1	Recent advances in alkali-doped polybenzimidazole membranes for
2	fuel cell applications
3	Q.X. Wu ^a , Z.F. Pan ^b and L. An ^b *
4	^a Shenzhen Key Laboratory of New Lithium-ion Batteries and Mesoporous Materials,
5	College of Chemistry and Environmental Engineering, Shenzhen University,
6	Shenzhen 518060, Guangdong, China
7	^b Department of Mechanical Engineering, The Hong Kong Polytechnic University,
8	Hung Hom, Kowloon, Hong Kong SAR, China
9	*Corresponding author.
10	^b Email: <u>liang.an@polyu.edu.hk</u> (L. An)
11	
12	Abstract
13	Polybenzimidazole (PBI), with a well-known excellent thermal stability, has been
14	recognized as an alternative for anion exchange membrane fuel cells (AEMFC),
15	primarily because it can serve as an ionic conductor after doping with inorganic
16	hydroxides (typically KOH/NaOH) and thus allows fuel cells to be operated at high
17	temperatures (currently as high as 120°C). In addition, alkali-doped PBI membranes
18	also offer many other favored physiochemical properties, such as high ionic
19	conductivity. The objective of this article is to provide a review of recent research on

20	the alkali-doped PBI membranes and their application in fuel cells, including
21	mechanisms of ion conduction through the alkali-doped PBI membranes, stability of
22	the PBI membranes doped with alkali, strategies aiming at improving the ionic
23	conductivity of the PBI membranes doped with alkali, as well as the performance of
24	alkali-doped PBI membrane based fuel cells. Additionally, future perspectives relating
25	to the development of alkali-doped PBI membranes and their applications in fuel cells
26	are also highlighted.
27	
28	Keywords: Fuel cells; Anion exchange membrane fuel cells; Polybenzimidazole;
29	Alkali-doped PBI membranes; Physiochemical properties; Single-cell performance
30	
31	
32	
33	
34	
35	
36	
37	
38	

39 **1. Introduction**

40 Anion exchange membrane fuel cells (AEMFC) are generally regarded as an 41 emerging energy conversion technology that has the potential to overcome many 42 obstacles of proton exchange membrane fuel cells (PEMFC) in cost, stability, and 43 durability of materials [1-10]. The typical structure design of AEMFC systems is 44 analogous to that of PEMFCs, where the ion transport pathways are established 45 between the cathode and anode. It is attributed to the dispersed ionomers with a 46 network inside the electrodes, which are interfaced with the membrane [11-16]. Nevertheless, the performance of such a fuel cell system where transporting the 47 48 hydroxide ions through the membrane purely relies on an AEM and ionomers in the 49 electrodes is not satisfactory, primarily due to the low conductivity of state-of-the-art 50 AEMs and corresponding ionomers [17-21]. In addition, another obstacle limiting the 51 cell power output of AEMFCs is that current AEMs fabricated into fuel cells are not 52 capable to be operated at high temperatures (< 60°C) [22-24]. It has been recently 53 demonstrated that polybenizimidazole (PBI) can withstand the high-temperature 54 operation, and after doping with inorganic acid, the membranes can conduct protons 55 and thus be used in fuel cells [25-37]. Among them, Wainright et al. [31] firstly introduced PBI membranes doped with acid for high-temperature PEMFCs. Similarly, 56 57 Xing et al. [37] examined alkali-doped PBI membranes for AEMFCs. The highest 58 conductivity of KOH-doped PBI (9×10^{-2} S cm⁻¹ at 25°C) was higher than those of 59 H₂SO₄-doped PBI membrane (5×10^{-2} S cm⁻¹ at 25°C) and H₃PO₄-doped PBI 60 membrane (2×10^{-2} S cm⁻¹ at 25°C). More impressively, they showed that the 61 hydrogen/oxygen fuel cells with an alkali-doped PBI membrane and a Nafion 117 62 membrane exhibited the same performance [37].

63 Since the pioneering work done by Xing et al. [37], extensive attentions haven been paid to the alkali-doped PBI membranes, which become an alternative to the 64 conventional QA-based AEMs in AEMFCs over the past decade [37-43]. As a 65 66 consequence, great progress has been made in facilitating the large-scale utilization of 67 this membrane in practical applications, but several critical issues are still remaining 68 to be resolved, such as alkali leakage, high fuel permeability, and poor mechanical 69 stability. This review focuses on recent advances and development of alkali-doped 70 PBI membranes for fuel cell applications. In this article, we start with the mechanisms 71 of ion conduction through the alkali-doped PBI membranes and the chemical structure 72 change after doping, followed by the detailed discussion about the stability of the 73 alkali-doped PBI membranes, including thermal stability, mechanical stability, and 74 liquid uptake. Moreover, the strategies to promote the ionic conductivity of the PBI 75 membranes doped with alkali are also summarized and compared. Meanwhile, the 76 effects of the doping time, alkali type and concentration, carbonate presence,

temperature, and soaking time on the ionic conductivity are described and discussed,
respectively. Finally, we summarize and discuss the single-cell performance achieved
by using the alkali-doped PBI membranes in fuel cells running on various fuels,
including hydrogen, methanol, ethanol, and other alcohols.

Fig. 1 Chemical structure of the pristine polybenzimidazole membrane [59].Reproduced with permission from Elsevier.

81

84 2. Mechanisms of ion conduction through the alkali-doped polybenzimidazole 85 membrane

86 The ion exchange membranes used in fuel cells are expected to meet the following 87 requirements: high performance, high durability, but low cost. The function of the ion 88 exchange membranes installed in fuel cells is to separate two electrodes (electron 89 insulator), conduct ions (ion conductor), and be impermeable to fuels (fuel insulator). 90 In AEMFCs, a barrier that limits their performance is that current AEMs fabricated 91 into fuel cells are not capable to be operated at high temperatures (typically $< 60^{\circ}$ C). 92 It has been recently demonstrated that alkali-doped PBI membranes can offer the 93 good thermal property and high ionic conductivity. For this reason, much attention 94 has been extensively paid to this type of membrane. In fact, the pristine PBI

95	membrane is primarily an electron and ion insulator (ionic conductivity: 1×10^{-12} S
96	cm ⁻¹ [44]) and its chemical structure is shown in Fig. 1. Like doping with inorganic
97	acid, adding the pyrrole-type nitrogen (-NH-) and the pyridine-type nitrogen (-N=) in
98	the benzimidazole rings is in favor of absorbing and interacting with the free
99	inorganic base, which is capable of conducting ions [45]. Generally, the pristine PBI
100	membrane is pre-treated to form the ion-conductive membrane by immersing it in an
101	alkaline electrolyte solution (typically NaOH/KOH [37, 38, 45]) or in an alkaline
102	fuel-electrolyte-mixed solution (typically ethanol/methanol + NaOH/KOH [39, 46]),
103	for a certain period of time. Zeng et al. [45] investigated the morphology change of
104	the PBI membrane doped with alkali comparing to the PBI membrane via SEM-EDS.
105	It was shown that the membrane possessed a uniform, dense and smooth structure
106	after doping. In addition, it was also shown that after doping, the potassium and
107	oxygen that were derived from the doped alkali were distributed through the whole
108	membrane uniformly. They further investigated the morphology change during
109	doping via AFM. It was found that the original PBI membrane was hydrophobic as a
110	result of showing a bright field; while, the hydrophilic domains appeared after doping.
111	Also, Hou et al. [39] studied the PBI membranes doped with alkali through the
112	cross-sectional SEM images and its corresponding EDX mappings for elements of K,
113	O, and N. Similarly, it was demonstrated that the elements of K, O, and N were

distributed homogeneously. They explained that the presence of potassium was attributed to the reaction between KOH and -NH- in addition to the free KOH in the matrix, both of which were beneficial to the ion conduction.

In addition, the doping process also changes the chemical structure of the 117 membrane. Zeng et al. [45] investigated the chemical structure change of the 118 membrane doped with alkali comparing to the PBI membrane via FTIR. The results 119 showed that the -NH- stretching vibration (1284 cm⁻¹) was replaced by -NK-120 121 deformation (1510 cm⁻¹) and bending vibration (1120 cm⁻¹), indicating that the 122 reaction between cations (K⁺) and benzimidazole segments in the PBI skeleton caused partial fracture of the hydrogen bonds. They further confirmed the chemical structure 123 124 change of the membrane doped with alkali comparing to the PBI membrane via XPS, 125 and found that after doping, the emergence of the potassium peaks indicated the 126 successful formation of the PBI membrane doped with alkali.

Based on the above-mentioned characterizations before and after doping, there are a few mechanisms proposed for formation of the alkali-doped PBI membrane [39, 45, 47]. For example, Hou et al. [39] proposed a doping mechanism for alkali-doped PBI membranes, as shown in Fig. 2a. Firstly, the interaction between K^+ and -NH- in imidazole ring occurred due to neutralization. Secondly, the existence of hydrogen bonding was detected between -N- and OH⁻ in imidazole ring; meanwhile, K^+ was

133	brought into the polymer to balance OH ⁻ . They also confirmed this result via DFT
134	calculations [47]. Based on the DFT results, they proposed a detailed mechanism, as
135	illustrated in Fig. 2b. (i) -NH- can dissociate into H^+ and -N-; (ii) the dissociated H^+
136	can combine with OH^- to form H_2O ; and (iii) K^+ has to combine with -N- to form
137	-NK Recently, Zeng et al. [45] also proposed a similar doping mechanism for the
138	PBI membrane immersed in alkaline solutions, as illustrated in Fig. 2c. Firstly, the the
139	pyrrole-type nitrogen (-NH-) in pristine PBI membrane dissociated protons and then
140	the dissociated protons reacted with the hydroxide ions (OH-). Hence, the first step
141	can be presented by a neutralization reaction. Secondly, the potassium cations (K^+)
142	are functioned in bridging nitrogen atoms that are negatively charged. In addition, the
143	hydrophilic ionic clusters will established to conduct the hydroxide ions by
144	combination between the KOH solution and the PBI matrix, as illustrated in Fig. 2d.
145	With a higher KOH concentration, the hydrophilic ionic clusters will become larger,
146	which is the reason that the conductivity of the PBI membranes doped with alkali
147	increases with higher KOH concentration [45].

(b)

Fig. 2 (a) The scheme of combination between KOH and -NH- [39]. (b) The possible combination mechanism in details [47]. (c) The possible reaction during the doping process: neutralization reaction and the hydrogen bonds before and after the doping process [45]. (d) Schematic of the pristine PBI membrane and alkali-doped PBI membrane [45]. Reproduced with permission from Elsevier.

161 In a fuel cell system, positively or negatively charged ions act as charge carriers to

162	form the ionic current by transporting through ion exchange membranes. In
163	alkali-doped PBI membranes, there are free K^+ and OH^- in the PBI matrix, as well as
164	bonded K^+ and OH^- in the PBI skeleton, creating an anion-cation co-existing system
165	in the PBI membrane after doping. To determine the charge carrier for the ion
166	exchange membrane, An et al. [57] designed an experimental setup and determined
167	the charge carrier of the three different types of commercial membrane, i.e., AEM
168	(A201), CEM (Nafion 211), and NaOH-doped PBI membrane, as shown in Figs. 3a
169	and 3b. It was found that the Na ⁺ flux through the AEM was almost zero at the whole
170	current density region; while, Na ⁺ fluxes through the CEM and NaOH-doped PBI
171	membrane were, respectively, 32% and 28% of the theoretical Na ⁺ flux, meaning that
172	OH ⁻ fluxes through the CEM and NaOH-doped PBI membrane are 68% and 72% of
173	the total ionic current, respectively. Hence, it was indicated that both Na ⁺ ions and
174	OH ⁻ ions contributed to the ionic current, but the main charge carrier was the OH ⁻ ion.
175	

(b)

Fig. 3 (a) Experimental setup and flow chart [57]. (b) Variations in the Na⁺ flux through each of three membranes with current density [57]. Reproduced with permission from The Royal Society of Chemistry.

