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Abstract7

Time-dependent order cancellation behavior affects ridesourcing platform operation and overall system performance.
This paper models impacts of time-dependent order cancellation behavior on the driver-rider matching efficiency
and examines ridesourcing platform operation strategies, where taxi is the alternative to the ridesourcing mode. A
time-dependent matching model is developed to characterize the complex interaction among participants (drivers and
riders) considering ridesourcing order cancellation behavior, where the impact of the cancelled orders on the numbers
of drivers and riders is explicitly modeled. In particular, we formulate the time-dependent order cancellation rates
before and after the matching stage (i.e., cancellation of unconfirmed and confirmed orders). Under the proposed
model, a platform profit maximization problem is formulated and three pricing strategies are examined. Our numer-
ical studies demonstrate that the dynamic pricing (i.e., customer/rider fare and driver wage) can well accommodate
time-dependent system inputs (e.g., demand rates) and thus enable the platform to increase profit via better market
segmentation. We also investigate the objective of maximizing the number of completed trips and examine the trade-
off between the platform profit and the number of completed trips. In addition, we show that the relaxation of upper
bounds of the ridesourcing fare and order cancellation penalty can increase the ridesourcing platform’s profit and
indirectly improve the utilization rate of taxis as well as the taxi company’s profit.

Keywords: Ridesourcing, Taxi, Order cancellation, Pricing, Penalty8

1. Introduction9

The widespread popularity of smartphones has promoted the usage of app-based on-demand ridesourcing services10

and made them attractive and affordable for general travel groups. Ridesourcing customers (or riders) send travel11

requests to the platform via the mobile ridesourcing app, and then the platform matches these customers in real-12

time with the drivers who are providing ridesourcing service. Thanks to many advantages provided by ridesourcing13

platforms, such as reduced spatial barriers in the process of matching customers and vehicles, ridesourcing service14

has become a powerful competitor to the taxi service (Rayle et al., 2016; Nie, 2017).15

Although the app-based ridesourcing service eases the matching of customers and ridesourcing vehicles, and16

attracts considerable customers, not all trip orders or travel requests are completed as scheduled. While waiting for17

matching with vehicles or pick-up, some customers may cancel the placed orders. The cancellation of confirmed18

orders may save ridesourcing customers’ waiting time, but will waste the drivers’ efforts to pick up the customers (for19

example, the time and fuel cost from the order is confirmed to the cancellation) and reduce the platform’s ridesourcing20

supply, as mentioned in He et al. (2018) and Wang et al. (2020). The cancellation of unconfirmed orders also wastes the21

efforts of the platform, because after customers place orders, the platform will dispatch vehicles based on algorithms22

to meet customers, and even attract drivers to provide services with high wages when the availability of vehicles23

is limited (e.g., Hall et al., 2015; Chen, 2016). To the best of our knowledge, there is rather limited literature on24
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ridesourcing order cancellation. He et al. (2018) first incorporated order cancellation behavior into a market with25

street-hailing and e-hailing taxi services, and designed pricing strategies based on the proposed equilibrium model26

for the maximization of platform revenue or social welfare. Wang et al. (2020) further considered order cancellation27

behavior in a market with hybrid modes of street-hailing and ridesourcing service, and developed an equilibrium model28

to characterize the interaction among different participants in the two-sided market. These studies arouse attention to29

ridesourcing trip order cancellation behavior, but they are based on steady-state equilibrium analysis and only focus30

on the cancellation of confirmed orders. In the actual ridesourcing market, drivers are free to enter and exit the market31

(only self-employed private car owners are considered) and customers can also place and cancel orders at any time,32

which will affect the supply and demand of ridesourcing service (thus affecting matching time, fleet size and order33

cancellation, etc.), which in turn will further affect subsequent driver and customer decisions. This time-dependent34

dynamic interaction cannot be characterized by the steady-state equilibrium models. Therefore, it is necessary to35

establish a time-dependent ridesourcing system model to better capture the process of interaction between drivers,36

customers and the platform, and at the same time contribute to the design of the platform’s operation/pricing strategy.37

In addition to the confirmed order cancellation behavior described in previous studies that is harmful to drivers and38

ridesourcing market efficiency, the cancellation of unconfirmed orders in reality usually does not involve any penalty,39

and the cancellation of unconfirmed orders by customers in the matching pool will affect the matching efficiency of40

the platform. The above motivates the current study to model time-dependent order cancellation behavior, including41

cancellations of both confirmed and unconfirmed orders.42

Implementing appropriate pricing and penalty strategies is one way to manage order cancellation behavior (He43

et al., 2018; Wang et al., 2020), and dynamic pricing has been adopted by platforms and plays an important role in44

transportation network companies (TNCs), such as Uber and Didi (e.g., Hall et al., 2015). The pricing can affect45

customers’ travel choices and service fleet size, while the penalty (on customers) and compensation (to drivers),46

respectively, increase the cost of order cancellation and make up for the loss of related drivers. Due to the limited47

research on order cancellation, the penalty and compensation strategy in relation to order cancellation is also limited48

to the work of He et al. (2018) and Wang et al. (2020). They both explore the penalty strategy under the objective49

of maximizing platform profit and/or social welfare. With the boom of ridesourcing service, there is a large and50

growing amount of studies on platform pricing. Proponents believe that dynamic pricing strategy can help platforms51

to gain more profits and reduce inefficiency, see, e.g., Hall et al. (2015), Cachon et al. (2017), Castillo et al. (2017),52

Nourinejad & Ramezani (2020). On the contrary, some scholars pointed out that dynamic pricing may not necessarily53

improve the system performance or even worsen the system. For example, the forward-looking behavior of customers54

and drivers induced by dynamic pricing can worsen the system performance (Chen & Hu, 2020). The performance of55

Uber’s dynamic pricing on New Year’s Eve in New York and Sydney was also criticized by the public (Lowrey, 2014;56

Han & Robertson, 2016). Besides, there are many pricing strategies from other perspectives, such as spatial pricing57

(e.g., Zha et al., 2018) and optimal pricing considering congestion (e.g., Li et al., 2021), while inappropriate pricing or58

fleet sizing strategy may result in inefficient ridesourcing service and additional congestion (Beojone & Geroliminis,59

2021).60

In this paper, we make an attempt to portray the dynamic matching process between customers and drivers, and61

the interplay between different participants in the coupled market of taxi and ridesourcing service considering time-62

dependent order cancellation behavior, and also investigate the impacts of different pricing strategies on the system63

performance. We discretize the study period into multiple time intervals of equal length. In each time interval, the64

customer-vehicle matching rate is determined by the numbers of waiting customers and vacant vehicles at both ends65

in the matching pools for taxi and ridesourcing services. The numbers of waiting customers and vehicles in each time66

interval are endogenously related to the arrival and departure rates of customers and vehicles, which are governed by67

the total demand, supply, matching efficiency in each time interval, and also the number of cancelled orders. For this68

reason, we propose a model to depict the time-dependent order cancellation behavior, where we model cancellations69

before and after matching, i.e., cancellations of both confirmed and unconfirmed orders. Based on the proposed70

dynamic matching model, we further explore the impact of order cancellation behavior on the market and examine the71

system performance of different pricing strategies in consideration of platform profit, as well as the influence of the72

government’s deregulation of ridesourcing service pricing/penalty strategies on the coupled market. While this paper73

focuses on private platform operators to maximize profits, we also investigate alternative objectives, i.e., a public74

operator that maximizes the number of completed (or serviced) trips (for social benefit) and a regulated operator that75

concerns both profit and the number of completed trips (the bi-objective problem). Note that the number of trips76
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completed is particularly relevant to the order cancellation behavior.77

The remainder of this paper is organized as follows. Section 2 presents a literature review on taxi/ridesourcing78

market modelling and pricing strategy. Section 3 firstly models the numbers of passengers and vehicles waiting to be79

matched for taxi and ridesourcing service, and then formulates the passenger-vehicle matching efficiency and match-80

ing time for both taxi and ridesourcing service. This is followed by formulating the time-dependent order cancellation81

behavior of ridesourcing customers before and after matching (i.e., unconfirmed and confirmed orders). Section 4 pro-82

poses three pricing strategies and presents the optimization problem of the ridesourcing platform. Section 5 conducts83

numerical studies to illustrate the proposed model. Section 6 concludes the paper and provides further discussions.84

2. Literature review85

The studies on the taxi market originated in the 1970s and Douglas (1972) provided a first look at an aggregate taxi86

model to characterize the supply-demand relationships and market equilibrium. After that, many researchers extended87

the taxi model proposed by Douglas to various different types of taxi market (e.g., Beesley, 1973; Schroeter, 1983). In88

a taxi market, the number of vacant taxis is an important factor in determining the level of service and waiting time of89

customers; and the supply, demand and waiting time are interactive (e.g., De Vany, 1975; Foerster & Gilbert, 1979).90

In the 1990s, to elaborate how taxis circulate in the market to find customers and provide services, Yang & Wong91

(1998) incorporated the spatial structure of the road network to the equilibrium model of taxi service. The taxi market92

model in Yang & Wong (1998) has been further extended in many ways, such as considering congestion effects and93

customer demand elasticity (e.g., Wong et al., 2001), multiple customer classes and taxi modes (e.g., Wong et al.,94

2008), nonlinear fare structures (e.g., Yang et al., 2010) and friction in the vehicle-customer matching process (e.g.,95

Yang & Yang, 2011).96

The meeting function is often utilized to measure the efficiency when waiting customers and vacant vehicles search97

for each other. Schroeter (1983) first introduced a meeting function into the taxi market in which telephone ordering98

radio dispatch service and airport taxi are the main operating modes. The meeting function was further applied by99

Yang & Yang (2011) to a traditional taxi market, with the purpose of depicting the searching and meeting friction100

for street-hailing customers and vehicles, where the meeting function reflects how the matching rate changes with the101

numbers of waiting customers and vacant vehicles. Since then, the meeting function has been widely used in studies102

on the taxi market and the ridesourcing/ridesharing market to describe searching friction or characterize the difference103

in matching efficiency when there is more than one travel mode (He & Shen, 2015; Zha et al., 2016; Ramezani &104

Nourinejad, 2018; Nourinejad & Ramezani, 2020; Chen et al., 2020; Wei et al., 2020).105

Pricing is often regarded as an effective management tool in the transportation sector, such as congestion pricing106

(e.g., de Palma & Lindsey, 2011; Meng & Liu, 2012; Gu et al., 2018; Zheng & Geroliminis, 2020; Chen et al., 2021),107

and parking pricing (e.g., Qian et al., 2012; Qian & Rajagopal, 2014; Zheng & Geroliminis, 2016; Liu & Geroliminis,108

