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Stability analyses based on the rates of change of perturbations were performed to study
the growth mechanisms of second-mode instability in hypersonic boundary layers. The
results show that the streamwise velocity perturbation is strengthened by the concurrence
of the momentum transfer due to the wall-normal velocity fluctuation and the streamwise
gradient of the pressure perturbation near the wall, while the wall-normal velocity
perturbation is dominated by the wall-normal gradient of the pressure perturbation.
Meanwhile, the change of fluctuating internal energy is sustained by the advection
of perturbed thermal energy in the vicinity of the critical layer and by the dilatation
fluctuation near the wall. The energy transport by the wall-normal velocity fluctuation
accounts for the growth of second-mode instability, and the growth rate depends on
the relative phase of the energy transport by the wall-normal velocity fluctuation to the
total time rate of change of fluctuating internal energy in the vicinity of the critical
layer. Moreover, this relative phase is associated with the mutual interaction between the
critical-layer fluctuation and the near-wall fluctuation. Porous walls recast this mutual
interaction by delaying the phase of the wall-normal energy transport near the wall,
resulting in the stabilization of the second mode.
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1. Introduction

The laminar-turbulent transition in hypersonic boundary layers involves different paths
(Morkovin 1994), and the main paths which depend on the forcing environmental
disturbances are analogous to those in subsonic boundary layers (Fedorov 2011). In
low-disturbance environments, a linear growth governed by primary modes coming after
the receptivity phase is significant for the boundary-layer transition. The eN method (e is
the exponential and N is the natural logarithm of the ratio of the disturbance amplitude
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at transition to the disturbance amplitude at the initial station), prevailingly used in the
transition prediction, is based on the integration of the growth rate of the dominant mode
(Van Ingen 2008). For hypersonic boundary layers over a flat plane or a sharp cone at zero
angle of attack, it has been experimentally and theoretically substantiated that the linear
growth of perturbations is dominated by the second mode, also called Mack second mode
(Kendall 1975; Mack 1975; Stetson et al. 1983). The growth rate of the second mode can
be obtained through linear stability theory (LST) (El-Hady 1980; Mack 1984; Malik 1990)
or parabolized stability equations (PSE) (Chang et al. 1991; Li & Malik 1996). On the
other hand, for an elevated disturbance level, the linear growth phase is bypassed and the
breakdown to turbulence evolves straightforwardly from transient growth.

Unlike Tollmien–Schlichting waves, second-mode instability is inviscid and believed
to be acoustic instability trapped between the wall and the sonic line during propagation
(Malmuth et al. 1998; Fedorov 2011). Kuehl (2018) analysed the acoustic impedance along
the wall-normal direction for second-mode waves and found that the acoustic impedance
for second-mode waves has a peak at the sonic line. Consequently, the sonic line and the
wall (with infinity impedance) form an acoustic impedance well, sustaining the resonation
of second-mode waves. Meanwhile, a one-dimensional parallel flow cycle-averaged
disturbance acoustic energy equation was derived and a thermoacoustic interpretation of
second-mode instability was proposed. It was shown that the energy to sustain the resonant
standing waves comes from thermoacoustic Reynolds stress and thermodynamic work.
Unnikrishnan & Gaitonde (2019) performed a fluid-thermodynamic decomposition on
instability waves, using momentum potential theory (Doak 1989). The random fluctuations
were decomposed into three different modes, namely, the vorticity, entropy and acoustic
modes. They found that though the vortical component is the largest in modulus, the
thermal component is the primary source for the growth of perturbations dominated by
the second mode. Nevertheless, the detailed physical mechanisms of how the second-mode
disturbances are sustained and amplified still need to be explored.

In the present study, we theoretically investigate the growth mechanisms of
second-mode instability. We are motivated by the mechanism of the Rijke tube in
generating acoustic waves (Rayleigh 1945) to take into account the relative phases of
source terms to local perturbations. We also utilize a porous wall to show the relation
between the stabilization of the second mode and the variations in energy sources.

2. Linear stability analysis

Two-dimensional second-mode instability is considered in this study because it is more
unstable than three-dimensional second-mode instability (Mack 1975). To simplify the
stability analysis, the non-parallel effect of boundary layers growing downstream is
neglected. The linearized disturbance equations of a viscous, compressible flow can be
obtained by subtracting the governing equations corresponding to the mean flow and
nonlinear terms from the Navier–Stokes equations (Mack 1984).

