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Abstract 

In-situ fabricated piezopolymer coating-based transducers have been developed to build 

large-area, lightweight and flexible networks for wave-based structural health monitoring 

(SHM). Meanwhile, their tunability can be realized by array electrodes for mode control 

with proper tuning methods. However, conventional standard tuning by phase matching 

seems not always effective. In this study, the excitation and acquisition mechanism of 

Piezopolymer Coating-based Array Transducers (PCATs) were first studied for Lamb waves. 

Distinctly different coupling mechanisms of PCAT actuators and sensors were discussed by 

analytical models and experimental verification, respectively. Then comprehensive 

parameter studies were performed to understand the filtering effect with finite temporal pulse 

duration of PCAT actuators, and finite spatial electrode span of PCAT actuators and sensors. 

Corresponding bias tuning methods were proposed with analytical solutions to improve 

mode control in Lamb-wave excitation and acquisition. This new guideline of designing 

array electrodes for PCAT actuators and sensors has been proven effective by successfully 

tuning the poor mode-controlled wavefield originated by the standard tuning method. Such 

tunability has great potential to be applied for detecting various damages in Lamb wave-

based SHM, where sensitivity, accuracy, and signal interpretation can be improved with 

good control of particular frequency-mode selections. 

 

 

Keywords: piezopolymer coatings; Lamb wave; excitation and acquisition mechanism; 

structural health monitoring; mode control
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1. Introduction 

Lamb wave is a powerful tool to interrogate thin-walled engineering structures for structural 

health monitoring (SHM) with advantages as long-distance propagation, high sensitivity to 

damages, less attenuation, convenience to generate and detect, etc. However, the multi-mode 

and dispersive nature of Lamb waves make the signal complex for analysis. Moreover, 

different SHM applications usually favor particular frequency-mode selections, which 

would be more sensitive than others when interacting with certain types of damages. One 

typical family is single-mode excitation and acquisition, e.g. symmetric modes for through-

thickness crack, antisymmetric modes for in-plane delamination [1]. Another family is 

different mode-to-mode selections for excitation and acquisition respectively, e.g. 

synchronous pair of modes for nonlinear measurement [2, 3], mode conversion under 

thickness variation [4] or scattered by damages[5]. Others include high-order modes cluster 

for high spatial and temporal resolution characteristics [6]. Thus, mode control is important 

to damage identification through achieving interpretable signals with strong desired modes 

and suppressed others.  

 

To utilize the tunability of transducers for mode control in Lamb-wave excitation and 

acquisition, their fundamental coupling mechanism with attached structures is the priority to 

understand. The conventional Lamb-wave transducers can be categorized into displacement 

and strain types, and mostly share the same coupling mechanism in excitation and 

acquisition. Bulky ultrasonic transducers and laser vibrometers [7] for non-destructive 

evaluation are usually displacement-type transducers, due to their weakly coupling through 

agent like gel, water, or air which cannot effectively transfer shear traction. Displacement-

type transducers excite Lamb waves through surface “tapping” structures (normal pressure 

over contact area) and capture Lamb waves by their normal displacement. The mode either 
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excited or detected can be controlled by Snell's law via angled wedges [8] or by 

constructive/destructive interference via time delay of phased array [9, 10]. Surface-mounted 

in-situ transducers for SHM, such as lead zirconate titanate wafers (PZTs) [11, 12] and 

macro-fiber composites (MFCs) [13], are generally treated as strain-type transducers, due to 

their firmly coupling through adhesive bonding and traction-free up-surface. They excite 

Lamb waves through surface “pinching” structures (shear stress at the edge of actuators 

under the ideal bonding condition) and sense Lamb waves by their in-plane strain. Giurgiutiu 

[14] has done comprehensive work on the coupling mechanism of PZTs and mode tuning by 

their dimensions and bonding quality through theoretical and experimental studies. The pin-

force model was proposed as an effective assumption for generating Lamb waves by PZTs. 

For detecting Lamb waves, researchers tended to consider the same coupling model and 

tuning methods according to basic reciprocity principles. However, some work [15-17] 

indicated that the pin-force model and tuning behaviors for PZT actuators were not suitable 

for PZT sensors, while the response of PZTs to Lamb waves was actually governed by spatial 

averaging of the wavefield over the sensor-covered area. In SHM, it is always a challenge to 

control modes through the dimensions of a single PZT. Thus, different techniques have been 

developed for improving mode tunability. For example, a pair of surface-bonded PZTs on 

opposite sides were operated in-phase or out-of-phase for exciting and detecting either 

symmetric mode or antisymmetric mode [18]. Multiple PZTs were arrayed in either comb or 

inter-digital shape and mode control could be achieved by phase matching through changing 

pitch or adjusting time delay [19-21]. MFCs can be treated as arrayed rectangular PZTs with 

fixed pitch and control modes by time delay or tunable electrodes layout [13]. However, the 

fragility and limited life cycle of piezoceramic-based transducers like PZTs make them 

vulnerable to failure in industrial applications. Moreover, mode control via array transducers 

has a series of drawbacks that are detrimental to their practicability. Most concerns are 
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related to the finite thickness and the high stiffness of transducers, which may change the 

local waveguide and cause trouble for effective mode control [20]. The passing wavefield 

would be altered with dense-arrayed transducers [22]. Such disruption could complicate the 

acquired signals and confuse the damage-changed features. Furthermore, phased array 

technology by time delay requires complex electronics. Thus, the development of novel 

types of in-situ transducers may improve the performance of SHM on real structures with 

better flexibility and tunability. Those existing knowledge of conventional transducers could 

provide a good basis for investigating analytical models and design principles of novel 

transducers.  

Flexible piezopolymer-based transducers are not brittle and can be applied on curved 

structures [23]. Polyvinylidene fluoride (PVDF) is the most widely investigated 

piezopolymer for SHM applications [24-27]. Conventional PVDF transducers are fabricated 

in the form of standalone thin films or membranes. Several functionalization procedures 

including phase transformation and polarization are required before being installed on 

structures by adhesive bonding. The electrodes can be easily printed on PVDF with 

customized shapes which makes it a perfect substrate to build array transducers with less 

worry about the influence of stiffness and thickness. Nevertheless, good mode control cannot 

be achieved without understanding the coupling mechanism. In some reported work, PVDF 

transducers were treated as strain coupling as PZTs due to the similar surface-mounted way 

by adhesive bonding on the structures [19, 28, 29]. Thus they share similar analytical models 

in exciting and detecting lamb waves and also similar tuning behaviors. On the other hand, 

there is also plenty of work that considered displacement coupling with PVDF transducers 

[30, 31]. The basic argument is that PVDF transducers are weakly coupled with metal 

structures due to low impedance and stiffness. To the best of the authors’ knowledge, there 
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still lacks solid experimental verifications to solve such divergence. 

