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Abstract

Entrusted by the Kaohsiung Rapid Transit Corporation (KRTC), this study attempts

to devise a more effective methodology to forecast the passenger volume of the subway

system in the city of Kaohsiung, Taiwan. We propose a local linear kernel model to

incorporate different weights for each realized observations. It enables us to capture

richer information and improve rate of accuracy. We compare different methodologies, for

example, ARIMA, Best in-sample fit ARIMA, linear model, and their rolling versions

with our proposed local linear kernel regression model by examining the in-sample and

out-of-sample performances. Our results indicate that the proposed rolling local linear

kernel regression model performs the best in forecasting the passenger volume in terms of

smaller prediction errors in a wide range of measurements.
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1 Introduction

Kaohsiung city is the second largest city in Taiwan with a population of approximately 2.77

million. The Kaohsiung Mass Rapid Transit System (hereafter “KMRT”), the city’s subway

system, covers the metropolitan areas of the city and is operated by the Kaohsiung Rapid

Transit Corporation (hereafter “KRTC”) under the contract with the local government. KMRT

consists of two lines with 36 stations covering a distance of 42.7 kilometer. The Red Line and

the Orange Line started their operation for services on March 9 and September 14, 2008,

respectively. The number of passengers that KMRT served in 2014 reached about 168,093

people per day and the accumulated volume of passengers has been over 200 million people

since it is launched in early 2008.

The number of the passengers has been increasing drastically since year 2008. In order to

better plan and operate the transportation systems1, understanding and forecasting the number

of passengers are extremely crucial. Prior literature has attempted to develop appropriate

models for forecasting passenger traffic flows, e.g. air traffic flows (Carson, Cenesizoglu, and

Parker, 2011; Fildes, Wei, and Ismail, 2011), the passenger numbers in trains (Nielsen, Frolich,

Nielsen, and Filges, 2014), and the freight markets (Batchelor, Alizadeh, and Visvikis, 2007).

KRTC also studies the forecasting of the subway volumes internally and publishes a report

titled “The Study of Kaohsiung Subway Volume Forecasting - ARIMA Approach” (hereafter

“the REPORT (2014)”).

Carson et al. (2011) propose an aggregating individual markets (AIM) approach to predict

air travel demand, while Fildes et al. (2011) examine several popular approaches to forecast

short- to medium-term air passenger traffic flow. Nielsen et al. (2014) present an innovative

counting technique using the weighting systems installed in trains to predict the passenger

numbers in the capital region of Denmark. Batchelor et al. (2007) investigate the performance

of prevalent time series models, including ARIMA models, V AR models, and V ECM models,

in forecasting spot and freight rate. Batchelor et al. (2007) find that VECM models generate

the best in-sample fit and that all models beat a random walk benchmark in out-of-sample

forecasting. The REPORT (2014) applies the ARMIA model to fit the time series data of the

1For example, daily operations optimizing, strategic planning and revenue distributing among the operations

and etc.
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Kaohsiung subway volumes and tests the in-sample performance over the historical time series.

Due to the unsatisfactory predictive capability of the current ARIMA models, the KRTC

entrusts us to conduct further research on forecasting the number of passengers with smaller

prediction errors. We first consider the linear models, which are able to capture the addi-

tional local economy and weather information, see Woodridge (2002), Jin, Nimalendran and

Ray (2014). Fan (1992, 1993) proposes an innovative approach in the estimation of unknown

regression functions using kernel weighted local linear methods 2, called the local linear ker-

nel regression. The basic prediction problems are the same for both linear model and local

linear kernel regression, however, the coefficients are estimated using the weighted realized in-

formation in local linear kernel regression, which helps to capture the nonlinearity in historical

data. Li and Racine (2004) further discuss how to select the optimal bandwidths in the above

mentioned kernel weighting problem using the cross-validation method. Several applications

are studied using Li and Racine (2014)’s methodology, for example, Zhu (2014) shows that the

local linear kernel regression can provide a better way to predict the crude oil price with much

better prediction accuracy. In this paper, we will also apply the local linear kernel regression

method in dealing with the subway volume data.

In this article, using the data provided by KRTC and the Kaohsiung City Government, we

compare several different prediction methods, including ARIMA models as in the REPORT

(2014), linear model, local linear kernel regression and their rolling versions. Both in-sample

and out-of-sample tests are conducted and the rolling local linear kernel regression demonstrates

the best prediction abilities in forecasting the future subway volumes with considerably small

prediction errors. We suggest that the KRTC consider our proposed model to conduct future

KMRT demand predictions.