The dimensionless perturbations, in normal-mode form, are

[u′, v′, T ′, p′]T(x, y, t) = [û(y), v̂(y), T̂(y), p̂(y)]T exp(iαx − iωt), (2.1)

ˆ

where u′ and v′ denote the disturbance velocity components in the x and y directions 
(x is the streamwise direction and y is the wall-normal direction), T ′ is the temperature 
perturbation, p′ is the pressure perturbation, t is the time, α is the streamwise wavenumber, 
ω is the angular frequency, and û(y), v̂(y), T(y) and p̂(y) are the corresponding complex 
eigenfunctions.The superscript T stands for the transpose. Notably, the velocity and 
temperature are scaled by their upper boundary-layer edge quantities Ue

∗ and Te
∗, the
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length scale is l∗ = √
μ∗

ex∗/(ρ∗
e U∗

e ), where μ∗ is the dynamic viscosity and ρ∗ is the
density, and the time and pressure scales are l∗/U∗

e and ρ∗
e U∗

e
2, respectively. The asterisks

represent dimensional quantities, and the subscript e refers to the upper boundary-layer
edge. Substituting (2.1) into the linearized Navier–Stokes equation yields the governing
equations for small disturbances, which can be written in the matrix form

dz
dy

= Hz, (2.2)

z(x, y, t) =
(

û,
dû
dy

, v̂, p̂, T̂,
dT̂
dy

)T

, (2.3)

where H is a 6 × 6 matrix and its non-zero elements are given in appendix A. The
boundary conditions of (2.2) are

y = 0 : û = T̂ = 0, v̂ = Ap̂, (2.4a,b)

y → ∞ : û = v̂ = T̂ = 0, (2.5)

where A is the wall admittance. For the solid wall, A = 0, while for the porous wall, A is
commonly a complex number. The admittance of porous walls is formulated by Kozlov,
Fedorov & Malmuth (2005) and Zhao et al. (2018). An eigenvalue problem constituted
by (2.2), (2.4a,b) and (2.5) can be solved using a global or local method (El-Hady 1980;
Malik 1990; Tumin 2007). For a spatial stability problem, α is a complex eigenvalue and
ω is a real number. The growth rate of an instability wave is −Im(α), and if −Im(α) > 0,
the wave is unstable.

For a hypersonic boundary layer characterized by the mean velocity U(y) and mean
temperature T(y), the dimensionless linearized disturbance equation (2.2) may be reduced
to the following forms:

i(αU − ω)
û
T

= −dU
dy

v̂

T
− iαp̂ + μ

R
d2û

dy2 + ε, (2.6)

i(αU − ω)
v̂

T
= −dp̂

dy
+ 4

3
μ

R
d2v̂

dy2 + ε, (2.7)

i(αU − ω)
T̂
T

= −dT
dy

v̂

T
− (γ − 1)

(
iαû + dv̂

dy

)
+ γμ

RPr
d2T̂

dy2 + ε, (2.8)

where ε denotes the residual term that is negligible. The left-hand sides of the above
three equations are the total time rates of change of momentum perturbations and internal
energy perturbation, respectively. Amid them, iαU(()/T) is the advection of a perturbation
quantity and −iω(()/T) is the time rate of change of a perturbation quantity. On the
right-hand sides of (2.6) and (2.7), the terms −(dU/dy)(v̂/T), −iαp̂ and −(dp̂/dy) are
the momentum transfer by the wall-normal velocity fluctuation, the streamwise gradient of
pressure fluctuations, and the wall-normal gradient of pressure fluctuations, respectively,
and (μ/R)(d2û/dy2) and 4

3 (μ/R)(d2v̂/dy2) are the viscous stresses. For the disturbance
internal energy equation (2.8), on its right-hand side, the first term is the energy transport
by the wall-normal velocity fluctuation, the second term (γ − 1)(iαû + dv̂/dy) denotes
the rate of energy change due to dilatation fluctuations, and third term is the thermal
conduction.
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Figure 1. (a) Velocity and (b) temperature profiles of the basic flow.