 

With the development of intelligent manufacturing technology, 3D printing, or additive 

manufacturing, has been utilized for highly automated and rapid-prototyping fabrication of 

piezopolymer-based transducers [32-34]. In the authors’ previous work [22], piezopolymer 

coatings were in-situ sprayed and functionalized directly on host structures. With proper 

printed electrodes and circuits, Piezopolymer Coating-based Array Transducers (PCATs) can 

be formed on a large scale and at high density with minimal weight/volume penalty to the 

host structure. The adhesive-free feature can further improve practicability by replacing 

conventional human installation. Despite the differences in manufacturing, PCATs work 

similarly to PVDF since both belong to piezopolymer-based transducers, and also lack an 

understanding of the coupling mechanism. Therefore, only basic constructive interference 

or phase matching was considered when designing electrode arrays for guided-wave 

excitation and acquisition. Matching the element pitch with the wavelength and element 

length with half the wavelength of the desired mode-frequency wave (standard tuning 

method) could achieve poor single-mode controlling in some cases [22]. Moreover, in many 

reported works, researchers applied the same standard tuning method for both Lamb-wave 

excitation and acquisition with piezopolymer-based transducers, either PVDF or PCAT, 

lacking further discussion on the possible nonconformity of coupling mechanisms and tuning 

methods of actuators and sensors.  

 

To further exploit the capability of PCATs in Lamb wave-based SHM, in this study, the 

coupling mechanisms between PCATs and host structure for Lamb-wave excitation and 

acquisition are firstly investigated by analytical and experimental analysis. For Lamb-wave 

excitation, the excitability and source distribution are discussed by their influence on the 
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excited wavefield. Parameter studies considering the effects of the finite duration of the 

exciting pulse and finite dimensions of actuators are performed to discuss tunability. For 

Lamb-wave acquisition, the spatial averaging effect and wavenumber filtering of finite-

dimension sensors are discussed in response to arbitrary and PCAT-excited wavefield. The 

acquisition mechanism of sensors is found to be distinctly different from the excitation 

mechanism of actuators by PCAT and so is the tuning behavior. Corresponding bias tuning 

methods have been proposed for mode control in Lamb-wave excitation and acquisition. 

This study provides an insight into the working mechanism and tunability of PCATs, which 

have shown a great potential for SHM applications. Meanwhile, these results could become 

a useful design tool for diverse damage identification with PCAT-based networks. 

2. Lamb-wave Excitation by PCAT Actuators 

The theory of Lamb wave should be recalled first. The free plate problem for isotropic 

materials with a thickness of 2d can be derived as the dispersion equation: 

 

 

1

2

2
2 2

tan 4

tan

qd k pq

pd q k



 
  
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, (1) 

where 

 

2 2
2 2 2 2
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,
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p k q k
C C

 
    .  

The exponent +1 is for symmetric and -1 for antisymmetric modes. ω is the circular 

frequency and frequency f equals ω/2π. CL and CS are the longitudinal and shear wave 

velocities, respectively. k is the eigenvalue which can be solved numerically as 
0 1 2
, , ...S S S    

and 
0 1 2
, , ...A A A    , corresponding to wavenumbers of the symmetric modes and 

antisymmetric modes. The wavelength λ equals 2π/k. For a given ω and derived k, the wave 

structures of displacement and stress across the thickness can be calculated (see Equation 
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A.1 in Appendix). The phase velocity Cp equals ω/k and the group velocity Cg equals dω/dk. 

2.1. Analytical model 

The analytical model is firstly established by decoupling the PCAT actuator and the attached 

waveguide (Figure 1). PCATs as described in authors’ previous work [22] have at least two 

layers. The piezopolymer coatings are the function layer between the top and bottom 

electrode layers. If the structure is intrinsically conductive like metals, it can be used as the 

bottom layer directly. The excitation voltage V(t) is applied between the top and bottom 

layers and introduces electric fields on the function layer. Since the excitation mechanism is 

yet to be determined, both normal pressure P(x) of displacement coupling and shear stress 

T(x) of strain coupling are considered to be the excitation loads transferred on waveguide 

from PCAT actuators, with  00,x x , where x0 is the range of covered electrode layer. 

 

Figure 1. Analytical model of PCAT actuator on a metal waveguide. 

PCAT has unique characteristics which are different from PZT and MFC: 

a. The stiffness of PCAT is much lower than of the aluminum plate as host structure in 

this study; 

b. The thickness of PCAT is ~20 μm, which is insignificant compared to the thickness 

of the host structure (2 mm in this study); 

c. There is no adhesive layer between the piezopolymer coating layer and host 

structure; 
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d. PCAT has less interference in wave propagation than PZT [22]. 

Therefore, several assumptions are made to simplify the analytical model: 

1. The strain is uniform along the thickness of PCAT; 

2. The interaction between PCAT and host structure is considered as the ideal bonding 

condition, under which the pin-force model at the edge of actuators could be used 

for shear stress excitation; 

3. Only the electrode-covered area of the function layer contributes to the excitation 

force; 

4. PCAT is a non-resonant device, i.e., the piezoelectric response not varying by 

frequency; 

5. PCAT on host structure would not change the local waveguide and the passing 

wavefield;  

6. The width of PCAT is infinite to ensure plane strain condition (∂/∂y=0) with straight-

crested waves. 

2.1.1 Excitability 

To derive the excited wavefield by arbitrary loads, Multiple Integral Transform Method 

(MIT) and Normal Mode Expansion Method (NME) can be used as documented by 

textbooks [14, 35]. Since only surface-mounted actuators and sensors are discussed in this 

study, the wavefields (strain, stress, displacement) hereafter in this work refer to only surface 

components, i.e. under the condition of z=d, if not specified. Using MIT, the excited 

wavefield in the wavenumber-frequency (k-ω) domain can be described as  

 

     

       

, , ,
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, , , ,u
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where 
T

xx zz    ε   and 
T

x zu u   u  are the excited strain and displacement 
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wavefields respectively. 
T

P T 
 

F   is the load function of excitation force. The bold 

letter indicates that the term is a vector or matrix. Operators - and ~ denote Fourier time and 

spatial transforms, respectively. N represents the excitability function of surface wavefields 

in the k-ω domain, which comprises four components related to different strain or 

displacement components under normal pressure and shear stress excitation due to the 

orthogonality (see also Equation A.2 in Appendix): 

    , , ,xx xx x x

zz zz z z

P T P T

u u

uP T P T

u u

N N N N
k k

N N N N

 



 

 
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    
      

N N .  

 

The surface wavefield in the space-time domain can be obtained by applying the inverse 

two-dimensional Fourier transform. Using the residue calculus, the wavefield can be 

decomposed into individual mode waves: 

        1
, , ,

2

n

n
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n nx t e d
 
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
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
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 ε H F . (3) 

Here, the mode excitability H is derived from N and can be expressed as (see also Equation 

A.3 in Appendix) 
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H .  

NME can also be used to solve the excited wavefield as 

      
*| |1

, ,
2 4

n
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where Pnn is the power flow of mode n in x direction: 

  *1

2

d

nn n n

d

P xdz





  v σ .  

The superscript * denotes a complex conjugate. , ,n n z n xv v   v  is the particle velocity of 
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mode n in z direction, and 
, ,

T

n n x n zu u   u   is the wave structure of the mode n in z 

direction. The calculation of Pnn requires the stress tensor σ from Equation A.1. It should be 

noted that Equation 3 and Equation 4 are mathematically equivalent. NME presents the 

excitability function as the direction coupling between wave structure and loads which can 

help better understand the influence of the coupling mechanism on different mode 

excitability. On the other hand, MIT can present the excited wavefield in the k-ω domain 

where the influence of source distribution of excitation loads can be easily treated as k and 

ω filters on excitability function, which will be explained in the next section. The strain 

wavefield is given as an example in Equation 3 and Equation 4, and the displacement 

wavefield can be obtained similarly from Equation 2.  

2.1.2 Source distribution 

The excitability function is determined by the coupling mechanism. The other term required 

to calculate the wavefield is the load function F. F can be separated into two independent 

functions of distribution in space and time domains, respectively.  