The remainder of the paper is organized as follows. The next section presents our proposed

forecasting methodologies. Section 3 describes the data and pre-treatment. We run the unit

root test and construct the predictive models. The comparison of different prediction models

are then analyzed in Section 4. Finally, Section 5 provides discussions and conclusions.

2For further reference, see Ruppert and Wand (1994), Fan and Gijbels (1995) and etc.
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2 The Model

2.1 The Basic Prediction Problem

Consider the basic prediction problem with the following general regression form:

y = g(x) + µ

where x is the vector of explanatory variables, y is the response variable and µ is the noise

term.

In the current application of ARIMA model, only the information of the time series {yi}ni=1

is captured. Following the REPORT (2014), we also include the local gasoline price, the local

unemployment rate, the logarithm of the rainfall level, and the temperature of Kaohsiung and

others as the explanatory variables, thus the vector x contains not only the lagged information

of y, but also the other explanatory variables.

2.1.1 Linear Model

When g(·) is a linear function, the prediction problem is

y = a+ x′b+ µ

and the parameters are simply estimated by the ordinary least squire method,

mina,b

n∑
i=1

(Yi − a−X ′ib)2

where (Yi, Xi) are sample realizations. In the linear model, the coefficients a, b are fixed,

independent of the input vector x.

2.1.2 Local Linear Kernel Regression

Following Fan (1992, 1993), the information for each realized observation (Yi, Xi) should not be

equally weighted in estimating the coefficients of a, b for different input vector x, if considering

the prediction model as a local linear function

y = a(x) + x′b(x) + µ,
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and the information is weighted by the kernel K(Xi−x
h

), the parameters a(x), b(x) are estimated

by

mina,b

n∑
i=1

(Yi − a− (Xi − x)′b)2K(
Xi − x
h

)

where (Yi, Xi) are sample realizations, K(·) is the kernel function, h is the bandwidth.

The optimal bandwidth h can be selected using cross validation methods (Li and Racine

2004) as below:

CVf (h1, ..., hs) =
1

n2

n∑
i=1

n∑
j=1

K̄h(Xi, Xj)−
2

n(n− 1)

n∑
i=1

n∑
j 6=i,j=1

Kh(Xi, Xj)

when using the integrated squared error as the loss function.

Zhu (2014) shows that the local linear kernel regression can provide a better way to predict

the crude oil price with much better prediction accuracy. In this paper, we also apply the local

linear kernel regression method in dealing with the subway volume data.

3 Data

3.1 Data Description and Pre-treatment

Our data is provided by Kaohsiung Rapid Transit Corporation and Kaohsiung City Govern-

ment. The database includes five time series: the logarithm of the monthly subway volume, the

local gasoline price, the local unemployment rate, the logarithm of the rainfall level, and the

temperature of Kaohsiung3. The database spans from April 2008 to December 2013, including

a total of 69 observations for each time series.

[Table 1]

We impose three unit root tests on the logarithm of the monthly volume and other explana-

tory variables (Augmented Dickey-Fuller test, KPSS test and Philipps-Perron test). Table 1

demonstrates the three unit root test statistics and their p-values. Only the ln(volume) cannot

reject the existence of unit root at 1% level, while there are insufficient evidence to argue the

3We follow the REPORT (2014), which suggests the local gasoline price, the local unemployment rate, the

logarithm of the rainfall level, and the temperature of Kaohsiung may affect the subway volume, and all the

times series are collected from Kaohsiung City Government.
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four explanatory variables also have the unit root4. Thus we take the first order differences of

ln(volume) and keep the other explanatory variables in the predictive model.

3.2 Predictive Models

After taking care of the unit root issues, we set up the basic predictive model as below:

∆ln(V olume)t = α + β1∆ln(V olume)t−1 + β2ln(V olume)t−1 + β3Gast−1

+ β4Unemploymentt−1 + β5Ln(Rainfall)t−1 + β6Temperaturet−1 + εt

(1)

where ln(V olume)t is the logarithm of the subway volume at time t, Gast−1 is the local gaso-

line price at time t − 1, Unemploymentt−1 is the local unemployment rate at time t − 1,

Ln(Rainfall)t−1 is the logarithm of the rainfall level at time t − 1, Temperaturet−1 is the

temperature of Kaohsiung at time t − 1. Thus given the information at time t − 1, we would

like to forecast the difference in logarithm of the subway volume at time t, then obtain the

subway volume prediction at time t.