3. Growth mechanisms

In this study, we utilize a flat-plate boundary layer with a Mach number of Me = 6 at the  
edge of the boundary layer and an adiabatic wall, and all calculations are conducted with
the ratio of specific heats γ = 1.4, Reynolds number R = ρe

∗Ue
∗l∗/μ∗ = 2000, Prandtl 

number Pr = 0.72 and μ = T0.7. Notably, the assumption μ = T0.7 does not affect the 
generality of second-mode instability (Brès et al. 2013). The basic flow is obtained from 
the self-similar solutions with the Lees–Dorodnitsyn transformation (Anderson Jr. 2006), 
and the velocity and temperature profiles of the basic flow are depicted in figure 1. The 
growth in the kinetic and thermal energies of perturbations can be revealed by a time 
average of u′u′, v′v′, and  T ′T ′, and the sources prompting their growth can be obtained by 
multiplying (2.6), (2.7) and (2.8) by the complex conjugates of û, v̂ and T , respectively, 
and retaining the real parts. However, the time-average method cannot elucidate the mutual 
interaction between energy sources. To provide more insight interaction mechanism for 
sustaining the second-mode instability inside the boundary layer, in this study, we focus 
on the rates of change of disturbances.

The second mode at ω = 0.152 with an eigenvalue of α = 0.164 − 0.004i is of our 
interest, as the growth rate is the largest under the current boundary layer. Figure 2 
illustrates the eigenfunctions of the second mode at ω = 0.152. It explicitly shows that the 
velocity and pressure disturbances are strong below the sonic line, while the temperature 
is perturbed greatly in the vicinity of the critical layer and the near-wall region. Figure 3 
demonstrates the amplitude and phase profiles of the terms of (2.6). We can see from 
figure 3(a) that the amplitude of i(αU − ω)(û/T) is great near the wall, which is due to 
the phase superposition of −(dU/dy)( ̂v/T) and −iα ̂p, as shown in figure 3(b). In terms 
of the wall-normal velocity fluctuation, the amplitude and phase profiles of the terms of 
(2.7) depicted in figure 4 indicate that it is dominated by the wall-normal gradient of the 
pressure fluctuation. Figures 3(a) and 4(a) also show that the work of viscous stresses is 
to suppress the velocity fluctuations near the wall.

Unlike the velocity perturbation, the temperature fluctuation is remarkable at the critical 
layer as aforementioned. Figures 5 and 6 depict the left- and right-hand side terms, 
respectively, of (2.8) in amplitude and phase. We observe in figure 5(a) that around the 
critical layer (yc ≈ 14), the mean-flow advection accounts for the change of fluctuating 
internal energy in a Eulerian perspective, as iαU(T/T) is comparable to −iω(T/T)
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|û| × 10–1

|v̂| × 10–1

|T̂ | × 10–2

|p̂ | U = 0.99

U = c

U = c – a

0 0.5 1.0 1.5 2.0 0.5π 1.5π 2ππ

5

10

15

20

25

30

0

5

10

15

20

25

30

y

Figure 2. (a) Amplitude and (b) phase profiles of eigenfunctions of the second mode at ω = 0.152 with α =
0.164 − 0.004i. The boundary-layer edge (U = 0.99), critical layer (U = c) and sonic line (U = c − a) are
marked by solid, dashed and dotted lines, respectively. Here, c is the disturbance phase speed and a is the local
speed of sound. Herein, all the eigenfunctions are scaled by the wall pressure perturbation p̂w.
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Figure 3. (a) Amplitude and (b) phase profiles of i(αU − ω)(û/T), −(dU/dy)(v̂/T), −iαp̂ and
(μ/R)(d2û/dy2) for the second mode at ω = 0.152 with α = 0.164 − 0.004i. The dashed and dotted lines
denote the critical layer and the sonic line, respectively.

in amplitude. In contrast, in the near-wall region that is underneath the sonic line,
|iαU(T̂/T)| is negligible (figure 5a). Figure 6(a) indicates that, in this region, the
change of fluctuating internal energy is dominated by the dilatation fluctuation, which
is consistent with the experimental observation that intense aerodynamic heating is
generated in the dilatation region (Zhu et al. 2018). Against the wall, thermal conduction
(γμ/RPr)(d2T̂/dy2) passively induced by the temperature perturbation is noticeable, and
provides energy to the near-wall dilatation fluctuation. Note that the wall is adiabatic for
the steady flow, but is thermally conductive for the perturbed field.