 
     

   

,

( , )

x t x g t

k k g 





F h

F h
, 

0 00 ,0x x t t    . (5) 

Time distribution g is related to applied voltage V, which is usually a Hanning-windowed 

sinusoidal toneburst. Thus g can be expressed as  

       0
0 0 01 cos / sin ( ( ) ( 2 / ))

2
C C

V
g t t N t t t N         , (6) 

where 0   is the center circular frequency, CN   is the cycle number of sinusoids, and γ 

represents the Heaviside step function. Then the Fourier transform can be obtained as (see 

also Equation A.4 in Appendix) 

    1 2 3 0
4

i
g V      . (7) 
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Space distribution h is controlled by the tomography of printed electrodes. To simplify the 

problem, comb array electrodes of PCAT are discussed as illustrated in Figure 2. The 

excitation force can be determined by solving the actuator–plate coupled dynamic model. 

Due to the ignorable bonding layer, the shear stress T can be modelled as pin forces at the 

edge of each electrode element. T0 is the unit stress per excitation voltage and is directly 

proportional to the piezoelectric constant d31 of PCAT (
0 31T d  ). Normal pressure P is 

modelled as even-distributed pressure within the electrode-covered range. P0 is the unit 

pressure per excitation voltage and is directly proportional to the piezoelectric constant d33 

of PCAT (
0 33P d ). The piezopolymer coatings are polarized in the thickness direction. Thus 

     
T

P Tx h x h x   h  can be expressed as 

Shear-stress model: 

       0

1

1 1
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Normal-pressure model: 
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where 
a

eL  is the element length, 
a

pL  is the element pitch, 1,2,... a

Fm M , 
a

FM  is the number 

of elements or comb fingers, and δ represents the Dirac Delta pulse function. Then, the 

Fourier transform can be obtained accordingly as 
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and 
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(a)                                                                         (b) 

Figure 2. Source distribution models of comb array electrodes: (a) shear-stress model under strain-

coupling assumption; (b) normal-pressure model under displacement-coupling assumption. 

2.1.3 Discussion of excitation mechanism 

By substituting Equation 10 and Equation 11 into Equation 5 and Equation 2, the excited 

wavefield in the k-ω domain can be obtained. The parameters as 
0  , 

CN   determine the 

tunability in the ω domain, and 
a

eL  , 
a

pL  , 
a

FM   are responsible for the tunability in the k 

domain. Thus, the  g    and  h k   in the load function can be treated as independent 

frequency and wavenumber filters applied to the excitability function. By applying the 

inverse two-dimensional Fourier transform as in Equation 3, the wavefield can be rewritten 

as 
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where  
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.  

 1 / 2a a a a

center e F px L M L   
 

 is the center location of the electrode-covered range which 

can be used to calculate the wave propagation distance as the actuator origin. By extracting 

the magnitude terms (P0, T0, V0) from the load function, the dimensionless frequency and 

wavenumber filters or tuning functions of excitation for PCAT actuators can be obtained as 

a

kf   and 
af  . The flowchart is illustrated in Figure 3, where it can be observed that the 

excitation mechanism will influence the excitability function in the k-ω domain and the 

tuning function of excitation in the k domain.  

 
Figure 3. Flowchart of the analytical derivation of excited wavefield by PCAT actuators. 

To determine the excitation mechanism of PCAT, the difference in excited wavefields 
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between strain-coupling (shear-stress) and displacement-coupling (normal-pressure) models 

needs to be discussed. The wavefield is firstly specified to be the out-of-plane displacement 

uz, which can be easily measured by a commercial Laser vibrometer in experiments without 

worrying about the averaging effect from transducer sizes. The host waveguide is chosen to 

be an aluminum plate with a thickness of 2 mm. The corresponding mode excitability is then 

calculated and plotted in Figure 4a and Figure 4b. For both strain-coupling and 

displacement-coupling models, the excitability of A0 mode shares a similar trend over 

frequencies. Out-of-plane displacement decreases rapidly from an asymptotically large value 

at low frequencies, and reaches a relatively stable value over the remaining frequency range. 

For the excitability of S0 mode, however, distinct trends can be observed. For the strain-

coupling model, the excitability of out-of-plane displacement is a flat curve over frequencies 

except around a rejecting point. For displacement-coupling model, out-of-plane 

displacement increases rapidly from an asymptotically small value at low frequencies to a 

plateau after reaching the peak value. The rejecting frequency for the strain-coupling model 

is about 1095 kHz, at which the wave structure of S0 has a zero in-plane surface displacement 

(Figure 4c). According to Equation 4, the in-plane shear stress as the excitation force is 

decoupled with the wave structure on the surface at this frequency. Thus, it leads to the 

rejecting point on the excitability curve and the highly suppressed out-of-plane displacement 

wavefield. 

   
(a)                                                                         (b) 
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(c)                                                                         (d) 

Figure 4. Relative mode excitability of out-of-plane displacement at various frequencies of (a) shear-

stress model under strain-coupling assumption and (b) normal-pressure model under displacement-

coupling assumption; (c) wave structures of in-plane displacement for S0 at selected frequencies 

normalized by the maximum value; (d) phase velocity dispersion curves of the host aluminum plate. 

According to the distinct behavior of S0 mode excitability function on out-of-plane 

displacement wavefield, three frequencies (f1, f2, and f3 in Figure 4) are selected to excite S0 

wave, from 300 kHz, 640 kHz, to the rejecting frequency of strain-coupling model at 1095 

kHz. Their wavenumbers and wavelengths can be obtained from numerical results of the 

dispersion curves as in Figure 4d. Parameters of load function are set by standard tuning, 

i.e., 
0

/ 2a

e SL    and 
0

a

p SL   . The number of comb fingers 
a

FM   is set to be four. The 

excitation signals of f1 and f2 are 5-cycle Hanning-windowed tonebursts. The cycle number 

of sinusoids 
CN  is increased to 10 for f3 to compensate for the expansion of the bandwidth 

with increasing frequency. With these settings of parameters, the load function will have the 

peak value at the three selected frequencies of the S0 mode. Thus, the difference in excited 

wavefields by different coupling mechanisms would be mainly attributed to the different 

mode excitability. The analytical results are shown in Figure 6 with experimental results. 

Although not the focus of this study, there are also many other rejecting points of other 

modes in Figure 4a and Figure 4b, which are caused by either the decoupling between 

excitation forces and wave structures on the surface, or zero out-of-plane displacements of 

the wave structure itself.  
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2.2. Experimental verification 

2.2.1 Setups 

The experimental setups were illustrated in Figure 5. The piezopolymer coatings were in-

situ sprayed and functionalized on an aluminate plate of 350×350×2 mm following authors’ 

previous work [22]. Three sets of comb array electrodes in x direction were printed on the 

coating layer with standard tuning by wavelengths of the three selected frequencies (λ1, λ2, 

and λ3), respectively. The widths in y direction were uniform to be 60 mm to ensure plane 

wave propagation along x direction, corresponding to the plane strain assumption in 

analytical model. The inset in Figure 5 is the calibration results of the piezoelectric constant 

d33 at their excitation frequencies by a dynamic measurement method, which verifies the 

non-resonance assumption in analytical models and is consistent with frequency sweep 

results in authors’ previous work [22]. A signal generator and amplifier were used to apply 

high-voltage signals on thus-made PCAT actuators with a monitoring unit to calibrate the 

exact excitation voltage (~220 Vpp). A commercial laser vibrometer (Polytec PSV-400) was 

used to measure the out-of-plane displacement at 200 mm from the left edge of PCAT 

actuators with the help of retro-reflective tape. Damping clay was utilized to simulate low-

reflecting boundary conditions around the plate for reducing interference in acquired signals 

from edge-reflected waves. 

