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Abstract 

Interior layouts of a building may influence the presence and movement of occupants, which 

can lead them to participate in a certain activity, energy-saving behaviour for instance, which 

occurs at a particular location within an indoor space. Moreover, rearranging this interior layout 

can help understanding how and why occupants use more energy and encourage their energy-

saving behaviours through occupancy-based interventions. However, only a handful of studies 

have attempted to evaluate the effects of interior layout on the energy-saving behaviour of 

occupants. In light of this, this study offers a comprehensive modelling framework for 

investigating the influence of interior layouts on occupants’ energy-saving behaviours by 

integrating Agent-Based Modelling (ABM), Systems Dynamics (SD), and Building 

Information Modelling (BIM). The occupant behaviour within this hybrid model is built based 

upon the theory of reasoned action. Moreover, while most of the ABM studies related to 

occupant behaviour are based on synthetic data, this study used real energy data collected from 

customized sensors to validate the proposed model. As a result, it has been shown that 

adjustment of interior layout (i.e., occupant intervention) can improve building energy 

performance by 14.9%. In terms of model validation, the proposed hybrid model has exhibited 

an acceptable level of accuracy with an average CV(RMSE) of 10.5%, MBE of 1.5%, and R2 

of 0.77. This study differs from other existing studies in that it adopts an interior layout-based 

human behavioural investigation considering stochastic attitudes and subjective norms of 

occupants and provides a robust validation through empirical-based intervention. 
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1. Introduction 

The building and construction industry, which accounts for nearly 40% of global energy 

consumption, is no longer just an option for accelerating energy-saving transformation and 

ensuring a worldwide low-carbon future [1-3]. In order to significantly reduce buildings’ 

energy consumption, the Department of Energy (DOE) of the United States (U.S.) published a 

roadmap for the Heating, Ventilation, and Air Conditioning (HVAC) technologies, 

highlighting top-priority projects for high-efficiency HVAC systems such as sophisticated 

direct-current HVAC systems, low-temperature heat pumps, and electrochemical compressor 

installations [4, 5]. Other energy-efficient building systems, such as energy-efficient appliances 

[4, 6, 7], automation in buildings, and control systems, have also been discussed [8]. However, 

neither important improvements in the final energy consumption per capita from buildings nor 

the predicted cuts in energy use have been achieved [9]. This is due to the low implementation 

rate of these energy-saving technologies that have been somewhat constrained by their high 

price [10, 11]. Furthermore, some of the latest studies in the United Kingdom and Finland have 

reported that more than 40% of people are not attracted by the latest tools or technologies and 

therefore are unwilling to buy and implement energy-saving technologies and facilities [7, 12, 

13]. Besides, many researchers have also observed that there can be tremendous discrepancies 

between a resident’s or occupant’s annual energy consumption even for nearly identical 

buildings depending on the energy-related occupant behaviour [14, 15]. Accordingly, the latest 

studies in the literature highlight the importance of occupant behaviours in reducing buildings’ 

energy consumption. Occupant behaviour is commonly defined solely by occupant energy-

related actions/synergies, i.e., control of systems and appliances such as HVAC control, 

window control, blind control, lighting control, etc. [16]. The relationship between occupant 

behaviour and energy consumption is recognized in the pursuit of overall satisfaction by 

occupants in the latest International Energy Agency Energy in Buildings and Communities 

(IEA-EBC) Annex 66 [17-19]. 

 

As such, building occupants are essential elements in our built environment, and their 

importance in the research on building energy consumption has been newly highlighted to 

increase the attention paid to them. Studies on adaptive control and comfort [18, 20, 21], 

lighting control [21-23], operable window control [24-27], and shading control [26, 28] are some 

of the limited research areas that have been considered to analyze building occupants’ 

behaviour or behavioural impacts in buildings’ operation phase. However, there are not many 

studies or cases where this knowledge of occupant behaviour plays a complete role in the 
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decision-making in regard to the building design aspect. At the beginning of the design phase, 

building occupants’ behaviours such as occupancy and operation schedules can perform a 

crucial role in the planning and designing of an indoor space. Furthermore, occupant 

behaviours can also have a significant impact on the whole-building performance throughout 

its life cycle for different design elements. For instance, occupant behaviours may affect not 

only the wear and tear of the entire building but also the environmental conditions of indoor 

spaces, which are closely related to the total energy performance of a building [19, 29]. In 

particular, planning a building’s interior layout is one of the design efforts between “design 

development” and “scheme design” in the initial design phase, which is a significant part of a 

building’s design-related activities that affects the overall energy consumption of a building 

[29]. In this regard, occupant-centred design (OCD) techniques (i.e., interior layout adjustment) 

should be considered to additionally look at how individual building occupants use energy [29, 

30] and how this information can inform the intervention strategy to advance energy 

conservation. For instance, the difference in the distance between occupant location (for seating 

and sleeping) and the switch location (for HVAC and lighting), which is a result of interior 

layout adjustment, may influence the energy-related behaviour of occupants. If the distance is 

short enough, occupants may interact with the switch location more easily by turning off lights 

or controlling the HVAC system when it is not necessary, or they leave the space. On the other 

hand, occupants may cause more energy wastage if they are far from the switch location or the 

switch location is inaccessible, making it challenging to save energy. Thus, occupant 

behaviours may vary depending on a building’s interior layout, which will ultimately influence 

a building’s energy performance. Moreover, earlier reports have demonstrated that there is an 

incredible gap between the energy-saving potential and availability of knowledge to assist 

interior design in the early stage [31, 32]. As one of the significant tasks in the early design 

stage, interior layout adjustment is expected to have a great potential in energy saving. Despite 

its significance, there is a lack of studies that evaluate the influences of interior layout on a 

building’s energy performance. These studies [29, 33-37] have indicated that interior layout can 

substantially influence a building’s energy performance; however, most of these studies do not 

provide specific guidelines to configure the best layout arrangements that significantly impact 

a building’s total energy consumption. In addition, some interior layout-based building energy 

models have been developed by considering static or fixed occupancy profiles. 

 

Therefore, the main purpose of this research is to uncover the salient aspects of the impact of 

a building’s interior layout on occupants’ energy-saving behaviours by proposing a hybrid 
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model using Agent-Based Modelling (ABM), Systems Dynamics (SD), and Building 

Information Modelling (BIM). The energy consumption of a building is extremely dynamic 

and depends on multiple factors. Thus, the modelling structure must cover a collective system 

approach and needs to support various data exchanges over the ABM, SD, and BIM that fully 

capture the various elements in the stochastic nature of occupancy-based building energy 

investigation [18, 35]. More specifically, the proposed hybrid model is a collective arrangement 

of ABM for reflecting behavioural theory, SD for dynamic problems and events, and BIM tool 

for factual layout illustration. Here, the ABM-SD model is built using the AnyLogic modelling 

tool, a broadly established simulation platform, especially in the engineering, business, and 

sociology domain, while the BIM model is constructed using Revit 2019. To the best of our 

knowledge, this is the first study to investigate the impact of buildings’ interior layout on 

occupants’ energy-saving behaviours by integrating ABM, SD, and BIM.  