3. Stability of the alkali-doped polybenzimidazole membrane

The physiochemical properties of ion exchange membranes can significantly affect the fuel cell performance and thus much attention has been paid to the physiochemical characterizations of alkali-doped PBI membranes. This section will summarize and discuss the past research on the thermal and mechanical properties, as well as liquid uptake.

189 **3.1. Thermal stability**

190 The thermal stability of an ion exchange membrane during fuel cell operation is an 191 important property, which significantly affects the stability and durability of the fuel 192 cell system. Radically different from the conventional functional groups based AEMs, 193 the striking feature of the utilization of the PBI membranes fabricated in fuel cells is 194 that they are capable to be operated at a high temperature due to the good thermal 195 stability [35, 36]. After doping with an alkali, however, many physiochemical 196 properties will be changed, such as the ionic conductivity. For this reason, much 197 attention has paid to the thermal stability of alkali-doped PBI membranes via 198 thermogravimetric analysis [38, 48-52]. For example, An et al. [52] conducted the 199 thermogravimetric analysis of three types of commercial membrane, i.e., AEM 200 (Tokuyama A201), cation exchange membrane (CEM: Nafion 211), and NaOH-doped 201 PBI membrane. It was found that among the three membranes, the NaOH-doped PBI 202 membrane showed the comparable thermal stability, both of which were superior than 203 that of AEM. The NaOH-doped PBI membrane did not exhibit significant degradation 204 when the temperature was over 570°C, and only 30% of the total weight of the 205 membrane was lost at 800°C. Lou et al. [48] investigated the thermal stability of 206 NaOH-doped PBI membranes via the thermogravimetric analysis and found that the retention properties and the water content were slightly increased after doping. It was 207 208 also found that at temperatures higher than 500°C, a severe weight loss occurred due 209 to the generation of carbon dioxide. Hou et al. [38] evaluated the thermal stability of 210 KOH-doped PBI membrane via TGA and DTA from room temperature to 800°C. 211 They found that the KOH-doped PBI membranes offered reliable thermal stability up 212 to 800°C, which was better than Nafion membranes and quaternary ammonium (QA) 213 based AEMs. In summary, the use of alkali-doped PBI membranes has successfully 214 removed the barrier that limits AEMFCs to be operated at temperatures higher than 215 60°C.

216 **3.2. Mechanical stability**

Excellent mechanical property is crucial for ion exchange membranes to go through harsh processes during fuel cell assembly and operation. Previous publications indicated that even the pristine PBI membrane did not receive any pre-treatment, it still offered a substantial tensile strength [53]. As mentioned earlier, the doping process changes the chemical structure of the membrane, thus definitely changing the

222	mechanical property. In view of this reason, the mechanical strength of PBI
223	membranes doped with alkali has been widely investigated via testing stress-strain
224	curves [38, 45, 49, 50, 52]. For example, An et al. [52] carried stress-strain tests for
225	three kinds of commercial membrane, i.e., AEM (Tokuyama A201), CEM (Nafion
226	211), and NaOH-doped PBI membrane. It was found that both the CEM and AEM
227	showed much larger tensile strength than the NaOH-doped PBI membrane, suggesting
228	that the NaOH-doped PBI membrane had the worst mechanical property. It was
229	explained that the mechanical strength of pristine PBI membrane was dominated by
230	the hydrogen bond between -N= and -NH- groups; however, doping the PBI
231	membrane with an alkali was beneficial for the formation of the hydrogen bonds
232	between -N= and alkali, leading to the decrease of molecular cohesion in the
233	NaOH-doped PBI membrane. In addition, introducing the alkali into the substrate of
234	the membrane would reduce the molecular interaction force due to the increasing
235	separation distance. For these reasons, the tensile strength of the NaOH-doped PBI
236	membrane is inferior comparing to the pristine PBI membrane. Zeng et al. [45] also
237	investigated the mechanical property of the PBI membrane doped with alkali
238	comparing to the PBI membrane via measuring the tensile-strain curves. It was found
239	that when the tensile strength reached 92.98 MPa, the pristine PBI membrane broke
240	with an elongation of 5.6%, suggesting that the mechanical strength of pristine PBI

241 membrane is superior. After doping with an alkali, the tensile strength of breaking was 242 significantly decreased with increasing the KOH concentration. They explained that 243 the original hydrogen bonds were partially cleaved, which decreased molecular 244 cohesion and deteriorated the mechanical strength of the membrane. However, the 245 tensile strength of KOH-doped PBI membranes was still higher than functional groups 246 based AEMs. Hou et al. [38] evaluated the mechanical stability of KOH-doped PBI 247 membranes and determined that the elongation at break and tensile strength and were 248 20.07% and 7.7 MPa, respectively. They found that those results were lower than the 249 pristine PBI membrane, but comparable with H₃PO₄-doped PBI membranes and some QA-based AEMs. In summary, although the mechanical property of the PBI 250 251 membrane is lowered to some extent after doping, the alkali-doped PBI membranes 252 have still better mechanical property than Nafion membranes and AEMs do.

3.3. Liquid uptake

The liquid uptake of alkali-doped PBI membranes is an important parameter that directly links with the ionic conductivity. Generally, a higher liquid uptake of the ion exchange membrane will result in a higher ionic conductivity. Nevertheless, the mechanical stability degraded seriously resulting from dimensional changes derived from too high liquid uptake [55]. To determine the liquid uptake, the alkaline doping process of the PBI membrane samples generally lasted for around ten days in order to 260 make sure that the process was accomplished [45]. So far, the liquid uptake of 261 alkali-doped PBI membranes have been extensively investigated [45, 48, 50, 51, 52, 262 54]. The liquid uptake of alkali-doped PBI membrane is generally determined by $m_{-} = m_{+}$

$$\varphi = \frac{m_w - m_d}{m_d} \times 100\% \tag{1}$$

where m_w denotes the mass of the hydrated membrane (in alkaline solution) and m_d 264 265 denotes the mass of the dry membrane. An et al. [52] determined the liquid uptakes of three kinds of commercial membrane, i.e., AEM (Tokuyama A201), CEM (Nafion 266 211), and NaOH-doped PBI membrane. It was found that the liquid uptakes of the 267 NaOH-doped PBI membrane and the AEM were much higher than that of the CEM. 268 269 In fact, it is the main reason that the NaOH-doped PBI membrane had the worst 270 mechanical property. In addition to the liquid uptake, there are two other uptakes, i.e., 271 water uptake and alkali uptake. Zeng et al. [45] studied the water uptake and alkali 272 uptake of KOH-doped PBI membranes immersed in various KOH concentrations at 273 room temperature. It was found that the alkali uptake and water uptake were low as 274 the PBI membranes were doped with low-concentration KOH solutions; while, the alkali uptake and water uptake were likely to increase linearly as the KOH 275 276 concentration was higher than 1.0 M. It was also found that when the KOH 277 concentration was further increased to 8.0 M, the PBI membranes were crushed or 278 dissolved in the alkaline solution. It should be noted that there are some differences in

279	the uptakes of alkali-doped PBI membranes, which is probably attributed to the
280	different molecular weight/structure, membrane thickness of the samples, as well as
281	different alkalis [45].
282	4. Strategies to improve the ionic conductivity of alkali-doped polybenzimidazole
283	membranes
284	The most important function of the ion exchange membrane is to transport ions
285	(charge carrier) through the membrane from one electrode to the other. Hence, the
286	ionic conductivity is an important parameter and has been extensively examined [37,
287	38, 39, 41, 45, 47, 48, 49, 50, 52]. The ionic conductivity was generally determined
288	by Ohm's law:
289	$\sigma = \frac{d}{R \cdot S} \tag{2}$
290	where σ is the ionic conductivity (S cm ⁻¹), d is the thickness of the membrane
291	(cm), R is the membrane resistance (Ω), and S is the effective area of the
292	membrane (cm ²). In addition, the operating parameters can also affect the ionic
293	conductivity of alkali-doped PBI membranes, such as doping time, alkali type, alkali

294 concentration, carbonate concentration, and operating temperature.

Fig. 4 (a) Effect of the doping time on the doping level [48]. (b) The ionic conductivity as a function of the time. [47]. (c) Effect of the NaOH concentration on the ionic conductivity [52]. (d) Variation of the ionic conductivity with the doping electrolyte cocnentration at vairous K_2CO_3 concentrations [37]. Reproduced with permission from Elsevier.

310 **4.1. Effect of the doping time**

311 Luo et al. [48] studied the effect of doping time on the doping level of alkali-doped 312 PBI membranes and the results were presented in Fig. 4a. They defined the alkali 313 doping level as the ratio between the weight of doped alkali and the weight of dried 314 membrane. It was found that the alkali doping level first proceeded rapidly within 50 h and then underwent a slow increment rate. Also, the ion conductivity of the PBI 315 membrane doping with 1.0 M NaOH for 200 h (the doping level is 0.37) is 2.3×10^{-2} S 316 cm⁻¹ at room temperature. Xing et al. [37] studied the effect of doping time on the 317 318 optimal alkali concentration and found that the optimal alkali concentration that results in the highest conductivity was increased with the doping time. For example, 319 320 the optimal concentrations of sodium hydroxide are 8.0 M and 12.0 M for 0.1-day 321 doping and 12-day doping, respectively. It was also found that if the doping time was 322 longer than ten days, the ionic conductivity of the membrane became stable. They 323 explained that the membrane was saturated with the alkali, therefore the ionic 324 conductivity was stable. Hou et al. [39] prepared the alkali-doped PBI membranes by immersing the pristine PBI membrane in 6.0 M KOH at room temperature. 325 326 Afterwards, the results showed that the doping equilibrium was reached after about 7-day doping. In addition, they conducted the durability test of the KOH-doped PBI 327 328 membrane by measuring its ionic conductivity at room temperature for 100 h [47]. As

shown in Fig. 4b, the initial ionic conductivity of the KOH-doped PBI membrane was 2.3×10⁻² S cm⁻¹. After that, the ionic conductivity of the KOH-doped PBI membrane was gradually degraded with the doping time. After 100-h doping, the ionic conductivity was decreased from 2.3×10^{-2} S cm⁻¹ to 1.0×10^{-2} S cm⁻¹, and the degradation rate was 1.3×10^{-4} S cm⁻¹ h⁻¹.

334 **4.2. Effect of the alkali type**

The alkaline strength has a remarkable influence on the conductivity of the PBI 335 membranes doped with alkali. Xing et al. [37] studied the influence of alkali type on 336 337 the ionic conductivity and found that it was increased with the strength of the alkaline agent (LiOH < NaOH < KOH). Specifically, the highest conductivity was achieved 338 339 when doped with KOH and the poorest conductivity was obtained when doped with 340 LiOH. It was also found that the change in the ionic conductivity with the electrolyte 341 concentration also depends on the alkali type. Hence, it is the main reason that KOH 342 is widely used to dope with the PBI membrane.