 

Figure 5. Experimental setups of PCAT actuators on an aluminum plate. 
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2.2.2 Results 

As shown in Figure 6, the analytical results are consistent with the discussion in Section 

2.1.3. The amplitude of the S0 wave for the shear-stress model shows a dramatic decrease at 

f3, while that for the normal-pressure model shows a steady increase from f1, f2 to f3. The 

value is calculated by the envelope of S0 wave packets and listed in Table 1. The waveform 

of S0 at f3 is distorted and split in the shear-stress model due to the rejection behavior. The 

obtained wave packets are formed by contribution from frequency components in the 

frequency bandwidth other than the rejecting point. The amplitude of the A0 wave shares a 

similar trend in both analytical models as decreasing with frequencies. At f1 and f2, only two 

fundamental modes (S0 and A0) exist. At f3, a high-order antisymmetric mode A1 emerges, 

and S0 wave arrives later than A0 and A1 waves, which is consistent with the calculated 

dispersion curves of group velocity (Figure 7a). 

 

In experimental results, it is clear that the damping clay was successfully performed as low-

reflecting boundaries, although not able to completely eliminate edge reflections. At f1 and 

f2, S0 and A0 wave packets can be clearly identified and separated due to the discrepancy in 

their wave velocities. At f3, the overlap of waveforms can be observed due to the less 

discrepant wave velocities, which makes it difficult to identify A0 and A1 waves in a single-

point measurement. To verify the existence of A0 and A1, two-dimensional Fourier transform 

was performed with a line scan over a 55 mm distance at a 0.5 mm step in an additional 

experiment. For convenience, the experimental results in the k-ω domain are plotted in the 

f-1/λ domain in Figure 7b, with the theoretical dispersion curves. The filtering effect by the 

tuning functions of wavenumber and frequency can be observed, which will be discussed in 

detail in the next section. The strongest energy distribution on the S0 curve can be clearly 

observed around f3, with weaker energy distribution on the A1 curve and the weakest energy 
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distribution on the A0 curve. These results are consistent with theoretical results and verify 

the simultaneous existence of S0, A0, and A1 modes.  

 

The amplitude of S0 wave packets varying with frequencies in experimental results is 

calculated by the envelope and calibrated by piezoelectric constant d33 and excitation voltage 

in Table 1. It exhibits a steady increase and conforms more to the predicted trend by the 

normal-pressure model than by the shear-stress model. Therefore, it is reasonable to 

conclude that the excitation mechanism of PCAT actuators is mainly displacement coupling. 

However, the exact waveform is not the same between experimental results and the 

analytical normal-pressure model (e.g. relative mode amplitude S0/A0 in signals). The actual 

response may be a combination of strong displacement coupling and weak strain coupling, 

but it is difficult to determine the proportion due to many reasons. The pin-force and 

distributed-pressure excitation in analytical models represent highly idealized conditions. 

Although the experimental conditions were set to approach the assumptions in analytical 

models, spray and adhesion quality, property consistency, dimension error of electrodes, 

non-uniform source distribution on the coating layer, electrical/mechanical impedance and 

resonance, laser measurement error, and many other complex multi-physical phenomena 

possibly exist. The different excitation mechanism of PCATs from other surface-mounted 

actuators like PZTs and MFCs is probably mainly due to their low elastic modulus which is 

incomparable to the metal substrate. Therefore, their piezoelectric-induced strain cannot be 

effectively transferred as shear stress even by the strong lateral coupling.  

 

It should be noted that, although the comb arrays are tuned by 
0S , A0 wave still exists, and 

is even stronger than S0 wave in the out-of-plane displacement at f1. This is because of the 

joint effect of the mode excitability and source distribution of finite temporal pulse duration 
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and finite spatial electrode span. Thus, it is necessary to investigate a more comprehensive 

tuning method for mode control than the conventional standard tuning method which may 

not always be effective. 

 

Figure 6. Excited wavefields of out-of-plane displacement by experiment, analytical shear-stress 

model (Analytical-T), and analytical normal-pressure model (Analytical-P) at three frequencies. 

Table 1 

Normalized amplitude of S0 wave packets. 

Group f1: 300 kHz f2: 640 kHz f3: 1095 kHz 

Experiment 1 1.167 1.439 

Experiment (calibrated) 1 1.244 1.449 

Analytical-T 1 1.024 0.250 

Analytical-P 1 1.332 2.086 

   
(a) (b) 

Figure 7. (a) Group velocity dispersion curves of the host plate; (b) experimental results of f3 in k-f 

domain by two-dimensional Fourier transform.  

2.3. Excitation tuning for mode control  
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2.3.1 Analytical solution 

Since the excitation mechanism has been verified as mainly displacement coupling by 

analytical and experimental analysis, the normal-pressure model would be used for the 

discussion of excitation tuning for PCAT actuators henceforward. The most interested 

wavefields are surface in-plane strain εxx and out-of-plane displacement uz, due to either 

strain-type or displacement-type measurement devices. The mode excitability 
xx

PH   and 

z

P

uH  can be displayed as spectra on the dispersion curves (Figure 8a and Figure 8b) which 

indicate the strength of excited wave modes determined by the intrinsic coupling mechanism 

of PCAT actuators. According to Equation 12, the tuning functions of excitation ,

a

k Pf  and 

af  act as wavenumber and frequency filters on the excited wave modes in the k-f domain, 

which are determined by the source distribution of excitation force in space and time 

domains. They can be transformed as spectra in Cp-f domain, where intersected with 

dispersion curves. Figure 9 is an example of the excitation tuning functions with parameter 

settings at f2 (
0 640kHz    and 5CN    of af  ; 2 / 2 4.05mma

eL    , 2 8.1mma

pL    

and 4a

FM   of ,

a

k Pf ). 

   
(a)                                                                         (b) 

Figure 8. Mode excitability spectra of (a) in-plane strain and (b) out-of-plane displacement. 
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(a)                                                                         (b) 

Figure 9. The filtering spectra of tuning functions of excitation with parameter settings at f2 

intersected with dispersion curves in (a) k-f domain and (b) Cp-f domain. 

The superposition of Figure 8b and Figure 9 yields the excited wavefield of the analytical 

model at f2 in Figure 6. It can be seen that the standard tuning method has a good mode 

control for S0 at this frequency, which is also observed in the experimental results. However, 

for f1 case, both the analytical and experimental results indicate poor mode control for S0. 

From Figure 8b and Figure 4b, it can be seen that the mode excitability of S0 is weakened 

when frequency decreases from f2 to f1, while the mode excitability of A0 is strengthened. 

Such behavior of the mode excitability compromises the filtering effect by tuning functions 

of excitation and is unaltered due to the intrinsic excitation mechanism of PCAT. Thus, a 

more sophisticated tuning method needs to be further investigated to achieve better mode 

control, with the help of analytical solutions to tuning functions of excitation. The tuning 

functions of excitation for obtaining predominant S0 wave at f1 is discussed for example in 

the following. 

 

Firstly, the tuning function of frequency af   is discussed. For a certain 0   with the 

increasing CN , the peak value of af  at 0  will increase, while the width of the main lobe 

04 / CN  will decrease and the spread of frequency spectrum of the toneburst will be reduced. 

