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Abstract 

High temperature proton exchange membrane electrolyzer cells (HT-PEMECs) show 

faster reaction kinetics than the low temperature PEMECs (LT-PEMECs) and are suitable for 

utilizing waste heat from the industry. However, dynamic modeling and control of HT-

PEMECs are still lacking, which is critical for integrating the HT-PEMECs with fluctuating 

renewable power. In this study, hierarchical models are developed to investigate the transient 

behavior of the HT-PEMEC system with hydrogen recirculation. It is observed that the 

maximum efficiency point of the reference power can be reached by cooperatively adjusting 

the current density and anode inlet gas flow rate, and the application of artificial neural 

networks can accurately predict the operating conditions at the points of maximum efficiency. 

Moreover, the proposed cooperative model predictive control strategy not only improves the 
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efficiency (about 1.2% ) during dynamic processes but also avoids the problem of reactant 

starvation. This study provides useful information to understand the dynamic behaviors of HT-

PEMECs driven by excess renewable power. 

 

Keywords: Hierarchical system model; Multiphysics analysis; Hydrogen recirculation 

system; System identification; Cooperative model predictive control. 

 

Nomenclature 

Abbreviation 

HT-PEMEC High temperature proton exchange membrane electrolyzer cell 

MSE Mean square error 

CMPC Cooperative model predictive control 

MPC Model predictive control 

SOA Seeker optimization algorithm 

RMSE Root mean square error 

ANN Artificial neural network 

LHV Low heating value 

Roman 

𝐵0 Permeability coefficient, m2 

𝐶𝑝 Heat capacity at constant pressure, J•mol-1•K-1 

𝐸𝑎𝑐𝑡 Activation energy, J•mol-1 
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𝐷𝑖
𝑒𝑓𝑓

 Effective diffusivity of species i, m2•s-1 

𝐷𝑖𝑘
𝑒𝑓𝑓

 Knudsen diffusion coefficient of i, m2•s-1 

𝐷𝑖𝑚
𝑒𝑓𝑓

 Molecular diffusion coefficient of i, m2•s-1 

i Operating current density, A•m-2 

𝑉𝑁𝑒𝑟𝑛𝑠𝑡 Equilibrium Nernst potential, V 

F Faraday constant, 96485 C•mol-1 

𝐸𝐻2
0  Standard equilibrium potential for hydrogen oxidization, V 

𝑖0 Exchange current density, A•m-2 

𝑁𝑖 Flux of mass transport, kg•m-3•s-1 

𝑦𝑖 Mole fraction of component i 

n Number of electrons transferred per electrochemical reaction 

𝑃𝑂2
𝐿  Local O2 partial pressures, Pa 

𝑃𝐻2
𝐿  Local H2 partial pressures, Pa 

𝑃𝐻2𝑂
𝐿  Local H2O partial pressures, Pa 

R Gas constant, 8.314 J•mol-1•K-1 

u Velocity field, m3•s-1 

T Temperature, K 

She Heat exchange area of heat exchanger, m2 

hhe Convection coefficient of heat exchanger, kW m-2 K-1 
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1. Introduction 

The large-scale application of renewable energy is a promising way to tackle greenhouse 

gas emissions and energy shortages, while the intermittency and uncertainty of renewable 

energy pose a challenge to the stability of the grid [1-4]. Furthermore, hydrogen energy is 

regarded as an effective solution to mitigate energy fluctuations due to its cleanliness and high 

theoretical heating value. Collaborative operation of the fuel cell and electrolyzer cell enables 

efficient conversion between electricity and electrochemical energy [5, 6]. 

Currently, the proton exchange membrane electrolyzer cells (PEMECs) are very suitable 

for grid energy management due to their high current density, excellent dynamic performance, 

high efficiency and fast start/stop compared to alkaline electrolyzers, which are mainly 

attributed to the more compact structure and avoidance of electrolyte cycles [7-11]. In recent 

years, the development of membranes enables PEMECs to operate at higher temperatures 

(120℃-180℃), which increases the electrochemical reaction kinetics and decreases the 

electrical energy demand [12-14]. Compared with high temperature solid oxide electrolyzer 

cells (SOECs) working at about 800℃, HT-PEMECs do not require very high temperature 

thermal energy. Thus, HT-PEMEC can make use of a wider range of industrial waste heat 

electrolytic hydrogen production. Besides, to ensure the dynamic performance and long-life 

operation of HT-PEMEC, dynamic behavior analysis and control strategy design are necessary. 

HT-PEMECs are widely studied due to the advantages mentioned above. Jin et al. [15] 

used a one-step method to synthesize 4-acetylpyridine and para-terphenyl/biphenyl into a high 

performance membrane, which was detected with high electrical conductivity of 0.102 S cm-1 

at 180 ℃ and excellent stability. Hansen et al. [16] developed an AquivionTM membrane and 

tested it for electrolysis reaction at 130 ℃ and ambient pressure. It was found that the tantalum 

coating shows adequate corrosion resistance and electrical conductivity at high current 

densities, and hot pressing operations before cell assembly can enhance cell performance. Dong 
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et al. [17] found that introducing porous structures into high temperature proton exchange 

membranes effectively improves proton conductivity, however, excessive porosity may lead to 

degraded cell performance due to high permeability.  

Besides experimental studies, cell-level and system-level simulation studies have also 

been extensively carried out. Garbe et al. [18] used a combination of numerical calculation and 

electrolysis experiments to propose that the conversion efficiency of high temperature 

operating (120 ℃, 50 μm membrane) is 14% higher than the usual operating (60 ℃, 180 μm 

membrane) at 3 A cm-2. Gunay et al. [19] used machine learning and principal component 

analysis to predict the polarization curves of different electrode materials, and the root mean 

square error (RMSE) was only 0.18. Ruiz et al. [20] used the finite volume method to analyze 

the effect of three different flow channels (Parallel, serpentine and multiple serpentines) on 

hydrogen production, and found that multiple serpentines flow channel has a significant 

advantage for electrolysis performance and temperature gradient. Zhang et al. [21] used the 

finite element method to investigate the effects of the co-flow channel and counter-flow 

channel on the multiphysics field of the electrolyzer cell, showing that the counter-flow channel 

has lower temperatures and higher temperature gradients. Bonanno et al. [22] conducted an 

energy and exergy analysis of a high temperature proton exchange membrane electrolyzer cell 

and found that it exhibited higher exergy efficiency at the self-heating maintained state. 

