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Numerical simulations were performed to investigate the re-initiation mechanism of a 

diffracted detonation wave near the critical channel width for a weakly unstable gas. Two 

scenarios were examined: diffractions of a planar detonation wave and a cellular 

detonation wave inside the inlet channel. The results revealed that the critical channel 

width predicted using a cellular detonation wave is smaller than that predicted using a 

planar detonation wave. The re-initiation mechanisms are described in detail by tracing 

massless particles along both the plane of symmetry and the re-initiation path. For planar 

detonation diffractions, a compression wave is formed in the far field behind the diffracted 

shock. Re-initiation is closely related to the amplification of this compression wave and its 

coalescence with the diffracted shock. Depending on the inlet channel width, the strength 

of the reflected rarefaction wave is responsible for weakening the strength of the 

compression wave and its coalescence with the diffracted shock, consequently hindering 

the reaction of particles behind the diffracted shock wave. In cellular cases, the continuous 

collisions of transverse waves, which generate local explosion sites, sustain detonation 

wave propagation. 

1. Introduction

Detonation diffraction is a fundamental problem both in the characterisation of detonation

waves and in their practical applications. When a detonation wave propagates from a

channel into an unconfined space, if ultimately the shock and flame are decoupled, this

scenario is defined as a sub-critical outcome. On the other hand, if re-initiation happens

and the detonation wave continues to propagate, this scenario is referred as a super-critical

outcome. For a gaseous mixture with a specific initial condition, the outcome depends on
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the size of the channel exit and this critical size is defined as the critical channel width. 

Since the early discovery of detonation diffraction failure (Laffitte 1925) and the 

systematic experimental work that established the existence of the critical channel 

diameter (Zel’dovich 1956), extensive experimental and numerical investigations have 

been conducted to enhance our understanding of detonation diffraction phenomena. 

Lee (1996) attributed the failure mechanism in stable mixtures to excessive curvature of 

the attenuated detonation wave and in unstable mixtures to the failure of the formation of 

re-initiation bubbles. Experimental studies (Liu et al. 1984) have revealed that the critical 

channel size depends not only on the thermodynamic conditions of the mixture, but also 

on the geometry of the channel exit. Several studies (Edwards et al. 1979, Mitrovanov 1964) 

have reported that the critical diameter for unstable detonations through a circular exit 

geometry follows a 13-cell width correlation. If a rectangular geometry with a large aspect 

ratio is applied instead, the correlation reduces to a width of approximately 3 cells 

(Benedick et al. 1984). Li et al. (2016) numerically confirmed that for stable mixture, the 

critical size of spherical and cylindrical detonation diffractions differs with a factor of 2, 

which support the “excessive curvature” argument. Thanks to technical developments in 

schlieren techniques, planar laser induced fluorescence (PLIF), and chemiluminescence 

imaging, Pintgen and Shepherd (2009) focused on visualisation of the detailed structure of 

the diffracted detonation wave and reaction zone. They found that the reaction front 

velocity on the centre line decays significantly faster in mixtures with higher activation 

energy. Kawasaki et al. (2019) revealed experimentally the reflection point distance is 

inversely proportional to the initial pressure for diluted and non-diluted mixtures. Yuan et 

al. (2019) developed a semi-analytical model to integrate the trajectory of the transverse 

detonation, the results match the simulation accurately for large deviation angles. 

The numerical study by Jones et al. (1996) showed that H2/O2/Ar detonation without any 

cellular structure failed when transmitted into a large volume. However, interestingly, 

their finding is contrary to a more recent study by Arienti and Shepherd (2005), which 

provided an in-depth analysis of the influence of activation energy on diffraction with a 

fixed inlet channel width. In that study, a one-step chemical model was used, and the 

activation energy was constrained at a relatively low value so that a Zel’dovich–von 

Neumann–Döring (ZND) profile could be applied as the initial condition. Both the sub-

critical and super-critical outcomes were obtained. A theoretical model was developed 



based on the assumption that the Lagrangian derivative of temperature vanishes. 

Although transverse waves play an important role in unsteady transitional regimes (Zhang 

2009), few resolved numerical studies have been carried out to compare differences in the 

re-initiation mechanisms of planar detonation and cellular detonation diffractions. 

Meanwhile, it appears that the simulations in the aforementioned investigations had 

neither sufficient resolution nor sufficiently long inlet channels (only approximately ten 

orders of the reaction zone length) due to computational limitations. Therefore, a rigorous 

study is essential for a clear understanding of the re-initiation process and the role of 

transverse waves in detonation diffraction problems. 

This paper presents a series of two-dimensional numerical simulations aimed at 

interpreting the re-initiation mechanism during diffraction of detonation waves with and 

without transverse waves. In §2, we describe the physical model, the numerical scheme 

and their implementation. In §3, we compare two sets of cases initiated by either a quasi-

one-dimensional detonation or a cellular detonation wave and present the critical channel 

widths and the detailed re-initiation processes. We then discuss the role of reflected 

rarefaction waves and the importance of transverse waves in re-initiation during 

diffraction. 

 

2. Numerical method 

2.1 Governing equations 

For two-dimensional inviscid detonations, ignoring heat losses, viscosity and diffusion 

transport, the conservation equations of mass, momentum and energy in dimensionless 

forms are as follows: 

𝜕𝑼

𝜕𝑡
+

𝜕𝑭

𝜕𝑥
+

𝜕𝑮

𝜕𝑦
= 𝑺,           (1) 

where the conserved variables 𝑼, the fluxes 𝑭, 𝑮 and the source terms 𝑺 are defined as 

𝑼 = [𝜌, 𝜌𝑢, 𝜌𝑣, 𝐸, 𝜌𝜆]T ,         (2) 

𝑭 = [𝜌𝑢, 𝜌𝑢2 + 𝑝, 𝜌𝑢𝑣, (𝐸 + 𝑝)𝑢, 𝜌𝜆𝑢]T,       (3) 



𝑮 = [𝜌𝑣, 𝜌𝑢𝑣, 𝜌𝑣2 + 𝑝, (𝐸 + 𝑝)𝑣, 𝜌𝜆𝑣]T and      (4) 

𝑺 = [0,0,0,0, 𝜔]T.           (5) 

𝜌, 𝑝, 𝑢, 𝑣, 𝜆, and 𝐸 denote density, pressure and fluid velocities in the x and y directions, 

the mass fraction of the reactant and the total energy per unit volume, respectively. The 

ideal gas law in non-dimensional form is written as 𝑝 = 𝜌𝑇, and the total energy per unit 

volume is given by 

𝐸 =
𝑝

𝛾−1
+

1

2
𝜌(𝑢2 + 𝑣2) + 𝜌𝜆𝑄,        (6) 

where 𝛾 is the specific heat ratio and 𝑄 represents the heat of the reaction per unit mass. 