 

In our hybrid model, the target occupant behaviours are the occupants’ interactions with the 

building energy components (e.g., HVAC and lighting), which may vary depending on a 

building’s interior layout and ultimately contribute to a building’s energy performance. Here, 

a building’s interior layout is characterized as the interior collocation of various spaces, which 

incorporates internal arrangements, and the position of furniture, equipment, and appliances, 

as well as room geometry. As the existing literature has failed to evaluate the sole effect of 

interior layout, it is necessary to consider the interior layout plan to comprehensively analyze 

its impact on the energy performance of buildings. To this end, the hybrid model analyzes the 

energy consumption pattern both before and after the interior layout adjustment (i.e., occupant 

intervention), which refers to re-organizing or modifying existing problematic interior layouts 

to provide occupants better access to their switch location for HVAC and lighting. In this way, 

the proposed hybrid model adds another feature to the existing model of occupants’ energy 

behaviour in order to improve the simulation performance. Most importantly, while the 

majority of occupant behaviour-related studies or ABM models are based on synthetic data and 

scenarios, this study also attempts to fill this gap by offering a robust validation approach using 

realistic data collection from eight customized sensors based on a case study in Chittagong, 

Bangladesh. 

 

This article is structured as follows: section 2 describes the literature review; section 3 explains 

the methodology of the study; section 4 illustrates the results and discussions, including the 

validation approach, and section 5 describes the conclusions and limitations of the study. 
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2. Literature Review 

It may be noticed that research topics related to human behaviour have moved from 

psychological investigation or social science to occupant behaviour modelling and energy 

simulation for buildings. This recommends a change of study methods from qualitative analysis 

to quantitative analysis. In recent years, there have been a number of models or approaches 

developed for the study of building occupants’ behaviour and interior layout. The existing 

occupant behaviour model in relation to a building’s interior layout or ABM approach, as well 

as the validation study will be described in the following section. 

 

2.1. The literature on the interior layout of buildings  

An occupant-centred interior layout can significantly influence a building’s energy performance [38]. 

In particular, several studies emphasize the impacts of the design features of a building, especially 

interior layout and interior design features, on occupancy and occupants' energy consumption 

behaviours [29, 38]. A study [39] stated the three types of problems of interior layout, namely multi-

floor layout, unequal-areas layout, and row layout, which is a typical class of operations problems in a 

facility department. Thus, the study concerned finding the optimum configuration for several 

nonoverlapping united areas within a given facility that contribute to minimizing the cost.  

Dino et al. [37] considered the interior layout deployment that satisfies the formal placement constraints 

and other topological aspects with a single algorithm. The study aimed to optimize the daylighting and 

energy performance for a typical library interior layout. Typically, interior layout deployments have 

many applications and can integrate multiple or single goals while identifying the optimal 

indoor layout configuration. In particular, Goldstein et al. [40] indicated that a building’s indoor 

layout might influence the presence and movement of occupants, which can lead to energy-

related activities that occur at a specified location within a space. Other research [41] revealed 

that the probability of occupant actions can vary based on human factors and spatial layout. 

Based on sunlight and wind-powered natural ventilation, this study [42] proposed an optimization 

system to recognize energy-efficient interior layout designs for a high-rise residential building. 

Furthermore, Du et al. [43] reviewed the gaps, requirements, and challenges of incorporating 

automatic construction of indoor layouts for energy optimization and performance assessment. 

This study also revealed that the energy performance of a building cab be significantly 

improved through optimizing and upgrading layout designs. Furthermore, Becker et al. [44] 

suggested a quadratic energy optimization technique for large offices with different types of 

rooms. The relevant literature, including a review of Azar et al. [45] emphasized the energy-

related objectives and operation schedules during the performance simulation of a building 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



6 

rather than interior layout analysis. A study [46] also proposed a two-component structure for 

solving an indoor layout problem followed by a modular approach using discrete event and 

agent-based simulation. However, other aspects regarding occupants’ energy consumption 

patterns due to interior allocation and interior layout planning are less explored during the 

energy optimization and design of buildings. Integrating these features would allow exploration 

of the capability of building occupants to manage their desired activities or actions in relation 

to energy conservation and comfort. Hence, as indicated by Schweiker [47], attention needs to 

be shifted from recognizing occupant behaviour to making use of such energy conservation 

behaviour to improve the energy performance of buildings and occupants’ comfort. In this 

fashion, it requires the incorporation of occupant-centric predictors in the design and operation 

phases [45]. This study [48] proposed a design-oriented multi-dimensional PBD (Performance-

Based Design) approach using BIM coupled with synthetic behaviour simulation and virtual 

data analytics. The findings also show that energy consumption and temperature largely rely 

on ABM and the layout geometry. 

 

2.2. The literature on the ABM approach and its validation efforts 

Several mathematical frameworks and approaches have been employed in the modelling of 

building occupants’ behaviour, including probabilistic models, statistical models, data mining 

approaches, and ABM, as exemplified in the numerous review studies [19, 49-51]. Unlike other 

methods, however, ABM provides distinctive benefits for the modelling of interactions in 

occupancy-based buildings, and thus, many researchers have actively used the ABM approach 

for the modelling of building occupants’ behaviour [27, 51]. Also, the study of behaviour has 

the capability to cope with the uncertainties of the real world [27]. Similarly, all components 

of ABM might be characterized by the agents thinking and performing like a human. However, 

limitations or inadequacies persist as the implementation of ABM approaches to the research 

of occupant behaviours is still in its development phase [27, 51]. 

 

A test has been conducted on the implementation of ABM for buildings’ energy-related 

occupancy interaction by Lee & Malkawi [52]. This study modelled various occupant 

behaviour profiles in a sample office building. The study explored five specific behaviours: 

activity level, space heater/fan use, window use, blind use, and clothes worn. The key aim of 

this research was to identify how an occupant agent balances the active thermal changes in a 

typical office space to enhance both comfort and energy savings. The approach allows ABM 

to incorporate both behaviour and energy application, which might be used as a simulation 
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method for buildings’ energy conservation. Putra et al. [21] studied the occupant behaviour and 

thermal comfort impact due to load-shedding problems. Here, the model incorporates 

independent or autonomous agents with human perception preferences and limited simulation 

cases. However, only four simulation cases were investigated with real data and the test 

outcomes failed to represent an acceptable level of accuracy. A hybrid model was also proposed 

by Langevin et al. [53] for quantifying occupants’ adaptive behaviour and the thermal comfort 

of an office building along with the occupants’ energy consumption. However, concern has 

arisen about the applicability of the agent-based behaviour model for naturally ventilated 

buildings and the proficiency of the co-simulation argument. The above approaches used 

prototype occupancy schedules or building spaces to construct a single ABM or hybrid model. 

In addition, no study has adequately incorporated or investigated occupants’ individual 

perceptions or norms in regard to their stochastic behaviour within interior space.  

Another study [27] also used an ABM method including a realistic validation approach without 

considering the impact of interior layout. This study mainly considered occupant behaviours 

regarding window, blind, and door operation, whereas different occupant behaviours 

depending on the indoor layout were not adequately considered. Validation work [54] was also 

performed to examine the developed ABM that was originally built based on Perceptual 

Control Theory (PCT). The model output was similar to the experimental estimations for 

aggregated and individual expectations. But this model only studied thermal adaptive 

behaviour, and just a few selected behaviours were validated. One of the major difficulties for 

the very important part of behaviour studies applying an ABM model is the absence of actual 

data contribution. Due to this fact, scholars often fail to validate their models by employing 

real-world data [18, 27]. Only a few ABM validations have been observed in previous works 

in the literature. Additionally, in the earlier research context, the model is built based on a 

simple prototype model, which may trigger questions about whether or not the simulated virtual 

agent will understand the behaviour which real occupants display. Table 1 shows the current 

studies on occupant behaviour modelling by implementing an ABM approach. As shown in 

Table 1, there is a lack of studies that not only consider the interior layout, but also implement 

an appropriate ABM validation approach for studying building occupants’ behaviours [55]. 