343

4.3. Effect of the alkali concentration

An et al. [52] investigated the effect of the NaOH concentration that varied from 0 M to 10.0 M on the ionic conductivity of the NaOH-doped PBI membranes, as shown in Fig. 4c. It was found that as the NaOH concentration enhanced, the ionic conductivity was increased first and then decreased, leading to a peak ionic

348	conductivity. It was explained that once an ion exchange membrane was soaked in an
349	alkaline solution, the generation of alkali-doped free volumes could transport ions
350	under an electric field. Under this circumstance, transporting ions through the
351	alkali-doped free volumes was much easier than through the functional groups.
352	Therefore, the ionic conductivity of PBI membrane in 1.0 M NaOH (3.6 mS cm ⁻¹) was
353	better than that of PBI membrane in DI water (0.006 mS cm ⁻¹), indicating that the
354	alkali-doped free volumes made subtotal contribution to the ionic conductivity.
355	Nevertheless, the ionic conductivity became lower when the NaOH concentration was
356	higher than 7.0 M, which was ascribed to the increasing viscosity of the alkaline
357	solution and the reducing ionic mobility. Hence, 7.0 M was the optimum alkali
358	concentration, resulting in the maximum conductivity. In summary, a trade-off need to
359	be made between the positive effect of the higher alkali concentration doping and the
360	negative effect of the viscosity increasing in the alkali-doped free volumes of the
361	membrane. Similarly, Xing et al. [37] found that the highest conductivities of PBI
362	membranes doped with alkali were obtained when doping with 8.0-M KOH, 6.0-M
363	NaOH, and 4.0-M LiOH, respectively. Zeng et al. [45] found that the conductivity of
364	the PBI membrane was ultra-low when doping with 0.5 M KOH; while, a promotion
365	in the KOH concentration significantly upgraded the ionic conductivity of PBI
366	membranes doped with alkali.

367 **4.4. Effect of the carbonate presence**

368 Xing et al. [37] conducted the doping process in the mixed solution (KOH and 369 K_2CO_3) and investigated its effect on the ionic conductivity, as shown in Fig. 4d. It 370 was found that like doping in the alkaline solution, the ionic conductivity after 10-min doping was lower than that after 20-day doping. It was also found that the ionic 371 372 conductivity after doping in the mixed solution (KOH and K₂CO₃) was decreased from 0.095 S cm⁻¹ to 0.016 S cm⁻¹ as the K₂CO₃ concentration was increased from 0 373 374 M to 3.0 M. Although the involvement of K₂CO₃ much decreased the ionic 375 conductivity of the membrane, even at a high K_2CO_3 concentration (3.0 M), the membrane still had an ionic conductivity of 0.016 S cm⁻¹, which was better than that 376 of the Nafion 117 membrane $(0.012 \text{ S cm}^{-1})$. 377

378

4.5. Effect of the temperature

The most striking feature of the utilization of the alkali-doped PBI membranes in fuel cells is to allow fuel cells to be operated at higher temperatures (> 60°C generally). The effects of operating temperature lie not only on the electrochemical kinetics, but also on the mass/charge transport, including the ion transport through the membrane, i.e., ionic conductivity. Hence, the effect of the operating temperature on the conductivity of alkali-doped PBI membranes has been extensively investigated [37, 45, 48, 52]. In principle, the ionic conductivity of alkali-doped PBI membranes

386	increases with the increasing temperature, which is attributed to the higher ion
387	mobility. An et al. [52] studied the influence of temperature on the conductivities of
388	the three kinds of commercial membrane in the 5.0 M NaOH solution, i.e., AEM
389	(A201), CEM (Nafion 112), and NaOH-doped PBI membrane, as shown in Fig. 5a. It
390	was found that promoting the operating temperature resulted in almost linearly
391	increasing the ionic conductivities of the three membranes. Specifically, as the
392	operating temperature increased from 23°C to 60°C, the ionic conductivities of the
393	AEM, CEM and NaOH-doped PBI membrane was increased from 30.1 mS cm ⁻¹ , 5.6
394	mS cm ⁻¹ and 15.7 mS cm ⁻¹ to 54.9 mS cm ⁻¹ , 11.4 mS cm ⁻¹ and 33.7 mS cm ⁻¹ ,
395	respectively. It was explained that on one hand, a higher temperature accelerated the
396	molecular motions, promoting the ionic transport of the functional groups. On the
397	other hand, elevating the temperature increased the ionic mobility in alkali-doped free
398	volumes, contributing to the increased ionic conductivity. In addition, it was apparent
399	that the activation energy of the three membranes was comparable, suggesting that the
400	three membranes had the analogous ionic conducting mechanism. Lou et al. [48]
401	explored the effect of the operating temperature on the ionic conductivity of PBI
402	membranes doped with alkali. It was found that the ion conductivity of the PBI
403	membrane doped with alkali was significantly enhanced with the operating
404	temperature. Particularly, the ion conductivity of alkali-doped PBI membrane was

405	increased from 2.3×10^{-2} S cm ⁻¹ to 7.3×10^{-2} S cm ⁻¹ when the temperature boosted from
406	room temperature to 100°C. Zeng et al. [45] also found that the ionic conductivity
407	increased with the temperature. The highest ionic conductivity, 96.1 mS cm ⁻¹ at 90°C,
408	was achieved when the PBI membrane doping with 6.0 M KOH. They explained that
409	on one hand, the intermolecular interaction was weakened with the increased
410	temperature, leading to an incompact structure and enlarged free volumes; On the
411	other hand, the water uptake of the membrane was enhanced with the temperature,
412	further boosting the ionic conductivity. It was found that the activation energy was
413	23.22 kJ mol ⁻¹ , 16.92 kJ mol ⁻¹ , 16.00 kJ mol ⁻¹ , 15.87 kJ mol ⁻¹ when the PBI
414	membrane was doped in 0.5 M KOH, 2.0 M KOH, 4.0 M KOH and 6.0 M KOH,
415	respectively. It was also indicated that the activation energy values were similar to the
416	PBI membrane doped with acid, implying that the transport mechanism was similar,
417	i.e., the Grotthuss mechanism. Xing et al. [37] studied the effect of the doping
418	temperature on the ionic conductivity of the membrane in the mixed solution (KOH +
419	K_2CO_3), as shown in Fig. 5b. It was found that increasing the doping temperature was
420	beneficial for enhancing the ionic conductivity of the membrane doped in the KOH
421	solution. For example, the ionic conductivity increased from 0.02 S cm ⁻¹ to 0.095 S
422	cm ⁻¹ when increasing temperature from 25°C to 70°C. However, it was found that in
423	the case of the membrane doped in the mixed solution (KOH + K_2CO_3), the ionic

424 conductivity was almost independent of temperature ranging from 30°C to 70°C. It 425 was explained that the different phenomena were caused by the different 426 ion-conduction mechanisms of two membranes.

427

428

430

429

(b)

Fig. 5 (a) Effect of the temperature on the ionic conductivity [52]. (b) Variation of the conductivity of the KOH-doped PBI memrbane with the temperature [37]. (c) Effect of the soaking time on the ionic conductivity [52]. (d) Ion conductivities of the alkali-doped PBI membrane in 1.0 M NaOH [48]. Reproduced with permission from Elsevier.

440 **4.6. Effect of the soaking time**

441 It was claimed that exposing a functional groups based AEM in a concentrated 442 alkaline solution for a long time is potential to cause severe decomposition of the 443 functional groups, thus degrading the ionic conductivity. For this reason, the effect of 444 the soaking time on the ionic conductivity of alkali-doped PBI membranes has been 445 investigated [48, 52]. An et al. [52] examined the conductivity of NaOH-doped PBI 446 membranes soaked in 5.0 M NaOH, as shown in Fig. 5c. It was shown that after being 447 immersed in 5.0 M NaOH for a long period of 70 days, the ionic conductivity of the 448 membrane remained almost the same. It was indicated that the soaking time did not 449 obviously influence the ionic conductivity of alkali-doped PBI membranes. Lou et al. 450 [48] examined the ionic conductivity of PBI membranes doped with alkali, as shown 451 in Fig. 5d, and found that the ionic conductivity was almost unchanged in 1.0 M 452 NaOH at room temperature and 100°C for 1000 h. It was indicated that the PBI 453 membrane doped with alkali was stable in alkaline media at temperatures up to 100°C. 454 In summary, the utilization of alkali-doped PBI membranes in AEMFCs will broaden 455 the operating temperature range and thus improve the cell performance. 456 5. Application of alkali-doped polybenzimidazole membranes in fuel cells

457 5.1. Fuel permeability

458 Fuel permeability of the ion exchange membranes is an important parameter that

459	significantly affects the fuel cell performance, resulting from the fact that fuel
460	transporting through the membrane (fuel crossover) may cause two technical
461	problems. Firstly, fuel may be oxidized with the help of the cathode electrocatalysts to
462	form the parasitic current, leading to a mixed potential on the cathode. Secondly, the
463	fuel crossover definitely leads to a waste of fuel, lowering the fuel utilization
464	efficiency. Hence, the membrane candidate for fuel cells should have low fuel
465	permeability. Therefore, the fuel permeability of PBI membranes doped with alkali
466	have been extensively examined [38, 39, 45, 51, 52, 56], such as methanol and
467	ethanol. For example, Hou et al. [38, 39] also measured methanol and ethanol
468	permeability of KOH-doped PBI membranes at room temperature. It was shown that
469	methanol and ethanol permeability were 2.6×10^{-7} cm ² s ⁻¹ and 6.5×10^{-7} cm ² s ⁻¹ ,
470	respectively. Zeng et al. [45] investigated methanol and ethanol permeability of the
471	pristine and KOH-doped PBI membranes, respectively. The results showed that the
472	pristine PBI membrane exhibited a limited methanol and ethanol permeability due to
473	the fact that it has a low liquid uptake. After doping in 6.0 M KOH, the methanol and
474	ethanol permeability was significantly increased due to the reduced intermolecular
475	interaction rendered by the established ionic channels. It was also found that the
476	methanol permeability was higher than ethanol due to the fact that the hydrated
477	molecular size of methanol is smaller, resulting in a high transport rate through the

478 KOH-doped PBI membrane. Leykin et al. [56] developed a new method to determine 479 the ethanol permeability of polymeric membranes in alkaline media. By using this method, the ethanol permeability $(8.6 \times 10^{-8} \text{ cm}^2 \text{ s}^{-1})$ was obtained in 3.0 M KOH, 480 481 which was further decreased with the alkali concentration. In addition, they concluded that this method could be expanded to measuring alcohol permeability of polymeric 482 483 membranes in acidic conditions and various aqueous solutions. Recently, An et al. [52] determined the ethanol and NaOH permeability of three types of commercial 484 485 membrane at room temperature, i.e., AEM (Tokuyama A201), CEM (Nafion 211), and NaOH-doped PBI membrane by using a home-made diffusion cell. It was found that 486 the ethanol permeability through the three membranes was similar $(1 \times 10^{-7} \text{ cm}^2 \text{ s}^{-1})$; 487 488 while, the NaOH permeability through the NaOH-doped PBI membrane was as high as 19.83×10^{-8} cm² s⁻¹, but the NaOH permeability through the CEM and AEM was 489 relatively lower, i.e.: 2.541×10^{-8} cm² s⁻¹ and 3.778×10^{-8} cm² s⁻¹, respectively. It was 490 explained that the both AEM and CEM had functional groups, which could impede 491 the ion transport due to the charge repulsion. 492

493

5.2. Single-cell performance

494 As mentioned earlier, alkali-doped PBI membranes offer the good thermal stability 495 and high ionic conductivity. As such, this type of membrane has been extensively used 496 in fuel cells running on various fuels, such as hydrogen [37, 50, 54, 58], methanol [38, 497 51], ethanol [39, 46, 47], ethylene glycol [40], glycerol [41], formate [42], and
498 borohydrides [43]. This section will summarize past efforts in the performance
499 characterization of fuel cells that use alkali-doped PBI membranes.