The chemical reaction rate is calculated by the Arrhenius equation: 

𝜔 = −𝐾𝜌𝜆𝑒−
𝐸𝑎
𝑇 ,          (7) 

where 𝐸a is the activation energy, and 𝐾 is a scaling factor adjusted to ensure that the half-

reaction length (ℓ1/2) in the ZND profile is of unit length scale. The dimensionless forms 

of variables with respect to the state of the unburned gas are 

𝜌 =
𝜌′

𝜌0
′ , 𝑝 =

𝑝′

𝑝0
′ , 𝑇 =

𝑇′

𝑇0
′ , 𝑢 =

𝑢′ 

√𝑅𝑇0
′

, 𝑣 =
𝑣′

√𝑅𝑇0
′

, 𝐸𝑎 =
𝐸𝑎

′

𝑅𝑇0
′ , 𝑄 =

𝑄′

𝑅𝑇0
′ , 𝑥 =

𝑥′

𝐿1/2
′ , and  𝑡 =

𝑡′

𝐿1/2
′ /√𝑅𝑇0

′
 , (8) 

where 𝑅 is the gas constant. The variables with a superscript prime indicate the 

dimensional forms, and those with a subscript 0 indicate the values for the unburned gas. 

2.2 Numerical scheme and validation 

The above governing equations are numerically solved on uniform meshes by applying 

the second-order a- CE/SE scheme (Chang 1995, Shen & Wen 2016, Shen et al. 2015a, 

Shen et al. 2017, Shen et al. 2015b, Wen et al. 2018). The chemical reaction is integrated by 

the implicit trapezoidal method. Following a previous study by Daimon and Matsuo 

(2003), our code is validated by simulating one-dimensional detonation waves with a high 

degree of overdrive (𝑓 = 𝐷2/𝐷CJ
2 ). The parameters are fixed at 𝛾 = 1.2, 𝐸a = 50 and 𝑄 =

50. The length of the computational domain is 2300 ℓ1/2, the initial state is given by a 

steady ZND profile for 𝑥 < 5, and the inflow boundary condition is fixed at the left 

boundary. According to a numerical study by Bourlioux et al. (1991), reducing the 



overdrive below the neutral stability boundary will trigger instability in the detonation 

wave and increase the amplitude of the oscillation. In our simulations, the resolution is set 

as 40 pts/ℓ1/2, and the overdriven factors are 𝑓=1.74 and 1.72, respectively. Note that the 

one-dimensional simulations are performed using the two-dimensional code, keeping the 

values along one of the dimensions invariant. Figure 1 shows the history of the peak 

pressure at the leading shock. When 𝑓=1.72, the initial perturbation gradually increases, 

and the detonation is unstable, whereas when 𝑓=1.74, the peak pressure converges to the 

theoretical steady 𝑃vn. The stability boundary for the transition is thus in the vicinity of 

𝑓=1.73, which agrees well with the theoretical prediction of He and Lee (1995) and the 

simulation result obtained by Daimon and Matsuo (2003). 

 

Figure 1. Peak pressure at the leading shock. (a) 𝑓 = 1.72, (b) 𝑓 = 1.74. 

2.3 Numerical setup 

To simulate the diffracted detonation without the influence of the boundary condition at 

the closed end of the tube, the computational domain consists of a long two-dimensional 

inlet channel (Fig. 2), with its right end connected to an unconfined space. The length of 

the simulation domain corresponding to the inlet channel is 800 ℓ1/2, which is sufficient 

for a planar detonation wave to reach a steady Chapman-Jouguet (CJ) detonation and for 

a cellular detonation wave to fully develop at the exit of the inlet channel. The simulation 



is terminated when the shock front on the plane of symmetry reaches 800 ℓ1/2 beyond the 

exit of the inlet channel. In accordance with the routine experimental setup (Zhang 2009), 

a large diffraction chamber with its width at least five times that of the inlet channel is 

adopted to avoid the shock wave reflection influencing the determination of the critical 

diffraction condition. The half-width of the computational domain corresponding to the 

unconfined space (h) ranges from 600 ℓ1/2 to 800 ℓ1/2. Reflective boundary conditions are 

applied to the plane of symmetry and the walls. Zero-gradient boundary conditions are 

implemented at the top and right sides of the unconfined space. 

 

Figure 2. Schematic of the simulation domain (not to scale). 

In this paper, the comparison of detonation diffractions with and without transverse waves 

is restricted to 𝛾 = 1.2  and 𝑄 = 50 . Correspondingly, to maintain a stable planar 

detonation in the inlet channel, the upper limit of the activation energy is strictly restrained 

by the neutral stability boundary, i.e., 𝐸a = 25.26 (Sharpe 1997). Meanwhile, for cellular 

detonation, the degree of cell irregularity and the intensity of triple points are positively 

correlated with the activation energy. It is known that transverse waves propagate at 

acoustic velocity at low activation energies and at a higher velocity with increasing Ea 

values (Gamezo et al. 1999). Therefore, the choice of Ea for detonation diffractions with 

and without transverse waves requires the activation energy to be as close to the neutral 

stability boundary as possible. However, Sharpe and Falle (2000) noted that the prediction 

of the neutral stability boundary is highly sensitive to the computational mesh size. If the 

activation energy is very close to the neutral stability boundary, longitudinal instability 

will be triggered when performing a rough estimation of the critical channel width using a 

coarse mesh. Therefore, an activation energy of 𝐸a = 24, slightly smaller than the neutral 



stability boundary, is selected. According to the classification of detonation cellular 

structure, this can be considered weakly unstable detonation (Austin et al. 2005). When 

𝐸a = 24, it is feasible to study the role of transverse waves in this diffraction problem and 

to assure stable peak pressure at the leading shock of a one-dimensional detonation wave 

in the inlet channel. 

Notably, the path of the disturbance can be easily estimated from the Skews’ construction 

(Arienti & Shepherd 2005, Skews 1967): 

 tan 𝛼 =
√(𝑐2−(𝐷CJ−𝑢)

2
)

𝐷CJ
,         (9) 

where 𝑐 stands for the local acoustic speed and 𝑢 and 𝐷CJ are the downstream flow speed 

and CJ detonation wave velocity, respectively. In the current study, the disturbance angle 

𝛼 corresponding to the maximum disturbance velocity is 22.45° (Fig. 2). 

To verify grid convergence, five different resolutions are used, corresponding to 4, 8, 16, 

24 and 32 pts/ℓ1/2. Note that doubling the resolution results in an approximately eightfold 

increase in computational time. Considering the exceptionally large simulation domain 

for the diffraction problem, a convergence study using the complete computational 

domain shown in Fig. 2 would be prohibitively expensive. As an alternative, the 

convergence study was performed in a two-dimensional channel 20 ℓ1/2 wide and 900 ℓ1/2 

long to investigate the long-term cellular dynamics. The numerical soot foils of these 

simulations are plotted in Fig. 3, which shows the maximum pressure across the channel. 

For the lowest resolution of 4 pts/ℓ1/2, the transverse waves have a very regular spacing 

between 𝑥 =100 and 𝑥 =250, with three transverse waves across the channel. As the 

detonation wave propagates further, the transverse waves merge at approximately 𝑥 =

300. From x = 300 to x = 900, the number of transverse waves flips between one and two. 

At 8 pts/ℓ1/2 , in addition to the strong transverse waves, weak transverse waves are 

observed at the early stage. Compared to the result for the lowest resolution, the cellular 

structure is more irregular. When 𝑥 > 300, the number of transverse waves flips again 

between one and two, except for the complex interactions between 𝑥 = 400 and 𝑥 = 500. 