CN  is increased from 5, 7 to 10, and other settings are maintained for analytical analysis. 

Figure 10 is the analytical wavefield of out-of-plane displacement. The amplitude of S0 
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increases while the waveform of A0 is distorted. Apparent elongation can be seen for both S0 

and A0 waveforms which could result in an increasing degree of overlap of wave packets. 

 
Figure 10. Analytical excitation of out-of-plane displacement wavefields at f1 with increasing NC. 

The tuning function of wavenumber ,

a

k Pf  is then investigated. There are three parameters 

a

eL , 
a

pL  and 
a

FM  distributed within two terms of ,

a

k Pf . The first term    sin / 2 / / 2s

n e nL   

has peak value when 
2 1

,
2 n

a a a

e e p

n
L L L


   . The second term 

   sin / 2 / sin / 2a a a

F n p n pM L L   has peak values as 
a

FM  when 
n

a

pL n  . Here n is an integer. 

With the standard tuning method when n=1 for both 
a

eL  and 
a

pL , the value of ,

a

k Pf  has its 

maximum on the frequency-mode selections, but the distributions of ,

a

k Pf   on the other 

modes are also important to achieve mode control.  

 

The element length 
a

eL   in the first term of ,

a

k Pf   is independent of the 
a

pL   and 
a

FM   in the 

second term. Thus 
a

eL   is first discussed with 1

a

pL    and 4a

FM   . Tuning functions 

  
0 1

, S ,

a

k P f
f   and 

  
0 1

, A ,

a

k P f
f   with varying 

a

eL  are plotted in Figure 11, where  0 1S , f
  and 
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 0 1A , f
  represent the wavenumber of S0 and A0 at f1, respectively. Tuning functions appear to 

be periodic variations with 
a

eL  . As expected, 
  

0 1
, S ,

a

k P f
f    achieve its maximum when 

1 / 2a

eL    and minimum when 1

a

eL   . Meanwhile, 
  

0 1
, A ,

a

k P f
f    has a near-peak value 

when 1 / 2a

eL  . The multiplication of this value and the high excitability of A0 at f1 as in 

Figure 8b leads to the strong A0 wave packets. On the other hand, even 
  

0 1
, S ,

a

k P f
f   is set 

to reach peak value by the standard tuning method, the low excitability of S0 at f1 is not 

sufficient to make it prevail over A0 mode. The 
  

0 1
, A ,

a

k P f
f   curve has two rejecting points 

around 
1 / 2  , which is  0 1A , f

   and  0 1A ,
2

f
  . It can be expected that the high mode 

excitability of A0 could be neutralized by the zero value of 
  

0 1
, A ,

a

k P f
f    at these points, 

although the value of 
  

0 1
, S ,

a

k P f
f    is biased from the peak value. Then 

a

eL   is biased to 

 0 1A , f
   for analytical analysis due to a relatively slight reduction of 

  
0 1

, S ,

a

k P f
f    value. 

Figure 12 is the analytical wavefield of out-of-plane displacement. When 5CN   , the 

amplitude of A0 wave has been successfully reduced by half, although still stronger than S0 

wave. Theoretically, the amplitude of A0 at f1 should be zero, while the remaining A0 wave 

packets are mainly components of the frequency bandwidth around f1. CN  is again increased 

to 7 and 10. The amplitude of the S0 wave is increased as in Figure 10 by standard tuning 

while the suppression of A0 becomes more effective. When CN  is increased to 10, S0 wave 

prevails over A0 wave. However, an increasing degree of overlap can be observed due to the 

elongation of the excitation signal. Thus, from the analysis of the theoretical model, bias 

tuning of 
a

eL  to match A0 wavelength can achieve better mode control than standard tuning. 

Moreover, increasing CN  has a better effect of suppressing A0 wave with bias tuning of 
a

eL  
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than merely distortion with standard tuning.  

 
Figure 11. Tuning functions of (S0, f1) and (A0, f1) with varying element length. 

 
Figure 12. Analytical excitation of out-of-plane displacement wavefields at f1 with increasing NC 

by bias tuning of element length. 

Next, the element pitch 
a

pL   and number of elements 
a

FM   is discussed with  0 1A ,

a

e f
L   . 

Variation of tuning function curves with 
a

pL   is more complicated than periodic variation 

with 
a

eL , comprising of main lobes with high peak value and side lobes with low peak value. 

The peak value of ,

a

k Pf  increases linearly with 
a

FM . The rejecting points of zero value and 

bandwidth of lobes are determined by 
a

FM  . Figure 13 is the ,

a

k Pf   curves when 
a

FM  =4, 

where two rejecting points around 1  can be found, which is  0 1A ,
2.5

f
  and  0 1A ,

2.75
f

 . To 
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achieve better mode control, 
a

pL  is biased to these two values and the analytical wavefields 

of out-of-plane displacement are plotted in Figure 14. The 
CN  is also increased from 5 to 7 

and 10. The amplitude of the S0 wave is increased with increasing 
CN  as expected and the 

suppression of A0 is further improved. Interestingly, the performance of  0 1A ,
2.5a

p f
L   is 

better than of  0 1A ,
2.75a

p f
L   , especially when 

CN   is 7 and 10. The reason is that 

 0 1A ,
2.75

f
  is closer to the main lobe of 

  
0 1

, A ,

a

k P f
f   as shown in Figure 13. Components 

of the other frequencies within bandwidth around f1 would benefit from the high value of the 

main lobe and contribute to A0 wave packets, which compromise the suppression of A0 wave 

at f1. Thus, although 
  

0 1
, S ,

a

k P f
f   has a higher value at  0 1A ,

2.75
f

  than  0 1A ,
2.5

f
 , the proper 

value of bias tuning of 
a

pL  is  0 1A ,
2.5

f
  in this case. 

 
Figure 13. Tuning functions of (S0, f1) and (A0, f1) with varying element pitch. 
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Figure 14. Analytical excitation of out-of-plane displacement wavefields at f1 with increasing Nc by 

bias tuning of element pitch. 

Similarly, for other 
a

FM , the bias tuning of 
a

pL  can be found by plotting ,

a

k Pf  against 
a

pL . 

Analytical excited results are plotted in Figure 15 with 
a

FM  increased from 1, 2, 3, 4, 6 to 

8 and corresponding bias tuning of 
a

pL  . 
CN   is fixed to be 7. The corresponding excited 

wavefields by standard tuning are shown in Figure 16 for comparison. The consequent wave 

amplitudes are measured in Figure 17. When 1a

FM   for a single element, there is no bias 

tuning of 
a

pL  and the second term of tuning function is equal to 1. With increasing 
a

FM , the 

wave amplitude of S0 increases as expected. For excited waveforms by bias tuning, the 

amplitude of S0 is only slightly reduced compared to the standard tuning case, while the 

amplitude of A0 is highly suppressed. When 
a

FM   is larger than 4, the S0 wave becomes 

stronger than A0 wave. Similar to CN , an increasing degree of overlap can be observed with 

increasing 
a

FM  due to the elongation of excitation signals. Based on the analytical results, 

the number of elements 
a

FM   is selected to be 4 for the following experimental studies, 

considering the effect of mode control and overlap of wave packets. The amplitude ratio of 

S0/A0 has been significantly improved from the original 0.24 by standard tuning to 1.15 by 
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bias tuning. 