500 **5.2.1. Hydrogen**

501 As summarized in Table 1, it can be seen that although this type of fuel cell is still an emerging power-supply technology, the maximum power density has been 502 503 substantially promoted in recent years. Specifically, Xing et al. [37] fabricated and 504 tested a hydrogen/oxygen fuel cell by employing a KOH-doped PBI membrane with a thickness of 40 µm. It was found that the fuel cell exhibited a current density of 620 505 mA cm⁻² at a voltage of 0.6 V, which was similar to that achieved by a PEMFC using 506 507 a Nafion 117 membrane. Zarrin et al. [50] developed a durable and highly 508 ion-conductive KOH-doped porous PBI membrane for AEMFCs, as shown in Fig. 6a, 509 in which the porosity was introduced, enhancing the attraction of the KOH solution 510 and thus increasing the ionic conductivity. It was found that the ionic conductivity and 511 cell performance yielded by using the KOH-doped porous PBI membrane with a porosity of 0.7 were around two times higher than those achieved by using the 512 commercial Fumapem[®] FAA membrane. In addition, the KOH-doped porous PBI 513 514 membrane could maintain the ionic conductivity after a 14-day stability testing; while, 515 the commercial one started to degrade just after 3 hours. It was indicated that the peak

516	power density achieved by using a KOH-doped porous PBI membrane with a porosity
517	of 0.7 was about 72 mW cm ⁻² , which was 1.8 and 1.5 times higher than those
518	achieved by using a KOH-doped dense PBI membrane (41 mW cm ⁻²) and the
519	commercial FAA membrane (45 mW cm ⁻²), respectively, as shown in Fig. 6b. They
520	demonstrated that the substantial enhancement in performance was ascribed to the fact
521	that the porous structure offered a higher ion transport rate through the membrane.
522	However, a challenging issue associated with the alkali-doped porous/dense PBI
523	membrane is the gradual release of the doped alkali during the fuel cell operation. To
524	address this issue, Zeng et al. [54] proposed and fabricated a KOH-doped
525	sandwiched-porous PBI membrane via a pore-forming method, which renders
526	numerous sponge-like walls and interconnected macropores, enhancing the attraction
527	between the PBI skeleton and the doped alkali, as illustrated in Fig. 6c. It was
528	indicated that both ionic conductivity and alkali retention of the membrane could be
529	substantially enhanced via this approach. It was also demonstrated that the use of this
530	KOH-doped sandwiched-porous PBI membrane in an AEMFC led to an open-circuit
531	voltage (OCV) of 1.0 V and a maximum power density of 544 mW cm ⁻² at 90°C, as
532	shown in Fig. 6d, which was better than that obtained by using the conventional
533	membrane structure. In addition, they also examined the stability of the fuel cell at a
534	current density of 700 mA cm ⁻² and found that the conventional fuel cell exhibited a

535	dramatic voltage drop just after 5 hours, even to almost zero, which was caused by a
536	progressive release of the doped alkali from the membrane, thereby gradually losing
537	the capability of conducting ions through the membrane. Unlike the conventional one,
538	the sandwiched membrane much improved the stability: the cell voltage was gradually
539	reduced from 0.55 V to 0.1 V, and remained at 0.1 V for another 25 hours. They
540	explained that the performance improvement was attributed to the improved attraction
541	of the doped alkali on the sponge-shaped wall, retarding the release of the doped
542	alkali, and the high ionic conductivity of the sandwiched membrane. It should be
543	noted that the sponge-shaped structure was not capable to completely prevent the
544	release of the doped alkali due to the fact that the cell voltage was gradually decreased
545	over time as a result of a gradual depletion of the doped alkali. They pointed out,
546	however, that this sandwiched membrane could be reused once doped in the KOH
547	solution again. In addition to functioning as an ion exchange membrane, PBI after
548	doping can be used as an ionomer, which not only serves as a binder but also as the
549	ion-conductive pathway.

(c)

558 Fig. 6 (a) The fabrication process of KOH-doped porous PBI membranes [50]. (b) The 559 polarization and power density curves using three membranes [50]. (c) Schematic illustration of a PBI-based membrane electrode assembly and the fuel cell [54]. (d) 560 561 The polarization and power density curves with the conventional MEA (round 562 symbols) and the novel MEA (square symbols), and the constant current discharging behaviors using the conventional MEA and the novel MEA at a current density of 700 563 mA cm⁻² [54]. Reproduced with permission from Elsevier and The Royal Society of 564 565 Chemistry.

566 Matsumoto et al. [58] developed a well-structured electrocatalyst for AEMFCs, 567 consisting of carbon nanotubes (CNTs) as supporter, KOH-doped PBI ionomer as 568 binder and platinum nanoparticles, in which the CNTs were wrapped by the 569 KOH-doped PBI ionomer at a nanometer thickness and Pt nanoparticles were loaded on the wrapping layer, as shown in Fig. 7a. In principle, the CNTs and the 570 KOH-doped PBI ionomer layer function as electron and hydroxide conductive 571 572 pathways, respectively, and the large exposed surface of the Pt nanoparticles allows an 573 effective access of hydrogen. Such a triple phase boundary structure with small 574 electrolyte content resulted in a high effective diffusivity and enhanced the electrochemical activity. It was also demonstrated that the use of this electrocatalyst 575 resulted in a peak power density of 256 mW cm⁻² at 50°C, as shown in Fig. 7b. 576

577 **5.2.2. Methanol**

In addition to hydrogen, the alkali-doped PBI membrane can be used to construct a fuel cell running on various liquid fuels, such as methanol and ethanol [38, 39, 46, 47, 51]. For fuel cells running on methanol, Hou et al. [38] fabricated an alkaline direct methanol fuel cell by using a KOH-doped PBI membrane and found that when the cell was fueled with a mixed solution containing 2.0 M methanol and 2.0 M KOH, the OCV was about 1.0 V and the maximum power density was about 31 mW cm⁻² at 90°C, as shown in Fig. 7c. Wu et al. [51] prepared the KOH-doped PBI/CNT

585	nanocomposites as the hydroxide conducting membrane for alkaline direct methanol
586	fuel cells. It was shown that the CNT promoted the ionic conductivity and thus
587	improved the fuel cell performance. It was found that when the fuel cell was operated
588	with 2.0 M methanol + 6.0 M KOH and humidified oxygen, the maximum power
589	densities of 67 mW cm ⁻² and 104 mW cm ⁻² were achieved at 60°C and 90°C,
590	respectively. Li et al. [60] treated the pristine PBI membrane, which was synthesized
591	via a solution casting method, in 2.0 M phosphoric acid and 6.0 M potassium
592	hydroxide solution, respectively, to prepare a PEM and an AEM for direct methanol
593	fuel cells. They also studied the effects of the structure design and operating
594	parameters on the cell power-output, including the methanol concentration, the
595	anolyte flow rate, operating temperature, as well as the hydrophobicity of the
596	micro-porous layer (MPL). It was found that the KOH-doped PBI membrane offered a
597	higher conductivity (21.6 mS cm ⁻¹) than the H_3PO_4 -doped PBI membrane (7.9 mS
598	cm ⁻¹) did at 90°C; while, the two membranes showed the similar methanol
599	permeability on the order of 10 ⁻⁷ cm ² s ⁻¹ . It was also found that the direct methanol
600	fuel cell with a KOH-doped PBI membrane exhibited a maximum power density of
601	117.9 mW cm ⁻² at 90°C, which was two times higher than that (46.5 mW cm ⁻²)
602	achieved by using a H ₃ PO ₄ -doped PBI. In addition, they found that when the fuel
603	flow rate was tripled, the fuel cell with a MPL-free electrodes structure resulted in a

peak power density of 158.9 mW cm⁻² at 90°C, as shown in Fig. 7d.

(d)

617 Fig. 7 (a) Schematic illustration of an anion exchange membrane fuel cell [58]. (b) The polarization and power density curves of the fuel cell (red line: PyPBI cell; black 618 619 line: AS-4 cell) [58]. (c) The polarization curves of an alkaline direct ethanol fuel cell 620 with alkali-doped PBI membrane at 75°C and 90°C [38]. (d) The performance of 621 direct methanol fuel cells using a KOH-doped PBI membrane and H₃PO₄-doped PBI 622 membrane at 60°C (upper) and 90°C (lower), respectively [60]. (e) The performance of an air-breathing alkaline direct ethanol fuel cell at 60°C [47]. Reproduced with 623 permission from Wiley and Elsevier. 624

(e)

625 **5.2.3. Ethanol**

As for fuel cells running on ethanol, Hou et al. [39] developed and fabricated analkaline direct ethanol fuel cell with a KOH-doped PBI membrane. It was found that

628	when the cell was operated with 2.0 M ethanol + 2.0 M KOH, the OCVs were 0.92 V
629	at 75°C and 0.97 V at 90°C, respectively, and the maximum power densities were 49.2
630	mW cm ⁻² at 75°C and 60.9 mW cm ⁻² at 90°C, respectively. Modestov et al. [46]
631	fabricated a membrane electrode assembly (MEA) for alkaline direct ethanol fuel cells,
632	which were prepared by employing non-platinum electrocatalysts and a KOH-doped
633	PBI membrane. It was demonstrated that a peak power density of 100 mW cm ⁻² was
634	obtained at a voltage of 0.4 V at 80°C when using the air as the oxidant and a mixed
635	solution containing 3.0 M KOH + 2.0 M ethanol as fuel. In addition, they also found
636	that the fuel cell operated with pure oxygen resulted in about 10% increment in the
637	current density. Recently, Hou et al. [47] examined the stability of the KOH-doped
638	PBI membrane by assembling an alkaline direct ethanol fuel cell with an air-breathing
639	mode at 60°C, which employed $PtRu/C$ and MnO_2/C as anode and cathode
640	electrocatalysts, respectively. It was shown that a 256-h discharging curve with large
641	voltage fluctuations (> 100 mV) during the whole discharging process. In addition,
642	during the durability test, the polarization and power density curves were collected at
643	0 h, 210 h, 220 h and 240 h, respectively. It was shown from Fig. 7e that the peak
644	power densities at four operation points were about 30 mW cm ⁻² , 15 mW cm ⁻² , 14
645	mW cm ⁻² and 9 mW cm ⁻² , respectively, leading to a degradation rate of 0.08 mW cm ⁻²
646	h ⁻¹ . In addition, they also explained that the voltage fluctuation was attributed to the

647 use of PtRu/C electrocatalyst on the anode, as the large voltage fluctuation
648 phenomenon disappeared when the PtRu/C catalyst was replaced by the Pd/C
649 electrocatalyst.