Toghyani et al. [23] used numerical calculations to study the effects of temperature, cathode 

pressure, membrane thickness and gas diffusion layer thickness on the efficiency and 

exergoeconomic analysis of electrolyzer, which found that high temperature, high pressure and 

thin membrane significantly reduced the exergy cost. Nafchi et al. [24] analyzed the effect of 

operating conditions on system performance, combining the electrolyzer with photovoltaic and 

thermal storage systems, and observed that increased pressure and membrane thickness 

significantly reduce system efficiency. 
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In summary, current simulation work has focused on the effects of flow channel design 

and operating parameters on the HT-PEMEC, however transient performance, which is critical 

to the application of electrolyzer cells for energy management, has rarely been investigated. In 

this study, in order to achieve high accuracy and fast simulation, the hierarchical model is 

developed to explore the dynamic performance of the hydrogen recirculation system, which 

combines the multiphysics model to describe electrolyzer with lumped parameter models to 

describe sub-systems. Dynamic performance of the electrolyzer cell can be accurately 

described as well as avoiding the huge computational costs associated with system models 

described by the finite element method. On this basis, model-based control strategies are 

designed to achieve fast and efficient transient processes and avoid reactant starvation problems. 

This study can provide a reference for the system integration and control research of hydrogen 

recirculation structures. 

 

2. Hydrogen recirculation system structure 

Steam produced by the evaporator is preheated, passes through the heat exchanger and 

heater, and finally is fed into the anode. Moreover, the cathode uses part of the 

electrochemically generated hydrogen as a carrier gas, instead of using steam. Compared with 

steam as the carrier gas, hydrogen recirculation systems significantly reduce the thermal energy 

requirements although they slightly increase the electrical energy requirements due to the 

increased Nernst voltage, which improves the overall system efficiency [25]. The detailed HT-

PEMEC system structure is shown in Fig. 1a. 
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Fig. 1. (a) Hydrogen recirculation HT-PEMEC system structure; (b) Schematic diagram 

of HT-PEMEC. 

3. Model development 

3.1 Computational domain and assumptions 

The multiphysics model based on the finite element method is widely used in the study of 

electrolyzer cells and fuel cells due to its accuracy, however, the method requires high 

computational resources and hence is not suitable for study at a system level, especially for 

studying the dynamic behavior of a system. Therefore, the hierarchical model of hydrogen 

recirculation system utilizes finite element methods to calculate electrochemical reactions, gas 

diffusion, proton/electron transport, and heat transfer of electrolyzer. Apart from that, other 

components use lumped parameter models to simplify the system calculation processes. 

The computational domain of HT-PEMEC, which includes the gas channel, gas diffusion 

layer, catalyst layer and proton exchange membrane, is shown in Fig. 1b. Moreover, the 
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electrochemical reactions of the anode and cathode are respectively shown as follows. 

Anode: 2H2O→ O2 + 4H++ 4e-                   (1) 

Cathode: 2H++2e-→ H2                         (2) 

The main assumptions are listed below: (1) Laminar flow is considered in the gas channel; 

(2) The membrane is impermeable to all gases; (3) The gas diffusion layer and the catalyst 

layer are isotropic porous media; (4) The catalyst is uniformly distributed in the catalyst layer 

[26, 27]. 

3.2 Governing equations 

The applied voltage of the electrolyzer cell can be calculated as the sum of the Nernst 

potential (open circuit potential: OCP) and the overpotentials as [28, 29]. 

𝑉𝑐𝑒𝑙𝑙 = 𝐸𝑟𝑒
0 +

𝑅𝑇

2𝐹
𝑙𝑛 [

𝑃𝐻2
𝐿 (𝑃𝑂2

𝐿 )
1
2

𝑃𝐻2𝑂
𝐿 ] + 𝜂𝑎𝑐𝑡 + 𝜂𝑜ℎ𝑚          (3) 

Here 𝑃𝐻2
𝐿 , 𝑃𝑂2

𝐿 , and 𝑃𝐻2𝑂
𝐿  denote the local partial pressures of the different gases rather 

than at the electrode surface, hence the concentration losses are included in Eq. (3).  𝐸𝑟𝑒
0 +

𝑅𝑇

2𝐹
𝑙𝑛 [

𝑃𝐻2
𝐿 (𝑃𝑂2

𝐿 )
1
2

𝑃𝐻2𝑂
𝐿 ] represents OCP.  Ere

0  is the reversible potential of the electrolysis reaction 

under standard gas partial pressures, which represents the minimum potential demand and can 

be further expressed as Eq. (4) [30]. 

𝐸𝑟𝑒
0 = 1.229 − 0.9 × 10−3(𝑇 − 298)               (4) 

Activated overpotentials (𝜂𝑎𝑐𝑡) are mainly associated with the microstructure and material 

of the electrode, which reflects the energy barrier of the electrochemical reaction, and can be 

calculated using the Buttler-Volmer equation [31]. 

i = 𝑖0 {𝑒𝑥𝑝 (
𝛼𝑛𝐹𝜂𝑎𝑐𝑡

𝑅𝑇
) − 𝑒𝑥𝑝 (

(1−𝛼)𝑛𝐹𝜂𝑎𝑐𝑡

𝑅𝑇
)}               (5) 

𝑖0 =γexp⁡(−
𝐸𝑎𝑐𝑡

𝑅𝑇
)                       (6) 

Here 𝐸𝑎𝑐𝑡 represents the activation energy of the electrolysis reaction， 𝛼 is the charge 
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transfer coefficient. n is the number of transferred electrons. 

Ohmic overpotential reflects the resistance of the transfer of protons and electrons, and 

can be calculated by Ohm's law. The diffusion of gases in the gas channel and the porous 

electrode can be described by the extended Fick model [32]. 

𝑁𝑖 = −
1

𝑅𝑇
(
𝐵0𝑦𝑖𝑃

𝜇
∇𝑃 − 𝐷𝑖

𝑒𝑓𝑓
∇(𝑦𝑖𝑃)) (i=1,2,…..n)        (7) 

𝐷𝑖
𝑒𝑓𝑓

=
𝜀

𝜏
(

1

𝐷
𝑖𝑚
𝑒𝑓𝑓 +

1

𝐷
𝑖𝑘
𝑒𝑓𝑓)

−1

                        (8) 

Here 𝐷𝑖
𝑒𝑓𝑓

 is the total effective diffusion coefficient. 𝐷𝑖𝑚
𝑒𝑓𝑓

 and 𝐷𝑖𝑘
𝑒𝑓𝑓

 are related to 

molecular diffusion and Knudsen diffusion, respectively. The mass conservation of gases can 

be expressed as Eq. (9-10). 