For higher resolutions with 16, 24, and 32 pts/ℓ1/2, the cellular dynamics are very similar 

at 𝑥 < 300. The long-term cellular behaviour of 24 pts/ℓ1/2 shows striking similarities to 



that of 32 pts/ℓ1/2. Hence, 24 pts/ℓ1/2 is assumed to be sufficient to resolve the cellular 

dynamics of the detonation. Although the long-time dynamic of 16 pts/ℓ1/2 is slightly 

different from those of 24 and 32 pts/ℓ1/2, 16 pts/ℓ1/2 is first used for the preliminary 

estimation of the critical channel width in §3.1 to limit the computational cost. Once the 

critical value is determined, 24 pts/ℓ1/2 is then used for high-precision examination of the 

structure. The present resolution (24 pts/ℓ1/2, for 𝛾 = 1.2, 𝑄 = 50, 𝐸a = 24) agrees with 

the research of Han et al. (2017) under the same conditions for cylindrical detonations (20 

pts/ ℓ1/2 , for 𝛾 = 1.2 , 𝑄 = 50 , 𝐸a = 24 ), and the studies conducted under different 

conditions by Arienti and Shepherd (2005, 22.5 pts/ℓ1/2, for 𝛾 = 1.22, 𝑄 = 65.81, 𝜃CJ =

𝐸𝑎/𝑇vN ≤ 4.15) and Shen and Parsani (2017, 20 pts/ℓ1/2, for 𝛾 = 1.2, 𝑄 = 50, 𝐸a ≤ 50). 

 

Figure 3. Numerical soot foils for resolutions of (a) 4, (b) 8, (c) 16, (d) 24, and (e) 32 

pts/ℓ1/2. 



The number of computational grids for each case with the coarse resolution (16 pts/ℓ1/2) 

is approximately 180 million, and for the fine resolution (24 pts/ℓ1/2), it is approximately 

410 million. All of the simulations were calculated with Message Passing Interface (MPI) 

parallelisation on approximately 300 cores in the Tianhe-1A supercomputer system. The 

computational time was approximately three days for a case with coarse meshes and 

approximately ten days for fine meshes. 

In this paper, two general configurations are tested. A detonation wave is designated as 

planar if it lacks transversal instabilities (Fig. 4(a)); otherwise it is designated as cellular 

(Fig. 4(b)). For planar detonation diffraction, the detonation is ignited near the close end 

of the inlet channel (𝑙ig = 5) by a uniform high-pressure and high-temperature strip with 

𝑇ig = 20 and 𝑃ig = 150. It should be noted that multi-dimensional detonation waves with 

Arrhenius kinetics are unconditionally unstable (Short & Stewart 1998). Numerical 

truncation errors can induce the transverse instability after the wave propagates a few 

hundred half-reaction lengths (Benmahammed et al. 2016, Khasainov et al. 2013). Thus, in 

the inlet channel region, the planar detonation flow is calculated in a one-dimensional 

manner. Once it enters the unconfined space, the numerical scheme is changed to a two-

dimensional version. In this way, there is no transverse oscillation at the exit of the inlet 

channel for the planar detonation flow. For cellular detonation diffraction, the detonation 

is ignited by a perturbed high-pressure and high-temperature region with the same 

thermodynamic conditions as in the planar detonation. The results are presented in the 

next section, in which numerical schlieren images are plotted according to the function 

𝜈 = exp [−𝜇 ⋅ min (
|∇𝜌|

|∇𝜌|max
, 𝜁)],        (10) 

where |∇𝜌| represents the density gradient magnitude, 𝜇 is the amplification parameter to 

accentuate weak features of the flow and 𝜁(≤ 1) is an adjustable parameter to guarantee 

the computability of the equation. The greyscale contours of the numerical schlieren 

images are plotted in a range of 0~1. 



 

Figure 4. Detonation wave configurations for diffraction study of (a) planar detonation 

wave and (b) cellular detonation wave. 

 

3. Results 

3.1 Critical channel widths 

To identify the critical channel width, a series of numerical tests with a relatively coarse 

resolution (16 pts/ℓ1/2) were performed first. Figure 5 compares the peak pressure history 

along the plane of symmetry for planar and cellular detonations with a channel width 𝑤 =

95. For planar detonation, as the activation energy is very close to the neutral stability 

boundary, the von Neumann pressure gradually decays to the CJ value at approximately 

𝑥 = 500 . After the wave front passes through the channel exit, the pressure remains 

constant until approximately 𝑥 = 1030. Beyond this point, the pressure keeps dropping 

due to the expansion waves from the corner, which attenuate the shock strength and, 

consequently, the induced heat release rate with the maximum disturbance velocity in the 

reaction zone (Arienti & Shepherd 2005). The shock remains weak, and re-initiation does 

not occur within the computational domain. In contrast, for cellular detonation, the 

amplitude of the pressure oscillation is large and irregular inside the inlet channel due to 

the interaction of multi-dimensional instabilities. The high-pressure oscillation lasts much 

longer (𝑥 ≅ 1200) in cellular detonation than that in the planar detonation due to the 

impingements of the transverse waves. A strong pressure jump is then observed after a 

period of low pressure (i.e., at a minimum of approximately 0.15) at 𝑥 ≅ 1200~1380. The 

distinct difference between these two cases indicates that transverse waves may facilitate 

the re-initiation of the detonation wave. To acquire the precise critical channel widths for 

both scenarios, we simulated another six cases. Figure 6 shows that the critical channel 



half-width for planar detonation diffraction lies between 𝑤 = 100 and 𝑤 = 110, while the 

critical value for cellular detonation diffraction is between 𝑤 = 75  and 𝑤 = 85 . The 

critical channel width predicted using a cellular detonation wave is smaller than that 

predicted using a planar detonation wave. 

To establish the detailed re-ignition processes of different scenarios, in the following 

sections, two sets of simulations with a grid resolution of 24 pts/ℓ1/2 are conducted, with 

each set covering the near critical cases (successful/failed detonation transmission) for 

both the planar detonation and the cellular detonation. A more rigorous analysis of the 

entire domain is provided below. 

 

Figure 5. Pressure histories of planar and cellular detonation diffractions along the plane 

of symmetry for 𝑤 = 95 and 16 pts/ℓ1/2. 

 

Figure 6. Summary of planar and cellular detonation diffractions for 16 pts/ℓ1/2. 



3.2 Diffraction of the planar detonation wave 

We set the reference time 𝑡 = 0 when the wave front reaches the channel exit at 𝑥 = 800. 

The overall process for successful re-initiation is first examined. Figure 7(a) presents the 

numerical schlieren images (𝜇 = 200, 𝜁=1) for diffraction with a channel half-width 𝑤 =

110. At 𝑡 = 20, the lower part of the leading shock is not influenced by the disturbance 

originating from the corner and remains in a uniform planar detonation wave, while the 

upper shock wave is weakened and curved. From 𝑡 = 20 to 𝑡 = 80, the corner disturbance 

intersects with the shock-flame structure, which is analogous to Skew’s construction in Fig. 