Besides, it is necessary to further improve the existing approach or develop a new approach 

that attempts to go beyond the current behaviour research, together with a more specific model 

and building component such as occupant-centred layout (using ABM-SD-BIM incorporation) 

deployment regarding the occupant’s behavioural intention.
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Table 1. The literature on ABM studies related to occupant behaviours 

Building type Target occupant behaviours Drivers of behavioural change Behavioural rules Tools/Platform 
Real building 

application 
Validation References 

Commercial 

(office) 
Lighting; Blind; Hot water 

Energy conservation events; 

Influence of word of mouth 

Occupants move from high-

energy users to low-energy 

users over time 

e-Quest; 

AnyLogic 
No No [56] 

Residential 
General Modelling (not 

specified) 

Time; Indoor environmental 

parameters 

Belief, Desire, and Intention 

(BDI) framework 
Brahms No No [57] 

Commercial 

(office) 

Window; Fan; Thermostat; 

Clothing 

Temperature; Humidity; Air 

velocity 

Perceptual Control Theory and 

customized modelling rules 

EnergyPlus; 

MATLAB 
Yes Yes [54] 

Commercial 

(office) 

Window; Blind; Door; 

Clothing; Fan/heater 

Temperature; Humidity; Air 

speed; PMV value 

Observe, Orient, Decide, and 

Action (OODA) loop 

EnergyPlus; 

MATLAB 
No No [52] 

Office 

(educational) 

Occupant comfort level; Space 

occupancy 

Environmental parameters (e.g., 

temperature and CO2) 

Integrated approach between 

ABM, SD, and BIM 
Revit; Anylogic Yes Yes [18] 

Multi-purpose 

administration 

building 

Open or closed space layout 

problems 

Flow pattern; Energy 

consumption; Occupancy-based 

interior layout 

Space orientation travel 

distance view of spaces 
AnyLogic No Not definite [46] 

Commercial 

(office) 

Fan/heater; lighting; Blind; 

Task light; Clothing 
Load shedding 

Building manager, occupant, 

and tenant have a different 

behaviour pattern 

EnergyPlus;  

NetLogo 

Calibration; 

Verification 
Yes [21] 

Residential 
Window; Air conditioning 

(AC) 
Temperature 

Probability of certain 

behaviours that are built on 

indoor temperature difference 

Repast; TAS Yes No [58] 

Prototype 

public space 
Space occupancy; Energy use Room temperature; Illuminance 

Virtual agents’ self-learning 

adaptation 

BCVTB; 

Energy Plus; 

Radiance; 

scikit-learn 

0.20.3 

No No [48] 

Commercial 

(office) 
HVAC; Lighting; Window 

Daylight level; Temperature; 

CO2 concentration 

Drivers, needs, actions, and 

systems (DNAs) 
obFMU Not definite No [59] 

Office 
HVAC; Artificial lighting; 

daylighting; Office equipment 

Direct and indirect 

interventions over a three-year 

period 

Occupants tend to shift between 

being high-, medium-, and low-

energy consumers 

AnyLogic No No [60] 

Commercial 

(office) 
Clothing; Thermostat-set point 

Outdoor air temperature; 

Choice of initial clothing worn 

ASHRAE-55 clothing 

ensembles, probabilities, and 

user-specified rules 

BIM; ABM; 

EnergyPlus 

Verification 

using a survey 
No [61] 
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Commercial Lighting 
Occupants' satisfaction with 

different lighting systems 

Theory of Planned Behaviour 

(TPB) and the Belief-Desire-

Intention (BDI) 

NetLogo; 

Radiance 
No No [62] 

Office Lighting energy saving Impact of different layouts 

Stochastic behaviour of 

occupants (including presence 

and movement, among others) 

NetLogo;  

e-Quest 

Not 

mentioned 

Not 

mentioned 
[63] 

Residential 
Thermal comfort; Energy 

consumption 
Outside temperature; Humidity 

Built on a Belief, Desire, and 

Intention (BDI) framework 
GAMA No No [35] 

House /Office Window; Lighting; Blind Environmental parameters Time-dependent probabilities 

Nottingham 

Multi-Agent 

Stochastic 

Simulation; 

Functional 

Mockup 

Interface; 

EnergyPlus 

No No [26] 

Office Heating/cooling 
Energy; Indoor Environmental 

Quality (IEQ); Cost 
Perceptual Control Theory 

BCVTB; 

EnergyPlus; 

Matlab 

No 
Not 

mentioned 
[53] 

Commercial 

(office) 
Window; Blind; Door 

Perceptions and 

value systems of humans 

Agent's goal, standard and 

preference 
PMFserv Yes Yes [27] 

This study HVAC; Lighting 

Attitude and subjective norm of 

occupants; Building interior 

layout 

Theory of Reasoned Action 

(ToRA) along with the 

customized modelling rules for 

behavioural intention for 

interior layout adjustment 

AnyLogic 

(ABM+SD); 

Revit (BIM) 

Yes Yes - 
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3. Methodology 

3.1. An overview of the research framework and tasks 

The overall research process of this study is divided into three main tasks:  

(i) Task 1: The BIM model is used to select and construct the preferred interior layout; 

(ii) Task 2:  The ABM-SD model is developed to forecast the comprehensive building 

occupants’ behaviour patterns and their individual actions within the interior layout 

defined in Task 1 and to calculate the corresponding energy consumption profile; and 

(iii) Task 3: The proposed hybrid model and its simulation outcome are validated by 

considering occupant intervention.  

Fig. 1 represents the main features of the proposed hybrid model.  

 

Fig. 1. A conceptual framework of the ABM-SD-BIM-integrated model 

 

In Task 1, the selected interior layout diagram was constructed along with the specific locations 

(e.g., switch location for HVAC and lighting, occupant location for seating and sleeping, etc.) 

as well as their coordinates using Revit-2019. Each interior layout pattern was developed based 

on the real layout pattern available in the case study location. In Task 2, the ABM model that 

consists of different agents, the surrounding environment, and their interactions was developed 

based on the behavioural rules (i.e., theory of reasoned action (ToRA)) to forecast building 
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occupants’ behaviours within the interior layout. This ABM model simultaneously engages 

with the SD model to calculate the energy consumption profile according to different occupant 

behaviours based on the environmental parameters (e.g., temperature, humidity, CO2, etc.) 

received from the BIM model. In Task 3, the simulation outcome is validated against the real 

data through occupant intervention. The details of each task are described in the following 

sections. 

 

The tasks illustrated in the research framework in Fig. 1, which integrates the BIM platform 

with ABM and SD approaches, are further expounded in the research flow chart shown in Fig. 

2. The following sections explain the research flow chart relating to each task. 

 

Fig. 2. Flow chart of the research approach 
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3.1.1. Task 1: Interior layout identification in the BIM model 

As shown in Fig. 3, the interior layout settings for the individual indoor space, including 

occupant location, occupant circulation path, and switch location, are identified in a prototype 

Revit model for drawing and specifications. Here, the “occupant location” is the indoor space 

where the occupant might be seated or stay to accomplish a specific task. On the other hand, 

occupants usually use the “circulation path” to move from one destination to another. The 

“switch location” is a particular place in the indoor space where occupants regularly display 

their dynamic energy-related behaviour (e.g., controlling the HVAC system or turning off the 

light). 