2016, 2017; Liu, 2018; Gu et al., 2020; Zhang et al., 2020; Wu et al., 2021). With the emergence of on-demand109

ridesourcing service in the past decade, TNCs like Uber and Didi have reshaped traditional taxi market and has110

attracted considerable attention. The ridesourcing market is a classic two-sided market (e.g., Armstrong, 2006; Weyl,111

2010), and many researchers pay attention to the impact of pricing strategies on the system and the interaction among112

participants (Ke et al., 2020). In particular, Chen (2016) pointed out that the surge pricing can stimulate more e-hailing113

drivers to provide longer service, complete more trips and improve the efficiency of the ridesourcing platform. Cachon114

et al. (2017) implemented different pricing strategies and found that dynamic pricing strategy with fixed commission115

rate can reach a higher platform profit than the pricing scheme with a fixed fare collected from passenger and a fixed116

wage offered to drivers. Yang et al. (2020) suggested that range constraints for dynamic pricing may lead to a failure117

in balancing supply and demand, and they proposed a new reward scheme where customers pay extra fares to a reward118

account during rush hour and use them during off-peak hours as compensation, and then all participants will be better119

off under certain conditions. An analytical model was developed by Bai et al. (2019) based on queuing model, where120

the platform gains more revenue by time-based payout ratio (i.e., the ratio of wage to price) than fixed payout ratio.121

They also noted that when the payout ratio exceeds one, the platform will suffer losses and attract more customers122

and drivers to enter the market, and this strategy may be adopted in the early stage when one wants to promote the123

platform. Wang et al. (2016) proposed an equilibrium model with single taxi-hailing service and investigated the124

impact of pricing strategy disturbance on system performance. Zha et al. (2018) explored the impact of spatial pricing125
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on ridesourcing system and found that flat pricing strategy may yield higher prices in order to maintain sufficient126

supply, which reduces the utility of users, while flexible spatial pricing can benefit multiple participants.1127

The emerging ridesourcing services grow rapidly and occupy a considerable market share, but also have expe-128

rienced severe competition with other transportation modes. Taxis and ridesourcing service are competing modes129

(e.g., Rayle et al., 2016; Nie, 2017). Specifically, Nie (2017) found that taxis can compete more effectively with130

ridesourcing service during peak hours and in high population density area. In addition, the competitions among131

different ridesourcing platforms are also studied. For instance, Cohen & Zhang (2017) considered multiple platforms132

not only to compete for customers, but also for drivers who can provide services. Based on the proposed model, they133

studied both the competition and coopetition between platforms, and designed profit-sharing contracts to benefit each134

party. Mo et al. (2020) explored the competition of two different ridesourcing platforms, and studied the impact of the135

government’s two subsidy strategies under the equilibrium of non-cooperative competition to improve social welfare.136

This study is related to the above in the sense that taxi is modeled as the travel alternative to ridesourcing service,137

while this study focuses on time-dependent ridesourcing order cancellation behaviors.138

3. Modelling the dynamic matching process and time-dependent order cancellation behavior139

In this section, we establish a dynamic matching model that considers time-dependent order cancellation behavior,140

which includes four main subsections: (i) traveler’s mode choice and the numbers of customers waiting to be matched141

for taxis and ridesourcing services; (ii) the numbers of ridesourcing vehicles and taxis waiting to be matched in142

each time interval; (iii) the matching efficiency and waiting times of ridesourcing service and taxi service; (iv) time-143

dependent order cancellation rate and the number of cancelled orders. In addition, the dynamic matching model with144

embedded time-dependent order cancellation behavior is summarized in the last (fifth) subsection (of this section).145

We adopt a discrete-time formulation, where we discretize the study period [T0,T ] into T ∗ time intervals of equal146

length ∆t and T ∗ = (T −T0)/∆t. Each time interval is denoted as t, t ∈ {1, ...,T ∗}. To facilitate reading, major notations147

are summarized below.148

Table 1: Glossary of Notations149

Notation Interpretation

ars, atx Starting fees of ridesourcing and taxi service (A$)
Ati,t j

rs (t) Number of customers who place, match and wait to board ridesourcing ve-
hicles at time ti, t j and t

brs Starting wage of ridesourcing drivers (A$)
cg Average fuel cost per kilometer (A$/km)
c0 Fixed cost per trip (A$/trip)
cp Parking cost per hour (A$/hour)
d Average trip distance (km)
D, Drs, Dtx Total demand, ridesourcing demand and taxi demand
Grs, Gtx Trip completion rates of ridesourcing vehicle and taxi
hrs Estimated monetary cost for ridesourcing drivers (A$)
Hrs, Htx Positive meeting constants of meeting rate
krs, ktx Distance-based fare rates of ridesourcing and taxi service (A$/km)
Krs, Ktx Trip fares of ridesourcing and taxi service (A$)
k̂rs Penalty charged to customers cancelling matched orders (A$/trip)
[krs, srs, k̂rs, ŝrs] Lower bounds of fare, wage, penalty and compensation

[krs, srs, k̂rs, ŝrs] Upper bounds of fare, wage, penalty and compensation
m Flag-fall distance (km)

150

1The successful implementation of the pricing strategy relies on the platform’s accurate forecasting and/or understanding of demand. Substantial
efforts have been dedicated to demand forecasting in the ridesourcing markets (Ke et al., 2017; Kontou et al., 2020; Ke et al., 2021).
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Mrs, Mtx Meeting rates of customers with ridesourcing and taxi service
Mti

rs(t) Actual matching amount at time t for orders placed at time ti
M
′ti
rs (t) Pre-allocated matching amount at time t for orders placed at time ti

n Duration of each pricing decision step
Nc

rs, Nc
tx Numbers of customers waiting to be matched for ridesourcing and taxi ser-

vice
Nen

rs , Nex
rs Numbers of ridesourcing vehicles entering and exiting the market

Nmax
rs Potential maximum number of ridesourcing vehicles

Nv
rs, Nv

tx Numbers of vacant waiting ridesourcing vehicles and taxis
No

rs Number of occupied ridesourcing vehicles
N pk

rs , N pk
tx Numbers of orders that customers are successfully picked up by ridesourcing

vehicles or taxis in a time interval
Nc,ti

rs (t) Number of unmatched customers who place orders at time ti and wait to be
matched at time t

P
c
oc1, P

c
oc2 Estimated order cancellation rates before and after matching

Pin, Pout Probabilities of ridesourcing drivers entering and exiting the market
Pti

oc1(t) Time-dependent order cancellation rate before matching at time t
Pti,t j

oc2(t) Time-dependent order cancellation rate after matching at time t
Poc1(t), Poc2(t) Total order cancellation rates before and after matching for orders placed at

time t
q Operating cost of ridesourcing platform (A$/trip)
rrs Expected revenue of ridesourcing drivers (A$)
Roc1, Roc2 Numbers of cancelled orders before and after matching in a time interval
srs Distance-based wage rate of ridesourcing drivers (A$/km)
ŝrs Compensation paid to the drivers whose orders are cancelled (A$/trip)
TCrs, TCtx Perceived generalized trip costs of ridesourcing and taxi customers
t ∈ {1, ...,T ∗} Time-step t belongs to the set of discrete time interval {1, ...,T ∗}
ts, te Start time and end time of a time period
Urs, Utx Perceived disutilities of ridesourcing and taxi service
v0 Average speed of taxi and ridesourcing vehicle (km/h)
wc

oc1, wc
oc2 Estimated cancellation times for customers to cancel orders before and after

matching (min)
wc

rs, wc
tx Expected matching times of customers for ridesourcing and taxi service(min)

wpk
rs Average pick-up time for customers and vehicles of matched orders (min)

αrs, βrs (αtx, βtx) Constant elasticities of meeting rate of ridesourcing (taxi) service
γ Value of time
θ1, θ2 Positive parameters
ηwc

rs(ti) A proportion of the expected waiting time for orders placed at time ti
[σkrs , σsrs , σk̂rs

, σk̂rs
] Lower bounds of fare, wage, penalty and compensation adjustment between

adjacent pricing decision steps
[τkrs , τsrs , τ̂krs

, τŝrs ] Upper bounds of fare, wage, penalty and compensation adjustment between
adjacent pricing decision steps

151

3.1. Numbers of taxi and ridesourcing customers waiting to be matched152

Consider a region where customers can choose ridesourcing and taxi services. The total travel demand generated153

in each discretized time interval is divided into ridesourcing demand and taxi demand based on customers’ perceived154

disutilities of the two modes. With the flag-fall fee of taxi atx, fare rate of taxi ktx and expected matching time for taxi155

wc
tx, the mean perceived generalized trip cost of taxi customers at time t can be given as156

TCtx(t) = atx + ktx(t)max(d − m, 0) + γwc
tx(t − 1) (1)

5



where d and m denote the average trip distance and flag-fall distance, respectively; γ is the customers’ value of time.157

Ktx = atx + ktx(t)max(d − m, 0) represents the average trip fare charged to taxi customers, where ktx(t)max(d − m, 0)158

means that when the average trip distance exceeds the flag-fall distance, customers will be charged at ktx(t) A$/km.159

The last term is the expected waiting cost for matching of taxi customers, where wc
tx(t − 1) indicates that the real160

information at the previous moment (i.e., t − 1) is used to estimate the matching time (wait for being matched) when161

making mode choice (this might be provided by the platform).162

As for ridesourcing customers, possible order cancellations at two stages, i.e., before and after the order is con-163

firmed or matching is completed, are considered. With the estimated cancellation rates before matching Poc1 (cancel-164

lation of unconfirmed orders) and after matching Poc2 (cancellation of confirmed orders), the matching time for rides-165

ourcing vehicle wc
rs and pick-up time wpk

rs , the perceived cancellation times before matching woc1 and after matching166

woc2, the average trip fares of taxi customer Ktx and ridesourcing customer Krs, the mean perceived generalized trip167

cost of ridesourcing customers at time t can be given as:168

TCrs(t) =
[
1 − Poc1(t)

] {
γwc

rs(t − 1) + (1 − Poc2(t))
[
γwpk

rs (t − 1) + Krs(t)
]

+ Poc2(t)
[
γwoc2(t − 1) + Ktx + k̂rs(t)

]}
+ Poc1(t)

[
γwoc1(t − 1) + Ktx

] (2)

where Krs(t) = ars + krs(t)max(d − m, 0); ars is the flag-fall fee of ridesourcing service; krs is the distance-based169

fare rate of ridesourcing service; k̂rs is the penalty charged on ridesourcing customers who cancel confirmed orders.170

Similar to Eq. (1), information at the previous moment (i.e., t − 1) is used to calculate trip costs. The perceived171

cancellation time is assumed to be proportional to the waiting time (wait for matching and pick-up). The first term of172