 
Figure 15. Analytical excitation of out-of-plane displacement wavefield at f1 with increasing 

number of elements and bias tuning of element length and pitch. 

 
Figure 16. Analytical excitation of out-of-plane displacement wavefields at f1 with increasing 

number of elements and standard tuning of element length and pitch. 
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Figure 17. Normalized amplitudes of S0 and A0 wave with increasing number of elements of 

standard tuning and bias tuning.  

2.3.2 Experimental verification 

Experiments were conducted to verify the mode control by the bias tuning excitation method 

discussed above. Similar experimental setups of f1 were applied as in Section 2.2. Element 

length and pitch were selected to be  0 1A , f
  and  0 1A ,

2.5
f

  based on the analytical solutions. 

Number of elements was set to be 4. The cycle number of sinusoids in the Hanning-

windowed excitation toneburst was firstly set to be 5, and increased to 7 and 10, conforming 

to analytical discussions. The measured out-of-plane displacements are shown in Figure 18. 

The experimental results show that the bias tuning excitation method is proven to achieve 

better mode control by effectively suppressing the undesired A0 wave, compared with the 

original waveform in Figure 6 by standard tuning. The amplitude of S0 wave is only slightly 

decreased for 5CN    due to the bias of tuning functions from the peak value of S0. 

Increasing CN  improves the mode control and also enhances the S0 wave which is consistent 

with the predicted results of the theoretical model in Figure 14. When 7CN  , S0 wave 

appears predominant and the amplitude ratio of S0/A0 has been improved from 0.75 of 

standard tuning to 1.47 of bias tuning, although the suppression of A0 wave is not further 

enhanced when Nc=10. The possible reason could be the error of printed electrode 

dimensions. It should be mentioned that the best solution for bias tuning excitation could 
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vary with different frequencies and modes. Nevertheless, the analytical discussion here is a 

fine example that can be followed for other cases. 

 

In summary, for PCAT actuators, the mode waveforms in Lamb-wave excitation are 

controlled by filtering effects of excitation tuning functions in frequency and wavenumber 

domains. Suppression of a certain mode can be achieved by finding the rejecting points of 

element length and pitch, although a side effect is the diminishment of the main mode due 

to bias tuning. Prolonging the excitation pulse duration and increasing number of elements 

could enhance the main mode and improve the suppression of other modes by narrowing the 

bandwidths in frequency and wavenumber domains respectively, although the consequent 

overlap of wave packets needs to be concerned. 

 
Figure 18. Excitation of out-of-plane displacement wavefields by experimental measurement at f1 

with increasing Nc by bias tuning of element length and pitch. 

3. Lamb-wave Acquisition by PCAT Sensors 

3.1. Analytical model 

Next, Lamb-wave acquisition is investigated by PCAT sensors. Since PCAT is of thin 

thickness and low stiffness, the sensors would not alter the incident wave and experience the 
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same wavefield as the host structure. Thus, the essential behavior of sensors can be treated 

as the averaging of wavefields passing through the spatial electrode span of the sensor-

covered area [15-17]. As shown in Figure 19, the comb array electrode pattern of sensors 

(with element length 
s

eL , pitch 
s

pL , and number 
s

FM ) is discussed as in the analytical model 

of actuators. Both types of coupling mechanisms are considered to develop the analytical 

model of acquisition. Under plane strain assumption, the response voltage can be expressed 

as 

 

 

 

/2

1 /2

1

,

1 , 1,2,...

s s
s m eF

s s
m e

e

m

x LM

m x L

s s

F

s s s

p F

D U x t dx

V
M L

x x m L m M



 

 
 
 
 

   

 
, (13) 

where x1 is the center of the first comb element. U is the incident wavefield and D is the 

transfer coefficient that can be solved by piezoelectric equations. The term 1/
e

s s

FM L  

represents the spatial averaging effect over the PCAT electrode-covered area, which also 

holds for conventional Lamb wave sensors. When the sensor-covered area tends to zero, e.g. 

using a laser vibrometer, the sensor response tends to a quantity proportional to the local 

strain. When the sensor-covered area increases, the general trend is a monotonic decrease in 

the output voltage, as a result of averaging the strain wavefield over the sensor-covered area. 

For strain coupling, the waveform response is in-plane strain and D is directly proportional 

to the piezoelectric constant 
31g   of PCAT (

31SD g  ). For displacement coupling, the 

waveform response is out-of-plane displacement and D is directly proportional to the 

piezoelectric constant 33g  of PCAT (
33DD g ). 
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Figure 19. Analytical model of PCAT sensor on a metal waveguide. 

3.1.1. Arbitrary wavefield 

Arbitrary wavefield can be transformed with MIT as 

      
2

1
, ,

4

i kx t
U x t U k e dkd


 



 


 

   . (14) 

According to the orthogonality of Lamb wave modes or residue calculus, the wavefield is 

the superposition of mode components as  

      1
, ,

2

n

n

i x t

nU x t U e d
 



  







   . (15) 

Substituting Equation 15 into Equation 13: 

    
 

,
2

s
n center

n

i x ts

n k n

D
V U f e d

 



   







   , (16) 

where 

  
   

 

sin / 2 sin / 2

/ 2 sin / 2

e

e

s s s

n F n ps

k n s s s
n F n p

L M L
f

L M L

 


 
 .  

 0 1 / 2s s s

center F px x M L    is the center location of the electrode-covered range which can 

be used to calculate the wave propagation distance as the sensor origin. The influence of the 

spatial distribution of comb arrays can be treated as a k filter on the incident wavefield. The 

dimensionless filter or tuning function of acquisition for PCAT sensors can be represented 

as 
s

kf . It should be noted that different from Lamb-wave excitation, there is no frequency 

filter in Lamb-wave acquisition and the tuning function is the same for both strain and 
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displacement models.  

3.1.2. PCAT-excited wavefield 

It is generally difficult to obtain the actual wavefield in Equation 16 by experiments. In this 

study, PCAT actuators have been proven to be displacement-type with analytical results of 

excited wavefields in Equation 12. Substituting into Equation 13, the waveform response 

can be obtained when PCATs are used for actuators and sensors in SHM, like networks. Take 

the strain-coupling model for example: 

        
  0 0

,,
2

s a
n center center

xx

n

i x x tP a a s

n k P n k n

DPV
V H f f f e d

 

 


     



 



   . (17) 

The response of the displacement-coupling model can be obtained similarly by substituting 

PCAT-excited wavefields of out-of-plane displacement. According to Figure 4c, the surface 

in-plane strain of S0 is nearly zero at f3. Thus the corresponding S0 mode excitability has a 

rejecting point of in-plane strain as shown in Figure 8a, which is quite different from the 

excitability of normal displacement in Figure 8b. To determine the acquisition mechanism 

of PCAT sensors, the waveform response of PCAT sensors to PCAT-excited wavefield is 

calculated, at f1, f2, and f3. The standard tuning method is used with the same electrode 

patterns for both actuators and sensors. The other settings are the same as in Section 2. The 

analytical results are shown in Figure 21 with experimental results. 

3.2. Experimental verification 

3.2.1 Setups 

The experimental setups of actuators were the same as in Section 2.2.1. For sensors, the 

width in y direction were uniform to be 20 mm to ensure plane wave acquisition. The element 

length and pitch were the same as actuators. The response of sensors were amplified before 
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transmitting to an oscilloscope (Figure 20). 

 

Figure 20. Experimental setups of PCAT sensors on an aluminum plate (the dimensions of PCAT 

are exaggerated for clear illustration). 