  

Fig. 3. Occupant location, circulation path, and switch location in the BIM model 

 

The BIM model considers the distance between the occupant location (for seating and sleeping) 

and switch location (for HVAC and lighting) that supports message/data exchange over the 

ABM and SD through a DynamoAPI-Excel platform. The platform automatically generates the 

input data for ABM-SD models based on different physical interior layout conditions illustrated 

in Fig. 4. Typically, the physical arrangement of interior space can manipulate an occupant’s 

energy consumption behaviour by controlling and using their action scenarios. Several studies 

have also clearly stated the influence of a building’s interior layout on occupants’ preferred 

activities and their desired location [29, 64-66]. Accordingly, this study mainly considers eight 

different types of interior layout conditions (i.e., sample layouts) according to the accessibility 

of the switch location in the proposed hybrid model as shown in Fig. 4. Among eight interior 

layouts, Interior Layouts 1 to 7 include different types of existing problematic layouts that are 
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classified as follows: (i) Type 1: No access to the switch location (i.e., Interior Layout 1); (ii) 

Type 2: Controlled access to the switch location  due to obstructions (i.e., Interior Layouts 2 

and 3) or a longer distance (i.e., Interior Layout 4); and (iii) Type 3: Average access to the 

switch location with a fair (i.e., Interior Layouts 5 and 6) to short distance (i.e., Interior Layout 

7) from the different directions. On the other hand, only one interior layout condition (i.e., 

Interior Layout 8) had easy access to the switch location from the occupant location and is 

regarded as the best case, which can also be a baseline for further intervention. Here, the 

distance between the occupant location and the switch location is also considered as a variable 

that determines the accessibility of the switch location. If this distance is short enough within 

the human range (i.e., within 2 ft), occupants might easily engage with the building’s energy 

system, and they may frequently follow the energy saving attitude while staying at or away 

from the occupant location.  

This study also considers the rearrangement and modification of objects (e.g., furniture) in 

problematic interior layouts through an intervention.  

 

Fig. 4. Eight different types of interior layout conditions (prototype layouts) 
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3.1.2. Task 2: Development of the ABM-SD model 

During the ABM model construction, required parameters (e.g., population, size, etc.) were 

imported and other specified behaviours assigned within the ABM platform. The respective 

model parameters, events and variables were also considered for comprehensive construction 

purposes. 

 

The study aimed to identify the behaviour triggers (events or actions that perform a role in 

driving a specific behaviour) that were also incorporated into the physical layout conditions 

assigned in a prototype BIM model. On the other hand, as a decision-making process, the 

theory of reasoned action (ToRA) was applied as this is one of the most popular theories in the 

study of human behaviour. A detailed explanation of this theory is provided in the next section.  

 

3.1.2.1. Theory of Reasoned Action (ToRA) 

The primary theory implemented in the study for behaviour representation is the reasoned 

action model established by Fishbein and Ajzen [67]. Fig. 5 illustrates a simplified schematic 

concept of behavioural intention, which is a fundamental concept of ToRA.  

 

Fig. 5. The behavioural model based on ToRA, adapted from Fishbein and Ajzen [67]  

 

With this theory, Fishbein and Ajzen looked at several factors, primarily “Attitude” (ATT). 

Attitude is an occupant’s belief about the behaviour they know, which they think is actually 

going to benefit themselves in the end. It is not just an attitude about the outcomes of the 

behaviour but also includes an evaluation of the outcomes, how occupants think about the 

outcomes, and whether they are beneficial or not. For example, occupants who believe that 

exercising every day can help them be healthy will form a positive attitude about exercise. If 

occupants have a positive attitude about exercise, hopefully, that informs their intention to 
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exercise every day, thus leading to a behaviour. But intention does not just rely on attitude 

where it gets a little bit more complex because if occupants do everything that they have a 

positive attitude about, it would probably provide them a lot healthier and happier life. 

Nevertheless, a second component called “Subjective Norm” (SN) has much more influence 

on occupants’ beliefs about the desirability of certain behaviours. For example, exercise can be 

regarded as something that people view as a good thing, since being healthy is highly valued 

in society. Subjective Norm focuses on the social desirability or the acceptability of the 

behaviours that occupants are ultimately trying to display. Occupants can create this norm, but 

they have to understand the belief about the desired behaviour from other people’s 

perspectives. If the occupant is doing something, they should think about how others are going 

to think about it. The complete ToRA is portrayed as Eq. (1).  

𝑂𝐵𝐼 = 𝑂𝐴𝑇𝑇 × 𝑋1 + 𝑂𝑆𝑁 × 𝑋2                                                                                                               (1) 

where OBI is the occupant’s behavioural intention, OATT is the occupant’s attitude toward a 

behaviour, OSN is the occupant’s subjective norm related to the behaviour, and Xi (i = 1, 2) is 

the corresponding weight explaining how important the component is to individual occupants 

(e.g., 0.5 for both cases). 

 

There exists an extension of this theory called the theory of planned behaviour (TPB), which 

additionally considers the perceived behavioural control, i.e., an individual’s perceived ease or 

difficulty to behave in a certain way, as an additional behavioural element. This study, however, 

assumes that occupant behaviour is unconstrained or associated with spontaneous control, and 

they behave based on their pre-existing behavioural attitudes and intentions. So, without any 

further behavioural control, the occupant could behave or change to behaving in a specific way 

within a convenient environment. In this context, although TPB is one of the widely used 

models to explore energy-related behaviour, this study considered the ToRA as our primary 

behavioural model. 

 

Based on this behavioural model, ToRA, the decision-making process of occupant behaviour 

has been further interpreted using a perceive, think, and act (PTA) loop, which will be 

explained in detail in the following sub-section. 

 

3.1.2.2. Perceive, Think, and Act (PTA) loop in the ABM model 

The PTA loop was adopted to describe the decision-making process of the occupant behaviour 

applied in the ABM model. Table 2 represents the model agents, essential parameters, events, 
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and variables. The model adopts four types of agents including an active agent (e.g., Occupant) 

and three passive agents (e.g., EnergyPoint, HVAC, and Light). Herein, Parameters mainly 

consider the “int” or “double” types with certain initial values wherein Event considers the 

model actions in a cyclic mode. In addition, all agent variables were considered as a “double” 

type with certain initial values.   

The PTA loop in Fig. 2 has been extended to the observe, orient, decide, and action (OODA) 

loop shown in the statechart in Fig. 6 (a) for further identification of the process. The detailed 

explanation of the OODA loop is as follows: (i) Observe: An occupant agent recognizes its 

environment or surroundings (e.g., interior layout and climatic conditions) of a given space; 

(ii) Orient: An occupant agent orients and spends some time evaluating its perception of the 

behaviour options; (iii) Decision: Based on its environment or surroundings as well as occupant 

attitude and subjective norm, an occupant agent makes behavioural decisions to address the 

task; and (iv) Action: An occupant agent performs the task or comes back to its idle position.  

Usually, an occupant agent observes its environment, which is well-described by the input data, 

interior layout and environmental information of the specified spaces. The interior layout 

conditions correspond to the circulation path and switch location mentioned in the prototype 

Revit model, which also includes physical parameters (e.g., the distance between the occupant 

location and switch location ). Based on this observation, the occupant agent evaluates its 

motivation to engage in the behaviour.  