The near-wall dilatation fluctuation generates compression and expansion waves, which
renders second-mode instability of an acoustic nature. Moreover, the dilatation fluctuation
is confined near the wall, which is consistent with the phenomenon that the inviscid
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second mode at ω = 0.152 with α = 0.164 − 0.004i. The dashed and dotted lines denote the critical layer and
the sonic line, respectively.
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Figure 5. (a) Amplitude and (b) phase profiles of −iω(T̂/T), iαU(T̂/T) and i(αU − ω)(T̂/T) for the second
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mode at ω = 0.152 with α = 0.164 − 0.004i. The dashed and dotted lines denote the critical layer and the 
sonic line, respectively.

acoustic wave is trapped between the sonic line and the wall. This trapping might be 
associated with the thermal conduction from the wall. At the wall, T = v̂ = 0, (2.8) is  
reduced to (γ − 1)(iα ̂u + (d ̂v/dy)) = (γ μ/RPr)(d2T/dy2), indicating that the dilatation 
fluctuation is sustained by the thermal conduction from the wall. Meanwhile, the thermal 
conduction decays swiftly, which restrains the expansion of dilatation fluctuations away 
from the wall.

The above features involved in the change of the momentum and energy perturbations 
at ω = 0.152 are common to the second mode under the current boundary layer. 
These features also indicate the growth of second-mode instability is associated with 
the momentum and energy transfer and the pressure work. It is evident that the 
pressure perturbation is closely related to the temperature perturbation. Essentially, the 
momentum and energy transfer are also associated with the temperature perturbation,
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Figure 6. (a) Amplitude and (b) phase profiles of −(γ − 1)(iαû + dv̂/dy), −(dT/dy)(v̂/T),
(γμ/RPr)(d2T̂/dy2) and i(αU − ω)(T̂/T) for the second mode at ω = 0.152 with α = 0.164 − 0.004i. The
dashed and dotted lines denote the critical layer and the sonic line, respectively.

as the wall-normal velocity fluctuation, which is pivotal in the momentum and energy
transfer between the mean flow and perturbations, is ruled by the wall-normal gradient of
the pressure perturbation.

Figure 5(b) shows an abrupt shift in the phase of i(αU − ω)(T̂/T) across the
critical layer, which is caused by the relative velocity between the mean flow and the
wave propagation because i(αU − ω)(T̂/T) = iRe(α)(U − c)(T̂/T) − Im(α)U(T̂/T) and
−Im(α) � Re(α). The term −Im(α)U(T̂/T) represents the growth in internal energy
fluctuation and is significant for the amplitude and phase of i(αU − ω)(T̂/T) in the
vicinity of the critical layer.

From figure 5(a), we see both −(dT/dy)(v̂/T) and (γμ/RPr)(d2T̂/dy2) are comparable
to i(αU − ω)(T̂/T) in amplitude at the critical layer. Hence, both of them may affect
the phase of i(αU − ω)(T̂/T) around the critical layer. However, as seen in figure 5(b),
the phase of i(αU − ω)(T̂/T) varies closely with that of −(dT/dy)(v̂/T) compared
with (γμ/RPr)(d2T̂/dy2). In other words, the consequent margin of the change of the
internal energy fluctuation in the vicinity of the critical layer is basically complemented
by the energy transported by the wall-normal velocity fluctuation. Therefore, the term
−(dT/dy)(v̂/T) is responsible for the growth of fluctuating internal energy in the vicinity
of the critical layer.

According to the mean temperature profile shown in figure 1(b), the wall-normal
velocity perturbation carries hot fluid elements upwards and cold fluid elements
downwards in the wall-normal direction, resulting in energy transport. Nevertheless, the
energy transported by the wall-normal velocity fluctuation accounts for a small proportion
of the time rate of change of fluctuating internal energy in contrast with the advection of
internal energy by the mean flow, which is consistent with the fact that the growth rate
−Im(α) is considerably smaller than Re(α).