∇(−𝐷𝑖
𝑒𝑓𝑓
∇𝐶𝑖) = 𝑅𝑖                        (9) 

RH2O = −RH2 = −2RO2 =
i

2F
                    (10) 

Here 𝑅𝑖  and 𝐶𝑖  denote the mass source term and molar concentration of the gases, 

respectively. i is current density (A m-2). 

Flow field of gaseous components can be calculated using the Navier-Stokes equation 

with the Darcy term [33]. 

ρ
∂u

∂t
+ ρu∇u = −∇p + ∇ [𝜇(∇u + (∇u)𝑇) −

2

3
𝜇∇u] −

𝜀𝜇u

𝐵0
          (11) 

Temperature distribution of the electrolyzer cell can be described by the heat balance 

equation [34]. 

ρCpu • ∇T + ∇(−λeff∇T) = Q                 (12) 

λeff = (1 − ε)λs + ελg                  (13) 

Here λeff represents the effective thermal conductivity, λs and λg correspond to the 

solid thermal conductivity and the gas thermal conductivity. Q represents the heat source term, 

which includes the generated thermal energy (𝑄𝐺𝑒𝑛) and consumed thermal energy (𝑄𝐶𝑜𝑛) due 
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to the overpotential and electrolysis reactions, respectively. 

{
QGen = EIrr × i

QCon = T∆S ×
i

2F

                     (14) 

Here 𝐸𝐼𝑟𝑟  represents the overpotential, including activation overpotential and ohmic 

overpotential. The overall overpotential measures the difference between the working voltage 

and the Nernst potential. 

The steam supply subsystem can be described as a first-order system with a delay as 

follows [37]. 

G(s) =
1

𝑡𝑐𝑜𝑛𝑠+1
𝑒−𝑡𝑑𝑠                     (15) 

Here 𝑡𝑐𝑜𝑛 is the time constant, 𝑡𝑑 is delay coefficient. 

The lumped model of the heat exchanger can be expressed as Eqs. (16-18) [38]. 

NCga
dTga.i

dt
= Ṅinhin − Ṅouthout + ∑ Q̇tr , i = off, in       (16) 

ρsVsCs
dThe

dt
= ∑ Q̇tr                      (17) 

Q̇tr = Shehhe(Tga.i − The)                   (18) 

Here Tga.i is the temperature of the high temperature off-gas and the low temperature 

inlet gas, The is the heat exchanger temperature. 

Evaporator and heater can be considered as inputs of thermal energy [39]. 

Qheat = Ṅgas(hT − hT0)                   (19) 

Here ℎ𝑇 and ℎ𝑇0 indicate the enthalpy of the gases respectively at the operating and 

ambient temperatures. 

The energy efficiency of HT-PEMEC system can be expressed as the ratio of generated 

electrochemical energy to the sum of the input electrical and thermal energy [40]. 

ηen =
LHVH2×ṄH2

Qelectric+Qthermal
                     (20) 

The HT-PEMEC model is solved using the finite element method, detailed information 
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about model validation and mesh independence can be found in the Refs [35, 36]. The anode 

and cathode outer boundaries were set as operating current density and zero potential, 

respectively. Inlet gas flow rates and temperatures were set at the anode and cathode inlets, and 

pressure conditions were set at the outlet. The top and bottom of the cell are set to be insulation. 

At each time step, the operating conditions (current density, inlet gas flow rate and inlet gas 

temperature) are solved by MATLAB and entered into COMSOL. Subsequently, the 

electrochemical model, mass transport, and heat transfer are solved by the MUMPS solver of 

the COMSOL, which utilizes the fully coupled method with constant newton nonlinearity. 

 

Table 1. Geometric and physical parameters are applied in the model.  

Parameter value unit 

Channel height 1 mm 

Channel width 1 mm 

Channel length 50 mm 

Gas diffusion layer thickness 0.38 mm 

Membrane thickness 0.1 mm 

Catalyst layer thickness 0.05 mm 

Operating pressure 1 bar 

Operating temperature 403.15 K 

GDL permeability 1.18×10-11 [50] m2 

Catalyst layer permeability 2.36×10-12 [50] m2 

GDL porosity 0.4 [21]  

Porosity of catalyst layer 0.3 [21]  

Proton conductivity of electrolyte 20 [51] S m-1 

Anode exchange current density 10-4 [29] A cm-2 
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Cathode exchange current density 0.1 [29] A cm-2 

Number of cells 30  

Heat exchanger heat capacity 0.62 [37] kJ kg-1 K-1 

Convection coefficient of heat 

exchanger 

0.1 kW m-2 K-1 

Hydrogen recirculation ratio 0.2  

MPC predicted time domain length 10 [52]  

MPC control time domain length 3 [52]  

MPC control weighting factor 0.05 [52]  

Violation constraint penalty weight 1  

Steam utilization of SOA-PID 0.8  

SOA weight factor 𝑤1 0.999 [53]  

SOA weight factor 𝑤2 0.001 [53]  

 

4. Cooperative control strategy 

The anode steam flow rate and current density are used as control parameters in the 

hydrogen recirculation system, and Fig. 2 shows the control structure of the hydrogen 

recirculation system. Neural network is trained to quickly and accurately predict the anode inlet 

steam flow rate by using the optimal operating conditions at different power consumptions. 

Subsequently, the predicted anode inlet gas flow rate is used as a feedforward control to 

regulate the steam supply subsystem, thereby avoiding the effects of system fluctuations on the 

steam supply subsystem. On the other hand, the hierarchical model is developed by combining 

the multiphysics model and lumped parameter model, while multiphysics models are not 

suitable for control strategy design. Therefore, the relationship between the current density and 

the power density consumed is obtained by the system identification method. Moreover, the 
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multiphysics model is utilized to analyze the effect of the change rate of current density on the 

dynamic behavior of the steam molar fraction in the anode catalyst layer, which avoids the 

problem of reactant starvation during dynamic processes. Finally, the identified model and 

constraint ( maximum current density change rate ) are imported into the model prediction 

controller to predict the dynamic behavior of the power density consumption and to control the 

HT-PEMEC system to track the reference power density consumption. 