3.2.2 Results 

For the displacement-coupling model, the S0 wave response of PCAT sensors increases from 

f1, f2, to f3, but the values are lower than the original excited out-of-plane displacement 

captured by a single point in Figure 6. This is due to the spatial averaging effect of the tuning 

function, which will be discussed in detail in the next section. Another influence of the tuning 

function is the suppression of undesired other modes. With the wavenumber filter of 

acquisition, mode control has been improved, and A0/A1 waves are almost eliminated in 

response of out-of-plane displacement at f2 and f3. However, at f1, A0 wave is still stronger 

than S0 wave, and overlap can be observed which has not happened in the original PCAT-

excited wavefield. This is due to the covered range of PCAT sensors with multiple fingers, 

which will be discussed in detail in the next section. For the strain-coupling model, the 

response of S0 is almost the same at f1 and f2, but is highly neutralized by the zero value of 

the rejecting point at f3 as expected.  

 

In experimental results, the amplitude of A0 wave packets is decreased with increasing 
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frequency. At f3, a weak and long waveform is detected, which is the overlap of A0, A1, and 

S0. The experimental response of PCAT sensors to PCAT-excited wavefields is in accordance 

with the trend of the strain-coupling model. Thus it is reasonable to conclude that the 

acquisition mechanism of PCAT sensors is mainly strain type, which is different from the 

verified displacement type of PCAT actuators. 

 
Figure 21. Acquisition of PCAT-excited wavefields by experiment, analytical displacement-coupling 

model (Analytical-D), and analytical strain-coupling model (Analytical-S) at three frequencies. 

3.3. Acquisition tuning for mode control 

3.3.1 Analytical solution 

Since the acquisition mechanism has been verified as mainly strain coupling by analytical 

and experimental analysis, the in-plane strain response would be used for the discussion of 

acquisition tuning for PCAT sensors henceforward. To investigate the tunability of PCAT 

sensors, the PCAT-excited wavefield at f1 by the standard tuning excitation method with 

poor mode control is used as the original wavefield. The standard tuning acquisition method 

refers to using the same configuration of actuators to design sensors. The parameter study of 

the tuning function of acquisition 
s

kf   is similar to the wavenumber tuning function of 

excitation ,

a

k Pf , due to their similar form. There are also three parameters 
s

eL , 
s

pL , and 
s

FM  
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distributed within two terms of
s

kf  . The element length 
s

eL   in the first term 

   sin / 2 / / 2s s

n e n eL L    is independent of the 
s

pL   and 
s

FM   in the second term 

   sin / 2 / sin / 2s s s s

F n p F n pM L M L   . Thus 
s

eL   is first discussed with 1

s

pL    and 4s

FM   . 

As plotted in Figure 22, 
s

kf  has its maximum value as 1 when 
s

eL  is approximating to zero, 

which is corresponding to the original wavefield captured by a single point. The peak value 

decreases and the minimum value is obtained when ,
n

s s s

e e pL n L L  . Here n is an integer. 

This is the spatial averaging effect of 
s

eL . To achieve better mode control, 
s

eL  is biased from 

the standard tuning value 
1 / 2  to  0 1A , f

 . The acquisition results are plotted in Figure 23. 

The bias tuning acquisition method has better performance of mode control than the 

standard tuning method as expected, and the S0 wave is stronger, although still smaller than 

the original wavefield due to the spatial averaging effect of 
s

eL . Further reducing 
s

eL  could 

increase the wave amplitude, but would be detrimental to the suppression of other wave 

modes (as  0 1A ,
/ 2

f
  in Figure 23).  

 
Figure 22. Acquisition tuning functions of (S0, f1) and (A0, f1) with varying element length. 
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Figure 23. Analytical acquisition of in-plane strain wavefields at f1 with varying element length. 

Next, the element pitch 
s

pL  and number of elements 
s

FM  are discussed with  0 1A ,

s

e f
L  . 

s

kf  

has the same form as ,

a

k Pf , except that the peak value is not increased with increasing 
s

FM . 

Taking 4s

FM   as an example, the curve of 
s

kf  is similar to ,

a

k Pf  in Figure 13 with the same 

biased value  0 1A ,
2.5

f
  of 

s

pL . Similarly, the bias tuning of 
s

pL  can be found for other values 

of 
s

FM  by plotting 
s

kf  against 
s

pL , e.g.  0 1A ,

1
2

3

s

p f
L   for 3s

FM  . Analytical acquisition 

results are plotted in Figure 24 with 
s

FM  increased from 1, 2, 3, 4, 6 to 8 and corresponding 

bias tuning of 
s

pL  . The corresponding acquisition results by standard tuning are shown 

Figure 25 for comparison. The consequent wave amplitudes are measured in Figure 26. 

Similar to 
a

pL  of actuators, there is no bias tuning of 
s

pL  of sensors when 1s

FM  , since the 

second term of tuning function is equal to 1 of a single element. The bias tuning method has 

again overwhelmed the standard tuning method. The amplitude of the S0 wave is the joint 

effect of enhancement by decreased 
s

eL  and reduction by biased 
s

pL . The mode control has 

been greatly improved with better suppression of the A0 wave. It should be noted that the 

standard tuning method also has a certain degree of mode controlling of the original 

wavefield due to the filtering effect. However, the wave amplitudes of S0 and A0 decrease 
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with increasing 
s

FM . The reason is that although the peak value is the same with varied 
s

FM , 

narrowing of bandwidth would decrease the overall energy of wave packets. Moreover, 

besides 
CN and 

a

FM of actuators, 
s

FM of sensors would further elongate the captured 

waveforms which cause more serious overlap. It can also be seen that the mode control is 

generally improved with increasing 
s

FM , and the best performance can be achieved with 

bias tuning of 
s

pL when 6s

FM  . Considering mode control, wave amplitude, and overlap 

of wave packets, 3s

FM   is selected for the proper PCAT sensors in this study with bias 

tuning of 
s

pL to  0 1A ,

1
2

3
f

 . The amplitude ratio of S0/A0 has been significantly improved

from 0.7 of the original wavefield and 1.7 by standard tuning to 5.6 by bias tuning. 

Figure 24. Analytical acquisition of in-plane strain wavefields at f1 with varying number of 

elements and bias tuning of element length and pitch. 
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Figure 25. Analytical acquisition of in-plane strain wavefields at f1 with varying number of 

elements and standard tuning of element length and pitch. 

 

 

 
Figure 26. Normalized amplitudes of S0 and A0 wave with increasing number of elements of 

standard tuning and corresponding bias tuning. 

3.3.2 Experimental verification 

Experiments were conducted to verify the mode control by the bias tuning acquisition 

method discussed above. Similar experimental setups of f1 were applied as in Section 3.2. 

The parameters of the actuator remained the same. The cycle number of sinusoids in the 

Hanning-windowed excitation toneburst was set to be 5. For the sensors, three bias tuning 

cases were studied with parameters listed in Table 2. bias tuning 2 and 3 correspond to 
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1s

FM   and 3s

FM   in Figure 24. The element length of a single-element sensor is further 

reduced to 2 mm in bias tuning 1. The experimental response is shown in Figure 27. 