Table 2. Model parameters, events, and variables 

Agent 
Active Passive 

Occupant Energy Point HVAC Light 

Parameter 

Prefer_HVAC 

Maximum_Time_Decision 

Interaction Rate 

Occupant size 

PMV value 

Occupant Intervention 

Circulation, energy spot, destination 

High & Low Perception 

Attitude and Subjective norm 

Inaccessible 

Distance 

Switch_Point 

HVAC_Control 

EnergyPointInteraction_Rate 

HVAC/Fan 

MinPreference_HVAC 

MaxPreference_HVAC 

Energy_coefficient_HVAC 

Light 

Event 

EnergyPoint_interaction_Event 

Intervention_Event 

Occupant_Satisfaction_Event 

Update_Occupant_Perception 

Orient 

No_Task 

- - - 

Variable 

HVAC_Dist 

ConsiderThermal Comfort_HVAC 

Decision_Time 

Thinking_Approaching 

Thermal_Sensation 

Occupant_Perception_Layout 

Colour 

 - Temp_Dynamic - 
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Fig. 6. Statechart for the decision-making process (e.g., OODA loop) and intervention
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As shown in Fig. 6 (a), if more occupant agents go into an idle state (i.e., Occupants_Idle in 

Fig. 6 (a)), it indicates that occupants are not satisfied (less intention or low perception) with 

the existing interior layout, and they are not engaging in any energy-saving behaviours. Thus, 

occupants exhibit more energy-consuming behaviours rather than energy-saving behaviours. 

In this case, the model considers the intervention shown in Fig. 6 (b) and (c) to reduce the 

number of occupant agents in the idle state. The following steps were considered for the agent 

shifting from low to high perception during the intervention cycle. 

 

(i) The intervention statechart consists of two components describing the shifting of 

occupant perception from low to high by completing the multiple stages within the indoor 

spaces. Firstly, the model considered the statechart entry point (Fig. 6 (b)) 

“Transforms_LowToHigh_Perception” that is mainly linked to the previous statechart 

(e.g., Occupants_Idle in OODA loop). Occupants belong to innately low perception at 

the “Intrinsical_Low_Perception” stage.   

(ii) Afterward, the inward idle occupant shifts to “Apparent_Low_Perception,” where 

occupants’ limited idle status has been visible for a certain period of time. 

(iii) Next, the occupant gradually shifts to a visible indolent stage and represents entirely 

unshifting categories. Now they are willing to change their perception as the layout 

reordering has been accomplished within the spaces. 

(iv) Thus, the intervention was implemented to try to convert an occupant’s existing low 

perception to high perception.  

(v) The above process within the space was also coupled with the statechart 

“Indoor_Movement,” which primarily represents the occupant’s physical movement 

from their destination to switch location or other directions. 

 

After the intervention cycle, the occupant perception value increases, which leads to a positive 

attitude toward energy-saving behaviours.  

Typically, occupants’ perception values (from -1 to +1) vary based on eight different interior 

layouts as mentioned in Fig. 3. Here, occupants’ perception value is estimated based on 

triangular distribution while it is applied as a functional form of areas for fuzzy logic due to 

the simple application on the modelling platform. It is also assumed that occupants’ perception 

values are higher after intervention and lower before intervention. For instance, if the switch 

location  is accessible and within the human range (less than 2 ft), it means that the perception 

value is higher and the occupant has a positive behavioural intention towards energy saving. It 
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is noted that the aforementioned model has considered both psychological and non-

psychological parameters within the framework.  

The next component of the hybrid model is energy calculation (before and after intervention) 

after the agent’s interaction and learning process. The purpose of the energy estimation is to 

capture how occupants’ agent behaviours can influence a building’s energy consumption under 

different interior layouts. Here, the SD model interconnects the ABM-generated final 

perception factors of occupants, ambient parameters, along with the mathematical expressions, 

and occupants’ energy usage characteristics, as shown in Fig. 7, which can influence the overall 

energy consumption of a building. In this way, the SD model describes how the behavioural 

changes made by occupant agents influence energy consumption.  

 

3.1.2.3. Energy calculation loop in the SD model 

System dynamics (SD) helps to recognize the nonlinear behaviour of complex structures over 

time using flows, stocks, interior feedback loops, time delays and table functions. The model 

structure in system dynamics is implemented using Anylogic, since the mathematical 

expressions can be easily inputted into the system. In this study, the complete structure of 

system dynamics is the executed form shown in Fig. 7. Here, occupants’ perception factors 

from the ABM model, along with the intervention, are linked with the first components (Fig. 7 

(a)) of the SD model that directly influence the amount of energy available within a space and 

consumed by HVAC and lighting. In addition, energy consumption by HVAC components is 

also connected to the cooling load, ambient parameters (e.g., temperature, CO2 concentration), 

and additional presumed factors for a higher accuracy. Thus, another three components (i.e., 7 

(b), 7 (c) and 7 (d)) have been considered within the SD model. More specifically, the first 

component (Fig. 7 (a)) calculates the individual energy consumption for HVAC and lighting 

while the total daily energy consumption (i.e., final outcome) is calculated in the second 

component (Fig. 7 (b)). The third component (Fig. 7 (c)) calculates the cooling load, which is 

linked to the second component (Fig. 7 (b)) to calculate the total daily energy consumption. 

Typically, the cooling load is greatly influenced by various factors such as the wall 

temperature, wall area, heat transfer coefficient, flow rate, heat gain from occupants, etc. 

Furthermore, as a secondary component, the fourth component (Fig. 7 (d)) calculates the indoor 

CO2 concentration (ppm) to consider it as one of the factors in the energy calculation of the 

second component (Fig. 7 (b)). Here, the CO2 concentration (ppm) rate can be changed 

depending on the number of occupants and interior layout characteristics.  
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The details of outdoor environmental data such as temperature (℃) and relative humidity (%) 

and indoor environmental data such as ambient or room temperature (℃), relative humidity 

(%), CO2 concentration (ppm), heat gain from occupants, etc. can be defined using the SD 

model. Other indoor space data in the SD model, such as metabolic gain, floor reflectance, air 

flow rate, area of interior walls, layout characteristics, etc., are extracted from the BIM model. 

The cooling load and internal heat gains by occupants can be calculated using the following 

formulas.  

 

(i) Cooling load 

The cooling load corresponds to the total rate of energy required to keep both indoor 

temperature and humidity at a given value. In accordance with Bueno et al. [68, 69], from the 

perspective of occupants, it is expected that the cooling system provides the exact amount of 

fresh air to keep the indoor temperature and specific humidity at given values 𝑇𝑖𝑛
∗  and 𝑠𝑖𝑛

∗ , 

known as setpoints. The ideal cooling load can be mathematically expressed using Eqs. (2), (3) 

and (4):  

𝑞𝑐𝑜𝑜𝑙
∗ = 𝐻𝑐𝑜𝑜𝑙

∗ + 𝐿𝐸𝑐𝑜𝑜𝑙
∗                                                                                                                            (2) 

𝐻𝑐𝑜𝑜𝑙
∗ = ℎ ⋅ 𝐴𝑤𝑎𝑙𝑙𝑠 ⋅ (𝑇𝑤𝑎𝑙𝑙𝑠 − 𝑇𝑖𝑛

∗ ) + 𝐻𝑖𝑔 + 𝑉̇𝑖𝑛𝑓 ⋅ 𝜌 ⋅ 𝑐𝑝 ⋅ (𝑇𝑜𝑢𝑡 − 𝑇𝑖𝑛
∗ )                                      (3) 