 

Fig .2. Cooperative control strategy structure for hydrogen recirculation system 

 

4.1 Neural network predicts maximum efficiency point 

In practice, the current and anode inlet gas flow rate are typically adjusted to control the 

working state of the electrolyzer system. It has been found by steady-state parameter analysis 

that the current density and anode inlet flow rate corresponding to each reference power can be 

cooperatively controlled to make the electrolyzer system work at the maximum efficiency 

points. Compared to voltage control schemes, current control schemes can directly reflect the 

extent of electrochemical reactions and thus avoid excessive overshoot, making the dynamic 

process easier to regulate [35]. As shown in Fig. 3c, the efficiency showed a trend of increasing 

first and then decreasing, and the current density corresponding to the maximum efficiency 
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point increases with the increase of the anode inlet flow rate. Further, most of the reactants are 

not utilized resulting in low efficiency at low current densities, thus efficiency increases with 

increasing current density. However, at high current densities, the overpotential loss is also 

high, resulting in low efficiency [41]. Moreover, dynamic switching between maximum 

efficiency points is essential for efficient operation [37-38]. Therefore, it is crucial that the 

maximum efficiency point corresponding to the reference power density is quickly and 

accurately predicted to provide information for the control strategy during the dynamic process. 

Artificial neural networks (ANN) are applied to predict the anode inlet gas flow rate 

corresponding to the maximum efficiency of reference power consumption due to its high 

accuracy and low computational cost. 

The levenberg-marquardt method was applied to train the ANN, and the regressed R 

values for training and validation of the anode inlet flow rate are shown in Fig. 3a and Fig. 3b. 

Moreover, the mean squared errors of training and validation are 2.25e-9 and 2.34e-8, 

respectively. It is observed that the ANN can accurately predict the anode inlet flow rate 

corresponding to the maximum efficiency point. 
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Fig. 3. (a) Training of artificial neural network to predict the anode gas inlet flow rate 

corresponding to the maximum efficiency point; (b) Validation of artificial neural network to 

predict the anode gas inlet flow rate corresponding to the maximum efficiency point; (c) Effect 

of anode gas flow rate on maximum efficiency point. 

 

4.2 Limitation on the change rate of current density 

During the dynamic process, fast electrochemical reactions and relatively slow gas 

transport may cause reactant starvation problems. Current density can directly reflect the 

degree of electrochemical reactions, therefore, the change rate of current density should be 

limited to prevent reactant starvation caused by severe electrochemical reaction fluctuations. 

The initial operating point (500 A m-2, 0.0009 mol s-1) and the final steady-state operating 
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point (6500 A m-2, 0.0045 mol s-1) are set to investigate the transient behavior of reactant 

concentrations in the catalyst layer. To study the effect of different current density change rates 

on the reactant concentration in the catalyst layer during the transient process, the current 

density is set to different slope adjustment schemes while the anode inlet gas flow rate was 

adjusted by the same step adjustment scheme. Fig. 4a shows different current density change 

rates during the transient process, and Fig. 4b shows the transient behavior of steam molar 

fraction in the anode catalyst layer. It can be observed that when the current density changes 

drastically, the transient response of the steam molar fraction appears undershoot, which may 

cause the problem of reactant starvation during the transient process. Undershoot is triggered 

due to the drastic electrochemical reaction consuming a large amount of steam, while steam 

diffuses relatively slowly in the electrode, which may cause the catalyst to be oxidized at low 

steam concentration conditions. Therefore, the current density change rate should be limited to 

avoid the undershoot, and the maximum current density change rate was set to 2000 A m-2 s-1 

in this dynamic study. 

 

 

Fig. 4. (a) Current density changes during the dynamic process. (b) Transient response 

of the steam molar fraction in the anode catalyst layer. 
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4.3 System model identification 

Multiphysics models are generally suitable for analyzing the multiphysics distribution and 

dynamic response of HT-PEMEC [42, 43], however, they are not suitable for the design of 

control strategies due to the inconvenience of obtaining state equations and transfer functions. 

Moreover, transfer functions and state equations are crucial for the design of complex control 

strategies, thus the system identification approach is employed to obtain the transfer functions 

of HT-PEMEC [44]. 

The input and output of the system identification are set as current density (A m-2) and 

consumption power density (W m-2), respectively, to obtain the relationship between them. 

Transient behavior between stochastic aperiodic steady-state operating conditions is acquired 

to enable the measured data to sufficiently reflect the dynamics of the HT-PEMEC system [45]. 

Moreover, the time interval allows the transient behavior to reach a steady state to obtain time-

dependent parameters. To verify the accuracy of the identified model, two groups of data were 

obtained from the HT-PEMEC system, one group was utilized to identify the transfer function 

model, and the other group was used to verify the accuracy of the identified model. The two 

sets of data were sampled with an interval of 0.001 s and a duration of 700 s, and the 

identification data and verification data are presented in Fig. 5a and Fig. 5b. 

The structure of the transfer function can usually be expressed as Eqs. (21-22). 

Y(s) =
𝑀(𝑠)

𝑁(𝑠)
𝑈(𝑠) + 𝐸(𝑠)                   (21) 

{
⁡𝑀(𝑠) = 𝑏0𝑠

𝑚 + 𝑏1𝑠
𝑚−1 + 𝑏2𝑠

𝑚−2 +⋯+ 𝑏𝑚−1𝑠 + 𝑏𝑚
𝑁(𝑠) = 𝑎0𝑠

𝑛 + 𝑎1𝑠
𝑛−1 + 𝑎2𝑠

𝑛−2 +⋯+ 𝑎𝑛−1𝑠 + 𝑎𝑛
      (22) 

Where U(s), Y(s) and E(s) denote the Laplace transform of the input, output and noise, 

respectively. N(s) and M(s) represent the denominator and numerator polynomials, which 

define the relationship between the output and the input. Fit and mean squared error (MSE) are 

used to assess the accuracy of the identified model and they can be expressed as Eqs. (23-24). 
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Fit = (1 −
‖𝑦−𝑦̂‖

‖𝑦−𝑦̅‖
)                       (23) 

MSE =
1

𝑁
∑ (𝑦 − 𝑦̂)2𝑁
𝑗=1                      (24) 

Where y represents the multiphysics system model output, 𝑦̂  denotes the identified 

model output, and 𝑦̅ represents the average of y. N represents the amount of total data and j 

denotes the jth data. The relationship between the power consumption and current density is 

identified using System Identification ToolboxTM of Matlab, and the identified model can be 

described as Eq. 25. 