Eq. (2) represents the expected cost of keeping orders before matching. Specifically, the first term in curly brackets173

represents the waiting cost for matching of ridesourcing customers; the second term is the cost of completing orders174

by ridesourcing vehicles after matching, including the waiting cost for pick up and trip fare of ridesourcing service;175

and the third term is the cost of completing orders by taxis when customers cancel orders after matching, including176

the waiting cost from matching to cancellation, taxi trip fare and penalty. The second term of Eq. (2) represents the177

expected cost of completing orders by taxis when customers cancel orders before matching, including the time cost178

from placing orders to the cancellation time point and taxi trip fare.179

Based on the generalized trip cost, the perceived disutility of each mode can be given as: Utx(t) = θ1TCtx(t)+εtx(t)180

for taxi customers and Urs(t) = θ1TCrs(t) + εrs(t) for ridesourcing customers, where θ1 > 0 is the scale parameter;181

εtx and εrs are the error terms following certain identical and independent Gumbel distribution. Hence, given the total182

demand D(t) at time t and based on the disutilities of both modes, the modal-split of customers can be obtained with183

the following binary Logit function:184

Dtx(t) =
D(t)

1 + exp [θ1(TCtx(t) − TCrs(t))]
,Drs(t) = D(t) − Dtx(t) (3)

where Dtx(t) and Drs(t) are the numbers of customers choosing taxi and ridesourcing services respectively at time t.185

We have
∂Dtx(t)
∂TCtx(t)

<0 and
∂Drs(t)
∂TCrs(t)

<0 from Eq. (3), because the demand rate decreases with the generalized trip cost186

for both modes. The total demand rate D(t) is exogenous while the demand rates of taxi and ridesourcing are affected187

by the fare rate, waiting time and possible order cancellation cost.188

The searching and meeting efficiency between customers and vehicles (either taxis or ridesourcing vehicles) de-189

pends on the numbers of waiting participants at both ends of the matching pool. On the customer side, the number190

of customers waiting to be matched needs to consider the arrival and departure rates of customers. Specifically, for191

taxi customers, the arrival rate includes not only newly generated taxi demand Dtx(t), but also the cancelled orders192

of ridesourcing service before and after matching, denoted by Roc1 and Roc2, respectively; the departure rate is de-193

termined by the meeting rate Mtx. Following the functional form describing changes in the number of customers in194

Nourinejad & Ramezani (2020), and based on the number of waiting customers in the last time interval, the number195

of taxi customers waiting to be matched can be given as:196

Nc
tx(t) = Nc

tx(t − 1) + Dtx(t) − Mtx(t − 1) + Roc1(t − 1) + Roc2(t − 1) (4)

Note that the departure rate of ridesourcing customers includes the meeting rate Mrs and the cancelled orders before197

matching Roc1; the arrival rate is determined by the newly generated ridesourcing demand Drs(t). Similar to Eq. (4),198
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the number of ridesourcing customers waiting to be matched can be given as:199

Nc
rs(t) = Nc

rs(t − 1) + Drs(t) − Mrs(t − 1) − Roc1(t − 1) (5)

Eq. (4) and Eq. (5) respectively reflect the positive and negative effects of ridesourcing customers’ order cancellation200

on the numbers of taxis and ridesourcing customers waiting to be matched. Besides, by comparing Eq. (4) and201

Eq. (5), one can see that the cancelled orders before and after matching have asymmetric effects on the numbers of202

taxi/ridesourcing customers waiting to be matched. In particular, the order cancellation after matching will increase203

the number of taxi customers waiting to be matched without affecting the counterpart of ridesourcing customers.204

3.2. Numbers of vacant taxis and ridesourcing vehicles waiting to be matched205

In the coupled two-sided market, taxis and ridesourcing vehicles provide mobility service. We discuss the supply206

of taxi and ridesourcing service and the number of vehicles waiting to be matched at each interval in this subsection.207

Assuming that the number of taxis is regulated by a taxi company with a fixed fleet size in this market, the state of the208

taxi will switch between vacant and occupied. Specifically, a vacant taxi will be occupied immediately after picking209

up customers; on the contrary, if the trip is completed, the occupied taxi will become vacant again. The taxi will210

re-enter the market after completing the trip and then wait to be matched with customers. We first formulate the trip211

completion rate of taxi as follows:212 ∫ te+d/v0

ts

Gtx(u)du =

∫ te

ts

N pk
tx (u)du (6)

where Gtx is the trip completion rate of taxi; ts and te are the start time and end time of a time period; v0 is the average213

speed of taxi and ridesourcing vehicle; N pk
tx is the number of orders that customers are successfully picked up by taxis.214

The above equation ensures that the number of taxis picking up customers during the period [ts, te] is equal to the215

number of taxis dropping off customers during the period [ts, te + d/v0]. Given the average trip distance d and average216

speed of taxi v0, customers who board taxis during [ts, te] will complete their trips at time (te + d/v0) at the latest.217

The arrival rate of taxi is determined by the completion rate of taxi Gtx, while the meeting rate of taxi determines218

the departure rate Mtx. Then, following similar formulations describing changes in the number of vacant vehicles in219

Nourinejad & Ramezani (2020), the number of vacant taxis, denoted by Nv
tx(t), can be given as follows220

Nv
tx(t) = Nv

tx(t − 1) + Gtx(t) − Mtx(t − 1) (7)

For ridesourcing vehicles, we assume that ridesourcing drivers can freely decide their working hours, so the fleet221

size of ridesourcing vehicle in the market is not fixed. Moreover, how many ridesourcing drivers provide mobility222

services is related to their expected revenue. Hence, the expected revenue of ridesourcing drivers at time t is first223

formulated below:224

rrs(t) = (1 − Poc2(t))(brs + srs(t) max(d − m, 0)) + Poc2(t)̂srs(t) (8)

where rrs(t) is the expected revenue rate based on the order cancellation for ridesourcing drivers at time t; brs and225

srs(t) are the starting wage and the distance-based wage rate of ridesourcing drivers; ŝrs is the compensation paid to226

drivers whose orders are cancelled. The first term represents the expected revenue of completed trips, and the second227

term is the compensation of cancelled trips.228

The drivers’ driving distance for the completed trips includes the pick-up distance and the trip distance, and for the229

cancelled orders, the driving distance is a part of the pick-up distance (the vehicles are assumed to park when waiting230

for matching). Therefore, the estimated monetary cost hrs(t) based on order cancellation for drivers who provide231

service at time t is given by232

hrs(t) = wv
rs(t − 1)cp + Poc2(t)woc2(t − 1)v0cg + (1 − Poc2(t))(wpk

rs (t − 1)v0 + d)cg + c0 (9)

where wv
rs is the ridesourcing vehicles’ matching time with customers; cp is the parking cost per unit time; cg is the233

average fuel cost per kilometer; v0 is the average speed; c0 is the fixed cost (e.g., costs related to vehicle insurance and234

depreciation that are converted into the fixed cost per trip). The first term on the right hand side of above equation is235

the parking cost, the second term is the fuel cost of vehicles from matching to order cancellation, and the third term is236

the fuel cost for picking up customers and delivering them to the destinations.237
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The numbers of ridesourcing vehicles/drivers entering and exiting the market at time t, similar to Nourinejad &238

Ramezani (2020), can be modelled as239

Nen
rs (t) =

(
Nmax

rs − Nv
rs(t − 1) − No

rs(t − 1)
)

Pin (rrs(t), hrs(t)) (10)

Nex
rs (t) =

(
Nv

rs(t − 1) + Grs(t) − Mrs(t − 1) + Roc2(t − 1)
)

Pout (rrs(t), hrs(t)) (11)

where Nen
rs (t) and Nex

rs (t), respectively, denote the numbers of ridesourcing vehicles entering and exiting the market at240

time t; Nmax
rs is the potential maximum number of ridesourcing vehicles in the market; Nv

rs(t − 1) denotes the number241

of vacant ridesourcing vehicles at time (t − 1); No
rs(t − 1) denotes the number of occupied ridesourcing vehicles at242

time (t − 1); Grs(t) is the trip completion rate of ridesourcing vehicles at time t; Pin and Pout respectively represent243

the probabilities of ridesourcing drivers entering and exiting the market, which are governed by the expected revenue244

and monetary cost. The above formulations provide an estimate of ridesourcing supply, where if the expected income245

is higher and the expected monetary cost is lower, more drivers will provide service and fewer drivers will leave the246

market. The above formulations have to be calibrated with real-world data in order to produce realistic estimations.247

Eqs. (10) and (11) also indicate that the numbers of ridesourcing vehicles entering and exiting the market are248

part of the vehicles outside the market and part of the unoccupied vehicles in the market, respectively. The arrival249

rate of ridesourcing vehicles includes the newly entering vehicles, trip completion rate of ridesourcing vehicles and250

cancelled trips after matching, while the departure rate is determined by the newly exiting vehicles and meeting rate.251

Thus, similar to Eq. (7), the number of vacant ridesourcing vehicles at time t can be given by Eq. (12), and the number252

of occupied ridesourcing vehicles at time t can be given by Eq. (13).253

Nv
rs(t) = Nv

rs(t − 1) + Nen
rs (t) − Nex

rs (t) − Mrs(t − 1) + Grs(t) + Roc2(t − 1) (12)

No
rs(t) = No

rs(t − 1) + Mrs(t − 1) −Grs(t) − Roc2(t − 1) (13)

We assume that the ridesourcing vehicles being matched with customers or having picked up customers are occu-254

pied. Accordingly, Eq. (12) and Eq. (13) indicate that the order cancellation after matching enlarges the number of255

vacant vehicles and reduces the number of occupied vehicles. Similar to Eq. (6), Eq. (14) below indicates the flow256

conservation of ridesourcing vehicles whose order is not cancelled:257 ∫ te+d/v0

ts

Grs(u)du =

∫ te

ts

N pk
rs (u)du (14)

where N pk
rs is the number of orders that customers are successfully picked up by their reserved ridesourcing vehicles.258

3.3. Matching efficiency and waiting time for customers and vehicles259

The numbers of customers and vacant vehicles waiting to be matched formulated respectively in Subsection 3.1260

and Subsection 3.2 together will determine the matching rates, while the matching/meeting rates in turn affect the261

numbers of waiting participants at both ends of the matching pool in the form of departure rates for both taxi and262

ridesourcing services, which have been expressed in Eqs. (4), (5), (7) and (12). We now further formulate the dynamic263

matching process of customers and vehicles with the consideration of the time-dependent order cancellation behavior.264

Due to the physical distance barrier between vehicles and customers for both taxi and ridesourcing modes, there265

always exists searching friction between customers and vehicles. To measure this searching friction, the meeting266

function can be used to approximate the efficiency of matching customers and vehicles within a time interval. The267

meeting rate is a function of the numbers of customers and vacant vehicles waiting to be matched, which is widely268

used in studies on traditional taxi market or ridesourcing market (e.g., Yang & Yang, 2011; He & Shen, 2015). The269

meeting/matching rates for taxi and ridesourcing market at time t are both formulated to characterize the matching270

process of waiting customers and vacant vehicles, which can be given as271

Mrs(t) = Hrs(Nc
rs(t))