2. The disturbance then reflects from the plane of symmetry and engages with the curved 

diffracted shock. At 𝑡 = 80 , it is interesting to note that the minimum distance 𝛥min 

between the curved shock and the flame is larger than 20 half-reaction lengths. The shock 

is completely decoupled from the flame. A pressure pulse is established and when it 

overtakes the shock at 𝑡 = 100, a separate burned region forms close to the shock. The 

corresponding high-pressure region (𝑝 > 30) is now attributed to the more vigorous 

reaction and this energizes the shock wave to facilitate the re-initiation of a cylindrical 

expanding detonation wave. Particle analysis are presented in this work for better 

interpreting the formation of the re-initiation bubble; This will be investigated in detail in 

§3.2.1. At 𝑡 = 120, the size of the hot bubble grows rapidly, and the induced transverse 

waves sweep across the shocked but unreacted mixture. The  direction is defined 

perpendicular to the shock surface near the location of the re-initiation bubble at 𝑡 = 120. 

Massless particles located along this direction, E1~E19, are injected into the flow at the 

beginning of simulations for analysis in §3.2.1. Thermal data along this direction will be 

extracted later for discussion. The shock wave generated by the intensive reaction 

propagates backwards into the products. Meanwhile, the interaction of nonlinear wave 

propagation and chemical reaction (INWPCR) mechanism plays the main role in the 

generation of transverse waves (Jiang & Teng 2012). The highly temperature-dependent 

reaction rate behind the curved shock front triggers the instabilities near the shock front to 

form transverse waves. From 𝑡 = 120 to 𝑡 = 173, the hot bubble evolves into cylindrical 

detonation. Figure 7(b) shows a close-up of the formation of the re-initiation bubble. 

The re-initiation process is further examined for 𝑡 = 70~100 . The contours of the 

reference induction time 𝜏~ exp (
𝐸𝑎

𝑇
) (Radulescu & Borzou 2018), which do not represent 



the real induction time, is plotted in Fig. 8. The reference induction time spans several 

orders of magnitude in the shocked but unreacted area. The zone with the smallest 

induction time and the largest gradient of induction time is at the upper right side near the 

flame front. Due to the large gradient of induction time of the shocked but unreacted gas 

(along the 𝜂 direction), a bulge of flame is observed at the top right during 𝑡 = 70~100. 

As the simulation proceeds, at 𝑡 = 100, a hot bubble appears near this location (𝑥 = 1250, 

𝑦 = 220). The re-initiation occurs when the pressure pulse overtakes the diffracted shock 

wave. The acceleration of the flame can be attributed to the existence of a large induction 

time gradient (Kapila et al. 2002), and the synchronization between the shock wave and 

heat release can be explained by the shock wave amplification by a coherent energy release 

(SWACER) mechanism (Lee et al. 1978, Lee 2008). 

 



 

Figure 7. (a) Numerical schlieren images for planar detonation diffraction with 𝑤 = 110. 

Green dots indicate the initial positions of sample massless particles (E1~E19) along the 

 direction; (b) close-up of the formation of the re-initiation bubble between 𝑡 = 90 and 

𝑡 = 110. 

 



Figure 8. Reference induction time of the shocked but unreacted gas for planar detonation 

diffraction with 𝑤 = 110. (a) 𝑡 = 70, (b) 𝑡 = 80, (c) 𝑡 = 90 and (d) 𝑡 = 100. For clarity, 

data for gas ahead of the shock and the burned gas (𝜆 < 0.5) are not shown. 

The diffraction with a slightly smaller inlet half-channel width (𝑤 = 100) is shown in Fig. 

9(a). From 𝑡 = 20 to 𝑡 = 80, the major structures of the waves are almost the same as 

those in 𝑤 = 110. Nevertheless, the hot bubble forms much later than that in the 𝑤 =

110 case. Moreover, the energy generated by the bubbles is too weak to accelerate the 

leading shock. At 𝑡 = 150, a new reaction zone is formed and detached from the major 

reacted area. Consequently, the reaction-induced pressure waves are decoupled from the 

reaction zone (𝑡 = 150  to 𝑡 = 221), and thus detonation does not occur. Again, the 

thermodynamic data along the 𝜂 direction at 𝑡 = 120 in Fig. 9(a) are recorded for 

comparison later. Fig. 9(b) shows the enlarged pressure and temperature contours in the 

bubble formation area at 𝑡 = 130~150. Note that the pressure remains significantly low 

(𝑝 = 5~8) during the reaction process. Two major reaction regions are observed at 𝑡 =

150. Three points are then extracted for both regions (see temperature contours in Fig. 

9(b)) at each time step for the quantitative study. The reaction parameter and density agree 

well with the prediction of constant pressure calculation (Fig. 10). Summarily, for the case 

with w=100, the constant-pressure reaction of the gas behind the diffracted shock cannot 

enhance the shock front to transit to detonation. 

 



 

Figure 9. (a) Numerical schlieren images for the planar case with 𝑤 = 100. Green dots 

indicate the initial positions of sample massless particles (E1~E19) along the  direction; 

(b) enlarged pressure and temperature contours during the formation of the reactive bubble 

between 𝑡 = 130 and 𝑡 = 150. 

 

Figure 10. Comparison of the thermodynamic conditions of the three points extracted 

from (a) the upper region and (b) the lower region in the temperature contours in Fig. 9(b) 

(symbols), with the computed data using constant-volume (dashed line) and constant-

pressure (solid line) assumptions. 

t = 130 t = 140 t = 150

t = 130 t = 140 t = 150

(b)

(b)(a)



To quantify the differences in the re-initiation processes of the two inlet channel widths 

(𝑤 = 100 and 110), the thermodynamic data along the 𝜂 direction in Fig. 7(a) and Fig. 

9(a) are presented in Fig. 11. 𝜂 is almost parallel to the flow direction for 𝑡 = 40~120 in 

the 𝑤 = 110 case and for 𝑡 = 40~150 in the 𝑤 = 100 case. When w=110, the pressure 

contour follows a similar pattern to the critical regime of one-dimensional detonation 

ignition. The initial decoupling of the shock-flame structure is due to the corner expansion 

disturbance propagating inside the reaction zone. From 𝑡 = 40 to 𝑡 = 80, the length of the 

shocked but unreacted region (i.e., the distance between the pressure and temperature 

profiles) continues to increase. Due to the negative temperature gradient from the flame 

front to the leading shock from 𝑡 = 80 to 𝑡 = 90, a pressure pulse is formed and steepened 

towards the shock. The birth and amplification of the pressure pulse is in compliance with 

the scenario of a relatively large temperature gradient for one-dimensional ignition as 

discussed in Kapila et al. (2002). The collision of this pressure pulse and the leading shock 

produced a single stronger shock to accelerate the reaction. In contrast, when 𝑤 = 100, 

though a pressure pulse is formed, its strength is comparably weak. The shock strength 

remains insufficient after engaged with the pressure pulse. The decoupling process 

continues, and the shock velocity drops below 0.45𝐷CJ. For the re-initiation failure case at 

𝑡 = 40, the pressure near the plane of symmetry region is slightly lower than that in the 

successful re-initiation case. The most plausible explanation for these findings is that the 

modest decrease in pressure leads the pressure profile to become broader and the 

amplitude to decrease from 𝑡 = 50 to 𝑡 = 80. Interestingly, the pressure drop near the 

plane of symmetry is the result of the reflected rarefaction wave originating from the corner. 

The only difference between the two cases is that in the re-initiation failure case, the 

reflection of the rarefaction wave from the plane of symmetry is earlier and the reflected 

wave is less weakened due to the smaller channel width. The re-initiation seems to be 

controlled by the reflected rarefaction wave, especially for these two cases near the critical 

regime. This is further discussed in §3.3.  