𝐿𝐸𝑐𝑜𝑜𝑙
∗ = 𝐿𝐸𝑖𝑔 + 𝑉̇𝑖𝑛𝑓 ⋅ 𝜌 ⋅ 𝑙𝑣 ⋅ (𝑠𝑜𝑢𝑡 − 𝑠𝑖𝑛

∗ )                                                                                       (4) 

where qcool is the ideal cooling load (W), Hcool is the sensible cooling load (W), LEcool is the 

latent cooling load (W), h is the convective heat transfer coefficient (W/m2 K), Awalls is the total 

surface area (m2) of indoor walls, Twalls is the average temperature (℃) of indoor walls, Tin is 

the indoor temperature (℃), Hig is sensible heat gain (W), 𝑉̇𝑖𝑛𝑓 is the volume flow rate (m3/s), 

ρ is air density (kg/m3), cp is the specific heat of air (kJ/kg), Tout is the outdoor temperature (℃), 

LEig is latent heat gain (W), lv is latent heat of vaporization (J/kg), Sout is outdoor specific 

humidity, and Sin is indoor specific humidity. * indicates an ideal and steady-state condition.  

 

(ii) Internal heat gains by occupants 

Sensible and latent heat gains Hig and LEig can be assessed from measurements of occupancy, 

lighting, and power supplied to electrical equipment using Eqs. (5) and (6). They can be 

mathematically expressed as: 

𝐻𝑖𝑔 = 𝐻𝑚𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑐 ⋅ 𝑁𝑜𝑐𝑐 +  
𝐴𝑖𝑛 ⋅ 𝑓𝑠𝑎 ⋅ 𝐼𝑙𝑖𝑔ℎ𝑡

𝜂𝑙𝑖𝑔ℎ𝑡
+ 𝜂𝑒𝑞𝑝𝑡. 𝑊𝑒𝑞𝑝𝑡                                                           (5) 

𝐿𝐸𝑖𝑔 = 𝐿𝐸𝑚𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑐 ⋅ 𝑁𝑜𝑐𝑐                                                                                                                      (6) 
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where 𝐻𝑚𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑐  is the sensible metabolic heat gain from occupants (W/occupant), 

𝐿𝐸𝑚𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑐 is the latent metabolic heat gain from occupants (W/occupant), 𝑁𝑜𝑐𝑐 is the number 

of occupant, 𝐴𝑖𝑛 is the floor surface area of the indoor space (m2),  𝑓𝑠𝑎 is the special allowance 

factor related to the type of light that is available (dimensionless), 𝜂𝑙𝑖𝑔ℎ𝑡 is the efficiency of 

lighting (lumen/W), 𝐼𝑙𝑖𝑔ℎ𝑡 is the average illuminance of lighting (lux), 𝜂𝑒𝑞𝑝𝑡 is the efficiency 

of electrical equipment (W/W), and 𝑊𝑒𝑞𝑝𝑡 is the total power supplied to electrical equipment 

(W). 
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Fig. 7. System Dynamic Model 
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3.1.3. Task 3: Validation of the hybrid model 

The last part of the research is occupant intervention and model validation to determine the 

flexibility and robustness of the proposed model. Here, the intervention is mainly considered 

as an enablement intervention where occupants may easily access and interact with the switch 

location for HVAC and lighting from their location by improving the opportunity/capability or 

minimizing the barriers/obstacles for them to perform energy-related activities [70, 71]. In this 

context, this study analyzed the energy consumption pattern both before and after an 

intervention to investigate the impact of a building’s interior layout on occupants’ energy-

saving behaviour, and eventually, the energy performance of the building. This is one of the 

physical parameters considered during the model construction process. As a flexible modelling 

framework, all data can be customized within the model, and other parameters/components can 

also be adjusted whenever required. After executing the multiple simulations, required outputs 

are gathered and analyzed for further validation by considering an intervention approach 

implemented in a case study. It is also noted that the validation study mainly 

compares/represents the daily energy consumption data obtained from the simulation-based 

intervention and empirical-based intervention. Here, the simulation-based intervention refers 

to the occupant intervention simulated within the model while the empirical-based intervention 

indicates the occupant intervention actually done in the case study. 

 

3.1.3.1. Experimental Settings and Intervention 

Eight residential problematic interior layouts (shown in Fig. 8), including their inhabitants, 

were recruited for this validation study. The occupants comprised 16 males and 16 females 

from the selected apartments. All occupants were in the age range between 20 and 60. The 

occupants were provided with an information sheet explaining the study's aims and objectives. 

In the meantime, the occupants' approval was obtained using the standard approval form. 

Afterward, the occupants were invited to change their problematic layout position for a 

particular period of time (i.e., June/July 2020).    
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Fig. 8. Eight different types of interior layouts for the case study 

 

In this regard, the occupants were requested to change their problematic layouts to the best 

possible one (described earlier). For example, if the switch location  was inaccessible/not 

visible, the occupants could change some interior items or re-organize the interior layout, so 

the switch location becomes visible and is within the human ranges. In addition, it is assumed 

that climatic conditions at particular times (e.g., during the empirical-based intervention) are 

similar.  

 

3.1.3.2. Data extraction and processing 

During the experiment, energy consumption data from the individual indoor layout were 

collected using the customized sensor network shown in Fig. 9. Each sensor network comprises 

four sensors (e.g., temperature, humidity, CO2, and energy calculation). The time period for 

energy data extraction was 1 minute, and these data were stored on a desktop computer 

connected to a wireless network with fixed IP as shown in Fig. 10. Finally, with the intention of 
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investigating the hybrid model’s validity, the model-generated energy data from the eight indoor spaces 

were compared with the real data obtained from the sensor network. 

 

Fig. 9. Customized sensor panel installed in the selected interior layout 

 

 

Fig. 10. Data acquisition technique 

 

3.1.3.3. Validation study 

The abovementioned simulation-based energy consumption data has been evaluated. The goal 

of the evaluation was to test the reliability and validity of the simulation-based energy 

consumption data and the performance of the proposed hybrid model. Herein this study utilized 

the real data gathered from the customized sensor network for validation. These customized 

sensor data are empirical, often known as “true” data, and therefore, comparing them with 
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simulation-based data is recommended as a powerful validation approach [3, 72]. Typically, if 

the results found from the simulation model are reliable, the data derived from these models or 

tools need to be within an acceptable range [72]. Moreover, for reliability tests (by checking 

the calibration tolerance), it is essential that depth and scope are taken into account. 

 

Here, energy data produced from the hybrid model are validated against the real energy data 

collected from the eight customized sensor panels installed within the eight residential 

apartments located in Chittagong, Bangladesh. In this practice, the American Society of 

Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) standard 14-2002 [73], 

the Federal Energy Management Program (FEMP) guidelines [74], and the International 

Performance Measurement and Verification Protocol (IPMVP) standard [75, 76] have been 

followed to verify the data acceptance. This checking includes verifying three dimensionless 

indexes of errors, for instance, Co-efficient of Variation of Root Mean Square Error 

(CV(RMSE)), Mean Bias Error (MBE), and Coefficient of Determination (R2) [76]. According 

to the ASHRAE standard 14-2002 and FEMP regulations, the typical calibration acceptance of 

CV(RMSE) and MBE are 30% and ±10%, respectively, while using system-level adjustment 

with hourly observed data [18, 76]. On the other hand, as stated by IPMVP, the acceptable 

values of CV(RMSE) and MBE are 20% and ±5% respectively [75]. The CV(RMSE) and MBE 

are computed and verified to be consistent with the ASHRAE, FEMP, and IPMVP guidelines. 