αrs (Nv
rs(t))

βrs (15)
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272

Mtx(t) = Htx(Nc
tx(t))αtx (Nv

tx(t))βtx (16)

where Hrs and Htx are positive meeting constants related to the size of meeting area and travel modes; αrs and βrs (αtx273

and βtx) respectively indicate the constant elasticities of meeting rate with respect to the numbers of customers and274

vacant vehicles waiting to be matched, with 0 < αrs ≤ 1 and 0 < βrs ≤ 1 (0 < αtx ≤ 1 and 0 < βtx ≤ 1). The meeting275

function (Eqs. (15)-(16)) of each mode is homogeneous of degree (αrs+βrs) or (αtx+βtx), which shows increasing,276

constant, decreasing returns to scale if the value of αrs+βrs is > 1,= 1, < 1 or αtx+βtx is > 1,= 1, < 1, respectively,277

for each mode. Since the matching efficiency of ridesourcing service based on smartphone app is expected to be more278

advantageous than that of cruising taxi service, the meeting rate of ridesourcing is greater than that of taxi when the279

number of waiting customers and the number of vacant vehicles in the matching pool are identical for the two modes,280

that is, Hrs(Nc(t))αrs (Nv(t))βrs > Htx(Nc(t))αtx (Nv(t))βtx where Hrs ≥ Htx, αrs ≥ αtx and βrs ≥ βtx with at least one281

inequality strictly holding. Besides, the meeting rate at time t increases with the numbers of customers and vacant282

vehicles waiting to be matched, i.e.,
∂Mrs(t)
∂Nc

rs(t)
> 0,

∂Mrs(t)
∂Nv

rs(t)
> 0,

∂Mtx(t)
∂Nc

tx(t)
> 0 and

∂Mtx(t)
∂Nv

tx(t)
> 0. The meeting rate283

of each mode at time t cannot exceed the numbers of customers and vehicles waiting to be matched at time t and284

thus we have Mrs(t) ≤ Nc
rs(t) and Mrs(t) ≤ Nv

rs(t) for customer-ridesourcing vehicle matching and Mtx(t) ≤ Nc
tx(t) and285

Mtx(t) ≤ Nv
tx(t) for customer-taxi matching.286

Based on the meeting rates at time t given by Eqs. (15)-(16) and the numbers of customers waiting to be matched287

given by Eqs. (4)-(5), the expected matching times of customers for ridesourcing vehicles and taxis can be expressed288

as Eqs. (17)-(18).289

wc
rs(t) =

Nc
rs(t)

Mrs(t)
= H−1

rs (Nc
rs(t))

1−αrs (Nv
rs(t))

−βrs (17)

290

wc
tx(t) =

Nc
tx(t)

Mtx(t)
= H−1

tx (Nc
tx(t))1−αtx (Nv

tx(t))−βtx (18)

In parallel to Eqs. (17)-(18), together with Eqs. (15)-(16) and the numbers of vacant vehicles waiting to be matched291

given by Eqs. (7) and (12), the expected matching times of ridesourcing vehicles and taxis for customers can be292

formulated as Eqs. (19)-(20).293

wv
rs(t) =

Nv
rs(t)

Mrs(t)
= H−1

rs (Nc
rs(t))

−αrs (Nv
rs(t))

1−βrs (19)

294

wv
tx(t) =

Nv
tx(t)

Mtx(t)
= H−1

tx (Nc
tx(t))−αtx (Nv

tx(t))1−βtx (20)

From Eqs. (17)-(20), one can identify the relationship between the matching time of customers/vehicles and the295

number of waiting customers/vehicles at both ends of the matching pool. The numbers of customers and vacant296

vehicles waiting to be matched have opposite effects on the expected matching times of customers and vehicles, i.e.,297

∂wc
rs(t)

∂Nc
rs(t)

> 0,
∂wc

rs(t)
∂Nv

rs(t)
< 0,

∂wv
rs(t)

∂Nc
rs(t)

< 0 and
∂wv

rs(t)
∂Nv

rs(t)
> 0 for ridesourcing service, and

∂wc
tx(t)

∂Nc
tx(t)

> 0,
∂wc

tx(t)
∂Nv

tx(t)
< 0,298

∂wv
tx(t)

∂Nc
tx(t)

< 0 and
∂wv

tx(t)
∂Nv

tx(t)
> 0 for taxi service.299

In addition to the matching time, ridesourcing drivers and customers have to experience pick-up time to cover the300

physical distance. The function of pick-up time follows that in Wang et al. (2020), i.e.,301

wpk
rs (t) = lrs

(
Nc

rs(t),N
v
rs(t)

)
/v0 (21)

where lrs indicates the average distance between drivers and customers and is assumed to be a function of Nc
rs(t)302

and Nv
rs(t). The average distance decreases with the numbers of customers and vehicles waiting to be matched, i.e.,303

∂lrs
(
Nc

rs(t),N
v
rs(t)

)
/Nc

rs(t) < 0, ∂lrs
(
Nc

rs(t),N
v
rs(t)

)
/∂Nv

rs(t) < 0. Combining the number of waiting customers and the304

number of vacant vehicles at time t in the previous subsections, we can substitute Eqs. (4), (5), (7) and (12) into305

Eqs. (15) and (16) to obtain the exact formulae of the matching functions incorporating the numbers of cancelled306

orders before and after matching as follows:307

Mrs(t) =Hrs(Nc
rs(t − 1) + Drs(t) − Mrs(t − 1) − Roc1(t − 1))αrs ·

(Nv
rs(t − 1) + Nen

rs (t) − Nex
rs (t) + Grs(t) − Mrs(t − 1) + Roc2(t − 1))βrs

(22)
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308

Mtx(t) =Htx(Nc
tx(t − 1) + Dtx(t) − Mtx(t − 1) + Roc1(t − 1) + Roc2(t − 1))αtx ·

(Nv
tx(t − 1) + Gtx(t) − Mtx(t − 1))βtx

(23)

3.4. Time-dependent order cancellation rate and cancelled orders309

After customers choose ridesourcing and request a ride, they either wait for being matched with a driver or wait310

for pick up if the order is already confirmed (i.e., matched with a driver). During the waiting, ridesourcing customers311

may encounter vacant taxis, and thus they may cancel orders and switch to taxi service. Whether customers cancel312

orders or not is affected by the costs to be incurred, as discussed in Wang et al. (2020).313

Order cancellation before and after matching (i.e., unconfirmed and confirmed orders) involves customers’ differ-314

ent considerations on penalty and remaining waiting time, which affects the customers’ order cancellation behavior,315

so the order cancellation rates before and after matching are formulated separately. For the order cancellation before316

matching, the total cost for orders placed at time ti and cancelled at time t is equal to the taxi fare, while the total317

cost of keeping orders includes the ridesourcing trip fare, remaining matching time cost and pick-up time cost. The318

time-dependent order cancellation rate before matching Pti
oc1(t) can be modelled as Eq. (24) below. For the order can-319

cellation after matching at time t and ridesourcing customers whose e-hailing orders are placed at time ti and matched320

at time t j, if they cancel orders at time t, the total remaining cost includes the taxi fare and penalty charged by the321

platform and if they continue their orders, the total remaining cost includes the ridesourcing trip fare and the pick-up322

time cost. For orders placed at time ti, matched at time t j and then cancelled at time t, the time-dependent order323

cancellation rate after matching Pti,t j

oc2(t) can be modelled as Eq. (25) below.324

Pti
oc1(t) =

1 − e
−

∆t
wc

tx(t)

 1

1 + exp
{
θ2

[
Ktx − Krs (ti) − γ

(
max(wc

rs(ti) − (t − ti), ηwc
rs(ti)) + wpk

rs (ti)
)]} (24)

325

Pti,t j

oc2(t) =

1 − e
−

∆t
wc

tx(t)

 1

1 + exp
{
θ2

[
Ktx + k̂rs(t) − Krs (ti) − γ

(
t j + wpk

rs (t j) − t
)]} (25)

The first term on the right hand side of Eq. (24) or Eq. (25) indicates the probability of meeting vacant taxis for rides-326

ourcing customers who are waiting for responses or their matched vehicles with the assumption that the customers’327

waiting time for taxi service follows an exponential distribution with the mean of wc
tx(t) (Du & Gong, 2016; Wang328

et al., 2020) during the time interval with a length of ∆t; the second terms on the right-hand side of Eqs. (24) and329

(25) are the Logit-based choices to decide whether to cancel the order or not, depending on the perceived costs to be330

incurred for different choices. Note that while waiting, we consider customers’ perceived remaining matching time is331

always no smaller than a proportion of the mean matching time, i.e., ηwc
rs(ti).332

Based on the time-dependent order cancellation rate, we can estimate the numbers of cancelled orders before and333

after matching at each time interval. Except for the customers who are matched or picked up with the corresponding334

vehicles, the remaining customers either continue to wait or cancel their orders and board taxis. It is assumed that335

the matching between the customers and the vehicles follows the first-come-first-served principle, that is, matches are336

performed according to the sequence in which customers place orders. Hence, the number of unmatched customers at337

time t who place orders at time ti, denoted by Nc,ti
rs (t), can be expressed as338

Nc,ti
rs (t) = max(Nc,ti

rs (t − 1) − M
′ti
rs (t − 1), 0)(1 − Pti

oc1(t − 1)) (26)

where M
′ti
rs (t) represents the pre-allocated matching amount at time t for orders placed at time ti, and M

′ti
rs (t) = Mrs(t)339

if ti = 1; Nc,ti
rs (t) = Drs(t) if ti = t. This equation indicates that Nc,ti

rs (t) is equal to the number of remaining unmatched340

customers after some have switched to taxi service in the previous time interval. The pre-allocated successful matching341

amount for orders with different order placing times can be recursively determined by342

M
′ti+1
rs (t) = M

′ti
rs (t) −min(Nc,ti

rs (t),M
′ti
rs (t)) (27)
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where Mti
rs(t) = min

(
Nc,ti

rs (t),M
′ti
rs (t)

)
indicates the actual matching amount at time t for orders placed at time ti. The343

above equation indicates that after the customers who place orders at time ti are matched, the remaining matching344

amount will be pre-allocated to the customers who place orders at time (ti + 1). If the customers placing orders at345

time ti are not fully matched with vehicles, i.e., Mti
rs(t) = M

′ti
rs (t), zero matching amount at time t will be allocated346

to customers placing orders after time ti. Combining Eqs. (24), (26) and (27), the total number of cancelled orders347

before matching for orders placed at different times no later than time t can be calculated by348

Roc1(t) =
∑
∀ti≤t

max(Nc,ti
rs (t) − M

′ti
rs (t), 0)Pti

oc1(t) (28)