Y(s) =
1789𝑠3+1205000𝑠2+1630000𝑠−1726

𝑠4+2987𝑠3+650700𝑠2+880900𝑠+0.5681
U(s)           (25) 

The identified model outputs are compared with the HT-PEMEC system model for 

validation, which are shown in Fig. 5c and Fig. 5d using the identification data and validation 

data, respectively. Moreover, the results of Fit and MSE are presented in Table 2 and it can be 

found that the transfer function can adequately represent the dynamic behavior between the 

power consumption and the current density. 
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Fig. 5. (a) The varying current density data are used to identify the system model. (b) 

The varying current density data are used to validate the identified model. (c) Comparison of 

the identified model output with the identified data. (d) Comparison of the identified model 

output with the validation data. 

 

Table 2. Identification model evaluation index. 

Indicator Identification data Validation data 

Fit 92.89 % 91.63% 

MSE 21.74 26.99 

 

4.4 Model predictive control 

Model predictive control (MPC) strategy is an optimization control method that has been 
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widely used in the control design of dynamic systems [46, 47]. The workflow of the model 

predictive control strategy is shown in Fig. 6. At each time step, the MPC controller predicts 

the dynamic behavior of the HT-PEMEC system based on the identified system model and 

solves the optimization problem (Eq.22) according to the given maximum change rate of 

current density. The sequence of current density control actions is calculated by solving the 

optimization problem. However, only the first current density control action is applied to the 

MPC controller and subsequent control actions are ignored, in which the above cyclic process 

is repeated at each time step. Therefore, the model predictive control strategy enhances the 

dynamic performance of the HT-PEMEC system through real-time prediction and optimization. 

 

Fig. 6. Model predictive control strategy framework. 

The optimization problem is solved by calculating the minimum value of the optimization 

equation, which is expressed as Eq. 26. Moreover, the optimization equation includes three 

parts: reference power tracking ( 𝐽𝑡𝑟𝑎 ), current density variation suppression ( 𝐽𝑠𝑢𝑝 ), and 

constraint violation penalty (𝐽𝑐𝑜𝑛). 

{
 
 

 
 

𝐽 = 𝐽𝑡𝑟𝑎 + 𝐽𝑠𝑢𝑝 + 𝐽𝑐𝑜𝑛

𝐽𝑡𝑟𝑎 = ∑ {𝑃𝑟𝑒(𝑘 + 𝑗) − 𝑃𝑝𝑟(𝑘 + 𝑗)}
2𝑁𝑝

𝑖=1

𝐽𝑠𝑢𝑝 = 𝜌∑ {𝑢𝑝𝑟(𝑘 + 𝑗 − 1) − 𝑢𝑝𝑟(𝑘 + 𝑗 − 2)}
2𝑁𝑐

𝑗=1

𝐽𝑐𝑜𝑛 = 𝜆𝜀𝑘
2

       (26) 

Where 𝑁𝑝 is the predicted time domain length, 𝑃𝑟𝑒 is the reference power, 𝑃𝑝𝑟 is the 

predicted power consumption, 𝑁𝑐  is the control time domain length, 𝜌  represent the 
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weighting factor, 𝑢𝑝𝑟 denote the optimized current density input, 𝜆 is the violation constraint 

penalty weight, 𝜀𝑘 is the slack factor. 

4.5 Reference control strategy 

For comparison with the proposed cooperative model predictive control strategy, the PID 

control strategy with constant steam utilization was optimized and adopted in the hydrogen 

recirculation system. However, the parameter optimization of the PID controller is critical for 

enhancing the dynamic performance of the PEMEC system, therefore the seeker optimization 

algorithm (SOA) is used to determine the control parameters of the PID controller [48]. The 

structure of the SOA-PID control strategy is illustrated in Fig. 7, which shows that the control 

parameters of the PID controller are determined by the seeker optimization algorithm, whereas 

the anode steam flow rate is obtained by the fixed steam utilization. 

 

Fig. 7. SOA-PID control strategy framework 

The control parameter optimization process of the seeker optimization algorithm is shown 

as follows. 

(1) Initialize the position of each seeker, i.e., randomly generate the location information 

matrix; 

(2) The adaptability of each seeker is calculated according to Eq. 27. 

In order to obtain satisfactory dynamic performance, the time integral of the absolute 

value of the error is used as the objective function to find the minimum value. Moreover, the 

squared term of the control output is introduced to prevent excessive control actions. 
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F = ∑ (𝑤1|𝑒(𝑡)| + 𝑤2𝑢
2(𝑡))

𝑗
1                      (27) 

Where 𝑒(𝑡) is the error, u(t) is control output, 𝑤1 and 𝑤2 represent weighting factor. 

(3) The current position of each seeker is compared with the historical best position, and 

if the current position has a smaller objective function, the current position is taken as the 

historical best position. Subsequently, the next position is found by calculating the direction 

and step size, the detailed calculation process is described in Ref [49]. 

(4) If the end condition is not satisfied (maximum number of iterations and the specified 

minimum value of objective function), return to step 2. 

 

5. Results and analysis 

HT-PEMEC is a promising candidate for renewable energy storage, and excellent dynamic 

performance is critical for real-time energy management. However, fastly electrochemical 

reactions and slow gas diffusion processes may cause reactant starvation problems during 

dynamic processes. Therefore, safe, fast and efficient dynamic control strategies are essential 

for energy management and the long-life operation of the electrolyzer cell system. The 

cooperative model predictive control (CMPC) strategy is compared with SOA-PID to study 

dynamic response and reactant starvation problems. 