In the next section, we would like to apply ARIMA, linear model and local linear kernel

regression to demonstrate the predictive capability in both training and holdout samples.

4 Empirical Results

With the objective of providing a better forecasting method, we compare four different method-

ologies including the REPORT ARIMA, the best in-sample fitted ARIMA, the linear model

and the local linear kernel model. We divide the sample into two groups: 1. we use the first

50 observations as the training sample, which is used to construct the fitted model; 2. the

remaining 19 observations as the holdout sample, which is used to test performance of the

constructed model .

In the REPORT (2014), the internal statisticians only apply the ARIMA model and the

best fitted model is ARIMA(0, 1, 1). However, they only consider the in-sample fitting and

testing. Therefore in this paper, we consider both ARIMA(0, 1, 1) and the best in-sample

fitted ARIMA using the in-sample observations (50 observations). Further we also utilize the

4Because the unit root test results may be driven by the “Pseudo Long Memory Phenomenon” in a piecewise

stationary time series as documented in Jin and Yau (2012), therefore we apply multiple unit root tests here.
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linear model and the local linear kernel model to capture additional information provided by

Kaohsiung Rapid Transit Corporation and the local government.

4.1 Performance Measures

We implement several performance measures which are common in literature (e.g. Hyndman

and Koehler, 2006; Steyerberg et al., 2010; Zhu, 2014; Zhong et al., 2015 and etc.). Our per-

formance measures include Mean Squared Prediction Error (MSPE), Mean Squared Prediction

Percentage Error (MSPE), Mean Absolute Percentage Error (MAPE), R2, Directional Accu-

racy Ratio and etc.

Mean Squared Prediction Error (MSPE)

Mean Squared Prediction Error (MSPE) is a widely used performance measure (Hyndman and

Koehler, 2006) to test the validity of a prediction model with the following form:

MSPE =
1

N

N∑
i=1

(Yi − Ŷi)2

where N is the number of observations in the training/holdout sample, Yi is the realized ob-

servation and Ŷi is the prediction value. MSPE is to measure the dispersion of the realized

observations and the prediction values.

Mean Squared Prediction Percentage Error (MSPPE)

Mean Squared Prediction Percentage Error (MSPPE) is a percentage version of the dispersion

between the realized observations and the prediction values, with the following form:

MSPPE =
1

N

N∑
i=1

(
Yi − Ŷi
Yi

)2.

Mean Absolute Percentage Error (MAPE)

Stutzer (1996) and Zhong et al. (2015) argue that the MAPE is a more robust dispersion

measure in testing the pricing errors. Thus we also include MAPE as an alternative dispersion

measure as below:

MAPE =
1

N

N∑
i=1

|Yi − Ŷi
Yi
|.
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ρ (Correlation)

ρ is the correlation between the prediction values and the true observations, which not only

measures the level of co-movement but also measures the direction of co-movement (the sign

of ρ).

R2 (Explained Variation)

R2 is a widely used performance measure for continuous outcomes in both in-sample test and

out-of-sample test. Steyerberg et al. (2010) address that R2 is an overall performance measure,

with the following alternative definition:

R2 = ρ2

where ρ is the correlation.

Directional Accuracy Ratio

Directional Accuracy Ratio is a descriptive measure, which measures the percentage accuracy

in direction in the prediction values:

Directional Accuracy Ratio =
#(sign(Yi) = sign(Ŷi))

N
.

4.2 Empirical Results

In the REPORT (2014), only ARIMA model and in-sample performance are discussed. How-

ever, in a forecasting problem, testing the performance in the holdout sample is much more

important than just testing in the training sample. Therefore in this section we will discuss

both in-sample and out-of-sample performances of different methods. There are four basic pre-

diction models addressed in our prediction comparisons:

1. REPORT ARIMA

The REPORTARIMA is the prediction model mentioned in the REPORT (2014), i.e. ARIMA(0, 1, 1).

The coefficients are estimated by the training sample.
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2. Best In-sample fitted ARIMA

The best in-sample fitted ARIMA is the prediction model with the best AIC, AICc and BIC

performance in running the training sample, i.e. ARIMA(1, 1, 0)5.

3. Linear Model

The linear model is the model mentioned in Section 2.1.1.

4. Local Linear Kernel Regression

The local linear kernel regression is the model mentioned in Section 2.1.2.