650 **5.2.4. Other alcohols**

In addition to methanol and ethanol, alkali-doped PBI membranes have been 651 employed in fuel cells running other alcohols. For example, An et al. [40] fabricated 652 653 an alkaline direct ethylene glycol fuel cell by using a KOH-doped PBI membrane with 654 a thickness of 30 µm, allowing the fuel cell system to be operated at temperatures higher than 60°C. The fuel cell was fabricated with PdNi/C as the anode 655 electrocatalyst (1.0 mg cm⁻²) and non-platinum HYPERMECTM as the cathode 656 electrocatalyst (1.0 mg cm⁻²). It was shown that a maximum power density of 112 657 mW cm⁻² was obtained when operated at 90°C with a mixed aqueous solution of 1.0 658 M ethylene glycol and 7.0 M KOH fed into anode at a flow rate of 2.0 mL min⁻¹ and 659 660 dry pure oxygen supplied into cathode at a flow rate of 100 sccm. The replacement of the pure oxygen by the air declined the maximum power density to 92 mW cm⁻². 661 Nascimento et al. [41] developed an alkaline direct glycerol fuel cell with a 662 KOH-doped PBI membrane. It was shown that the developed fuel cell could be 663 operating at temperatures as high as 75°C. In addition, they also investigated the 664 665 effects of the various operating conditions on the cell performance and determined the

666	optimal values for the given MEA, including glycerol concentration (1.0 M), KOH
667	concentration (4.0 M), the anolyte flow rate (2.0 mL min ⁻¹). Moreover, they compared
668	the three anode electrocatalysts, i.e., Pt/C , $PtRu/C$, and Pt_3Sn/C and found the $PtRu/C$
669	and Pt_3Sn/C electrocatalysts showed higher activity to the glycerol oxidation.
670	Furthermore, they systematically investigated the alkali-doped PBI membranes for
671	direct glycerol fuel cells and found that the fuel cell fed with 1.0 M glycerol and 4.0
672	M KOH led to a maximum power density of 34.2 mW cm ⁻² at 75°C [51].
673	5.2.5. Solid fuels
674	The alkali-doped PBI membranes have also been used in fuel cells running on
675	formate [42] and borohydrides [43]. Jiang et al. [42] developed a direct formate fuel
676	cell employing Pd/C (4.0 mg cm ⁻²) and Ag/C (8.0 mg cm ⁻²) as anode and cathode
677	electrocatalysts, respectively, together with a 40- μ m KOH-doped PBI membrane. The
678	fuel cell was tested with a mixed solution containing HCOOK + 2.0 M KOH fed into
679	anode at a flow rate of 6.0 mL min ⁻¹ and pure oxygen as oxidant supplied into cathode
680	at a flow rate of 200 sccm varying from 80°C to 120°C. It was shown that the fuel cell
681	operated with 6.0 M HCOOK resulted in a peak power density of about 160 mW cm ⁻²
682	at 120°C, as shown in Figs. 8a and 8b. Chen et al. [43] synthesized a NaOH-doped
683	porous PBI membrane for direct borohydride fuel cells via water vapor phase
684	inversion process, as shown in Fig. 8c. It was shown that as compared to the Nafion

685	115 membrane, the membrane showed a higher ionic conductivity. It was also found
686	that the membrane exhibited good chemical stability, which was evidenced by that no
687	weight loss was observed after immersing the membranes in the 3.0 M NaOH solution
688	for 30 days. The fuel cell was tested at 40°C with the fuel solution containing 1.0 M
689	NaBH ₄ + 3.0 M NaOH supplied at a flow rate of 0.5 mL min ⁻¹ and pure oxygen as
690	oxidant provided with a pressure of 0.1 MPa. It was shown that the a peak power
691	density of 262 mW cm ⁻² was achieved in a direct borohydride fuel cell in a direct
692	borohydride fuel cell by using the membrane with a porosity of 0.6, as shown in Fig.
693	8d, which was much higher than that achieved by using the Nafion 115 membrane. In
694	addition, the direct borohydride fuel cell could discharge at a current density of 200
695	mA cm ⁻² for about 250 hours without any voltage decay.

(c)

703

Fig. 8 (a) Temperatuere dependence of polarization curves for a direct formate fuel cell with a fuel of 2.0 M KOH + 2.0 M HCOOK [42]. (b) HCOOK cocnentration dependence of polarization and power density curves for a direct formate fuel cell at 120°C [42]. (c) Schematic of the designed membrane [43]. (d) The polarization and power density curves of direct borohydride fuel cells with the prepared membranes [43]. Reproduced with permission from Elsevier.

710 **6. Summary and outlook**

As a result of the well-known excellent thermal stability and high ionic conductivity after doping with an inorganic alkali, polybenzimidazole has been recognized as an alternative for anion exchange membranes and has made considerable progress in recent years. The fact that the use of alkali-doped PBI membrane allows anion exchange membrane fuel cells to operate at high temperatures 716 provides various advantages including fast electrochemical kinetics, low cost, high 717 CO tolerance, facilitating the progress in practical applications. This article provides a 718 review of up-to-date research on the alkali-doped PBI membranes and their 719 applications in fuel cells. Particular attention has been paid to their physiochemical properties and fuel cell performance. It should be mentioned that the stability of the 720 721 alkali-doped PBI membranes including thermal stability, mechanical stability, and 722 liquid uptake are compared and discussed in details. The past investigations have laid 723 a solid foundation for the basic understanding of how the operating parameters affect 724 the physiochemical properties of alkali-doped PBI membranes and the corresponding fuel cell performance with various fuels. In the race of replacing the anion exchange 725 726 membranes by the alkali-doped PBI membranes, several critical issues that need to be 727 addressed in the future include: 1) reducing the fuel permeability; 2) enhancing the 728 alkali retention (or reducing the alkali leakage); 3) understanding the mechanisms of 729 mass/ion transport through the membrane; 4) optimizing the sandwiched membrane 730 structure that enables high conductivity, high alkali retention, but low permeability. 731 Acknowledgements

The authors gratefully acknowledge the financial supports of the Natural Science
Foundation of China (No. 51506039) and the Shenzhen Science and Technology Fund
(JCYJ20170818093905960).

735 **References**

- 736 [1] E. Antolini, E.R. Gonzalez, Alkaline direct alcohol fuel cells, J. Power Sources
- 737 195 (2010) 3431-3450.
- [2] E.H. Yu, X. Wang, U. Krewer, L. Lid, K. Scott, Direct oxidation alkaline fuel cells:
- from materials to systems, Energy Environ. Sci. 5 (2012) 5668-5680.
- 740 [3] L. An, T.S. Zhao, Y.S. Li, Carbon-neutral sustainable energy technology: Direct
- ethanol fuel cells, Renewable and Sustainable Energy Reviews 50 (2015) 1462-1468.
- 742 [4] J.R. Varcoe, P. Atanassov, D.R. Dekel, A.M. Herring, M.A. Hickner, P.A. Kohl,
- 743 A.R. Kucernak, W.E. Mustain, K. Nijmeijer, K. Scott, T.W. Xu, L. Zhuang,
- Anion-exchange membranes for electrochemical energy systems, Energy Environ. Sci.
- 745 7 (2014) 3135-3191.
- [5] L. An, R. Chen, Direct formate fuel cells: A review, J. Power Sources 320 (2016)127-139.
- 748 [6] X. Ren, S.C. Price, A.C. Jackson, N. Pomerantz, F.L. Beyer, Highly Conductive
- 749 Anion Exchange Membrane for High Power Density Fuel-Cell Performance, ACS
- 750 Appl. Mater. Interfaces 6 (2014) 13330-13333.
- 751 [7] L. An, T.S. Zhao, X.H. Yan, X.L. Zhou, P. Tan, The dual role of hydrogen peroxide
- in fuel cells, Science Bulletin 60 (2015) 55-64.
- [8] G. Merle, M. Wessling, K. Nijmeijer, Anion exchange membranes for alkaline fuel

- cells: A review, J. Membrane Science 377 (2011) 1-35.
- 755 [9] L. An, T.S. Zhao, L. Zeng, X.H. Yan, Performance of an alkaline direct ethanol
- fuel cell with hydrogen peroxide as oxidant, Int. J. Hydrogen Energy 39 (2014)2320-2324.
- [10] L. Zeng, T.S. Zhao, L. An, A high-performance supportless silver nanowire
 catalyst for anion exchange membrane fuel cells, J. Mater. Chem. A 3 (2015)
 1410-1416.
- 761 [11] J. Cheng, G. He, F. Zhang, A mini-review on anion exchange membranes for fuel
- cell applications: Stability issue and addressing strategies, Int. J. Hydrogen Energy 40
- 763 (2015) 7348-7360.
- 764 [12] S. Maurya, S.H. Shin, Y. Kim, S.H. Moon, A review on recent developments of
- anion exchange membranes for fuel cells and redox flow batteries, RSC Adv. 5 (2015)
- 766 37206-37230.
- 767 [13] L. An, R. Chen, Mathematical modeling of direct formate fuel cells, Applied
- 768 Thermal Engineering 124 (2017) 232-240.
- 769 [14] M.A. Hickner, A.M. Herring, E.B. Coughlin, Anion exchange membranes:
- 770 Current status and moving forward, J. Polymer Science, Part B: Polymer Physics 51
- 771 (2013) 1727-1735.
- [15] L. An, R. Chen, Recent progress in alkaline direct ethylene glycol fuel cells for
- sustainable energy production, J. Power Sources 329 (2016) 484-501.

- [16] L. An, T.S. Zhao, Transport phenomena in alkaline direct ethanol fuel cells for
- sustainable energy production, J. Power Sources 341 (2017) 199-211.
- 776 [17] L. An, T.S. Zhao, L. Zeng, Agar chemical hydrogel electrode binder for
- fuel-electrolyte-fed fuel cells, Applied Energy 109 (2013) 67-71.
- [18] A.M. Bartrom, J.L. Haan, The direct formate fuel cell with an alkaline anion
- exchange membrane, J. Power Sources 214 (2012) 68-74.
- 780 [19] L. An, T.S. Zhao, X.L. Zhou, L. Wei, X.H. Yan, A high-performance
- ethanol-hydrogen peroxide fuel cell, RSC Advances 4 (2014) 65031-65034.
- [20] J.R. Varcoe, R.C.T. Slade, Prospects for Alkaline Anion-Exchange Membranes in
- 783 Low Temperature Fuel Cells, Fuel Cells 5 (2005) 187-200.
- [21] L. An, T.S. Zhao, X.L. Zhou, X.H. Yan, C.Y. Jung, A low-cost, high-performance
- zinc-hydrogen peroxide fuel cell, J. Power Sources 275 (2015) 831-834.
- 786 [22] G. Couture, A. Alaaeddine, F. Boschet, B. Ameduri, Polymeric materials as
- anion-exchange membranes for alkaline fuel cells. Progress in Polymer Science 36
- 788 (2011) 1521-1557.
- [23] Z.F. Pan, R. Chen, L. An, Y.S. Li, Alkaline anion exchange membrane fuel cells
- for cogeneration of electricity and valuable chemicals, J. Power Sources 365 (2017)430-445.
- [24] L. An, C.Y. Jung, Transport phenomena in direct borohydride fuel cells, Applied

- 793 Energy 205 (2017) 1270-1282.
- 794 [25] Z.J. Xia, S. Yuan, G.P. Jiang, X.X. Guo, J.H. Fang, L.L. Liu, J.L. Qiao, J. Yin,
- 795 Polybenzimidazoles with pendant quaternary ammonium groups as potential anion
- exchange membranes for fuel cells, J. Membrane Science 390-391 (2012) 152-159.
- [26] D. Henkensmeier, H. Cho, H. Kim, C.N. Kirchner, J. Leppin, A. Dyck, J.H. Jang,
- 798 E. Cho, S. Nam, T. Lim, Polybenzimidazolium hydroxides-Structure, stability and
- degradation, Polymer Degradation and Stability 97 (2012) 264-272.
- 800 [27] H. Lee, J. Choi, J.Y. Han, H. Kim, Y. Sung, H. Kim, D. Henkensmeier, E.A. Cho,
- 801 J.H. Jang, S.J. Yoo, Synthesis and characterization of poly(benzimidazolium)
- 802 membranes for anion exchange membrane fuel cells, Polym. Bull. 70 (2013)803 2619-2631.
- 804 [28] D. Henkensmeier, H. Cho, M. Brela, A. Michalak, A. Dyck, W. Germer, N.M.H.
- 805 Duong, J.H. Jang, H. Kim, N. Woo, T. Lim, Anion conducting polymers based on
- 806 ether linked polybenzimidazole (PBI-OO), Int. J. Hydrogen Energy 39 (2014)
 807 2842-2853.
- 808 [29] L. Jheng, S.L. Hsu, B. Lin, Y. Hsu, Quaternized polybenzimidazoles with
- 809 imidazolium cation moieties for anion exchange membrane fuel cells, J. Membrane
- 810 Science 460 (2014) 160-170.
- 811 [30] A. Katzfuß, S. Poynton, J. Varcoe, V. Gogel, U. Storr, J. Kerres, Methylated