 

Figure 11. Pressure and temperature profiles and shock velocities along the 𝜂 direction. 

(a)(c) 𝑤 = 110, (b)(d) 𝑤 = 100. 

Figure 12 shows the numerical soot foil images for planar cases. For both cases, the 

disturbance angle agrees well with the prediction generated by the Skews’ construction. 

The reaction is quickly quenched as the expansion disturbance attenuates the shock wave. 

In the 𝑤 = 110 case, (Fig. 12(a)), the re-initiation is established far from the disturbance 

trajectory at the location in which maximum pressure occurs (𝑥 = 1250, 𝑦 = 220). The 

local exothermicity for the 𝑤 = 100 case (Fig. 12(b)) is comparably weak, and the re-

establishment of the detonation wave is unsuccessful. 

 

(b)(a)

(d)(c)

(b)(a)



Figure 12. Numerical soot foils for planar detonation diffractions for (a) 𝑤 = 110, and 

(b) 𝑤 = 100. The red dashed line indicates the disturbance trajectory. 

3.2.1. Particle analysis 

Lagrangian particles are injected into the flow, and the thermodynamic behaviours of 

these massless particles are traced to understand the mechanism leading the diffracted 

detonation wave to fail or re-initiate. Particles were initially distributed in the unconfined 

space with a uniform distance of h = 25 (Fig. 13). The positions of these particles are 

updated according to the local flow velocity at each computational timestep. According 

to the temperature reaction zone structure equation developed by Arienti and Shepherd 

(Eq. (2.13), 2005), the Lagrangian derivative of temperature can be decomposed into four 

terms representing heat release, shock curvature, transverse divergence, and unsteadiness. 

 

Figure 13. Initial locations of the Lagrangian particles in the simulation domain. 

The particles on the plane of symmetry are labelled as S1, S2, …, S27. In the planar case 

with w = 100, the theoretical intersection of the disturbance line with the plane of 

symmetry is at (x, y) = (1042, 0). The shock wave speed at the initial location of S11 (x = 

1050) is almost unchanged compared with S5~S9 (see the slope in the x-t diagram of the 

leading shock wave in Fig. 14 (a)). The early interaction of the corner disturbance results 

in only a minor decrease of the temperature jump across the shock for S11 (Fig. 14(b)). 

The shock velocity reduces to 56% of DCJ when the shock front reaches S13, and the 

ignition of S13 is significantly delayed. The temperatures jump across the shock for 

particles S15~S27 decrease gradually, followed by a negative temperature gradient to 

further reduce the reaction rates of these particles. The trajectories of S15~S27 never cross 

the trajectory of half-reaction completion until the end of the simulation (Fig. 14(a)). This 



indicates that the reactions along the plane of symmetry are quickly quenched after the 

corner expansion’s arrival. 

 

Figure 14. (a) Particle paths for particles on the plane of symmetry for the planar case with 

w=100. The solid red line indicates the x-t diagram of the leading shock wave; the dashed 

blue line depicts the x-t diagram of half-reaction completion; and the green dot indicates 

the theoretical intersection point predicted by the Skews’ construction. (b) Temperature 

profiles along the particle paths. For ease of illustration, lines are omitted once the particles 

are mostly reacted, and blue lines show the particles that are still non-reacted untill the 

end of the simulation. 

In the planar case with w=110, the theoretical intersection point is at (x, y) = (1066, 0). 

The reactions of particles S5~S11 are unaffected by the corner disturbance. The ignition 

of S13 is moderately delayed because its shock velocity remains at approximately 93% of 

DCJ. Similarly, the decayed shock wave (Fig. 15(a)) and the negative temperature gradient 

between S15~S23 (Fig. 15(b)) quench the reaction to approximately t =147. These 

particles remain unburned until the end of the simulation as observed by the large 

unreacted pocket near the plane of symmetry at x=1400 in Fig. 7(a) (t=173). S25 and S27 

are ignited by the impingement of the transverse waves originating from the re-initiation 

bubble. The maximum half-reaction length along the plane of symmetry is approximately 

71 at t = 148 (Fig. 15(a)). The decompositions of the Lagrangian temperature derivative 

for S13 and S15 are plotted in Fig. 16. As discussed in Arienti and Shepherd (2005), the 

unsteadiness term is the only possible source to quench the reaction for a detonation with 

a convex-upstream wavefront. In Fig. 16(a), right after the leading shock and the corner 



disturbance pass the particle S13, the relatively significant negative unsteadiness term 

results in a small negative Largrangian temperature derivative and the corresponding 

ignition delay. Nevertheless, the heat release term dominates and forces the Largrangian 

temperature derivative to remain positive subsequently. The curvature, transverse 

divergence, and unsteadiness terms are relatively small in general. At later time (t >53 in 

the inset of Fig. 16(a)), the unsteadiness term is observed the dominant factor of 

temperature decrease for particle S13. For particle S15 (Fig. 16(b)), the amplitude of the 

unsteadiness term leads to a negative Largrangian temperature and prevents the particle 

from auto-ignition.  

In both cases of w=100 and w=110, it is observed that the shock speed along the plane of 

symmetry decays abruptly after the arrival of corner disturbance. In the decoupling region 

(𝑥 > 1100 for w=100 in Fig. 14(a), 𝑥 = 1100~1400 for w=110 in Fig. 15(a)), the slope of 

the shock trajectory changes slightly, indicating a slow decay in the shock speed. In such 

cases, the unsteadiness term is found to be the dominant source of quenching the reaction 

of particles. The weakened shock and the negative temperature gradient prohibit the 

particles from auto-ignition and re-initiation of detonation along the plane of symmetry. 

 

Figure 15. (a) Particle paths for particles on the plane of symmetry for the planar case with 

w=110. The solid red line indicates the x-t diagram of the leading shock wave; the dashed 

blue line depicts the x-t diagram of half-reaction completion; and the green dot indicates 

the theoretical intersection point predicted by the Skews’ construction. (b) Temperature 

profiles along the particle paths. 



 

Figure 16. Terms in the Lagrangian temperature derivative for particles on the plane of 

symmetry in the planar case with w=110. (a) S13; (b) S15.  

In Fig. 7, the re-initiation is observed to start from the upper-right region of the diffracted 

shock. The behaviours of the particles that are close to the  line defined in Figs. 7 and 9 

are plotted in Fig, 17. These particles are labelled E1, E2, …, E19 in Fig. 7. In the case 

with w=110, the ignition delay time from E1 to E6 increases, which is expected as the 

diffracted shock speed decelerates. As observed at t=87 in Fig. 17(a), the temperature 

profile for E7 is no longer a smooth curve. Similar abrupt changes can be observed in 

temperature profiles for E8 at t=89 and E9 at t=91. This abrupt change in temperature 

sugguests that a significant compression wave might exist and be responsible for 

facilitating the ignition of these particles. Abrupt changes in temperature also appear for 

E7~E9 in the case with w=100 (Fig. 17(b)). 

 



Figure 17. Temperature traces of particles along the -direction in Fig. 7 and Fig. 9 for 

planar detonation diffraction. For clear illustration, lines are omitted once the particles are 

mostly reacted, and blue lines represent the particles that are still non-reacted until the end 

of the simulation. (a) w=110; (b) w=100.  