Eq. (28) means that the number of cancelled orders before matching at time t is determined by the number of un-349

matched customers placing orders no later than time t and their corresponding time-dependent order cancellation rate350

before matching. After the matching is completed, the customers may experience being picked up, cancelling the351

order and switching to a taxi, or continuing to wait. Assuming that the customers matched at time t j can be picked up352

at time t, we have t ≤ t j + wpk
rs (t j) ≤ t + 1, and the total number of ridesourcing customers being successfully picked353

up at time t can be calculated as follows:354

N pk
rs (t) =

∑
∀ti≤t

∑
∀ti≤t j≤t

Ati,t j
rs (t), t ≤ t j + wpk

rs (t j) ≤ t + 1 (29)

where Ati,t j
rs (t) denotes the number of customers who place orders at time ti, are matched with vehicles at time t j and355

wait to board at time t. Since when vehicles are matched with customers, the platform can obtain the real-time location356

information of both and further obtain a reliable pick-up time, we assume that the vehicles can pick up customers357

according to that time for simplicity. If customers are not picked up at the current interval, we have t j +wpk
rs (t j) > t +1,358

and thus the total number of cancelled orders after matching can be calculated by359

Roc2(t) =
∑
∀ti≤t

∑
∀ti≤t j≤t

Ati,t j
rs (t)Pti,t j

oc2(t), t j + wpk
rs (t j) > t + 1 (30)

Similar to Eq. (28), the above equation indicates that the number of cancelled orders after matching at time t is360

determined by the number of customers not picked up yet from previous matched customers and the corresponding361

time-dependent order cancellation rate after matching. The number of customers who continue to wait to board their362

matched vehicles can be expressed by363

Ati,t j
rs (t) = Ati,t j

rs (t − 1)(1 − Pti,t j

oc2(t − 1)), t j + wpk
rs (t j) > t (31)

This equation describes the recurrence relationship regarding the number of customers who have not been picked up.364

If t j + wpk
rs (t j) < t, Ati,t j

rs (t) = 0. According to the order placing time and matching time, combining the time-dependent365

order cancellation rates in Eqs. (24)-(25), and following the first-come-first-served principle, the state variables such366

as the number of cancelled orders shown in Eqs. (26)-(31) can be obtained.367

The potential order cancellation and its impacts on user cost are perceived by customers when they make choices368

between ridesourcing and taxi. Assuming that customers will estimate the order cancellation rate based on available369

information before their own trips, the estimated order cancellation rate before matching Poc1 and estimated order370

cancellation rate after matching Poc2 for customers at time (t + 1) can be modeled as follows371

Poc1(t + 1) =
∑
∀ti≤t

max(Nc,ti
rs (t) − M

′ti
rs (t), 0)Pti

oc1(t)
Drs(ti)

(32)

372

Poc2(t + 1) =
∑
∀ti≤t

∑
∀t j≤t Ati,t j

rs (t)Pti,t j

oc2(t)

Drs(ti)
(33)

In Eqs. (32)-(33), we consider that the customers rely on the time-dependent cancellation rates of orders placed at373

different times in the past to predict the order cancellation rates for upcoming trips. The numerators of Eqs. (32)-(33)374

respectively represent the numbers of cancelled orders before and after matching at time t for orders placed at time ti.375
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Corresponding to the customers’ estimated order cancellation rate at time t, the time-dependent order cancellation376

rate can be utilized to obtain the cancellation rate of orders placed at time t, which can be expressed as Eqs. (34)-(35).377

378

Poc1(t) =

∑
∀t′i≥t max(Nc,t

rs (t′i ) − M
′t
rs(t
′
i ), 0)Pt

oc1(t′i )

Drs(t)
(34)

379

Poc2(t) =

∑
∀t′j≥t

∑
∀t′i≥t′j

A
t,t′j
rs (t′i )P

t,t′j
oc2(t′i )

Drs(t)
(35)

where Poc1(t) and Poc2(t) are respectively the total order cancellation rates before and after matching for customers380

who choose ridesourcing service at time t; t′i and t′j are the cancellation time and matched time, respectively, for381

orders placed at time t. Similar to Eqs. (32)-(33), the numerators of Eqs. (34)-(35) respectively represent the numbers382

of cancelled orders before and after matching at time t′i for orders placed at time t.383

3.5. Summary of matching process and order cancellation384

The dynamic matching process of taxis and ridesourcing service with the consideration of time-dependent order385

cancellation behavior are summarized in this subsection to facilitate reading, as shown in Fig. 1. The two large dashed386

boxes (above and below) represent the matching processes between drivers and customers of taxi and ridesourcing387

services, respectively. In the two dashed boxes, the numbers of customers and vehicles waiting to be matched at each388

time interval with dynamic matching are updated, where the cancelled orders before and after matching in the dashed389

box below are one of the sources of the number of waiting customers in the dashed box above (for the taxi market).

Fig. 1. Dynamic matching process and order cancellation in a coupled market with both taxi and ridesourcing services

390
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4. Pricing and penalty strategies of the ridesourcing platform391

In a coupled market with taxis and ridesourcing service, the platform’s pricing and penalty strategies will af-392

fect the customers’ mode choices, ridesourcing vehicle fleet size, rider-driver matching efficiency, ridesourcing order393

cancellation behavior and further the entire system. Therefore, we now further discuss the pricing and penalty strate-394

gies of the ridesourcing platform, subject to the dynamic matching process of customers and vehicles as well as the395

time-dependent order cancellation behavior. Generally speaking, dynamic pricing depends on the level of supply396

and demand in the system, while static pricing is in nature less capable of accommodating changes in supply and397

demand. For example, when demand changes, a fixed fare may cause loss of customers or a longer matching time,398

which will reduce system efficiency and platform profits. We examine and compare dynamic and static pricing in the399

time-dependent system we proposed. In addition, order cancellation, as a factor that affects matching efficiency in this400

time-dependent system, may also perform differently under dynamic pricing and static pricing. For this reason, three401

pricing strategies are examined: dynamic pricing with time-varying commission rate (TCR), dynamic pricing with402

fixed commission rate (FCR) and static pricing. The commission rate refers to the proportion of the money obtained403

by the platform to the fare charged on customers. Additional constraints are required for different pricing strategies,404

which will be introduced separately below.405

(i) Dynamic (TCR) pricing: This pricing strategy with time-varying commission rate does not require any addi-406

tional constraints, which indicates there is no constraint between fare and wage.407

(ii) Dynamic (FCR) pricing: The fixed commission rate requires that the ratios of the money obtained by the408

platform to the fare charged to customers are equal at all times, and this constraint is equivalent to the ratios of wage409

to fare being equal at all times, with any two different times t, t∗ in the study period, given by410

srs(t)
krs(t)

=
srs(t∗)
krs(t∗)

,∀t, t∗ ∈ [1,T ∗], t , t∗ (36)

(iii) Static pricing: This pricing strategy requires constant fare k∗rs, wages∗rs, penalty k̂∗rs and compensation ŝ∗rs411

during the study period, which can be given by412

krs(t) = k∗rs, srs(t) = s∗rs, k̂rs(t) = k̂∗rs, ŝrs(t) = ŝ∗rs,∀t ∈ [1,T ∗] (37)

Ridesourcing platform designs pricing strategies based on its objectives under given taxi services. In this section,413

we formulate the optimization of pricing and penalty strategies in order to maximize platform profit while considering414

time-dependent order cancellation. The total profit of ridesourcing platform is from the difference between collected415

fare and operating cost for completed trips and the difference between penalty and compensation for cancelled trips.416

The optimization problem for the maximum profit of ridesourcing platform can be modelled as417

max Z1 =
∑

∀t∈[1,T ∗]

{[
(ars + krs(t) max(d − m, 0) − q) − (brs + srs(t) max (d − m, 0))

]
N pk

rs (t)
}
+∑

∀t∈[1,T ∗]

[̂
krs(t) − ŝrs(t)

]
Roc2(t)

(38)

where q denotes the operating cost of ridesourcing platform. The first term on the right-hand side represents the profit418

from completed trips and the second term indicates the profit from cancelled trips. The above optimization problem is419

subject to the system conservation and dynamics defined in Section 3, i.e., the state variables defined by Eqs. (1)-(14)420

and (17)-(33) should be set as constraints of the optimization problem.421

Pricing and penalty strategies affect the choices of customers and drivers, customer-driver matching efficiency,422

time-dependent order cancellation and further the operation of the two-sided market. In addition, under dynamic423

pricing, over-frequently changing prices may affect the decision-making of customers and drivers and even annoy424

them, resulting in a poor user experience, which in turn affects users’ loyalty to the platform and affects platform425

profits in the long run (e.g., Dholakia, 2015; Chen et al., 2015). In order to alleviate the defects of over-frequently426

changing prices and be practical, we set additional constraints in Eqs. (39)-(42).427

krs(t) = krs(t′), t′ = d
t
n
e, t′ ∈ [1,T ∗/n] (39)
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428

srs(t) = srs(t′), t′ = d
t
n
e, t′ ∈ [1,T ∗/n] (40)

429

k̂rs(t) = krs(t′), t′ = d
t
n
e, t′ ∈ [1,T ∗/n] (41)

430

ŝrs(t) = krs(t′), t′ = d
t
n
e, t′ ∈ [1,T ∗/n] (42)

where symbol d e means rounding up to the nearest integer. Note that T ∗ is the total number of time steps in the431

modelled operation time horizon (the time step length reflects the time resolution in the model after discretization of432

the time horizon). We consider that for every n time steps, we keep the same pricing and penalty strategies, where the433

choice of n should avoid over-rapid changes. Thus, n consecutive time steps constitute one pricing decision step and434

t′ denotes the pricing decision step corresponding to t, as defined in Eqs. (39)-(42).435

We also consider that the price fluctuation between adjacent pricing decision step cannot be drastic (so is bounded).436

For example, suppose the fare that a customer observes while waiting for match is 1 A$/km, and when the customer is437

picked up in the next pricing decision step, the fare becomes 10 A$/km. In this context, customers may strategically438

wait for a better price in this situation, making the dynamic pricing strategy under-performing (Chen & Hu, 2020).439

For this reason, we impose restrictions on the fluctuations of price strategy as follows:440

σkrs ≤ krs(t′) − krs(t′ + 1) ≤ τkrs , t
′ ∈ [1,T ∗/n] (43)

441

σsrs ≤ srs(t′) − srs(t′ + 1) ≤ τsrs , t
′ ∈ [1,T ∗/n] (44)

442

σk̂rs
≤ k̂rs(t′) − k̂rs(t′ + 1) ≤ τ̂krs

, t′ ∈ [1,T ∗/n] (45)