4.2.1 In-Sample Comparison

In-sample comparison examines the in-sample performance on the training sample after cali-

brating the prediction models by the training sample. We first fit the models using training

data, then test their performance. Please notice that in-sample testing does not examine the

predictive capability but shows how much variation (in the training sample) can be explained

by the fitted models. Figure 1 shows the in-sample fitted time series (ln(V olume)) for for four

different fitting methods (REPORT ARIMA, Best-fit ARIMA, Linear Model, Local Linear

Kernel Regression) and all the models provide satisfactory performance in in-sample fitting.

[Figure 1]

Table 2 demonstrates the different prediction performance measures (Mean Squared Pre-

diction Error (MSPE), Mean Squared Prediction Percentage Error (MSPPE), Mean Absolute

Percentage Error (MAPE), R2 (Explained Variation), ρ (Correlation) and DAR (Directional

Accuracy Ratio)) of the dependent variable ∆ln(V olume) for four different in-sample fitting

methods (REPORT ARIMA, Best-fit ARIMA, Linear Model, Local Linear Kernel Regres-

sion) . Two ARIMA models provide a better overall performance and a higher directional

accuracy ratio. They can explain the variation by around 80%. However, the linear model

5ARIMA(0, 1, 1): AIC=-69.18; AICc=-68.92; BIC=-65.4. ARIMA(1, 1, 0): AIC=-66.38; AICc=-66.12;

BIC=-62.6.
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and the local linear kernel regression model have much smaller mean squared errors and two

percentage error measures.6

[Table 2]

4.2.2 Out-of-Sample Comparison

We mainly focus on the out-of-sample comparison because it demonstrates the prediction ability

in a Holdout Sample. Notice that the ARIMA models have limited long term forecasting

abilities, thus we propose a rolling version for all the four prediction methods: at any time t in

holdout sample, we will use all the observations from 1 to t as the training sample, and forecast

the value at time t + 1. On one hand, we can benefit from all up-to-date information; on the

other hand, we improve the prediction ability of ARIMA model a lot.7 Therefore, we will have

a total of eight prediction models to compare in this section.

Figure 2 shows the in-sample fitted time series (ln(V olume)) for eight different prediction

methods (REPORT ARIMA, Best-fit ARIMA, Linear Model, Local Linear Kernel Regression

and their rolling versions). Overall, the rolling versions provide a better predictive capacity in

fitting the out-of-sample time series than the non-rolling models.

[Figure 2]

Table 3 demonstrates the different prediction performance measures (Mean Squared Pre-

diction Error (MSPE), Mean Squared Prediction Percentage Error (MSPPE), Mean Absolute

Percentage Error (MAPE), R2 (Explained Variation), ρ (Correlation) and DAR (Directional

Accuracy Ratio)) of the dependent variable ∆ln(V olume) for eight different prediction meth-

ods (REPORT ARIMA, Best-fit ARIMA, Linear Model, Local Linear Kernel Regression and

their rolling versions). For non-rolling versions, two ARIMA models have smaller MSPE,

MSPPE and MAPE. However, their prediction points have almost zero variation explanatory

power in either R2 or Directional Accuracy Ratio; this is mainly because ARIMA model has

no long term prediction power thus there is no variation in the prediction values when using the

6We delete the two observations with the true value 0 in calculating the percentage error measures.
7For example, the ARIMA(0, 1, 1) has very weak prediction ability, because according to the formula,

Yt = Yt−1 + ρεt−1 + εt, we cannot forecast t + 2 value with any variations. Similarly in our results, the

non-rolling version predicted values are constant for t+ 1 to t+ 19.
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ARIMA model. Among all the four methods, local linear kernel regression provides the highest

R2 and considerably small MSPE. Linear model provides slightly weaker, but still satisfactory

performance in predicting the subway volume in the holdout sample.

[Table 3]

The rolling methods provide better prediction performances for all four methods than the

non-rolling versions. Compared with the ARIMA models, our two proposed methodologies

demonstrate lower in prediction error measures (MSPE, MSPPE and MAPE), higher variation

explanation measure R2, larger positive correlation ρ and better directional prediction. Among

all the eight methods comparison, the rolling local linear kernel regression dominates the other

seven in terms of the out-of-sample performance, followed by the rolling linear model. Though

the ARIMA models can explain the in-sample variation reasonably well, they have very limited

predictive capability even we adjust the model using the rolling method.

5 Conclusion

Entrusted by the KRTC, this study attempts to devise a more effective methodology to forecast

the passenger volume of the subway system in the city of Kaohsiung, Taiwan. For a newly-built

subway system in a metropolitan area, it is utterly crucial to accurately understand the demand

before the service is put into operation. Not only does it facilitate flow of passenger, public

security, and operation efficiency, it is also of vital importance in future planning and develop-

ment. Previous study by the KRTC has applied the ARIMA model to predict the passenger

volume in a linear fashion by various variables, for instance, gasoline price, unemployment rate,

temperate and so on. However, there is still room for improvement on the predictive capability.