Compared with the results of standard tuning in Figure 21, the number of cycles in the 

waveforms is smaller when number of elements is decreased to 1 and 3, which verifies the 

elongation effect of number of elements. The amplitudes of S0 and A0 is measured and 

plotted in Figure 28. Bias tuning 3 has the best performance of suppressing A0 wave and the 

amplitude ratio of S0/A0 has been improved from 2 of standard tuning to 2.87 of bias tuning, 

although not as good as in analytical results. The possible reasons are summarized in the 

following  aspects: (a) some properties of actuators and sensors are not considered in the 

simplified and ideal analytical models under assumptions made in Section 2.1, which could 

also contribute to the experimental results, including lateral dimension, electrode layer, 

impedance, and resonance; (b) the incident waves experience scattering and attenuation 

when propagating on the plate which are not considered in analytical solutions; (c) the 

manufacturing error could affect the consistency of piezoelectricity across the function layer 

and accuracy of printed electrodes in locations, dimensions, and angles, which could also 

influence the incident wavefields. These issues could cause deviation of bandwidth of 

incident waves from the theoretical rejecting point and thus leading to compromised 

performance of bias tuning in experiments. They also indicate the inadequacy of the plane 

strain models used for analytical solutions of incident waves excited by actuators and output 

response of sensors. For SHM applications on plate-like structures, two-dimensional tuning 

models, the scattering of excited waves, and sensing directivity should be further 

investigated for PCAT-based networks. Nevertheless, the analytical discussion here is a fine 

example that can be followed. Further reduction of element length in bias tuning 1 could 

increase the amplitude of S0 wave, however, the amplitude of A0 wave is also increased with 

poor mode control. Such phenomenon is also consistent with analytical discussions. 
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Table 2 

Parameter settings in different groups. 

Group Element length (mm) Element pitch (mm) Number of elements 

Bias tuning 1 2 N/A 1 

Bias tuning 2 6.63 (  0 1A , f
 ) N/A 1 

Bias tuning 3 6.63 (  0 1A , f
 ) 15.5 (  0 1A ,

1
2

3
f

 ) 3 

Standard tuning 8.85 (
1 / 2 ) 17.7 (

1 ) 4 

 

 
Figure 27. Experimental response of PCAT sensors to PCAT-excited wavefields at f1 by bias tuning 

of element length and pitch. 

 
Figure 28. Amplitude of S0 and A0 wave packets in different groups. 

In summary, for PCAT sensors, the mode waveforms in Lamb-wave acquisition are 

controlled by the filtering effect of acquisition tuning functions in the wavenumber domain. 

Suppression of a certain mode can be achieved by finding the rejecting points of element 
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length and pitch. The main mode could be enhanced by bias tuning of element length to a 

lower value and be diminished by bias tuning of element pitch. Increasing number of 

elements could improve the suppression of other modes by narrowing the bandwidth in the 

wavenumber domain, but also cause the diminishment of the main mode due to the 

decreasing overall energy of wave packets. The overlap of wave packets is another side effect 

of increasing number of elements of PCAT sensors. 

 

4. Perspectives of Inter-digital Electrodes and Polarization Direction 

In this study, comb array electrodes were used for PCAT actuators and sensors, with the 

function layer vertical polarized. In many studies, Inter-digital electrodes of two comb arrays 

were also tried for PVDF or MFC transducers. In some cases, the piezoelectric layer was 

still vertical polarized. A bottom ground electrode layer was required and a bipolar voltage 

source was used to excite two comb arrays out-of-phase [30, 31, 36-38]. The analytical 

wavefield can be obtained by modifying the analytical model in this study with load 

directions of comb arrays reversed each other. In other cases, the piezoelectric layer was 

lateral polarized [39-41], although authors still doubt the effectiveness of laterally polarizing 

the thin piezopolymer layer. The bottom ground electrode layer was not necessary and the 

functional area in the analytical model needs to be changed to the inter-finger area. For 

strain-type actuators as MFC, excited wavefields can be strengthened by taking advantage 

of stronger d33 rather than d31 to transfer shear stress with lateral polarization. On the contrary, 

for displacement-type actuators as PCAT or PVDF, excited wavefields can be weakened due 

to the reduced normal pressure by d31 with lateral polarization. On the other hand, PCAT or 

PVDF is strain-type sensor like MFC. Thus, the acquisition of wavefields could also benefit 

from the stronger g33 than g31 with later polarization by inter-digital electrodes. Thus, 

appropriate polarization directions must be chosen to avoid adverse effects for PCAT. 
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5. Concluding Remarks 

In this study, distinctly different excitation and acquisition mechanisms of PCAT are revealed 

by analytical and experimental analysis. It should be noted that such a difference does not 

contradict elastodynamic reciprocity conditions. The tunability of PCAT is studied with 

analytical solutions. The corresponding bias tuning methods are proposed and verified by 

experiments. PCAT actuators are of displacement type, which is different from other in-situ 

fixed transducers. The conventional standard tuning excitation method could achieve the 

largest amplitude of the desired mode. However, the undesired modes cannot be effectively 

controlled in some cases due to mode excitability, e.g. A0 wave in the low-frequency range. 

To achieve better mode control, the rejecting points of tuning functions of undesired modes 

are found to bias the element length and pitch. Increasing the cycle number of excitation 

tonebursts and number of elements could further enhance the desired mode and improve the 

filtering effect of bias tuning to suppress undesired modes, but with inevitable elongation of 

waveforms that could cause overlap. PCAT sensors are of strain type, which is the same as 

other in-situ fixed transducers. The same parameters as standard tuning of excitation could 

obtain neither a strong response of the desired mode nor good mode control in some cases, 

due to the spatial averaging effect. The acquisition tuning behavior is investigated. Better 

mode control could be achieved with bias tuning. Increasing number of elements would 

further elongate the acquired waveforms. For PCAT actuators and sensors, the best solutions 

of the multi-parameter bias tuning for mode control in Lamb-wave excitation and acquisition 

require to be investigated case by case.  

 

Without losing generality, plane-wave assumption and comb array electrodes are used in this 

study for convenience. The method could be further extended to circular-crested waves by 

arc-shape actuators, angular acquisition of rectangle-shape sensors, and inter-digital 
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electrodes. In this study, the bias tuning method is discussed in the low-frequency range, 

where only two fundamental modes exist. For mode control in the high-frequency range, a 

synthetic consideration of multi-mode suppression is required. The methodology of 

investigation in this study can also be extended to other types of monolithic or arrayed Lamb-

wave transducers. 

 

The results demonstrate the critical role played by the dimensions and the coupling 

mechanisms of PCAT for Lamb-wave excitation and acquisition. The coupling mechanism 

needs to be considered when selecting particular frequency-mode excitation and acquisition 

for damage detection. The proposed bias tuning method can be used to design specific 

actuators and sensors with good mode control of predominant desired mode and suppressed 

undesired modes, which could greatly benefit the signal processing in Lamb wave-based 

SHM. This work sheds light on the development of PCAT-based networks for Lamb wave-

based SHM. Several issues are to be resolved in authors’ future work, including two-

dimensional models for tuning actuators and sensors, omnidirectional excitation of circular-

crested waves, and sensing directivity of angled incident waves. Moreover, the applications 

to damage detection with fine-tuned network layouts in real engineering structures are also 

under investigation.  

 

 

 

 

 

Appendix 

The Lamb wave structure across the thickness: 
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where μ is the shear modulus. Superscript S represents symmetric modes and A for 

antisymmetric modes. 

 

The matrix components of excitability function: 
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where  
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The matrix components of mode excitability function: 
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where  
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The components of Fourier transform of a Hanning-windowed sinusoidal toneburst: 
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