443

σŝrs ≤ ŝrs(t′) − ŝrs(t′ + 1) ≤ τŝrs , t
′ ∈ [1,T ∗/n] (46)

where [σkrs , σsrs , σk̂rs
, σk̂rs

] and [τkrs , τsrs , τ̂krs
, τŝrs ] are the lower and upper bounds of fare, wage, penalty and compen-444

sation adjustment between adjacent pricing decision steps, respectively.445

Finally, even if the pricing strategy of ridesourcing platform is more flexible than that of taxi which is regulated446

by the government, the price of ridesourcing service is usually restricted within a certain range, and these constraints447

can be given by448

krs ≤ krs(t′) ≤ krs, t′ ∈ [1,T ∗/n] (47)

449

srs ≤ srs(t′) ≤ srs, t′ ∈ [1,T ∗/n] (48)

450

k̂rs ≤ k̂rs(t′) ≤ k̂rs, t′ ∈ [1,T ∗/n] (49)

451

ŝrs ≤ ŝrs(t′) ≤ ŝrs, t′ ∈ [1,T ∗/n] (50)

where [ krs, srs, k̂rs, ŝrs] and [krs, srs, k̂rs, ŝrs] are the lower bound and upper bound of pricing scheme (i.e., fare, wage,452

penalty and compensation) respectively.453

In summary, the optimization problem in Eq. (38) will be subject to the constraints in Eqs. (1)-(14), (17)-(33), and454

(39)-(50). We adopt the Genetic Algorithm (GA) to solve the optimization problem since designing algorithms to solve455

optimization problem is not the focus of this study. In particular, constraints Eqs. (39)-(42) are first used to determine456

the number of variables; constraints Eqs. (47)-(50) are set as the bounds of variables; constraints Eqs. (43)-(46) are457

transformed into linear inequality constraints; constraints Eqs. (1)-(14) and (17)-(33) are utilized to calculate the458

objective function Z1, and the optimization terminates when the pre-determined tolerance is reached (the convergence459

curves of the objective values of some scenarios in the numerical study are shown in the Appendix A for illustration).460
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Note that here we focus on the optimization of profit given that the ridesourcing company is often private and461

profit-driven. In the numerical studies, we will also explore the objective of maximizing the number of completed462

trips (i.e., more social welfare oriented that is dependent on number of passengers served), and the trade-off between463

the profit and number of completed trips (refer to Section 5.4).464

5. Numerical study465

We consider a city area served by both a ridesourcing company and a taxi company. Fig. 2 shows the high and466

low demand levels in this numerical study. The taxi company has a fixed fleet size Ntx=2.4×104, the taxi flag-fall467

fare is atx=5 A$ and taxi fare rate is ktx=4 A$/km. For ridesourcing service, the number of potential ridesourcing468

vehicles is Nrs=1.4×104, the ridesourcing service flag-fall fare is ars=5 A$ as well and the number of vacant vehicles469

initially in the market is Nv
rs=1.5×103. The unit cost for fuel is cg=0.5 A$/km, the fixed cost per trip is c0=10 A$ and470

the parking fee cp=0 (varying parking fees are considered in the sensitivity analysis). The pick-up time is assumed471

to be wpk
rs (t) =

(
2 × 105/Nc

rs(t)
)0.5 (

3 × 105/Nv
rs(t)

)
/1800, i.e., inversely proportional to the number of customers and472

vehicles waiting to be matched. The average speed is v0=28 km/h. The average trip distance is d=10 km and the473

distance within the flag-fall fare is m=2 km. The value of time is γ=0.5 A$/min. The time interval (for time horizon474

discretization) is ∆t=1 min. The pricing decision step is 10 min. Other parameters are assumed as follows: θ1=0.1,475

θ2=1 and η=0.2. The operating cost of platform company is q=0.05 A$/trip. In the meeting function of the two modes,476

we assume Hrs=Htx=1/300. Since the rider-vehicle matching of the app-based ridesourcing service is generally more477

efficient than the taxi service, we assume αrs=0.84, βrs=0.84, αtx=0.76, βtx=0.76, where both modes exhibit increasing478

returns to scale. Note that the aforementioned parameters should be carefully calibrated with real-world data in479

practice.480

Fig. 2. Demand distribution over time: high and low demand levels

5.1. Comparison of different pricing strategies481

We first examine dynamic TCR and FCR pricing and static pricing strategies in the coupled market of ridesourcing482

and taxi under ridesourcing order cancellation. We consider both high and low demand levels presented in Fig. 2. Note483

that we will further compare the case with trip order cancellation and the case with no order cancellation in Section 5.2484

in order to illustrate the impact of order cancellation.485

As shown in Fig. 3(a) and Fig. 3(d), the difference between the fare and the wage under high demand is greater486

than that under low demand. This relationship is consistent with that in static pricing (see Fig. 3(b) and Fig. 3(e)) and487

dynamic FCR pricing (see Fig. 3(c) and Fig. 3(f)), which suggests that the profit obtained by the platform for each488

completed order under high demand is larger. The fare for the ridesourcing service under high demand is generally489

higher than that of taxi (4 A$/km), while the fare under low demand is lower than the taxi fare. A higher ridesourcing490
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(a) Dynamic pricing (TCR) under high demand (b) Static pricing under high demand (c) Dynamic pricing (FCR) under high demand

(d) Dynamic pricing (TCR) under low demand (e) Static pricing under low demand (f) Dynamic pricing (FCR) under low demand

Fig. 3. Optimal prices under high and low demand levels in three pricing scenarios: (a, d)TCR; (b,e)Static; (c,f)FCR

(a) TCR (b) Static (c) FCR

Fig. 4. Number of ridesourcing customers waiting to be matched in three pricing scenarios: (a) TCR; (b) Static; and (c) FCR.

fare under high demand helps prevent too many customers from choosing the service, and reduce customers’ matching491

time with ridesourcing vehicles. Fig. 6(a)-(c) and Fig. 6(d)-(f), respectively, show the customers’ matching times492

with ridesourcing vehicles and taxis under high demand. The customers’ matching time with taxis is longer while493

ridesourcing service is more expensive. Differently, there are sufficient taxis in the market under the low demand. The494

ridesourcing service does not have the advantage of a shorter matching time, and the platform adopts a relatively low495

fare (lower than taxi fare) in order to attract more users and thus maximize its profit.496

We further have the following observations for the three different pricing strategies. Under high demand, the497

platform profits under dynamic TCR, dynamic FCR and static pricing are 1.02×106A$, 9.17×105A$ and 8.70×105A$,498

respectively. The profit under dynamic TCR pricing is 10.93% and 16.89% greater than that under dynamic FCR and499

static pricing. Under low demand, the platform profits under dynamic TCR, dynamic FCR and static pricing are500

4.51×105A$, 4.48×105A$ and 4.48×105A$. The profit under dynamic TCR pricing is 0.60% and 0.69% larger than501

that under dynamic FCR and static pricing. This means that under both high and low demand levels, the platform earns502
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(a) TCR (b) Static (c) FCR

Fig. 5. Ridesourcing vehicle fleet size in three scenarios: (a) TCR; (b) Static; and (c) FCR.

(a) With ridesourcing vehicle (TCR) (b) With ridesourcing vehicle (Static) (c) With ridesourcing vehicle (FCR)

(d) With taxi (TCR) (e) With taxi (Static) (f) With taxi (FCR)

Fig. 6. Customer’s matching time with ridesourcing vehicle and taxi in three scenarios: (a, d) TCR; (b, e) Static; and (c, f) FCR

a larger profit through dynamic TCR pricing when compared to dynamic FCR and static pricing, and this advantage503

is more significant under high demand.504

We now focus on the scenario with high demand as the efficiency gaps among the three different pricing strategies505

are larger and more observable (see Fig. 3). As can be seen from Fig. 3(a)-(c), when compared to dynamic FCR and506

static pricing, the fare of dynamic TCR pricing is more refined over time, which makes it more capable to accommo-507

date time-dependent demand conditions and segment customers with different purchasing power, and therefore yields508

a larger profit. In particular, the fare under dynamic TCR pricing is lower than the taxi fare in the beginning when509

demand is low, but higher at demand peak times (higher even compared to the other two pricing strategies). The wage510

under dynamic TCR pricing is higher in the first 30 minutes, corresponding to the larger fleet size compared to that511

under the other two pricing strategies at this stage, as shown in Fig. 5. However, the fleet size at demand peak times512

under dynamic TCR pricing is smaller than that under the other two pricing strategies because the higher fare at the513

peak times suppresses demand for the ridesourcing service, which is consistent with the number of waiting customers514
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shown in Fig. 4. In summary, when compared to static and dynamic FCR pricing, dynamic TCR pricing enables the515

ridesourcing platform to attract more customers to choose the ridesourcing service through lower fare when the initial516

demand is small, and yield a larger profit per completed trip through a higher fare when demand is high.517

5.2. Impacts of order cancellation518

(a) (b) (c)

(d) (e)

Fig. 7. System performance under benchmark case: (a) Dynamic pricing (TCR) under high demand; (b) Number of ridesourcing
customers waiting to be matched; (c) Ridesourcing vehicle fleet size; (d) Customer’s matching time with ridesourcing vehicle; and
(e) Customer’s matching time with taxi.

We now compare the case with order cancellation and the case with no order cancellation. To ease the presentation,519

we define the case with no order cancellation as the “benchmark case” (i.e., customers do not cancel orders once they520

send ride requests), and compare it to the case with order cancellation, i.e., “OC case”.521

For illustration we only summarize and compare the benchmark case and OC case under dynamic TCR pricing and522

high demand level, where Fig. 7 shows several efficiency metrics for the benchmark case. The number of ridesourcing523

customers waiting to be matched in the benchmark case is higher than that in the OC case (see Fig. 7(b) and Fig. 4(a)).524

In particular, in the OC case, the number of waiting customers is peaked at 2500 and the peak duration is very525

short (less than 5 minutes), while the peak in the benchmark case is about 3000 and lasts about 25 minutes (i.e.,526

50th-75th minute in Fig. 7(b)). It follows that the matching time of ridesourcing customers in the benchmark case527

is higher than that in the OC case. By comparing Fig. 7(d) and Fig. 6(a), we can see that in the benchmark case,528

the matching time for ridesourcing customers can be up to approximately 8 minutes and is more than 5 minutes529

for a duration over 40 minutes (i.e., 40th-80th minute in Fig. 7(d)), while in the OC case, the matching time of the530

ridesourcing customers is peaked at 5.5 minutes and the duration with a matching time longer than 5 minutes is very531

short. Correspondingly, the matching time of taxi customers is shorter in the benchmark case than in the OC case (see532