The effective contribution of the energy transport by the wall-normal velocity
fluctuation to the growth of fluctuating internal energy is associated with the relative phase
of −(dT/dy)(v̂/T) to i(αU − ω)(T̂/T), similar to the mechanisms of the Rijke tube in
generating sound that ‘depends upon the phase of the vibration at which the transfer of
heat takes place’ (Rayleigh 1945).
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Figure 7. Phase profiles of −(dT/dy)( ̂v/T) and i(αU − ω)(T/T) of the cases: (a) ω1 = 0.13, (b) ω2 = 0.152 
and (c) ω3 = 0.17, with the corresponding eigenvalues of α1 = 0.1388 − 0.0005i, α2 = 0.164 − 0.004i and 
α3 = 0.1854 − 0.0019i, respectively. The dashed line denotes the critical layer.

Figure 7 compares the phase discrepancies between −(dT/dy)( ̂v/T) and i(αU − 
ω)(T/T) around the critical layer at different frequencies: ω1 = 0.13, ω2 = 0.152 and 
ω3 = 0.17. The corresponding eigenvalues are α1 = 0.1388 − 0.0005i, α2 = 0.164 − 
0.004i and α3 = 0.1854 − 0.0019i, respectively. It is clear that a smaller phase discrepancy 
in the vicinity of the critical layer corresponds to a larger growth rate −Im(α). Again,  
this is because that when the wall-normal energy transport is in phase with the change 
of fluctuating internal energy of a finite control volume, it has a positive impact on 
local perturbations, namely, escalating local perturbations. In contrast, a manifest phase 
discrepancy between −(dT/dy)( ̂v/T) and i(αU − ω)(T/T) gives rise to the occurrence of 
energy transported by the wall-normal velocity fluctuation being added at the phase when 
the internal energy decreases, or being taken away at the phase of increasing internal 
energy, which attenuates local perturbations. That explains why the case ω2 = 0.152 has 
the largest growth rate. In turn, the wall-normal fluctuating velocity is accelerated to adapt 
to the change of the local pressure fluctuation resulting from the increase in internal energy 
fluctuation.

The relative phase of −(dT/dy)( ̂v/T) to i(αU − ω)(T/T) in the vicinity of the critical 
layer is also associated with the near-wall dilatation fluctuation. From figure 6(b), we 
observe that the phase of the term −(dT/dy)( ̂v/T) is counter to that of the term −(γ − 
1)(iα ̂u + d ̂v/dy) between the sonic line and the wall. That is, the energy transport by 
the wall-normal velocity fluctuation (−(dT/dy)( ̂v/T)) is in phase with the rate of energy 
change due to dilatation fluctuations (γ − 1)(iα ̂u + d ̂v/dy). Therefore, the wall-normal 
transport of energy will intensify the near-wall dilatation fluctuation. Assuming that the 
internal energy perturbations of these three frequencies have the same intensity at the 
critical layer, the near-wall dilatation fluctuation of the case ω2 = 0.152 (among three 
cases in figure 7) will be of the largest intensity, which is consistent with figure 8. In  
turn, intensified dilatation fluctuations also accelerate the wall-normal fluctuating velocity, 
as well as the streamwise fluctuating velocity. Consequently, the near-wall fluctuation 
mutually interacts with the critical-layer fluctuation, which underpins the growth of 
second-mode instability.

4. Stabilization of the second mode

Theoretical and experimental studies have confirmed that porous surfaces that are 
compatible with the surfaces of thermal protection systems can stabilize second-mode
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Figure 9. (a) Amplitude and (b) phase profiles of eigenfunctions of the second mode at ω = 0.152 with α =
0.1646 − 0.00165i in the porous-wall case. The dashed and dotted lines denote the critical layer and the sonic
line, respectively.

instability (Malmuth et al. 1998; Fedorov et al. 2001; Rasheed et al. 2002; Fedorov
et al. 2003; Wagner et al. 2013). These porous surfaces, consisting of microstructures
with the pore size less than approximately 100 μm, do not disrupt the mean flow but are
semitransparent for incident waves.

