures evolution in the high-speed rail 
era? Case study of Yangtze River Delta, China. Habitat International, 93, 102051. 

WETERINGS, A. & BOSCHMA, R. 2009. Does spatial proximity to customers matter for innovative 
performance?: Evidence from the Dutch software sector. Research Policy, 38, 746-755. 

WOLFRAM, M. 2003. Planning the integration of the high speed train: a discourse analytical study in 
four European regions. 

WONG, C.-Y., NG, B.-K., AZIZAN, S. A. & HASBULLAH, M. 2018. Knowledge Structures of City 
Innovation Systems: Singapore and Hong Kong. Journal of Urban Technology, 25, 47-73. 

WONG, P.-K. 2002. ICT production and diffusion in Asia Digital dividends or digital divide? 
Information Economics and Policy, 14, 167-187. 

XIAO, F. & LIN, J.-J. 2021. High-speed rail and high-tech industry evolution: Empirical evidence from 
China. Transportation Research Interdisciplinary Perspectives, 10, 100358. 

YANG, J., GUO, A., LI, X. & HUANG, T. 2018. Study of the impact of a high-speed railway opening on 
China’s accessibility pattern and spatial equality. Sustainability, 10, 2943. 

YAO, Y., PAN, H., CUI, X. & WANG, Z. 2022. Do compact cities have higher efficiencies of 
agglomeration economies? A dynamic panel model with compactness indicators. Land Use 
Policy, 115, 106005. 

YIN, M., BERTOLINI, L. & DUAN, J. 2015. The effects of the high-speed railway on urban 
development: International experience and potential implications for China. Progress in 
planning, 98, 1-52. 

ZHANG, Y. 2015. Analysis and Evaluation of Science and Technology Innovation Capability of 
Innovative Pilot Cities in China. Productivity Research, 3, 63-65. 

ZHU, P. 2021. Does high-speed rail stimulate urban land growth? Experience from China. 
Transportation Research Part D: Transport and Environment, 98, 102974. 

ZHU, S., WANG, C. & HE, C. 2019. High-speed rail network and changing industrial dynamics in 
Chinese regions. International Regional Science Review, 42, 495-518. 


	Agglomeration spillover, Accessibility by High-Speed Rail, and Urban Innovation in China: A focus on the Electronic Information Industry
	Abstract
	1. Introduction
	2. Literature review
	2.1 Links between agglomeration economies and innovation
	2.2 Transportation infrastructure, inter-city accessibility, and innovation
	2.3 Urban economic impacts of HSR in China

	3. Research Design
	3.1 Conceptual model
	3.2 Differential effects of accessibility by city size
	3.3 Endogeneity and instrumental variables
	3.4 Data and variables
	3.4.1 Measures of key factors of innovation at the city-wide level
	3.4.2 Measures of inter-city agglomeration economies
	3.4.3 Measures of proximity to HSR station
	3.4.4 Control variables


	4. Results and discussions
	4.1 R&D expenditure
	4.2 Local (city-wide) level agglomeration effects
	4.3 Inter-city agglomeration spillover effects
	4.4 Other control factors

	5. Conclusion
	Reference