Eqs. (7) and (8) were used for CV(RMSE) and MBE calculation.  

𝐶𝑉(𝑅𝑀𝑆𝐸) (%) = (
100

𝑇𝑎𝑣𝑔
) ∙ √

∑(𝑇𝑠 − 𝑇𝑚)2

𝑛
                                                                                    (7) 

𝑀𝐵𝐸 (%) = (
100

𝑇𝑚
) ∙

1

𝑛
∑(𝑇𝑠 − 𝑇𝑚)                                                                                                  (8) 

where Tavg is the average monitored data for n observations, Ts is the simulated data for n 

observations, Tm is the monitored data for n observations, and n is the number of observations. 

 

On the other hand, R2 signifies how close the model-produced simulated energy data are to the 

regression line of the computed energy data. This one is another statistical indicator frequently 

used to assess a model's uncertainty. Typically, the R2 value is limited to between 0 and 1, 

wherein a higher value suggests that the simulated values completely fit the computed value 

and a lower value does not. According to ASHRAE and IPMVP guidelines, an acceptable R2   

should be greater than 75% [76].    
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4. Results & Discussions 

4.1. Model simulation results 

The pattern of occupants’ energy consumption before and after the simulation-based 

intervention is illustrated using several boxplots in Fig. 11. The box plots demonstrate the 

occupants’ daily energy consumption pattern for 60 days for eight different building interior 

layouts considered in the case study location. It signifies that there are differences in the 

medians and the interquartile ranges before and after the intervention for each interior layout. 

The simulation outputs also reveal that before intervention (i.e., original interior layout pattern 

before the layout adjustment), Interior Layout 1 (17.7 kWh), Interior Layout 2 (10.76 kWh), 

Interior Layout 3 (14.61 kWh), Interior Layout 4 (16.69 kWh), Interior Layout 5 (14.31 kWh) 

and Interior Layout 6 (16.80 kWh) have a higher energy consumption than Interior Layout 7 

(16.58 kWh) and Interior Layout 8 (16.25 kWh). It is noted that, although the model found 

similar layout patterns, the daily energy consumption profile for each interior layout is 

somewhat different. For instance, the energy consumption profiles of Interior Layouts 4, 6, and 

7 are comparatively higher than others. The number of active occupants is the crucial reason 

behind this issue. For example, the number of users or occupants for Interior Layout 3 was two, 

while the number of frequent users for Interior Layouts 6 and 7 was four or five. In addition to 

this, a building’s layout orientation itself and other physical parameters, which are not 

considered in simulation models, might influence the daily energy consumption outputs [29, 

77].     

After the intervention (i.e., improved interior layout after the layout adjustment), the energy-

saving profiles for different interior layouts changed significantly. In particular, after the 

intervention, the highest daily energy saving (35.13%) was found in Interior Layout 2. Before 

the intervention, Interior Layout 1 (i.e., with no access to the switch location) can be regarded 

as more problematic than Interior Layouts 2 and 3 (i.e., with partial access to the switch location 

due to obstacles); however, the energy-saving contribution in Interior Layout 1 (14.69%) is 

relatively less than that in Interior Layout 2 (35.13 %) and Interior Layout 3 (15.81%). In this 

regard, the findings reveal that occupants feel more discomfort when a switch location is only 

accessible from an angular side (e.g., Interior Layout 2) or partially accessible over an object 

(e.g., Interior Layout 3). In compliance with this, some experimental studies [78, 79] have 

shown that humans prefer to walk in straight and circular directions than angular tracks. 

Moreover, these studies [79, 80] also mentioned that human behaviour significantly changes if 

their straight path is occupied, leading to discomfort concerning their desired actions. 

Meanwhile, the energy saving after the intervention for Interior Layout 4 (i.e., having partial 
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access to the switch location  due to a long distance) was calculated to be 13.6%, whereas for 

Interior Layouts 5 (i.e., with average access to the switch location  with a fair distance from the 

forward direction) and Interior Layout 6 (i.e., with average access to the switch location with 

a fair distance from the lateral direction) the energy savings were 9.7 % and 12.2%, 

respectively. Although both Interior Layouts 5 and 6 had access to the switch location  with 

moderate distances, occupants’ movement paths for these two layouts were different due to the 

direction towards the switch location . Accordingly, the occupants’ movement paths can also 

be one of the factors that contribute to the difference in energy-saving potential. Besides, 

Interior Layouts 7 (1.08%) and 8 (0.8%) exhibited relatively lower energy savings after the 

intervention as these layouts were very close to the best cases. Overall, the average daily energy 

saving due to the intervention was about 14.9%. From the previous investigations, assessments 

of the effectiveness of the interior layout-based intervention are not widely available. However, 

this study has shown that the energy savings due to the interior layout-based intervention are 

quite significant compared to other intervention-based modelling studies [81-83]. For 

instance,  Abdallah et al. [84] used an agent-based modelling approach for energy messaging 

intervention while average energy savings for wasteful occupants was 11% and for green 

occupants was 13%. On the other hand, Xu et al. [83] offered a five-element conceptual 

framework consisting of a reward-based integrated intervention approach. The framework 

generated energy savings of 8.18% and 12.56%, while the energy-saving targets were 5% and 

10%, respectively. Moreover, Fijnheer et al. [85] studied a knowledge-based intervention that 

exhibited a difference of 12.9% in occupants’ energy consumption before and after the 

intervention. 

In summary, it is noticed that, although almost analogous layout patterns were considered, the 

energy-saving profiles from the particular layouts were entirely different, including the best 

case (e.g., Interior Layout 8). Moreover, Interior Layout 2 exhibited higher energy savings than 

others. In addition to the accessible switch location from the edge, Interior Layout 2 is relatively 

small and more compact than other layouts. Before the intervention, it also comprises a higher 

number of obstacles (at random position) than Interior Layouts 1 and 3. The energy 

consumption variation is also noticeable due to the number of active occupants defined within 

the hybrid model. Although there was no solid object or barrier defined within the Interior 

Layout 4, herein the occupant idle stage mostly reflected the longer distance. Besides the 

directional effects of Interior Layouts 5 and 6, a few window or door variations exist in these 

layouts. For example, Interior Layout 5 consists of windows and an additional balcony door 

that marginally impacts the occupants’ thermal comfort. The model also considered that 
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occupants may frequently use both windows and balcony doors for their thermal comfort. Thus, 

the occupant may use less HVAC systems for their thermal comfort fulfilment. Before 

intervention, Interior Layout 6 also consists of a higher number of obstacles than Interior 

Layout 5. These are the probable reasons why the energy-saving potential for Interior Layout 

6 was higher than Interior Layout 5. Obviously, Interior Layouts 7 and 8 did not show much 

energy-saving potential since they were the least problematic layouts as defined within the 

hybrid model. 