5.1 Increased step response 

To investigate the dynamic performance, cooperative model predictive control strategy 

and SOA-PID control strategy are used for a step response of 9000 W m-2 to 11000 W m-2, and 

the sampling interval is set to 0.001s. The dynamic process of the power consumption is shown 

in Fig. 8a, and the cooperative model predictive control and SOA-PID control strategies reach 

steady state almost simultaneously. Compared to the SOA-PID control strategy, the power 

consumption change rate of the cooperative model predictive control strategy is relatively slow 

due to the limitation of the maximum current density change rate at the initial stage, and then 
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reaches steady state after a small overshoot. The cooperative model predictive control is an 

online optimization control strategy that predicts the dynamic behavior of the electrolyzer 

system to minimize the objective function (J) within the constraint of the maximum current 

density change rate, while the dynamic performance depends on the accuracy of the model 

estimation. However, the SOA-PID control strategy optimizes the output of the current density 

only based on the error between the reference power consumption and the actual power 

consumption. Therefore, as shown in Fig 8b, the current density change rate of the cooperative 

model predictive control is relatively small to suppress the sudden decrease of reactants during 

the dynamic process, after which a small overshoot is generated mainly due to the error between 

the model identification and the actual model. 

The mass transfer process is slow compared to the electrochemical reaction, and drastic 

electrochemical changes may cause oxidation of the catalyst and degradation of the system 

performance during the dynamic process. Cooperative model predictive control not only uses 

the constraint of maximum current density change rate to suppress the reactant starvation 

problem, but also uses the neural network to calculate the inlet gas flow rate corresponding to 

the maximum efficiency point of power consumption in real-time and avoid the impact of 

power fluctuation on the inlet gas flow rate by feed-forward control. As shown in Fig. 8c, the 

cooperative model predictive control strategy can suppress the downward trend of the steam 

molar fraction at the catalytic layer during the dynamic process. However, the catalyst layer 

steam molar fraction of the SOA-PID control strategy shows an obvious downward trend, and 

the downward trend is more pronounced in the step from 9000 W m-2 to 12000 W m-2. SOA-

PID control strategy adjusts the current density according to the error between the reference 

power consumption and the actual power consumption leading to drastic changes in the current 

density at the initial stage, and the feedback control causes the reactants not to be supplied in 

time exacerbating the tendency of the reactant molar fraction downward. Therefore, compared 
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to the SOA-PID control strategy, the cooperative model strategy control can suppress the 

reactant starvation problem during the dynamic process.  

 

Fig. 8. (a) Power consumption transient response ; (b) Current density transient 

response; (c) Steam molar fraction transient response; (d) Energy efficiency transient 

response;(e) Operating temperature transient response. 

In contrast to the constant steam utilization in the SOA-PID control strategy, artificial 

neural networks are used to calculate the inlet gas flow rate corresponding to maximum 
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efficiency of the reference power consumption in the cooperative model predictive control 

strategy, which makes the electrolyzer system reach the optimal operating condition and higher 

energy efficiency in the transient process. As shown in Fig. 8d, during the transient response, 

the rapid electrochemical reaction causes a slight increase in efficiency, however, the time lag 

of the elevated thermal energy demand due to the steam supply subsystem leads to a subsequent 

drop and finally a slow rise owing to the increased temperature (Fig. 8e). 

5.2 Decreased step response 

Cooperative model predictive control strategy and SOA-PID control strategy are 

compared during the transient step response 9000 W m-2 to 7000 W m-2. As shown in Fig. 9a 

and Fig. 9b, the cooperative model predictive control strategy is still constrained by the 

maximum change rate of current density during the dynamic process of the decreased step, 

hence the power consumption response is slow in the initial phase and then reaches steady state 

after a negligible overshoot. Furthermore, smaller and smoother power consumption overshoot 

is observed during the reduced step process, meaning that model identification provides a more 

accurate estimate of the reduced step dynamic behavior. As shown in Fig. 9c, compared to the 

cooperative model predictive control strategy, the catalyst layer steam molar fraction shows a 

significant upward trend as well as being more pronounced during the larger decreased step 

( from 9000 W m-2 to 6000 W m-2) at the SOA-PID control strategy, which implies a sudden 

decrease in fuel utilization and efficiency. Cooperative model predictive control utilizes an 

artificial neural network to calculate the inlet gas flow rate corresponding to the maximum 

efficiency of reference power consumption, thus making it more efficient during the dynamic 

process of the decreased step. In a typical response from 9000 W m-2 to 7000 W m-2, the 

cooperative model predictive control strategy is approximately 1.2% more efficient compared 

to the SOA-PID control strategy and is shown in Fig. 9d. During the dynamic process, the fastly 

decreasing electrochemical reaction causes a slight decrease in efficiency, however, the time 
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lag of the reduced thermal energy demand due to the steam supply subsystem leads to a 

subsequent rise and finally a slow drop owing to the decreased temperature (Fig. 9e). 

 

Fig. 9. (a) Power consumption transient response ; (b) Current density transient 

response; (c) Steam molar fraction transient response; (d) Energy efficiency transient 

response; (e) Operating temperature transient response. 
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Conclusion 

In this study, the hydrogen recirculation system of HT-PEMEC is developed to avoid the 

introduction of additional steam at the cathode, which significantly reduces the thermal energy 

demand and improves energy efficiency. Moreover, the hierarchical model is utilized to study 

the transient behavior of the hydrogen recirculation system, which uses a multiphysics model 

to describe the electrolyzer cell as well as the sub-systems described by lumped parameter 

models. The application of the hierarchical model offers accurate transient behavior and avoids 

excessive computational costs. Additionally, compared to SOA-PID, the proposed cooperative 

model predictive control can not only provide higher efficiency but also prevent the reactant 

starvation problem. This study provides useful information to understand the dynamic behavior 

and control strategy design of HT-PEMEC. 

The cooperative model predictive control strategy not only uses an artificial neural 

network to calculate the anode inlet gas flow rate corresponding to the maximum efficiency of 

the reference power consumption, but also constrains the maximum change rate of current 

density to avoid reactant starvation problems. However, the performance of the cooperative 

model predictive controller is dependent on the accuracy of the model estimation and the 

relationship between the input and output of the multiphysics model is not conveniently 

available, hence system identification is used to predict the dynamic behavior of the HT-

PEMEC. Compared with the SOA-PID control strategy, the cooperative model predictive 

control strategy offers better dynamic performance and avoids the starvation problem of 

reactants as well as improves energy efficiency in dynamic processes. During the step response 

from 9000 W m-2 to 7000 W m-2, the cooperative model predictive control strategy is 

approximately 1.2% more efficient compared to the SOA-PID control strategy. 

The cooperative model predictive control strategy can be applied to other electrolyzer cell 

systems to optimize dynamic processes. Furthermore, the response and optimization of thermal 
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stresses should also be considered in subsequent research work. 