The absorption mechanism of disturbance energy by porous coatings is well perceived
to explain the stabilization of the second mode (Malmuth et al. 1998; Fedorov et al. 2001).
Therefore, a small reflection coefficient is endeavoured for the design of porous coatings.
Generally, the minimal reflection coefficient occurs at the admittance phase of π, namely,
A is a negative number. Here we employ a porous wall with the admittance of A = −4. The
eigenvalue of the porous-wall case for ω = 0.152 is α = 0.1646 − 0.00165i. Apparently,
the growth rate decreases markedly compared with the smooth-solid-wall case, in which
−Im(α) = 0.004. Figure 9 depicts the amplitude and phase profiles of eigenfunctions of
the porous-wall case, and figure 10 shows the amplitude and phase profiles of −(γ −
1)(iαû + dv̂/dy), −(dT/dy)(v̂/T) and i(αU − ω)(T̂/T).
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ω)(T/T) for the second mode at ω = 0.152 with α = 0.1646 − 0.00165i in the porous-wall case. The dashed 
and dotted lines denote the critical layer and the sonic line, respectively.

By comparing figures 6(b) and 10(b), we observe that the phase of the term
−(dT/dy)( ̂v/T) against the wall is shifted from 0.5π to π as the porous wall is applied. 
According to the time dependence of exp(−iωt), the phase of −(dT/dy)( ̂v/T) varies from 
2π to 0 with increasing time; therefore, the wall-normal energy transport is delayed at 
the wall in the porous-wall case. Moreover, the delay is exerted on the near-wall field 
due to fluid continuity. Then, the interaction between the near-wall fluctuation and the 
critical-layer fluctuation via the wall-normal transport of energy is recast. Figure 10(b) 
shows that the phase of −(dT/dy)( ̂v/T) obviously differs from that of i(αU − ω)(T/T) 
in the region adjacent to the critical layer, which diminishes the positive contribution of 
energy transport by the wall-normal velocity fluctuation to the internal energy fluctuation 
and results in a decrease in the growth rate.

5. Conclusions

Theoretical analyses based on the rates of change of perturbations were performed to 
demonstrate the perturbation regime of second-mode instability in hypersonic boundary 
layers and to explain the detailed mechanisms of its growth. We have also elucidated the 
mechanisms of the stabilization effect of porous walls on second-mode instability. The 
streamwise velocity perturbation is strengthened by the concurrence of the momentum 
transfer due to the wall-normal velocity fluctuation and the streamwise gradient of the 
pressure fluctuation near the wall. The wall-normal velocity fluctuation is ruled by 
the wall-normal gradient of the pressure fluctuation. The internal energy fluctuation is 
advection-transport-dominated in the vicinity of the critical layer and dilatation-dominated 
near the wall. The wall-normal velocity fluctuations draw energy from the mean flow 
to the disturbance field, which results in the growth of second-mode instability. The 
growth rate of second-mode instability relies on the relative phase of the wall-normal 
transport of energy to the change of fluctuating internal energy in the vicinity of the critical 
layer. Moreover, this relative phase is associated with the mutual interaction between the 
critical-layer fluctuation and the near-wall fluctuation. Porous walls recast this mutual 
interaction by delaying the phase of the wall-normal energy transport near the wall, thus 
the energy transferred to the internal energy fluctuation is out of phase with the change of
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fluctuating internal energy, thus rendering a decrease in the growth rate of second-mode
instability.

Generally, porous walls have a destabilization effect on the first mode. To analyse
the destabilization of the first mode, we have conducted similar computations based on
the same basic flow. Because this paper mainly focuses on second-mode instability, the
preliminary analyses on the first mode are included in appendix B. The destabilization
effects of the porous wall on the first mode definitely merits further study.
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Appendix A. The matrix elements

Non-zero elements of the matrix H in (2.2) are

H12 = H56 = 1,

H21 = α2 + i(αU − ω)
R

μT
, H22 = − 1

μ

dμ

dy
,

H23 = −iα
(

1
3T

dT
dy

+ 1
μ

dμ

dy

)
+ R

μT
dU
dy

, H24 = iα
R
μ

− 1
3
γ M2

eα(αU − ω),

H25 = 1
3T

α(αU − ω) − 1
μ

d
dy

(
dμ

dT
dU
dy

)
, H26 = − 1

μ

dμ

dy
dU
dy

H31 = −iα, H33 = 1
T

dT
dy

, H34 = −iγ M2
e (αU − ω), H35 = i

T
(αU − ω),

H41 = −iχα

(
4

3T
dT
dy

+ 2
μ

dμ

dy

)
, H42 = −iαχ,

H43 = χ

[
−α2 + 4

3μT
dμ

dy
dT
dy

+ 4
3T

d2T

dy2 − iR
μT

(αU − ω)