Fig. 7(e) and Fig. 6(d)). The above differences are due to the fact that in the benchmark case, ridesourcing customers533

do not cancel their orders, while in the OC case, ridesourcing customers may cancel their orders and take taxis while534

waiting for the service. In addition, platform profits are 1.08×106A$ and 1.02×106A$ in the benchmark case and OC535

case, respectively. The profit of the former is 6.25% larger than that of the latter, which is consistent with the intuition536

that the order cancellation leads to the loss of platform profit. At the same time, this is also reflected in the number of537
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completed ridesourcing trips and ridesourcing fleet size. Specifically, the number of completed ridesourcing trips in538

the benchmark case is 4.16×104, which is 15.56% larger than that in the OC case (3.60×104). The ridesourcing fleet539

size in the benchmark case is larger than that in the OC case (see Fig. 7(c) and Fig. 5(a)).540

In a short summary, when compared to the benchmark case, under the OC case, the matching time is shorter for541

ridesourcing customers and longer for taxi customers, and the optimal ridesourcing fleet size is smaller. Besides, order542

cancellation may hurt platform profit and the number of completed ridesourcing trips.543

5.3. Order cancellations before and after matching (unconfirmed and confirmed orders)544

We now study cancellations of unconfirmed and confirmed orders. Fig. 8 and Fig. 9 show the cancellation rates545

and the numbers of cancelled orders (before and after matching) over time. The order cancellations before and after546

matching exhibit different patterns during the study period, which is further explained below.547

We start with discussing the order cancellation before matching (cancellation of unconfirmed orders). The cancel-548

lation rate is larger at both ends of the study period and smaller in the middle under dynamic TCR and FCR pricing549

strategies. This is because customers have a greater chance of meeting vacant taxis at both ends of the study period550

but less during the peak period. The corresponding customers’ matching times with ridesourcing vehicles and taxis551

indeed reflect the likelihood of the customers to meet vacant taxis, as shown in Fig. 6(a), Fig. 6(c), Fig. 6(d) and552

Fig. 6(f). The order cancellation rate under static pricing is higher when compared to the other two pricing strategies,553

and it can be observed that even at peak times, there is no significant advantage of the customers’ matching time554

with ridesourcing vehicles (see Fig. 6(b)) when compared to the customers’ matching time with taxis (see Fig. 6(e)),555

because the number of ridesourcing customers waiting to be matched at peak times is larger under static pricing (about556

twice that under dynamic TCR and FCR pricing, one can refer to Fig. 4).557

(a) TCR (b) Static (c) FCR

Fig. 8. Cancellation rate in three scenarios: (a) TCR; (b) Static; and (c) FCR.

(a) TCR (b) Static (c) FCR

Fig. 9. Cancelled orders in three scenarios: (a) TCR; (b) Static; and (c) FCR.
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We further discuss the order cancellation after matching (cancellation of confirmed orders), where the cancellation558

rate and cancelled orders behave differently from those before matching. Fig. 8(a) and Fig. 9(a) show that the order559

cancellation under dynamic TCR pricing is considerably higher in the middle of study time period. The reason is that560

the ridesourcing fare is lower at either end of the period, and the penalty for cancelling orders is about 10 A$/trip561

(see Fig. 3(a)), where the cost of cancelling orders is relatively high (compared to the fare) and thus, reduces order562

cancellation; while the ridesourcing fare rate exceeds 5 A$/km during the period with relatively significant order563

cancellation (i.e., 30th-90th minute under dynamic TCR pricing), combining the average trip distance 10 km and564

the taxi fare rate 4 A$/km, the total fare for completing the trip by ridesourcing vehicle exceeds the taxi fare and565

penalty combined, which in turn increases order cancellation. Hence, the penalty enforced under lower fares is more566

effective in restricting cancellation of confirmed orders. Besides, customers are more likely to meet vacant taxis during567

off-peak hours, which may incentivize order cancellation behavior, and vice versa during peak periods. Specifically,568

under static pricing (see Fig. 8(b) and Fig. 9(b)) when the fare remains fixed, there are more order cancellations during569

periods with larger probabilities of taxi appearance and the order cancellation is higher at off-peak times than peak570

times. The order cancellation under dynamic FCR pricing is similar to that under dynamic TCR pricing in the middle571

of the study period, and it is similar to that under static pricing at both ends of the study period.572

In summary, the order cancellations before and after matching present different patterns, which are governed by the573

cost and the possibilities of the customers meeting vacant taxis. For order cancellation before matching, customers574

are more concerned about being matched to vehicles, especially during peak periods when the matching time is a575

dominating factor in order cancellation. For the order cancellation after matching, the cost of completing the trip576

dominates more the occurrence of order cancellation. In addition, the penalties imposed under lower fares are more577

effective in suppressing the order cancellation after matching than under higher fares.578

5.4. Alternative objective functions579

(a) Cumulative platform profit (b) Cumulative number of completed trips

Fig. 10. Cumulative platform profit and completed trips under different objectives

The previous analysis focused on the objective of profit maximization (for a private ridesourcing platform). A pub-580

lic operator may concern more the number of completed trips. Moreover, patterns of (unconfirmed and/or confirmed)581

order cancellations can be different under the maximization of profit and the maximization of number of completed582

trips. We now explore the number of completed trips as the objective (e.g., the platform is operated by public agency583

or subject to regulation) and examine the trade-off between the platform profit and the number of completed trips.584

For illustration we only discuss the results based on dynamic TCR pricing under high demand (if other scenarios are585

discussed, they will be specified).586

We start with discussing the objective of maximizing the number of completed trips, where the number of com-587

pleted trips can be formulated as Z2 =
∑
∀t∈[1,T ∗]

(
N pk

rs (t) + N pk
tx (t)

)
. Fig. 10 illustrates the cumulative platform profit588

and the cumulative number of completed trips over time under the two different objectives. The profit maximization589
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(a) Cumulative cancelled orders before matching (b) Cumulative cancelled orders after matching

Fig. 11. Cumulative cancelled orders before and after matching

(a) Pareto frontier (b) Number of completed taxi and ridesourcing trips

Fig. 12. Pareto frontier and corresponding performance

and the maximization of completed trips are in general conflicting with each other. As presented in Fig. 10(b), the590

completed trips under profit maximization is lower than that under the other objective. As shown in Fig. 10(a), the591

cumulative platform profit under the maximization of completed trips is much smaller than that under the other objec-592

tive, and the profit can be even negative, which suggests that the platform to maximize the number of completed trips593

is not financially sustainable without government subsidies.594

We also compare differences in terms of order cancellation under the two different objectives (maximization of595

profit and maximization of the number of completed trips). The cumulative cancelled orders before and after matching596

(i.e., unconfirmed and confirmed order cancellation) under the two different objectives are summarized in Fig. 11. It597

can be seen that the number of cancelled orders before matching is larger under the maximization of the number of598

completed trips than that under profit maximization. Differently, the number of cancelled orders after matching is599

smaller under the maximization of the number of completed trips. This is because, under the objective of maximizing600

the number of completed trips, the operator adopts lower fares to attract more customers and higher wages to attract601

drivers (which leads to a negative profit, see Fig. 10(a)), resulting in longer waiting time for customers and more602

cancelled orders before matching. After customers being matched, lower fares mean that overall it is less costly for603

customers to continue waiting and thus there are fewer cancelled orders after matching.604

We now further illustrate the trade-off between the two different objectives by examining the following weighted605
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objective:606

max Z̃ = λZ1 + (1 − λ)Z2 (51)

where Z1 represents the platform profit; Z2 indicates the number of completed trips. λ denotes the weight of platform607

profit (where λ ∈[0,1]). The above can be regarded as the case where the private platform has a certain agreement with608

the government. When λ increases, platform profit becomes more dominant in the agreement. If λ=1, Z̃ degenerates609

into Z1 (i.e., platform profit maximization), and if λ=0, Z̃ degenerates into Z2 (i.e., maximization of the number of610

completed trips).611

What follows here is an analysis of the Pareto-optimal result of the agreement between the platform and the gov-612

ernment. Fig. 12(a) shows the Pareto frontier in relation to the two objectives, i.e., maximization of the number of613

completed trips and maximization of platform profit, and the corresponding numbers of completed taxi and ridesourc-614

ing trips is shown in Fig. 12(b). The platform profit and the number of completed trips change in opposite directions615

when the weight λ changes (see Fig. 12(a)), and no one solution is better than another one (where both objectives can616

improve) on the Pareto frontier. This implies that improving (decreasing) the number of completed trips will sacrifice617

(increase) platform profit. As shown in Fig. 12(a), when there is no agreement between the platform and government,618

the corresponding profit is obtained at point (Z1
1 ,Z

0
2 ), where the superscript in the point (Z1

1 ,Z
0
2 ) represents the weight619

of each objective, and the platform profit and the number of completed trips reach the maximum and minimum value620

at this point, respectively. As shown in Fig. 12(a), when λ is close to 0, the platform profit loss to the increase of621

the number of completed trips is large, which is not cost-effective. We can find a solution on the Pareto frontier that622

observably increases the number of completed orders by slightly reducing profits, e.g., point (Z0.001
1 ,Z0.999

2 ), where the623

increase in the number of completed trips accounts for 87.86% of the increase in the number of completed trips from624

Z0
2 to Z1

2 , and the reduced profit only accounted for 9.26% of the profit reduction from Z1
1 to Z0

1 . Hence, we claim, un-625

der certain regulation/agreement, there is a solution on the Pareto frontier that yields both considerable platform profit626

and trip completion. Besides, as shown in Fig. 12(b), when λ decreases, the completed ridesourcing trips increase,627

while the completed taxi trips generally decrease, which implies that the increase in completed ridesourcing trips will628

result in a decrease of completed taxi trips. The profit of taxi company is positively correlated with the number of629

completed taxi trips, and therefore, in this experiment, increasing the number of completed ridesourcing trips on the630

Pareto frontier sacrifices both the profits of taxi company and ridesourcing platform.631

5.5. Sensitivity Analysis632

We now examine how varying the bounds of ridesourcing fare and cancellation penalty, and parking fee may affect633

several system efficiency metrics. In particular, we first vary the bound of ridesourcing fare or cancellation penalty634

and explore how the platform/taxi company profits and the numbers of completed ridesourcing/taxi trips may vary.635

Second, we vary the parking fee and examine how the platform profit and the number of completed ridesourcing trips636

vary against the parking fee.637

(a) Platform profit (b) Number of completed trips (c) Average profit per completed trip

Fig. 13. Optimization with different ridesourcing fare upper bound

We now examine relaxing the ridesourcing fare bound (can be regarded as the government’s deregulation of638

ridesourcing fare), while the (cancellation) penalty remains capped at 10 A$/trip. In particular, Fig. 13 displays the639
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(a) Platform profit (b) Number of completed trips (c) Average profit per completed trip

Fig. 14. Optimization with different ridesourcing penalty upper bound

changes in terms of the platform profit and taxi company’s profit (see Fig. 13(a)), the number of completed trips (see640