To further examine the influence of the compression wave on the particles, the pressure 

and reaction histories of selected particles close to the  direction in the planar case with 

w=100 are plotted in Fig. 18. Particle E1, which initially locates on the plane of symmetry 

before the intersection of the disturbance line, has a pressure rise closely coupled with the 

intensive reaction. As the shock front weakens, the ignition of E3 is delayed by 

approximately 25 units of time. The peak amplitude of the reaction rate is significantly 

smaller than that of E1. In contrast with the gradual decrease of pressure during the 

reaction history for E3, the reaction history for E4 shows an increment of pressure. This 

compression wave is strengthened and propagates downstream, as indicated by the 

amplification of the local pressure peak for E6. The reaction for E6 occurs after this 

compression wave passes with a time delay of approximately 35, and the pressure remains 

almost constant during the reaction. As the shock front moves further downstream, from 

E7 to E10, the time delay between the particle encounter with the shock front and the 

following compression wave shrinks. Finally, this compression wave merges with the 

leading shock. The pressure of E10 behind this strengthened leading shock is 

approximately 18.8, higher than 13.3 of E7 and 11.4 of E9. The heat release of E10 occurs 

with a time delay of approximately 22 behind the strengthened shock. However, the 

ignition delay continues to increase as observed in E11, which leads to a total failure of re-

initiation. In short, the entire system experiences a decoupling process from E1 to E9. 

Meanwhile, a compression wave is generated and chasing the leading shock from E4 to 

E10. Finally, the strengthened shock accelerates the reaction, but it is still too weak to stop 

decoupling. 

To further clarify the mechanism that creates the abovementioned compression wave, Fig. 

19(a) displays the thermal histories for E4. It is observed that during the pressure and 

temperature increasing period at 𝑡 ≈ 85, the density decreases only moderately, indicating 

that this compression wave is a reaction-induced wave. The heat release of E4 and its 

surrounding gas contributes to establishing this compression wave. The peak pressure of 

this compression wave in Fig. 19(a) is further amplified by the heat release from other 



particles around and behind E4, as shown in Fig. 19(b). Both the pressure and density of 

E6 increase at 𝑡 ≈ 95  when the compression wave overtakes the particle. Another 

compression wave is induced by a more intense reaction at 𝑡 ≈ 119 for E10 in Fig. 19(c) 

(larger / than those of particles E6, E7 and E9 in Fig. 18). Similar to the E4 case, during 

the pressure and temperature increasing period, the density decreases only moderately 

during the reaction (Fig. 19(c)). This secondary compression wave is detected by upstream 

particles E9 at 𝑡 ≈ 123, E7 at 𝑡 ≈ 136, and downstream particle S11 at 𝑡 ≈ 125 in Fig. 18. 



 



Figure 18. Pressure and reaction rate histories of particles along the -direction in Fig. 9 

for the planar case w=100. (a) E1; (b) E3; (c) E4; (d) E6; (e) E7; (f) E9; (g) E10; (h) E11. 

 

Figure 19. Density, pressure and temperature histories along the particle path for (a) E4, (b) E6, 

and (c) E10 for the planar case with w=100. 

In the planar case with w=110 (Fig. 20). The plot for E1 is very similar to that in the case 

with w=100 and thus is not shown here. E2 initially locates close to the disturbance line. 

PvN is only slightly decreased. The ignition delay of E3 is approximately 21, which is 

shorter than that of E3 (~25) in the failure case (w=100). A compression wave is formed 

at 𝑡 ≈ 85 for E5 (Fig. 20(c) and Fig. 21(a)). Soon after, E6 meets this compression wave 

at 𝑡 ≈ 90, and the intensive heat release amplifies the compression wave (Fig. 21(b)). The 

compression wave propagates towards the shock and is continuously intensified by the 

simultaneous heat release of the particles behind it (see E7~E9). The heat release for E9 



starts with a time delay of approximately 21 after the compression wave passes (Fig. 20(f) 

and Fig. 21(c)), which has a rather small contribution to the amplification of the 

compression wave. The compression wave merges with the leading shock for E10. 

Eventually, the detonation wave that passes through E11 is overdriven, with a PvN of 50. 

The particle traces in the near field behind the re-initiation bubble are found perpendicular 

to the curved shock. At the time when the E10 particle experiences a complete reaction, 

the distance between the curve shock and this particle is approximately 7.2 (Fig. 22(a)). 

These conditions (i.e., the distance between the curve shock and the particle E10 is short 

such that the particle traces in the near field behind the re-initiation bubble are 

perpendicular to the curved shock) make the decomposition of E10 reliable. In Fig. 22, the 

unsteadiness term is positive before t = 96.4. This corresponds to what is observed in Fig. 

20(g), where the E10 particle is pressurised by the coalescence of the curved shock and the 

chasing compression wave. In contrast with the negative unsteadiness term for a particle 

passing through a decelerating detonation wave, as illustrated in Fig. 16, this positive 

unsteadiness term, together with the heat release term, amplifies the temperature increase 

rate of E10. 



 



Figure 20. Pressure and reaction rate histories of particles along the -direction in Fig. 7 

for the planar case with w=110. (a) E2; (b) E3; (c) E5; (d) E6; (e) E7; (f) E9; (g) E10; (h) 

E11. 

 

Figure 21. Density, pressure and temperature histories along the particle path for (a) E5, (b) E6, 

and (c) E9 for the planar case with w=110. 



 

Figure 22. (a) Density contour together with particle paths and the location of E10 at t = 

98.794. (b) Terms in the Lagrangian temperature derivative for particle E10 on the  line 

in the planar case with w=110. 

Notably, for particles on the wall, both the results from Arienti & Shepherd (2005) and 

this study show that decoupling persists until the impingement of external transverse 

waves. Therefore, the results will not be repeated here. 

3.3 Effect of the reflected rarefaction wave 

The comparison of the two cases described in the previous section indicates that the 

diffraction results may depend on interactions among the flame bulge, the shock, and the 

reflected rarefaction wave. A further investigation is performed by applying Eq. (10) for 

numerical schlieren with 𝜇 = 4000, 𝜁=0.05. This results in areas near the strong waves 

appearing dark in the image, but the weak waves inside the burnt mixture are visible. 

Numerical schlieren images that accentuate the weak flow features for 𝑤 = 110 and 𝑤 =

100 are shown in Fig. 23 and Fig. 24, respectively. For easy interpretation, the rarefaction 

waves and reflected wave fronts that can be identified in the figures are indicated with red 

dotted lines. At 𝑡 = 20, both cases show an identical wave pattern: a rarefaction wave 

propagates downwards from the top unconfined region, and the regions under influence 

by the wave are exactly the same in both cases. As the rarefaction front reaches the plane 

of symmetry, a reflected rarefaction wave is induced (𝑡 = 30). Due to the narrower 

channel width, the reflected wave above the plane of symmetry in the 𝑤 = 100  case 



propagates to a higher position than that in the 𝑤 = 110 case. For both cases, the reflected 

wave front is characterised by a progressive decrease in the pressure amplitude (Fig. 11). 

The reflected wave continues to move upwards (𝑡 = 40) and later interacts with the 

shocked reactant and with the complex vortexes close to the corner (𝑡 = 50~70). 

 

Figure 23. Enhanced numerical schlieren images for 𝑤 = 110 . The red dotted lines 

indicate the head of the rarefaction wave and its reflections. 