- polybenzimidazole and its application as a blend component in covalently
 cross-linked anion-exchange membranes for DMFC, J. Membrane Science 465 (2014)
 129-137.
- [31] J.S. Wainright, J.T. Wang, D. Weng, R.F. Savinell, M. Litt, Acid-doped
 Polybenzimidazoles: A New Polymer Electrolyte, J. Electrochem. Soc. 142 (1995)
 L121-L123.
- 818 [32] M. Okamoto, T. Fujigaya, N. Nakashima, Design of an Assembly of
- 819 Poly(benzimidazole), Carbon Nanotubes, and Pt Nanoparticles for a Fuel-Cell
- 820 Electrocatalyst with an Ideal Interfacial Nanostructure, Small 5 (2009) 735-740.
- 821 [33] M.R. Tarasevich, Z.R. Karichev, V.A. Bogdanovskaya, L.N. Kuznetsova, B.N.
- 822 Efremov, A.V. Kapustin, Electroconductance and penetrability of polybenzimidazole
- 823 membranes in alkaline solutions, Russ J Electrochem, 40 (2004) 653-656.
- 824 [34] R. He, Q. Li, A. Bach, J.O. Jensen, N.J. Bjerrum, Physicochemical properties of
- 825 phosphoric acid doped polybenzimidazole membranes for fuel cells, J. Membr. Sci.
- 826 277 (2006) 38-45.
- 827 [35] Q.X. Wu, H.Y. Li, W.X. Yuan, Z.K. Luo, F. Wang, H.Y. Sun, X.X. Zhao, H.D. Fu,
- 828 Performance evaluation of an air-breathing high-temperature proton exchange
- membrane fuel cell, Applied Energy 160 (2015) 146-152.
- [36] Q. Li, R. He, J.O. Jensen, N.J. Bjerrum. Approaches and Recent Development of

- 831 Polymer Electrolyte Membranes for Fuel Cells Operating above 100°C. Chem. Mater.
- 832 15 (2003) 4896-4915.
- 833 [37] B. Xing, O. Savadogo, Hydrogen/oxygen polymer electrolyte membrane fuel
- cells (PEMFCs) based on alkaline-doped polybenzimidazole (PBI), Electrochemistry
- 835 Communications 2 (2000) 697-702.
- 836 [38] H.Y. Hou, G.Q. Sun, R.H. He, B.Y. Sun, W. Jin, H. Liu, Q. Xin, Alkali doped
- 837 polybenzimidazole membrane for alkaline direct methanol fuel cell, Int. J. Hydrogen
- 838 Energy 33 (2008) 7172-7176.
- 839 [39] H.Y. Hou, G.Q. Sun, R.H. He, Z.M. Wu, B.Y. Sun, Alkali doped
- 840 polybenzimidazole membrane for high performance alkaline direct ethanol fuel cell, J.
- 841 Power Sources 182 (2008) 95-99.
- [40] L. An, L. Zeng, T.S. Zhao, An alkaline direct ethylene glycol fuel cell with an
- alkali-doped polybenzimidazole membrane, Int. J. Hydrogen Energy 38 (2013)
 10602-10606.
- [41] A.P. Nascimento, J.J. Linares, Performance of a Direct Glycerol Fuel Cell using
- KOH Doped Polybenzimidazole as Electrolyte, J. Braz. Chem. Soc. 25 (2014)
 509-516.
- 848 [42] J.H. Jiang, A. Wieckowski, Prospective direct formate fuel cell, Electrochemistry
- 849 Communications 18 (2012) 41-43.

- 850 [43] D.J. Chen, S.S. Yu, X. Liu, X.F. Li, Porous polybenzimidazole membranes with
- 851 excellent chemical stability and ion conductivity for direct borohydride fuel cells, J.
- 852 Power Sources 282 (2015) 323-327.
- 853 [44] O.E. Kongstein, T. Berning, B. Børresen, F. Seland, R. Tunold, Polymer
- 854 electrolyte fuel cells based on phosphoric acid doped polybenzimidazole (PBI)
- 855 membranes, Energy 32 (2007) 418-422.
- 856 [45] L. Zeng, T.S. Zhao, L. An, G. Zhao, X.H. Yan, Physicochemical properties of
- 857 alkaline doped polybenzimidazole membranes for anion exchange membrane fuel
- 858 cells, J. Membrane Science 493 (2015) 340-348.
- 859 [46] A.D. Modestov, M.R. Tarasevich, A. Y. Leykin, V.Y. Filimonov, MEA for
- 860 alkaline direct ethanol fuel cell with alkali doped PBI membrane and non-platinum
- 861 electrodes, J. Power Sources 188 (2009) 502-506.
- 862 [47] H.Y. Hou, S.L. Wang, Q. Jiang, W. Jin, L.H. Jiang, G.Q. Sun, Durability study of
- 863 KOH doped polybenzimidazole membrane for air-breathing alkaline direct ethanol
- fuel cell, J. Power Sources 196 (2011) 3244-3248.
- 865 [48] H.Z. Luo, G. Vaivars, B. Agboola, S.C. Mu, M. Mathe, Anion exchange
- 866 membrane based on alkali doped poly(2,5-benzimidazole) for fuel cell, Solid State
- 867 Ionics 208 (2012) 52-55.
- 868 [49] D. Aili, M.K. Hansen, R.F. Renzaho, Q.F. Li, E. Christensen, J.O. Jensen, N.J.

- 869 Bjerrum, Heterogeneous anion conducting membranes based on linear and 870 crosslinked KOH doped polybenzimidazole for alkaline water electrolysis, J.
- 871 Membrane Science 447 (2013) 424-432.
- 872 [50] H. Zarrin, G.P. Jiang, G.Y.Y. Lam, M. Fowler, Z.W. Chen, High performance
- porous polybenzimidazole membrane for alkaline fuel cells, Int. J. Hydrogen Energy
- 874 39 (2014) 18405-18415.
- 875 [51] J. Wu, C. Lo, L. Li, H. Li, C. Chang, K. Liao, C. Hu, Y. Liu, S.J. Lue, Thermally
- stable polybenzimidazole/carbon nano-tube composites for alkaline direct methanol
- fuel cell applications, J. Power Sources 246 (2014) 39-48.
- [52] L. An, T.S. Zhao, Q.X. Wu, L. Zeng, Comparison of different types of membrane
- in alkaline direct ethanol fuel cells, Int. J. Hydrogen Energy 37 (2012) 14536-14542.
- [53] M. Han, G. Zhang, Z. Liu, S. Wang, M. Li, J. Zhu, H. Li, Y. Zhang, C.M. Lew, H.
- 881 Na, Cross-linked polybenzimidazole with enhanced stability for high temperature
- proton exchange membrane fuel cells, J. Mater. Chem. 21 (2011) 2187-2193.
- 883 [54] L. Zeng, T.S. Zhao, L. An, G. Zhao, X.H. Yan, A high-performance
- sandwiched-porous polybenzimidazole membrane with enhanced alkaline retention
- for anion exchange membrane fuel cells, Energy Environ. Sci. 8 (2015) 2768-2774.
- 886 [55] S. Xu, G. Zhang, Y. Zhang, C. Zhao, L. Zhang, M. Li, J. Wang, N. Zhang, H. Na,
- 887 Cross-linked hydroxide conductive membranes with side chains for direct methanol

- fuel cell applications, J. Materials Chemistry 22 (2012) 13295-13302.
- 889 [56] A.Y. Leykin, O.A. Shkrebko, M.R. Tarasevich, Ethanol crossover through
- alkali-doped polybenzimidazole membrane, J. Membrane Science 328 (2009) 86-89.
- [57] L. An, T.S. Zhao, Y.S. Li, Q.X. Wu, Charge carriers in alkaline direct oxidation
- fuel cells, Energy Environ. Sci. 5 (2012) 7536-7538.
- 893 [58] K. Matsumoto, T. Fujigaya, H. Yanagi, N. Nakashima, Very High Performance
- Alkali Anion-Exchange Membrane Fuel Cells, Adv. Funct. Mater. 21 (2011)
 1089-1094.
- [59] X.L. Zhou, T.S. Zhao, L. An, L. Wei, C. Zhang, The use of polybenzimidazole
- 897 membranes in vanadium redox flow batteries leading to increased coulombic
- efficiency and cycling performance, Electrochim. Acta 153 (2015) 492-498.
- [60] L.Y. Li, B.C. Yu, C.M. Shih, S.J. Lue, Polybenzimidazole membranes for direct
- 900 methanol fuel cell: Acid-doped or alkali-doped?, J. Power Sources 287 (2015)901 386-395.
- 902 [61] R.N. Couto, J.J. Linares, KOH-doped polybenzimidazole for alkaline direct
 903 glycerol fuel cells, J. Membrane Science 486 (2015) 239-247.
- 904

908 **Table caption:**

909 Table 1 The selected fuel cell performance achieved by using alkali-doped910 polybenzimidazole membranes.

911 **Figure captions:**

- 912 Fig. 1 Chemical structure of the pristine polybenzimidazole membrane [59].
- 913 Reproduced with permission from Elsevier.
- Fig. 2 (a) The scheme of combination between KOH and -NH- [39]. (b) The possible
- 915 combination mechanism in details [47]. (c) The possible reaction during the doping
- 916 process: neutralization reaction and the hydrogen bonds before and after the doping
- 917 process [45]. (d) Schematic of the pristine PBI membrane and alkali-doped PBI
- 918 membrane [45]. Reproduced with permission from Elsevier.
- 919 Fig. 3 (a) Experimental setup and flow chart [57]. (b) Variations in the Na⁺ flux
- 920 through each of three membranes with current density [57]. Reproduced with
- 921 permission from The Royal Society of Chemistry.
- Fig. 4 (a) Effect of the doping time on the doping level [48]. (b) The ionic conductivity as a function of the time. [47]. (c) Effect of the NaOH concentration on the ionic conductivity [52]. (d) Variation of the ionic conductivity with the doping
- 925 electrolyte cocnentration at various K_2CO_3 concentrations [37]. Reproduced with

926 permission from Elsevier.

927 Fig. 5 (a) Effect of the temperature on the ionic conductivity [52]. (b) Variation of the 928 conductivity of the KOH-doped PBI memrbane with the temperature [37]. (c) Effect 929 of the soaking time on the ionic conductivity [52]. (d) Ion conductivities of the 930 alkali-doped PBI membrane in 1.0 M NaOH [48]. Reproduced with permission from Elsevier. 931 932 Fig. 6 (a) The fabrication process of KOH-doped porous PBI membranes [50]. (b) The 933 polarization and power density curves using three membranes [50]. (c) Schematic 934 illustration of a PBI-based membrane electrode assembly and the fuel cell [54]. (d) 935 The polarization and power density curves with the conventional MEA (round 936 symbols) and the novel MEA (square symbols), and the constant current discharging 937 behaviors using the conventional MEA and the novel MEA at a current density of 700 mA cm⁻² [54]. Reproduced with permission from Elsevier and The Royal Society of 938 939 Chemistry.

Fig. 7 (a) Schematic illustration of an anion exchange membrane fuel cell [58]. (b)
The polarization and power density curves of the fuel cell (red line: PyPBI cell; black
line: AS-4 cell) [58]. (c) The polarization curves of an alkaline direct ethanol fuel cell
with alkali-doped PBI membrane at 75°C and 90°C [38]. (d) The performance of
direct methanol fuel cells using a KOH-doped PBI membrane and H₃PO₄-doped PBI

945	membrane at 60° C (upper) and 90° C (lower), respectively [60]. (e) The performance
946	of an air-breathing alkaline direct ethanol fuel cell at 60°C [47]. Reproduced with
947	permission from Wiley and Elsevier.
948	Fig. 8 (a) Temperatuere dependence of polarization curves for a direct formate fuel
949	cell with a fuel of 2.0 M KOH + 2.0 M HCOOK [42]. (b) HCOOK cocnentration
950	dependence of polarization and power density curves for a direct formate fuel cell at
951	120°C [42]. (c) Schematic of the designed membrane [43]. (d) The polarization and
952	power density curves of direct borohydride fuel cells with the prepared membranes
953	[43]. Reproduced with permission from Elsevier.
954	

956 Graphical Abstract:

957 This article provides a review of past research on the alkali-doped polybenzimidazole

958 membranes and their application in fuel cells, as well as the fuel cell performance.