Fig. 13(b)), and the changes in the average platform profit per completed trip (see Fig. 13(c)) after the deregulation of641

the ridesourcing fare. When optimizing the ridesourcing platform profit, relaxing the fare bound/cap within a certain642

range will allow the platform to be more profitable, while further relaxing the fare bound/cap after the critical value643

does not further improve the profitability. As shown in Fig. 13(a), when the upper bound of the fare increases from644

4 A$/km to over 7 A$/km, the platform profit increases by 43% and then remains constant, as indicated by the blue645

dotted line (triangle marker), while the number of completed ridesourcing trips decreases by about 19%, as shown646

by the blue dotted line (triangle marker) in Fig. 13(b). Furthermore, the average profit per completed trip increases647

from 16 A$/trip to 28 A$/trip by nearly 12 A$/trip (see Fig. 13(c)), suggesting that a larger profit per trip at a higher648

fare yields a larger platform profit, which is consistent with the discussions in Section 5.1. When the platform profit649

increases (after relaxing the fare bound), the profit of the taxi company and the number of completed taxi trips also650

increase by about 6% under the same conditions (see Fig. 13(a) and Fig. 13(b)). This is because when the upper651

bound of ridesourcing fare increases, ridesourcing service becomes more expensive, where more travelers shift to taxi652

and the number of completed taxi trips and the taxi company’s profit both increase. The total number of completed653

trips is reduced by about 1.5%, which implies that appropriate fare regulation in place can help (slightly) increase the654

number of completed trips even if it will reduce platform profit and taxi company’s profit. These are consistent with655

the discussions on the bi-objective Pareto Frontier in Section 5.4.656

Similar to the relaxation of the ridesourcing fare bound, the relaxation of the penalty bound is also examined while657

keeping the fare bound/cap at 10 A$/km (see Fig. 14). A larger penalty bound allows the platform to yield a larger658

profit as there is more flexibility in setting the penalty. Specifically, when compared to the scenario with no penalty as659

shown in Fig. 14(a), relaxing the penalty upper bound to above 15 A$/trip will contribute about 27% increase in the660

total platform profit, while the number of completed ridesourcing trips decreases by about 17% (see Fig. 14(b)), and661

the average profit per completed trip can rise from around 18 A$/trip to 29 A$/trip (see Fig. 14(c)). Under the same662

conditions, the taxi company’s profit and the completed taxi trips increase by about 7%, while the total completed663

trips decreases by about 0.8%. Moreover, the platform profit and the number of completed ridesourcing trips at a fare664

of around 4 A$/km in Fig. 13 are close to those under no penalty in Fig. 14. This is because when there is no penalty,665

the corresponding optimal fare is around 4 A$/km (similar to the taxi fare), while if a higher fare is designed and no666

penalty is imposed, the order cancellation after matching will increase, which results in a lower platform profit. The667

penalty is an indispensable element for the successful implementation of the ridesourcing platform’s pricing strategy668

to avoid over-cancellation and thus maximize its profit (by setting a relatively high fare).669

We also vary the parking fee cp and examine its effects. In the analysis below, the parking fee increases from zero670

to 14 A$/hour (if cruising cost is considered, it can be converted to a monetary equivalent). Given the parking cost671

variation, we consider two scenarios for ridesourcing pricing scheme, i.e., (i) we fix the ridesourcing pricing scheme672

which is the optimal when the parking fee cp is zero (corresponding to “base price” in Fig. 15); (ii) we optimize the673

ridesourcing pricing scheme in response to the parking cost variation (corresponding to “optimal price” in Fig. 15).674

A higher parking fee means a higher cost to the driver while waiting for matching, and therefore when the platform’s675

pricing scheme remains unchanged, the ridesourcing fleet size decreases, and the number of completed ridesourcing676
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(a) Platform profit (b) Number of completed ridesourcing trips

Fig. 15. Platform profit and completed ridesourcing trips against the parking fee

trips also decreases. As presented in Fig. 15(b), the number of completed ridesourcing trips decreases with the parking677

fee under base price and the corresponding platform profit has a same trend when parking fee varies (see Fig. 15(a)).678

A similar trend of platform profit is observed even if the platform pricing is optimized in response to the parking cost679

variation in Fig. 15(a), which suggests that lower parking fees allow the platform to be more profitable. However,680

as shown in Fig. 15(b), the number of completed ridesourcing trips is not monotonous under the optimal pricing.681

This is because the optimal price is obtained by optimizing the platform profit, which involves the trade-off between682

the completed ridesourcing trips and the profit per trip like as discussed earlier. Moreover, it is noted that given the683

parking cost variation, allowing the platform pricing scheme to be optimized can yield both a larger profit and a larger684

number of completed ridesourcing trips.685

In summary, the government’s deregulation of the upper bound on the ridesourcing fare and penalty allows the686

platform profit to be increased (as there is more pricing flexibility), and indirectly improves the taxis utilization and687

increases the taxi company’s profit, while it may reduce the number of completed trips. Setting higher fares under high688

demand to pursue a greater platform profit will be more effective with the help of penalty (to avoid over-cancellation).689

In addition, a smaller parking cost (due to vehicles’ waiting for matching) allows the platform to achieve a higher690

profit while it does not necessarily yield more completed trips.691

6. Conclusions692

This paper studies a market that provides mobility services by ridesourcing vehicles and taxis while taking into693

account the time-dependent order cancellation behavior of customers. We propose models for the order cancellations694

before and after matching to characterize the time-dependent order cancellation behavior of ridesourcing customers,695

and incorporate the number of cancelled orders into the numbers of customers and vacant vehicles waiting to be696

matched for both the ridesourcing and taxi services. The proposed dynamic matching model captures the variation697

of exogenous factors as well as the influence of endogenous order cancellation on the matching efficiency. Based698

on the proposed dynamic matching model, we explore ways for designing different pricing strategies. Three pricing699

strategies are proposed and compared, i.e., dynamic TCR pricing, dynamic FCR pricing, and static pricing. Then we700

conducted numerical experiments to understand the impact of order cancellation and examine the system performance701

in different scenarios. We highlight the main findings below:702

• For the ridesourcing platform, there is a trade-off between the number of completed trips and the profit per703

completed trip. In particular, the platform achieves the maximum profit through a larger profit per trip under704

high demand, while under low demand the platform profit is more dependent on completing more trips. When705

compared to the other two pricing strategies, dynamic TCR pricing can achieve better market segmentation and706

help the platform yield a larger profit.707

24



• This paper also explores the difference in order cancellations before and after matching (i.e., cancellations of708

unconfirmed and confirmed orders), discusses the main factors that dominate occurrence of order cancellations709

at different stages. It is also observed that penalty is more effective in controlling the order cancellation after710

matching (cancellation of confirmed orders) when ridesourcing fare is lower.711

• When the platform is operated by a public agency (government authority) who aims to maximize the number of712

completed ridesourcing trips, the platform may receive a negative profit. If the objectives of the platform profit713

and the number of completed ridesourcing trips are considered at the same time, a Pareto-efficient solution can714

be found where we have considerable platform profit and trip completion.715

• The government’s deregulation of ridesourcing fare and penalty can increase the platform profit within a certain716

range, and indirectly improve the taxi utilization as well as the taxi company’s profit. In addition, doing so will717

increase the accessibility of ridesourcing, and decrease the accessibility of taxi in terms of customers’ matching718

times.719

Although the proposed model characterizes the coupled market with ridesourcing and taxi considering time-720

dependent order cancellation, some features are also ignored in the model and are worth exploring in the future.721

Firstly, this paper only considers ridesourcing and taxi for simplicity (and no other mode). This allows us to722

focus on the complex time-dependent interaction between the two modes that exhibit certain similarities. Besides,723

we assume that the ridesourcing vehicles take e-hailing customers, and taxis take street-hailing customers. However,724

nowadays taxis can also provide e-hailing service through smartphone-based platform (e.g., He & Shen, 2015; Wang725

et al., 2016), which may increase the e-hailing fleet size and reduce the waiting time of e-hailing customers, thereby726

attracting more customers to choose e-hailing through the platform. On the other hand, vacant taxis can take either727

e-hailing customers or street-hailing customers, which will increase the chance of taxis finding customers (especially728

when customer demand is low) and may bring taxis directly increase in utilization and profit. At the same time, it is of729

our interest to consider the order cancellation of taxi drivers who accept e-hailing orders during the pick-up process,730

in which they may meet street-hailing customers. It is also noteworthy that expanding the coupled market of taxi731

and ridesourcing modes considered in this paper to multi-modal or even multi-platform complex systems, in which732

customers may no longer choose ridesourcing or taxi after cancelling their orders, but cancel trips or switch to public733

transportation can be further studied in the future.734

Secondly, this study assumes that the ridesourcing vehicles park when waiting for matching and numerically735

investigates the effects of different parking fees/costs. In reality, it may be difficult to find a parking space, so the736

vacant ridesourcing vehicle will cruise until finding a parking space or being matched with a customer, as discussed737

in Xu et al. (2017). A future study may incorporate the cruising-for-parking process of ridesourcing vehicle into the738

model proposed in this paper. In addition, in this paper we assume that the parking fee is constant, while in practice739

the parking fees may vary over time and space (e.g., Zheng & Geroliminis, 2016; Liu & Geroliminis, 2017). The740

time-and-space-dependent parking fees should be further incorporated when the proposed model is extended to the741

network level in future studies.742

Thirdly, this paper assumes that the trip distance and the vehicle speed are fixed, while endogenous traffic con-743

gestion is ignored. The model in this paper can be further extended to include heterogeneous customers and traffic744

congestion (e.g., Lamotte & Geroliminis, 2018; Beojone & Geroliminis, 2021). Besides, the proposed model only745

considers a single region, while supply and demand not only change in time, but also in space. Therefore, it is of our746

interest to extend the proposed model to multiple regions in order to capture the characteristics of order cancellation747

behavior in different regions and design corresponding spatial-temporal pricing strategies. Moreover, we may con-748

sider order cancellation from not only the customer side, but also from the supply side (e.g., driver’s order cancellation749

due to the long deadhead time for picking up customers).750
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Appendix A. Illustration for the convergence of GA755

(a) Dynamic TCR pricing (b) Static pricing

Fig. 16. The convergence of GA for dynamic TCR and static pricing under high and low demand levels

We used the genetic algorithm (GA) in this paper to solve the pricing problems (which are highly nonlinear756

problems). We now illustrate the convergence of the GA. In particular, we examined four scenarios, i.e., dynamic757

and static pricing under high and low demand levels, corresponding to those in Fig. 3(a)-(b) and Fig. 3(d)-(e) in758

Section 5.1. Fig. 16 shows how the objective value converges for the above four scenarios. It is noted that the759

objective values converged faster under static pricing when compared to the dynamic TCR pricing, which is due to760

that a smaller number of variables are involved under static pricing.761
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