 



 

Figure 24. Enhanced numerical schlieren images for 𝑤 = 100 . The red dotted lines 

indicate the head of the rarefaction wave and its reflections. The red circle at t = 50 

indicates the initial location of particle E4. 

For both cases, the diffracted wave fronts are similar until the reflected rarefaction wave 

interacts with the shock. The re-establishment of the detonation wave seems to be greatly 

influenced by this reflected wave, since the reflected wave could alter the strength of the 

leading shock and thus the temperature gradient behind it. For example, in the planar case 

with 𝑤 = 110, as the leading shock overtakes particle S13, the reflected rarefaction wave 

just starts to merge with the leading shock (Fig. 25). Contributed by both the initial 

expansion and the reflection, the shock decelerates sharply from 93% DCJ at x=1100 to 50% 

DCJ at x=1150 (Fig. 26). Consequently, particle S13 exhibits a large heat release term 

initially and is then dominated by the unsteadiness term, while S15 is dominated by the 

unsteadiness term throughout the interaction process (Fig. 16).  



 

Figure 25. Numerical schlieren images when particle S13 is encountering the leading 

shock for case with w=110. The red circles and the blue squares indicate the initial 

locations of S13 and S15, respectively. The red dotted lines indicate the head of the 

reflected rarefaction waves. 

 

Figure 26. Shock velocities along the plane of symmetry. 

One way to examine this hypothesis is to eliminate the reflection of the rarefaction wave 

for the subcritical case, i.e., 𝑤 = 100. In this case, the boundary condition for the lower 

side of the computational domain is implemented by the zero-gradient condition 

(modified boundary case). The corresponding results are shown in Fig. 27. From 𝑡 = 20 

to 𝑡 = 40, the rarefaction wave impinges on the lower boundary and is not reflected. The 

hot bubble forms again at 𝑡 = 100 at a location very close to that of the 𝑤 = 110 case. The 

shock deceleration along the plane of symmetry for this modified boundary case is found 



less significant compared to the its unmodified counterpart (Fig. 26). This indicates that 

the reflection of the rarefaction wave further weakens the strength of the leading shock. 

For particle E4 along the re-initiation path in the 𝑤 = 100  case with the symmetry 

boundary condition, it encounters the leading shock at 𝑡 = 50 (Fig. 24). The local shock 

front near E4 has not been attenuated by the reflected rarefaction wave. When particle E4 

completes reaction at  𝑡 ≈ 90, the reflected rarefaction wave has already merged with the 

leading shock. This makes particle E4 ideal to quantitatively measure the effect of reflected 

rarefaction wave. Figure 28 plots the temperature and pressure histories of E4 in the 

w=100 cases with reflective and non-reflective (modified) boundary conditions. During 

𝑡 = 50~55.2, the pressure histories of the two case overlap with each other, suggesting the 

reflected rarefaction wave has not reached the particle. From 𝑡 > 55.2, the pressure of E4 

in the case with the reflective boundary condition turns to decrease gradually due to the 

arrival of the reflected rarefaction wave. In the same time, the rate of temperature increase 

is slightly smaller than the modified case (zero-gradient case). Therefore, the ignition 

occurs at a later time for the original case (with the reflective boundary condition) 

compared to the modified case. The peak pressure during reaction also reduces for the 

original case, compared to the modified case. The mechanism of re-initiation near the 

critical channel width is as follows: The rarefaction wave first curves around the 

detonation wave front and attenuates the reaction rate behind it for both the 𝑤 = 110 and 

𝑤 = 100  cases. Later, as described in § 3.2.1, a compression wave is formed and 

propagates towards the leading shock through the shocked reactant. Meanwhile, the 

rarefaction wave reflects from the plane of symmetry and affects the shocked reactant with 

a delayed reaction and a smaller pressure amplitude. Re-initiation therefore depends on 

the competition between the formation and amplification effect of the compression wave 

and the attenuation effect of the reflected rarefaction wave. For the 𝑤 = 110 case, the 

attenuation by the reflected rarefaction wave is weaker (due to the larger channel width) 

and is not sufficient to suppress the re-establishment of the detonation wave. The failure 

of re-initiation in the 𝑤 = 100 case is mainly caused by the stronger attenuation of shock 

strength and the subsequent compression wave, due to the rarefaction wave reflected from 

the plane of symmetry. Consequently, the re-initiation fails. 



 

 

Figure 27. Enhanced numerical schlieren images for 𝑤 = 100  with the zero-gradient 

condition applied on the lower boundary. The red dotted lines indicate the head of the 

rarefaction wave. 



 

Figure 28. Pressure (black lines) and temperature (blue lines) histories of particle E4 for 

the case with w=100. Solid lines represent results for reflective boundary condition; dashed 

lines represent results for zero-gradient boundary condition. Dotted line indicates the time 

that the particle is influenced by the reflected rarefaction wave in the case with reflective 

boundary condition. 

3.4 The role of transverse waves in detonation diffraction 

In this section, cases with transverse detonation waves inside the inlet channel are 

discussed. Figure 29(a) shows the diffraction process for 𝑤 = 75 (𝜇 = 200, 𝜁=1). Because 

of the transverse unsteadiness, the flow structure is much more complex than in the planar 

cases described above. At 𝑡 = 20, the flame front in the disturbed zone is no longer smooth; 

instead, multiple keystone structures are found due to the presence of transverse wave 

interaction (Gallier et al. 2017). According to the Skews’ construction, the corner 

disturbance reaches the plane of symmetry at x = 982. However, in this case, the shock 

front near the plane of symmetry is still closely coupled with the flame at 𝑥 = 1175 (𝑡 =

60). As the detonation wave propagates further, the distance between the shock front and 

the flame front increases, and eventually, two fronts decoupled completely (𝑡 = 80 to 𝑡 =

170 ). This is denoted as the sub-critical case. Figure 29(b) shows the pressure and 

temperature contours at the enlarged area for 𝑡 = 80  and 𝑡 = 100. As the detonative 

Mach stems expand into the stationary flow field, no collision of transverse waves T1 and 



T2 with other transverse waves is observed; thus, no high pressure or temperature is 

presented, which is crucial for the induction of local overdriven explosions. 

 

 

Figure 29. (a) Numerical schlieren images for the cellular case with 𝑤 = 75  and (b) 

pressure and temperature contours at the enlarged area for 𝑡 = 80 and 𝑡 = 100. 



For the 𝑤 = 85 case, the Skews’ construction predicts that the disturbance will reach the 

plane of symmetry at x = 1006. Similar to the sub-critical case, the shock–flame structure 

remains coupled when the shock front just passes this point. Compared with the super-

critical case for planar detonation diffraction (Fig. 7, at t = 80), no complete decoupling is 

observed during the diffraction process (Fig. 30(a)), and the re-initiation location is also 

different. Multiple collisions are presented to sustain the shock-flame coupling (Fig. 30(b)). 

At 𝑡 = 60 , the high-pressure and high-temperature region induced by the collision 

becomes a local explosion, which can be observed at 𝑡 = 70. A complex triple-point 

structure at 𝑡 = 80 that is responsible for engulfing the shocked reactant close to the wall 

has been commonly observed in experiments (Nagura et al. 2013). 

A similar mechanism can be observed from 𝑡 = 110 to 𝑡 = 120. 