Acknowledgments 

M. NI thanks the grants (Project Number: PolyU 152064/18E and N_PolyU552/20) from 

Research Grant Council, University Grants Committee, Hong Kong SAR. Xi Li thanks the 

National Natural Science Foundation of China (grant numbers: U2066202, 61873323), the 

Science, Technology and Innovation Commission of Shenzhen Municipality (grant number: 

JCYJ20210324115606017), and the National Science Centre of the Republic of Poland for 

SONATA project (grant number: 2018/31/D/ ST8/00123). 

References 

[1] Marocco P, Ferrero D, Lanzini A, et al. The role of hydrogen in the optimal design of off-grid hybrid 

renewable energy systems[J]. Journal of Energy Storage, 2022, 46: 103893. 

[2] Naik K R, Rajpathak B, Mitra A, et al. Power management scheme of DC micro-grid integrated with 

photovoltaic-Battery-Micro hydro power plant[J]. Journal of Power Sources, 2022, 525: 230988. 

[3] Feng L, Zhang X, Li X, et al. Performance analysis of hybrid energy storage integrated with distributed 

renewable energy[J]. Energy Reports, 2022, 8: 1829-1838. 

[4] He Y, Guo S, Zhou J, et al. Multi-objective planning-operation co-optimization of renewable energy 

system with hybrid energy storages[J]. Renewable Energy, 2022, 184: 776-790. 

[5] He Y, Guo S, Zhou J, et al. Multi-objective planning-operation co-optimization of renewable energy 

system with hybrid energy storages[J]. Renewable Energy, 2022, 184: 776-790. 

[6] Kumar S, Sharma R, Murthy S S, et al. Thermal analysis and optimization of stand-alone microgrids with 

metal hydride based hydrogen storage[J]. Sustainable Energy Technologies and Assessments, 2022, 52: 

102043. 

[7] Cao Y, Dhahad H A, ABo-Khalil A G, et al. Hydrogen production using solar energy and injection into a 



 

29 
 

solid oxide fuel cell for CO2 emission reduction; Thermoeconomic assessment and tri-objective 

optimization[J]. Sustainable Energy Technologies and Assessments, 2022, 50: 101767.  

[8] Ibáñez-Rioja A, Puranen P, Järvinen L, et al. Simulation methodology for an off-grid solar–battery–water 

electrolyzer plant: Simultaneous optimization of component capacities and system control[J]. Applied 

Energy, 2021: 118157.  

[9] Ni M, Leung M K H, Leung D Y C. Energy and exergy analysis of hydrogen production by a proton 

exchange membrane (PEM) electrolyzer plant[J]. Energy conversion and management, 2008, 49(10): 2748-

2756. 

[10] Hernández-Gómez Á, Ramirez V, Guilbert D, et al. Cell voltage static-dynamic modeling of a PEM 

electrolyzer based on adaptive parameters: Development and experimental validation[J]. Renewable Energy, 

2021, 163: 1508-1522. 

[11] Mohammadi A, Mehrpooya M. A comprehensive review on coupling different types of electrolyzer to 

renewable energy sources[J]. Energy, 2018, 158: 632-655. 

[12] Karimi M B, Hooshyari K, Salarizadeh P, et al. A comprehensive review on the proton conductivity of 

proton exchange membranes (PEMs) under anhydrous conditions: Proton conductivity upper bound[J]. 

International Journal of Hydrogen Energy, 2021, 46(69): 34413-34437. 

[13] Li H, Inada A, Fujigaya T, et al. Effects of operating conditions on performance of high-temperature 

polymer electrolyte water electrolyzer[J]. Journal of Power Sources, 2016, 318: 192-199. 

[14] Toghyani S, Afshari E, Baniasadi E, et al. Thermal and electrochemical performance assessment of a 

high temperature PEM electrolyzer[J]. Energy, 2018, 152: 237-246. 

[15] Jin Y, Wang T, Che X, et al. Poly (arylene pyridine) s: New alternative materials for high temperature 

polymer electrolyte fuel cells[J]. Journal of Power Sources, 2022, 526: 231131. 

[16] Hansen M K, Aili D, Christensen E, et al. PEM steam electrolysis at 130 C using a phosphoric acid 

doped short side chain PFSA membrane[J]. International journal of hydrogen energy, 2012, 37(15): 10992-

11000. 

[17] Dong C, Xu X, Zhang J, et al. Proton transport of porous triazole-grafted polysulfone membranes for 

high temperature polymer electrolyte membrane fuel cell[J]. International Journal of Hydrogen Energy, 2022. 

[18] Garbe S, Futter J, Schmidt T J, et al. Insight into elevated temperature and thin membrane application 



 

30 
 

for high efficiency in polymer electrolyte water electrolysis[J]. Electrochimica Acta, 2021, 377: 138046. 

[19] Günay M E, Tapan N A, Akkoç G. Analysis and modeling of high-performance polymer electrolyte 

membrane electrolyzers by machine learning[J]. International Journal of Hydrogen Energy, 2022, 47(4): 

2134-2151. 

[20] Ruiz D D H, Sasmito A P, Shamim T. Numerical investigation of the high temperature PEM electrolyzer: 

effect of flow channel configurations[J]. ECS Transactions, 2013, 58(2): 99. 

[21] Zhang Z, Xing X. Simulation and experiment of heat and mass transfer in a proton exchange membrane 

electrolysis cell[J]. International Journal of Hydrogen Energy, 2020, 45(39): 20184-20193. 

[22] Bonanno M, Müller K, Bensmann B, et al. Evaluation of the Efficiency of an Elevated Temperature 

Proton Exchange Membrane Water Electrolysis System[J]. Journal of The Electrochemical Society, 2021, 

168(9): 094504. 

[23] Toghyani S, Baniasadi E, Afshari E. Numerical simulation and exergoeconomic analysis of a high 

temperature polymer exchange membrane electrolyzer[J]. International Journal of Hydrogen Energy, 2019, 

44(60): 31731-31744. 

[24] Nafchi F M, Baniasadi E, Afshari E, et al. Performance assessment of a solar hydrogen and electricity 

production plant using high temperature PEM electrolyzer and energy storage[J]. international journal of 

hydrogen energy, 2018, 43(11): 5820-5831. 

[25] Ito H, Miyazaki N, Ishida M, et al. Efficiency of unitized reversible fuel cell systems[J]. International 

Journal of Hydrogen Energy, 2016, 41(13): 5803-5815. 