Still, there are also other reasons for showing different energy-saving profiles, such as typical 

occupant behaviours being highly stochastic [27] including their random perceptions of the 

space [64, 65, 86]. Interior space allocation/arrangement [27, 64, 65] and indoor ambient data 

[18, 35, 87] also play an essential role in changing the energy consumption pattern.  In addition, 

in all cases the energy medians were uneven, and the interquartile ranges varied due to the 

occupants’ stochastic energy consumption behaviour. Previous findings [18, 19, 29, 46] also 

revealed that space orientation and interior allocation (e.g., entrance, windows, doors, and 

furniture's position, etc.) of the space within the design plan of a building and its other structural 

elements, have a substantial effect on the individual energy consumption profile. This study 

also revealed that occupants’ attitudes and social norms are the key influential drivers that 

changed or reduced the energy consumption after the intervention.  
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Fig. 11. Simulation-based daily energy consumption before and after intervention 
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4.2. Validation Results 

Table 3 compares the CV(RMSE) and MBE values of the simulation-based and empirical-

based energy consumption data. All simulation-based and empirical-based daily energy 

consumption data for 60 days are also presented in Fig. 12. It has been shown that implemented 

simulation or a hybrid model provides data within the acceptable range for all interior layouts 

as defined by ASHRAE, FEMP, and IPMVP guidelines. Interior Layouts 4 (CV(RMSE): 

15.71%) and 5 (CV(RMSE): 16.7%) exhibited marginally more errors as compared to other 

interior layouts. There are several reasons for this. Basically, the original Interior Layout 4 

comprised two rectangular shapes (almost L shape), although the model considered a single 

rectangular/square shape. In addition, Interior Layout 5 consisted of windows and an additional 

balcony door which partly impacted the occupants’ thermal comfort. Here, occupants may 

frequently interact with both windows and balcony doors to ensure their thermal comfort. 

Therefore, an occupant may use less HVAC/Fan for their thermal comfort, which eventually 

influences their energy consumption profile. However, the hybrid model considers a similar 

number of windows and doors for each interior layout. Furthermore, frequent load shedding is 

also a common problem in this space area that may significantly affect the model’s 

performance as the model does not consider any load shedding issue. Nevertheless, compared 

to other previous studies [88, 89], the average error from the proposed hybrid model is quite 

considerable. 

Compared to Interior Layouts 4 and 5, other interior layouts showed a relatively higher 

prediction accuracy in terms of both CV(RMSE) (all below 10.5%) and MBE (all below 2%). 

Among them, Interior Layouts 6 (CV(RMSE): 9.11%; MBE: -0.9%) and 8 (CV(RMSE): 

9.10%; MBE: -0.8%) demonstrated a slightly better fit of the predicted data while over-

estimating the energy consumption (negative MBE value). The variations of prediction mainly 

occurred due to an occupant’s presence and movement within the realistic layouts. The best 

prediction was observed in Interior Layout 7 (CV(RMSE): 8.30%; MBE: 0.7%). In addition to 

CV(RMSE) and MBE, the R2 was estimated to assess the accuracy of the simulated-based 

energy consumption data for different layouts and a scatter plot has been presented to validate 

the model performance as shown in Fig. 12. Herein, Interior Layouts 1, 3, and 8 showed a 

relatively higher performance, with R2 nearly 0.8. However, Interior Layouts 4 and 6 are 

demonstrated to have a slightly lower performance, showing R2 below 0.75, possibly due to 

the variation of windows/doors and over-prediction, respectively. Meanwhile, Interior Layouts 

2, 5, and 7 showed R2 close to 0.75, but still reaching the marginal level of goodness of fit 

defined by the guidelines. 
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Table 3. CV(RMSE) and MBE values for different interior layouts 

 

Overall, the study revealed that the R2 has a considerable variation of occupant daily energy 

consumption pattern for both simulation-based and empirical-based data while some values 

fall below the acceptable limit of 0.75 (e.g., Interior Layouts 4 to 6). On the other hand, data 

obtained from this investigation are within the acceptable limit of CV(RMSE) and MBE. 

Similar findings were also found in previous studies [89-91] as well. The possible reason for 

these discrepancies is occupants’ intrinsic nature of turning switches on or off for a prolonged 

period of time to fulfil their visual and thermal comfort. Also, most of the variation in energy 

savings can be described by other critical variables that are not incorporated into this model 

[91]. Although some interior layouts generated slightly lower values for the R2, the study may 

help to capture the diversity of realistic occupant behaviour profiles in the residential sector 

rather than fixed or static behaviour profiles. In this regard, the findings indicate that the hybrid 

framework offers a holistic assessment of the interior layout-based energy performance of 

buildings. 

 

Interior Layout CV(RMSE) (%) MBE (%) 

Interior Layout 1 10.5 1.6 

Interior  Layout 2 9.2 1.1 

Interior  Layout 3 10.1 1.3 

Interior  Layout 4 13.71 2.1 

Interior  Layout 5 14.50 2.3 

Interior  Layout 6 9.11 -0.9 

Interior  Layout 7 8.30 0.7 

Interior  Layout 8 9.10 -0.8 
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Fig. 12. Coefficient of determination (R2) for different interior layouts  
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5. Conclusion 

Occupant behaviour is a critical parameter to assess the building energy consumption, which 

also can be a substantial consideration in regard to the technological tactics used for enhancing 

energy efficiency in buildings. 

The study investigated the influence of occupant behaviour in regard to energy conservation in 

the context of interior layout configuration adopting a holistic approach using an Agent-Based 

Modelling (ABM), Systems Dynamics (SD), and Building Information Modelling (BIM). The 

study successfully developed and implemented a hybrid modelling approach to promote an 

energy-efficient system for buildings and identify the key players involved in energy saving 

through appropriate occupant intervention. The study also offers a validation approach using a 

real-data collection system of customized sensors to improve the simulation reliability, 

trustworthiness as well as robustness of the proposed model. Herein the validation and fit of 

the proposed model are highly important to make it a representative model to be used during 

the simulation process. Although only a small energy-saving potential has been noticed through 

the applied occupant intervention, both the simulation and experimental study revealed that 

interior layout adjustment (i.e., occupant intervention) has a significant influence on the energy 

consumption profile of occupants. Thus, the proposed integrated model captures the broader 

aspects of occupant behaviour paradigms in the context of energy efficiency and the built 

environment.  

This study makes an original contribution of the body of knowledge in exploring the influence 

of building interior layout on the energy-saving behaviour of occupants. By integrating 

different models (i.e., ABM, SD, and BIM), the hybrid model allows to better represent the 

occupants’ stochastic behaviour, building energy consumption, and interior layout within the 

built environment. Validation efforts through an occupant intervention also contribute to 

demonstrating the performance and feasibility of the hybrid model. The study offers a 

comprehensive validation approach by considering both the simulation-based and empirical-

based occupant interventions based on the real data collected from the customized sensors.  

This study offers automatic integration of the ABM-SD-BIM framework that facilitates 

occupancy-based building simulation and supports engineers, researchers, and policymakers to 

improve overall building designs as well as interior layout improvement. However, the 

proposed framework is still in the prototype stage. It is well noted that this study only considers 

a few interior layouts for data validation purposes as extended data collection is not possible 

due to the COVID-19 pandemic. Wide-ranging interior layout selection and broader data 

collection, including additional behavioural rules, should be identified and incorporated into 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



35 

the framework for modelling more complex occupant comfort and behaviour in buildings. 

Moreover, comprehensive knowledge of occupant behaviour will assist in stimulating an 

advanced energy prediction model that would provide superior control algorithms and systems 

design. From a diverse point of view, one might also predict energy inadequacies due to 

occupant behaviour, permitting engineers and architects to improve occupant control at an early 

phase of design. 
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