Fuel/Oxidant	Anode	Cathode	Membrane	T (°C)	density (mW	Ref.
1200 sccm H ₂ / 800 sccm O ₂	Pt/C (0.35 mg cm ⁻²)	Pt/C (0.35 mg cm ⁻²)	KOH-doped PBI membrane	50	~700 @ 2.0 A cm ⁻²	[37]
1200 sccm H ₂ / 800 sccm O ₂	Pt/C (0.35 mg cm ⁻²)	Pt/C (0.35 mg cm ⁻²)	(KOH + K ₂ CO ₃)-doped PBI membrane	50	~700 @ 2.0 A cm ⁻²	[37]
1000 sccm H ₂ (RH = 95%) / 2000 sccm air (RH = 95%)	Pt/C (0.45 mg cm ⁻²) (MWNT/KO H-PyPBI)	Pt/C (0.45 mg cm ⁻²) (MWNT/KOH -PyPBI)	Tokuyama A2012 membrane	50	256	[58]

1000 sccm H ₂ (RH = 95%) / 2000 sccm air (RH = 95%)	Pt/C (0.45 mg cm ⁻²) (Tokuyama AS-4)	Pt/C (0.45 mg cm ⁻²) (Tokuyama AS-4)	Tokuyama A2012 membrane	50	174	[58]
$200 \text{ sccm H}_2 (\text{RH} = 100\%) / 200$ $\text{sccm O}_2 (\text{RH} = 100\%)$	Pt/C (0.5 mg cm ⁻²)	Pt/C (0.5 mg cm ⁻²)	KOH-doped porous PBI membrane	60	72.17	[50]
$200 \text{ sccm } H_2 \text{ (RH} \\ = 100\%) / 200 \\ \text{ sccm } O_2 \text{ (RH =} \\ 100\%)$	Pt/C (0.5 mg cm ⁻²)	Pt/C (0.5 mg cm ⁻²)	Fumapem® FAA membrane	60	45.36	[50]
$200 \text{ sccm } H_2 \text{ (RH}$ = 100%) / 200 sccm O ₂ (RH = 100%)	Pt/C (0.5 mg cm ⁻²)	Pt/C (0.5 mg cm ⁻²)	KOH-doped PBI membrane	60	41.26	[50]
$300 \text{ sccm } H_2 \text{ (RH} = 100\%) / 300$ $\text{ sccm } O_2 \text{ (RH} = 100\%)$	Pd NWs /PBI/rGO	Pd NWs /PBI/rGO	KOH-doped sandwiched-porous PBI membrane	90	544.4	[54]
$300 \text{ sccm H}_2 (\text{RH} = 100\%) / 300$ $\text{sccm O}_2 (\text{RH} = 100\%)$	Pd NWs /PBI/rGO	Pd NWs /PBI/rGO	KOH-doped PBI membrane	90	396.8	[54]
5 mL min ⁻¹ 1 M methanol + 6 M KOH / 100 sccm O ₂ (RH = 100%)	PtRu/C (5 mg cm ⁻²)	Pt/C (5 mg cm ⁻²)	KOH-doped PBI/0.05% CNT composite membrane	60	49.9	[51]
5 mL min ⁻¹ 2 M methanol + 6 M KOH / 100 sccm O ₂ (RH = 100%)	PtRu/C (5 mg cm ⁻²)	Pt/C (5 mg cm ⁻²)	KOH-doped PBI/0.05% CNT composite membrane	60	67.1	[51]
5 mL min ⁻¹ 1 M methanol + 6 M KOH / 100 sccm humidified O ₂	PtRu (5 mg cm ⁻²)	Pt (5 mg cm ⁻²)	KOH-doped PBI membrane	60	66.5	[60]
5 mL min ⁻¹ 2 M	PtRu	Pt	KOH-doped PBI	60	81.5	[60]

methanol + 6 M	(5 mg cm^{-2})	(5 mg cm^{-2})	membrane			
KOH / 100 sccm						
humidified O ₂						
15 mL min ⁻¹ 1 M						
methanol + 6 M	PtRu	Pt	KOH-doped PBI	(0)	120	[(0)]
KOH / 100 sccm	(5 mg cm^{-2})	(5 mg cm^{-2})	membrane	60	120	[00]
humidified O ₂						
1 mL min ⁻¹ 2 M	PtRu/C	D:/C	KOU 1 I DDI			
methanol + 2 M	(2.0 mg	Pt/C	KOH-doped PBI	90	31	[38]
KOH / O ₂	cm ⁻²)	(1.0 mg cm^2)	membrane			
5 mL min ⁻¹ 1 M						
methanol + 6 M	PtRu/C	Pt/C	KOH-doped PBI	00	24.5	[71]
KOH / 100 sccm	(5 mg cm^{-2})	(5 mg cm^{-2})	membrane	90	24.5	[51]
$O_2 (RH = 100\%)$						
5 mL min ⁻¹ 1 M			KOH-doped			
methanol + 6 M	PtRu/C	Pt/C	PBI/0.05% CNT	0.0	50.0	[
KOH / 100 sccm	(5 mg cm^{-2})	(5 mg cm^{-2})	composite	90	50.9	[51]
O ₂ (RH = 100%)			membrane			
5 mL min ⁻¹ 2 M			KOH-doped			
methanol + 6 M	PtRu/C	Pt/C	PBI/0.05% CNT	00	1047	[61]
KOH / 100 sccm	(5 mg cm^{-2})	(5 mg cm^{-2})	composite	90	104.7	[31]
O ₂ (RH = 100%)			membrane			
5 mL min ⁻¹ 2 M			KOH-doped			
methanol + 6 M	PtRu/C	Pt/C	PBI/0.10% CNT	00	100	[61]
KOH / 100 sccm	(5 mg cm^{-2})	(5 mg cm^{-2})	composite	90	~100	[51]
O ₂ (RH = 100%)			membrane			
5 mL min ⁻¹ 2 M			KOH-doped			
methanol + 6 M	PtRu/C	Pt/C	PBI/0.15% CNT	00	10	[71]
KOH / 100 sccm	(5 mg cm^{-2})	(5 mg cm^{-2})	composite	90	~40	[51]
O ₂ (RH = 100%)			membrane			
5 mL min ⁻¹ 2 M						
methanol + 6 M	PtRu/C	Pt/C	KOH-doped PBI/1%	00	60	[71]
KOH / 100 sccm	(5 mg cm^{-2})	(5 mg cm^{-2})	CNT composite	90	~60	[51]
O ₂ (RH = 100%)			membrane			
5 mL min ⁻¹ 1 M						
methanol + 6 M	PtRu	Pt	KOH-doped PBI	00	100.2	[(0)]
KOH / 100 sccm	(5 mg cm^{-2})	(5 mg cm^{-2})	membrane	90	109.3	[60]
humidified O ₂						

5 mL min ⁻¹ 2 M methanol + 6 M KOH / 100 sccm humidified O ₂	PtRu (5 mg cm ⁻²)	Pt (5 mg cm ⁻²)	KOH-doped PBI membrane	90	117.9	[60]
$15 \text{ mL min}^{-1} 1 \text{ M}$ methanol + 6 M KOH / 100 sccm humidified O ₂	PtRu (5 mg cm ⁻²)	Pt (5 mg cm ⁻²)	KOH-doped PBI membrane	90	158.9	[60]
1 mL min ⁻¹ 2 M ethanol + 2 M KOH / air	PtRu/C (2 mg cm ⁻²)	MnO ₂ /C (1 mg cm ⁻²)	KOH-doped PBI membrane	60	30 (0 h)	[47]
1 mL min ⁻¹ 2 M ethanol + 2 M KOH / air	PtRu/C (2 mg cm ⁻²)	MnO_2/C (1 mg cm ⁻²)	KOH-doped PBI membrane	60	15 (210 h)	[47]
1 mL min ⁻¹ 2 M ethanol + 2 M KOH / air	PtRu/C (2 mg cm ⁻²)	MnO_2/C (1 mg cm ⁻²)	KOH-doped PBI membrane	60	14 (220 h)	[47]
1 mL min ⁻¹ 2 M ethanol + 2 M KOH / air	PtRu/C (2 mg cm ⁻²)	MnO ₂ /C (1 mg cm ⁻²)	KOH-doped PBI membrane	60	9 (240 h)	[47]
$1 \text{ mL min}^{-1} 2 \text{ M}$ ethanol + 2 M KOH / O ₂	PtRu/C (2 mg cm ⁻²)	Pt/C (1 mg cm ⁻²)	KOH-doped PBI membrane	75	49.20	[39]
5 mL min ⁻¹ 2 M ethanol + 3 M KOH / 200 sccm air	RuV/C (2.1 mg cm ⁻²)	Pt/C (1.24 mg cm ⁻²)	KOH-doped PBI membrane	80	90	[46]
5 mL min ⁻¹ 2 M ethanol + 3 M KOH / 200 sccm O ₂	RuV/C (2.1 mg cm ⁻²)	Pt/C (1.24 mg cm ⁻²)	KOH-doped PBI membrane	80	110	[46]
5 mL min ⁻¹ 2 M ethanol + 3 M KOH / 200 sccm air	RuV/C (4.5 mg cm ⁻²)	TMPhP/C (9.2 mg cm^{-2})	KOH-doped PBI membrane	80	~105	[46]
5 mL min ⁻¹ 2 M ethanol + 3 M KOH / 200 sccm	RuV/C (4.5 mg cm ⁻²)	TMPhP/C (9.2 mg cm^{-2})	KOH-doped PBI membrane	80	~120	[46]

O ₂						
5 mL min ⁻¹ 2 M ethanol + 3 M KOH / 200 sccm air	RuV/C (0.72 mg cm ⁻²)	TMPhP/C (9 mg cm ⁻²)	KOH-doped PBI membrane	80	35	[46]
1 mL min ⁻¹ 2 M ethanol + 2 M KOH / O ₂	PtRu/C (2 mg cm ⁻²)	Pt/C (1 mg cm ⁻²)	KOH-doped PBI membrane	90	60.95	[39]
2 mL min ⁻¹ 0.5 M EG +1 M KOH / 100 sccm O ₂	PdNi/C (1 mg cm ⁻²)	HYPERMEC TM /C (1 mg cm ⁻²)	KOH-doped PBI membrane	60	28	[40]
2 mL min ⁻¹ 1 M EG +1 M KOH / 100 sccm O ₂	PdNi/C (1 mg cm ⁻²)	HYPERMEC TM /C (1 mg cm ⁻²)	KOH-doped PBI membrane	60	32	[40]
2 mL min ⁻¹ 2 M EG +1 M KOH / 100 sccm O ₂	PdNi/C (1 mg cm ⁻²)	HYPERMEC ^{TM/} C (1 mg cm ⁻²)	KOH-doped PBI membrane	60	23	[40]
2 mL min ⁻¹ 1 M EG +3 M KOH / 100 sccm O ₂	PdNi/C (1 mg cm ⁻²)	HYPERMEC TM /C (1 mg cm ⁻²)	KOH-doped PBI membrane	60	58	[40]
2 mL min ⁻¹ 1 M EG +5 M KOH / 100 sccm O ₂	PdNi/C (1 mg cm ⁻²)	HYPERMEC TM /C (1 mg cm ⁻²)	KOH-doped PBI membrane	60	72	[40]
2 mL min ⁻¹ 1 M EG +7 M KOH / 100 sccm O ₂	PdNi/C (1 mg cm ⁻²)	HYPERMEC ^{TM/} C (1 mg cm ⁻²)	KOH-doped PBI membrane	60	80	[40]
2 mL min ⁻¹ 1 M EG +9 M KOH / 100 sccm O ₂	PdNi/C (1 mg cm ⁻²)	HYPERMEC TM /C (1 mg cm ⁻²)	KOH-doped PBI membrane	60	38	[40]
2 mL min ⁻¹ 1 M EG +7 M KOH / 100 sccm O ₂	PdNi/C (1 mg cm ⁻²)	HYPERMEC TM /C (1 mg cm ⁻²)	KOH-doped PBI membrane	90	112	[40]
2 mL min ⁻¹ 1 M EG +7 M KOH / 100 sccm Air	PdNi/C (1 mg cm ⁻²)	HYPERMEC TM /C (1 mg cm ⁻²)	KOH-doped PBI membrane	90	92	[40]
1 mL min ⁻¹ 1 M glycerol + 4 M KOH / 20 sccm	Pt/C (2 mg cm ⁻²)	Pt/C (1 mg cm ⁻²)	KOH-doped PBI membrane	30	~5	[41]