]
,

H44 = −4
3

iχγ M2
e

[
α

dU
dy

+
(

1
T

dT
dy

+ 1
μ

dμ

dy

)
(αU − ω)

]
,

H45 = iχ
[

4
3

α

T
dU
dy

+ α

μ

dμ

dT
dU
dy

+ 4
3μT

dμ

dy
(αU − ω)

]
, H46 = 4i

3
χ

T
(αU − ω),

H62 = −2Pr(γ − 1)M2
e

dU
dy

, H63 = RPr
μT

dT
dy

− 2iα(γ − 1)M2
e Pr

dU
dy

,

H64 = − iRPr
μ

(γ − 1)M2
e (αU − ω), H66 = − 2

μ

dμ

dy
,

H65 = α2 + iRPr
μT

(αU − ω) − (γ − 1)M2
e

Pr
μ

dμ

dT

(
dU
dy

)2

− 1
μ

d2μ

dy2 ,
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Figure 11. (a) Amplitude and (b) phase profiles of eigenfunctions of the first mode at ω = 0.063 with α =
0.07068 − 0.00039i in the smooth-solid-wall case (A = 0). The dashed and dotted lines denote the critical
layer and the sonic line, respectively.
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Figure 12. (a) Amplitude and (b) phase profiles of eigenfunctions of the first mode at ω = 0.063 with α = 
0.07066 − 0.00109i in the porous-wall case (A = −8). The dashed and dotted lines denote the critical layer 
and the sonic line, respectively.

where χ = [R/μ + iγ Me
2(αU − ω)]−1, Me is the Mach number at the boundary-layer

edge, U, T and μ are the mean velocity, temperature and viscosity, respectively, R, Pr and 
γ are the Reynolds number, Prandtl number and specific heat ratio, respectively. Note that 
Stokes’ hypothesis is employed in the above formulas.

Appendix B. Destabilization of the first mode

To analyse the destabilization of the first mode, we conduct computations based on the 
same basic flow. Under the current boundary layer, the most unstable first mode occurs at 
ω = 0.063. In the smooth-solid-wall case (A = 0), the growth rate is −Im(α) = 0.00039, 
while in the porous-wall case with A = −8, the growth rate is −Im(α) = 0.00109.
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Figure 13. (a) Amplitude and (b) phase profiles of −(γ − 1)(iαû + dv̂/dy), −(dT/dy)(v̂/T) and i(αU −
ω)(T̂/T) for the first mode at ω = 0.063 with α = 0.07068 − 0.00039i in the smooth-solid-wall case (A = 0).
The dashed and dotted lines denote the critical layer and the sonic line, respectively.
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Figure 14. (a) Amplitude and (b) phase profiles of −(γ − 1)(iαû + dv̂/dy), −(dT/dy)(v̂/T) and i(αU −
ω)(T̂/T) for the first mode at ω = 0.152 with α = 0.07066 − 0.00109i in the porous-wall case (A = −8).
The dashed and dotted lines denote the critical layer and the sonic line, respectively.

The profiles of eigenfunctions for the solid-wall case and porous-wall case are depicted in
figures 11 and 12, respectively. We compare the energy terms between the solid-wall case
and porous-wall case, which are depicted in figures 13 and 14, respectively. Apparently,
the phase discrepancy between i(αU − ω)(T̂/T) and −(dT/dy)(v̂/T) in the vicinity of
the critical layer is narrowed in the porous-wall case compared with the solid-wall case.
Therefore, the destabilization of the first mode is associated with the contribution of energy
transport by the wall-normal velocity fluctuation to the internal energy fluctuation. In
addition, the phase delay in wall-normal velocity fluctuation caused by the porous wall
has different impacts on the critical-layer perturbations between the first and second mode,
which merits further study.
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