In this study, we propose a local linear kernel model to incorporate different weights for

each realized observations. It enables us to capture richer information and improve rate of

accuracy. To this end, we compare different methodologies, for example, ARIMA, Best in-

sample fit ARIMA, linear model, and their rolling versions with our proposed local linear kernel

regression model by testing the in-sample and out-of-sample performances. Our results indicate

that the proposed rolling local linear kernel regression model performs the best in forecasting the

passenger volume in terms of smaller prediction errors in a wide range of measurements. Because
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of the adjusted weights through the kernel function, the predictive capability of the rolling local

linear kernel regression model outperforms all the other tested models. In conclusion, we suggest

that the KRTC adopt the proposed model for future demand predictions.
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Table 1: Unit Root Test

Table 1 demonstrates the three unit root test statistics and their p-values. The three

unit root tests are Augmented Dickey-Fuller test, KPSS test and Philipps-Perron

test.

ADF test PP test KPSS test

ln(volume) -5.2432 -8.2428 2.9062

(< 0.01) (< 0.01) (< 0.01)

gasoline -4.3656 -2.8406 1.9320

(< 0.01) (0.2335) (< 0.01)

unemployment -2.5096 -2.4148 1.5869

(0.3681) (0.4066) (< 0.01)

ln(rainfall) -3.9612 -4.3683 0.0398

(0.0167) (< 0.01) (> 0.1)

temperature -5.0849 -3.4333 0.0432

(< 0.01) (0.0579) (> 0.1)
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Table 2: In-Sample Performance

Table 2 demonstrates the different prediction performance measures (Mean Squared Prediction Error (MSPE), Mean Squared Prediction Percentage Error (MSPPE),

Mean Absolute Percentage Error (MAPE), R2 (Explained Variation), ρ (Correlation) and DAR (Directional Accuracy Ratio)) of the dependent variable ∆ln(V olume)

for four different in-sample fitting methods (REPORT ARIMA, Best-fit ARIMA, Linear Model, Local Linear Kernel Regression).

ARIMA(REPORT) ARIMA(Best-fit) LM LLKR

MSPE 0.013 0.014 0.009 0.007

MSPPE 21.678 14.521 4.019 2.724

MAPE 1.913 1.982 1.253 1.098

R2 0.799 0.776 0.443 0.570

ρ 0.894 0.881 0.665 0.755

DAR 0.857 0.857 0.735 0.755
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Table 3: Out-of-Sample Performance

Table 3 demonstrates the different prediction performance measures (Mean Squared Prediction Error (MSPE), Mean Squared Prediction Percentage Error (MSPPE),

Mean Absolute Percentage Error (MAPE), R2 (Explained Variation), ρ (Correlation) and DAR (Directional Accuracy Ratio)) of the dependent variable ∆ln(V olume)

for eight different prediction methods (REPORT ARIMA, Best-fit ARIMA, Linear Model, Local Linear Kernel Regression and their rolling versions).

ARIMA(REPORT) ARIMA(Best-fit) LM LLKR ARIMA(Rolling, REPORT) ARIMA(Rolling, Best-fit) LM(Rolling) LLKR(Rolling)

MSPE 0.011 0.011 0.016 0.022 0.014 0.016 0.009 0.009

MSPPE 1.000 0.999 11.710 27.893 2.269 25.082 1.895 1.498

MAPE 1.000 1.000 2.168 2.993 1.303 2.358 1.151 0.999

R2 NA 0.108 0.523 0.557 0.539 0.176 0.421 0.416

ρ NA 0.329 0.723 0.746 -0.734 -0.420 0.649 0.645

DAR 0.000 0.222 0.500 0.500 0.222 0.389 0.556 0.556
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Figure 1: In-Sample fitted Time Series

Figure 1 shows the in-sample fitted time series (ln(V olume)) for for four different

fitting methods (REPORT ARIMA, Best-fit ARIMA, Linear Model, Local Linear

Kernel Regression).
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Figure 2: Out-of-Sample fitted Time Series

Figure 2 shows the in-sample fitted time series (ln(V olume)) for eight different

prediction methods (REPORT ARIMA, Best-fit ARIMA, Linear Model, Local

Linear Kernel Regression and their rolling versions).
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