[26] Xia L, Zhang C, Hu M, et al. Investigation of parameter effects on the performance of high-temperature 

PEM fuel cell[J]. International Journal of Hydrogen Energy, 2018, 43(52): 23441-23449. 

[27] Xia L, Xu Q, He Q, et al. Numerical study of high temperature proton exchange membrane fuel cell 

(HT-PEMFC) with a focus on rib design[J]. International Journal of Hydrogen Energy, 2021, 46(40): 21098-

21111. 

[28] Brezak D, Kovač A, Firak M. MATLAB/Simulink simulation of low-pressure PEM electrolyzer stack[J]. 

International Journal of Hydrogen Energy, 2022. 

[29] Falcão D S, Pinto A. A review on PEM electrolyzer modelling: Guidelines for beginners[J]. Journal of 

Cleaner Production, 2020, 261: 121184. 



 

31 
 

[30] Han B, Mo J, Kang Z, et al. Effects of membrane electrode assembly properties on two-phase transport 

and performance in proton exchange membrane electrolyzer cells[J]. Electrochimica Acta, 2016, 188: 317-

326. 

[31] Nie J, Chen Y, Boehm R F. Numerical modeling of two-phase flow in a bipolar plate of a PEM 

electrolyzer cell[C]//ASME International Mechanical Engineering Congress and Exposition. 2008, 48715: 

783-788. 

[32] Xu H, Chen B, Irvine J, et al. Modeling of CH4-assisted SOEC for H2O/CO2 co-electrolysis[J]. 

International Journal of Hydrogen Energy, 2016, 41(47): 21839-21849. 

[33] Xu H, Chen B, Ni M. Modeling of direct carbon-assisted solid oxide electrolysis cell (SOEC) for syngas 

production at two different electrodes[J]. Journal of The Electrochemical Society, 2016, 163(11): F3029. 

[34] Xia L, Zhang C, Hu M, et al. Investigation of parameter effects on the performance of high-temperature 

PEM fuel cell[J]. International Journal of Hydrogen Energy, 2018, 43(52): 23441-23449. 

[35] Zhao D, He Q, Yu J, et al. Dynamic behaviour and control strategy of high temperature proton exchange 

membrane electrolyzer cells (HT-PEMECs) for hydrogen production[J]. International Journal of Hydrogen 

Energy, 2020, 45(51): 26613-26622. 

[36] Zhao D, He Q, Wu X, et al. Modeling and optimization of high temperature proton exchange membrane 

electrolyzer cells [J]. Int J Green Energy 2021:1-12. 

[37] Zhang L, Li X, Jiang J, et al. Dynamic modeling and analysis of a 5-kW solid oxide fuel cell system 

from the perspectives of cooperative control of thermal safety and high efficiency[J]. international journal 

of hydrogen energy, 2015, 40(1): 456-476. 

[38] Zhang L, Jiang J, Cheng H, et al. Control strategy for power management, efficiency-optimization and 

operating-safety of a 5-kW solid oxide fuel cell system[J]. Electrochimica Acta, 2015, 177: 237-249. 

[39] Li J, Zoghi M, Zhao L. Thermo-economic assessment and optimization of a geothermal-driven tri-

generation system for power, cooling, and hydrogen production[J]. Energy, 2022: 123151. 

[40] Wang Z, Wang X, Chen Z, et al. Energy and exergy analysis of a proton exchange membrane water 

electrolysis system without additional internal cooling[J]. Renewable Energy, 2021, 180: 1333-1343. 

[41] Ni M, Leung M K H, Leung D Y C. Energy and exergy analysis of hydrogen production by solid oxide 

steam electrolyzer plant[J]. International Journal of Hydrogen Energy, 2007, 32(18): 4648-4660. 



 

32 
 

[42] Arbabi F, Montazeri H, Abouatallah R, et al. Three-dimensional computational fluid dynamics 

modelling of oxygen bubble transport in polymer electrolyte membrane electrolyzer porous transport 

layers[J]. Journal of The Electrochemical Society, 2016, 163(11): F3062. 

[43] Toghyani S, Afshari E, Baniasadi E. Three-dimensional computational fluid dynamics modeling of 

proton exchange membrane electrolyzer with new flow field pattern[J]. Journal of Thermal Analysis and 

Calorimetry, 2019, 135(3): 1911-1919. 

[44] Torreglosa J P, Jurado F, García P, et al. PEM fuel cell modeling using system identification methods 

for urban transportation applications[J]. International journal of hydrogen energy, 2011, 36(13): 7628-7640. 

[45] Zhao D, He Q, Yu J, et al. A data-driven digital-twin model and control of high temperature proton 

exchange membrane electrolyzer cells[J]. International Journal of Hydrogen Energy, 2022. 

[46] Mayne D Q. Model predictive control: Recent developments and future promise[J]. Automatica, 2014, 

50(12): 2967-2986. 

[47] Mayne D Q, Rawlings J B, Rao C V, et al. Constrained model predictive control: Stability and 

optimality[J]. Automatica, 2000, 36(6): 789-814. 

[48] Chen C, Li J, Luo J, et al. Seeker optimization algorithm for optimal control of manipulator[J]. Industrial 

Robot: An International Journal, 2016, 43(6): 677-686. 

[49] Parvaneh H, Dizgah S M, Sedighizadeh M, et al. Load frequency control of a multi-area power system 

by optimum designing of frequency-based PID controller using seeker optimization algorithm[C]//2016 6th 

Conference on Thermal Power Plants (CTPP). IEEE, 2016: 52-57. 

[50] Carmo M, Fritz D L, Mergel J, et al. A comprehensive review on PEM water electrolysis[J]. 

International journal of hydrogen energy, 2013, 38(12): 4901-4934. 

[51] Elwan H A, Thimmappa R, Mamlouk M, et al. Applications of poly ionic liquids in proton exchange 

membrane fuel cells: A review[J]. Journal of Power Sources, 2021, 510: 230371. 

[52] Qin S J, Badgwell T A. A survey of industrial model predictive control technology[J]. Control 

engineering practice, 2003, 11(7): 733-764. 

[53] Zhu Y, Dai C, Chen W. Seeker optimization algorithm for several practical applications[J]. International 

Journal of Computational Intelligence Systems, 2014, 7(2): 353-359. 