O ₂						
1 mL min ⁻¹ 1 M						
glycerol + 4 M	Pt ₃ Sn/C	Pt/C	KOH-doped PBI	20		5.643
KOH / 20 sccm	(2 mg cm^{-2})	(1 mg cm^{-2})	membrane	30	~8	[61]
O_2						
1 mL min ⁻¹ 1 M						
glycerol + 4 M	Pt/C	Pt/C	KOH-doped PBI	4.7	0	5413
KOH / 20 sccm	(2 mg cm^{-2})	(1 mg cm^{-2})	membrane	45	~8	[41]
O_2						
1 mL min ⁻¹ 1 M						
glycerol + 4 M	Pt ₃ Sn/C	Pt/C	KOH-doped PBI		15	5 (1)
KOH / 20 sccm	(2 mg cm^{-2})	(1 mg cm^{-2})	membrane	45	~17	[61]
O_2						
1 mL min ⁻¹ 1 M						
glycerol + 4 M	Pt/C	Pt/C	KOH-doped PBI			
KOH / 20 sccm	(2 mg cm^{-2})	(1 mg cm^{-2})	membrane	60	~12	[41]
O ₂						
1 mL min ⁻¹ 0.5 M						
glycerol + 4 M	Pt/C	Pt/C	KOH-doped PBI	60	1.5	5413
KOH / 20 sccm	(2 mg cm^{-2})	(1 mg cm^{-2})	membrane	60	~16	[41]
O_2						
1 mL min ⁻¹ 2 M						
glycerol + 4 M	Pt/C	Pt/C	KOH-doped PBI	60	14	5413
KOH / 20 sccm	(2 mg cm^{-2})	(1 mg cm^{-2})	membrane	60	~14	[41]
O_2						
1 mL min ⁻¹ 4 M						
glycerol + 4 M	Pt/C	Pt/C	KOH-doped PBI		_	
KOH / 20 sccm	(2 mg cm^{-2})	(1 mg cm^{-2})	membrane	60	~7	[41]
O ₂						
1 mL min ⁻¹ 1 M						
glycerol + 2 M	Pt/C	Pt/C	KOH-doped PBI			
KOH / 20 sccm	(2 mg cm^{-2})	(1 mg cm^{-2})	membrane	60	~6	[41]
O ₂						
1 mL min ⁻¹ 1 M						
glycerol + 3 M	Pt/C	Pt/C	KOH-doped PBI			F 4 4 5
KOH / 20 sccm	(2 mg cm^{-2})	(1 mg cm^{-2})	membrane	60	~9	[41]
O ₂						
1 mL min ⁻¹ 1 M	Pt/C	Pt/C	KOH-doped PBI	60	~18	[41]

glycerol + 6 M	(2 mg cm^{-2})	(1 mg cm^{-2})	membrane			
KOH / 20 sccm						
O ₂						
0.5 mL min ⁻¹ 1 M						
glycerol + 4 M	Pt/C	Pt/C	KOH-doped PBI	60	11	[41]
KOH / 20 sccm	(2 mg cm^{-2})	(1 mg cm^{-2})	membrane	00	~11	[41]
O ₂						
2 mL min ⁻¹ 1 M						
glycerol + 4 M	Pt/C	Pt/C	KOH-doped PBI	60	14	[41]
KOH / 20 sccm	(2 mg cm^{-2})	(1 mg cm^{-2})	membrane	00	~14	[41]
O ₂						
4 mL min ⁻¹ 1 M						
glycerol + 4 M	Pt/C	Pt/C	KOH-doped PBI	60	14	[41]
KOH / 20 sccm	(2 mg cm^{-2})	(1 mg cm^{-2})	membrane	00	~14	[41]
O ₂						
1 mL min ⁻¹ 1 M						
glycerol + 4 M	Pt ₃ Sn/C	Pt/C	KOH-doped PBI	60	22	[61]
KOH / 20 sccm	(2 mg cm^{-2})	(1 mg cm^{-2})	membrane	60	~22	[01]
O ₂						
1 mL min ⁻¹ 1 M						
glycerol + 4 M	Pt/C	Pt/C	KOH-doped PBI	75	19	[41]
KOH / 20 sccm	(2 mg cm^{-2})	(1 mg cm^{-2})	membrane	15	10	[41]
O_2						
1 mL min ⁻¹ 1 M						
glycerol + 4 M	Pt ₃ Sn/C	Pt/C	KOH-doped PBI	75	24.2	[61]
KOH / 20 sccm	(2 mg cm^{-2})	(1 mg cm^{-2})	membrane	15	54.2	[01]
O ₂						
1 mL min ⁻¹ 1 M						
glycerol + 4 M	Pt/C	Pt/C	KOH-doped PBI	00	15	[41]
KOH / 20 sccm	(2 mg cm^{-2})	(1 mg cm^{-2})	membrane	90	15	[41]
O ₂						
2 mL min ⁻¹ 1 M						
glycerol + 4 M	Pt ₃ Sn/C	Pt/C	KOH-doped PBI	(0)	17	[41]
KOH / 20 sccm	(2 mg cm^{-2})	(1 mg cm^{-2})	membrane	00	~17	[41]
O_2						
2 mL min ⁻¹ 1 M	DtD/C		KOIL dessed DDI			
glycerol + 4 M	PtKU/C	Pt/U	KOH-aopea PBI	60	~15	[41]
KOH / 20 sccm	(2 mg cm ²)	(1 mg cm ⁻)	memorane			

O_2						
6 mL min ⁻¹ 2 M			KOH-doped PBI			
HCOOK + 2 M	Pd/C	Ag/C	membrane	120	170	[29]
KOH / 200 sccm	(4 mg cm^{-2})	(8 mg cm^{-2})	(FuMA-Tech			
O_2			GmBH)			
6 mL min ⁻¹ 6 M			KOH-doped PBI			
HCOOK + 2 M	Pd/C	Ag/C	membrane	120	160	[20]
KOH / 200 sccm	(4 mg cm^{-2})	(8 mg cm^{-2})	(FuMA-Tech	120	100	[29]
O_2			GmBH)			
0.5 mL min ⁻¹ 1 M	Pt/C	Dt/C	NaOH-doped porous			
0.5 mL min ⁻¹ 1 M NaBH ₄ + 3 M	Pt/C	Pt/C	NaOH-doped porous PBI membrane	40	204	[43]
0.5 mL min ⁻¹ 1 M NaBH ₄ + 3 M NaOH / O ₂	Pt/C (1 mg cm ⁻²)	Pt/C (0.5 mg cm ⁻²)	NaOH-doped porous PBI membrane (0.45)	40	204	[43]
0.5 mL min ⁻¹ 1 M NaBH ₄ + 3 M NaOH / O ₂ 0.5 mL min ⁻¹ 1 M	Pt/C (1 mg cm ⁻²)	Pt/C (0.5 mg cm ⁻²)	NaOH-doped porous PBI membrane (0.45)	40	204	[43]
$\begin{array}{c} 0.5 \ \text{mL min}^{-1} \ 1 \ \text{M} \\ \text{NaBH}_4 + 3 \ \text{M} \\ \text{NaOH} \ / \ \text{O}_2 \\ \end{array} \\ \hline \begin{array}{c} 0.5 \ \text{mL min}^{-1} \ 1 \ \text{M} \\ \text{NaBH}_4 + 3 \ \text{M} \end{array} \end{array}$	Pt/C (1 mg cm ⁻²) Pt/C (1 mg cm ⁻²)	Pt/C (0.5 mg cm ⁻²) Pt/C (0.5 mg cm ⁻²)	NaOH-doped porous PBI membrane (0.45) NaOH-doped porous PBI membrane (0.6)	40 40	204	[43]
$\begin{array}{c} 0.5 \ \text{mL min}^{-1} \ 1 \ \text{M} \\ \text{NaBH}_4 + 3 \ \text{M} \\ \text{NaOH} \ / \ \text{O}_2 \\ \end{array} \\ \hline \begin{array}{c} 0.5 \ \text{mL min}^{-1} \ 1 \ \text{M} \\ \text{NaBH}_4 + 3 \ \text{M} \\ \text{NaOH} \ / \ \text{O}_2 \end{array}$	Pt/C (1 mg cm ⁻²) Pt/C (1 mg cm ⁻²)	Pt/C (0.5 mg cm ⁻²) Pt/C (0.5 mg cm ⁻²)	NaOH-doped porous PBI membrane (0.45) NaOH-doped porous PBI membrane (0.6)	40	204 262	[43]
$\begin{array}{c} 0.5 \ \text{mL min}^{-1} \ 1 \ \text{M} \\ \text{NaBH}_4 + 3 \ \text{M} \\ \text{NaOH} \ / \ \text{O}_2 \\ \end{array} \\ \begin{array}{c} 0.5 \ \text{mL min}^{-1} \ 1 \ \text{M} \\ \text{NaBH}_4 + 3 \ \text{M} \\ \text{NaOH} \ / \ \text{O}_2 \\ \end{array} \\ \begin{array}{c} 0.5 \ \text{mL min}^{-1} \ 1 \ \text{M} \end{array} \end{array}$	Pt/C (1 mg cm ⁻²) Pt/C (1 mg cm ⁻²)	Pt/C (0.5 mg cm ⁻²) Pt/C (0.5 mg cm ⁻²)	NaOH-doped porous PBI membrane (0.45) NaOH-doped porous PBI membrane (0.6)	40	204 262	[43]
$\begin{array}{c} 0.5 \ \text{mL min}^{-1} \ 1 \ \text{M} \\ \text{NaBH}_4 + 3 \ \text{M} \\ \text{NaOH} \ / \ \text{O}_2 \\ \end{array} \\ \hline \begin{array}{c} 0.5 \ \text{mL min}^{-1} \ 1 \ \text{M} \\ \text{NaBH}_4 + 3 \ \text{M} \\ \text{NaOH} \ / \ \text{O}_2 \\ \hline \end{array} \\ \hline \begin{array}{c} 0.5 \ \text{mL min}^{-1} \ 1 \ \text{M} \\ \text{NaBH}_4 + 3 \ \text{M} \\ \end{array} \end{array}$	Pt/C (1 mg cm ⁻²) Pt/C (1 mg cm ⁻²) Pt/C (1 mg cm ⁻²)	Pt/C (0.5 mg cm ⁻²) Pt/C (0.5 mg cm ⁻²) Pt/C (0.5 mg cm ⁻²)	NaOH-doped porous PBI membrane (0.45) NaOH-doped porous PBI membrane (0.6) NaOH-doped porous PBI membrane (0.8)	40 40 40	204 262 151	[43] [43] [43]

968Table 1 The selected fuel cell performance achieved by using

969 alkali-doped polybenzimidazole membranes.