 



 

Figure 30. (a) Numerical schlieren images for the cellular case with 𝑤 = 85  and (b) 

pressure and temperature contours at the enlarged areas between 𝑡 = 60 and 𝑡 = 70 and 

between 𝑡 = 110 and 𝑡 = 120. 

In summary, for super-critical/sub-critical planar detonation diffractions, the detonation 

initially extinguishes behind the shock with the presence of a large area of shocked but 

unreacted mixture, and re-initiation is primarily determined by the strength of the reflected 

rarefaction wave. The combined effect of transverse wave collisions and the reflected 

rarefaction wave plays an important role in cellular detonation diffractions. The newly 

formed Mach stem is responsible for fast burning. Otherwise, the reaction will quench if 

the Mach stem continue to decay to a weak incident shock. The failure of re-initiation 

occurs when there are not enough strong transverse wave collisions to create new strong 

Mach stems before the decoupling phenomenon, due to a strong reflected rarefaction wave 

effect. Successful re-initiation occurs with the formation of multiple hot bubbles, which 

form during the collisions of transverse waves with opposite directions. Overall, transverse 

waves can facilitate the successful transmission of detonation with a smaller critical inlet 

channel width. Because the dynamics of transverse waves are unpredictable, the hot 

bubble locations are more or less randomly distributed, as shown in the numerical soot 

foils in Fig. 31. 



 

Figure 31. Numerical soot foils for cellular detonation diffractions with (a) 𝑤 = 75, (b) 

𝑤 = 85. 

Although these calculations are performed for a weakly stable detonation using simplified 

chemical kinetics, the re-initiation results show many similarities to those observed in the 

experimental work of Mehrjoo et al. (2015). They used porous walled tubes to suppress 

transversal instability and demonstrated that successful transmission was reliant on frontal 

instability. Furthermore, the results of the present study, provide a plausible explanation 

for the failure of correlation between the critical channel width and the cell width for 

highly diluted mixtures (Desbordes et al. 1993). For highly unstable mixtures, the presence 

of a substantial number of transverse waves tends to increase the possibility of successful 

transmission; thus, the correlation between the channel width and the cell width is 

established. However, in the study of highly diluted mixtures with the presence of weak 

transverse waves, corresponding to the situation of the planar cases, the competition 

between the attenuation effect of the reflected rarefaction wave and the coalescence of the 

compression wave and the shock becomes crucial and depends on the critical channel 

width. In this situation, the correlation between the dynamic parameters is less significant. 

For further investigate the effect of cellular instabilities on the critical width under various 

activation energies, Table 1 lists the upper and lower limits of the critical channel widths 

for Ea=22~24, when Q and  are kept constant. The difference of the two scenarios shrinks 

as the activation energy decreases. When Ea=22, the critical channel widths for both 

scenarios fall between 50 and 53 half-reaction lengths. This indicates that for a more stable 

mixture, the effect of cellular instabilities on the critical width vanishes in the diffraction 

and reconciles with the result of the scenario with a planar incident wave.  

 



Table 1. The variation of critical channel width with the activation energy. 

 Planar Cellular 

Lower limit Upper limit Lower limit Upper limit 

Ea = 24 100 110 75 85 

Ea = 23 70 75 60 65 

Ea = 22 50 53 50 53 

 

3.4.1 Particle analysis 

In the cellular case with w=75, the theoretical intersection of the disturbance line with the 

plane of symmetry is at (x, y) = (982, 0). In contrast with the quick decoupling processes 

beyond the intersection points in the planar cases (Fig. 14(a) and Fig. 15(a)), the shock 

front and the flame front are still loosely coupled until 𝑥 ≈ 1200 (Fig. 32(a)) on the plane 

of symmetry, though the cellular structure has been distorted across the disturbance line 

(Fig. 31 (a)). The ignition delays increase gradually from particle S9 to particle S15, with 

reaction quenched for particles S17~S29 (Fig. 32 (b)). Notably, the particle locations are 

the same as those in Fig. 13. 

 

Figure 32. (a) Particle paths for particles on the plane of symmetry for the cellular case 

with w=75. The solid red line indicates the x-t diagram of the leading shock wave; the 

dashed blue line depicts the x-t diagram of half-reaction completion; and the green dot 

indicates the theoretical intersection point predicted by the Skews’ construction. (b) 

Temperature profiles along the particle paths. 



In the cellular case with w=85, the intersection point is at (x, y) = (1006, 0). Similar to the 

failure case, the shock front and flame are coupled together along the plane of symmetry, 

except at 𝑥 ≈ 1220~1350, where the maximum half-reaction length is approximately 25 

at t = 107 (Fig. 33(a)). This is due to the lack of transverse wave impingement in this region, 

as observed in Fig. 31(b). Particle S19 remains unreacted in an unreacted pocket until the 

end of the simulation (x = 1357 at t = 140 in Fig. 30(a)). S21 is burnt in the complex flow 

field far behind the leading shock, with an ignition delay of approximately 44. For the 

remaining particles, they are basically burnt in two scenarios. In the first scenario, the 

particles are overtaken by the newly formed Mach stems. The speed of the Mach stem in 

the current simulation is recorded up to nearly 1.3 DCJ. Particles passing through this 

locally overdriven wave are characterised by a high TvN and a very short ignition delay. 

Particles S5, S7, S11, S15, S25 and S27 are classified as the first scenario. In the second 

scenario, as the decay of the Mach stem becomes significant, TvN decreases, and the 

ignition delays of particles will increase. This scenario includes particles S9, S13, S17, S23 

and S29. 

 

Figure 33. (a) Particle paths for particles on the plane of symmetry for the cellular case 

with w=85. The solid red line indicates the x-t diagram of the shock wave; the dashed blue 

line depicts the x-t diagram of half-reaction completion; and the green dot indicates the 

theoretical intersection point predicted by the Skews’ construction. (b) Temperature 

profiles along the particle paths. 

To close examine the behaviour of particles in cellular detonation propagation. Particle 

S17 from the case with w = 75 is selected to represent the situation where no transverse 



wave collision occurs and the Mach stem continues to decay (Fig. 34(a)). On the other 

hand, particle S25 from the case with w = 85 is selected to represent the situation when 

the particle is ignited by a newly formed Mach stem (Fig. 35(a)). The decomposition of 

the terms in the Lagrangian temperature derivative for particle S17 are displayed in Fig. 

34(b). The curvature term, the transverse divergence term, and the heat release term are 

all close to zero. The variation of the Lagrangian derivative of temperature is mainly 

attributed to the unsteadiness term. For particle S25 in the cellular case with w = 85 (Fig. 

35(b)), the unsteadiness term remains negative before t = 113.25 as a result of decaying 

shock velocity. Later, the unsteadiness term fluctuates, which might be due to the 

interaction with the wake flow. The corresponding amplitude of the heat release term is 

large compared to those for the planar re-initiation case with w = 110 in Fig. 16(a). The 

heat release term dominates the increase of the Lagrangian derivative of temperature at 

the early stage of particle’s encounter by the newly formed Mach stem, whereas the 

unsteadiness term becomes dominant when the Mach stem continues to decay. 

 

Figure 34. (a) Locations of particle S17 in the flow; (b) Terms in the Lagrangian 

temperature derivative for particle S17 on the plane of symmetry in the cellular case with 

w=75. 



 

Figure 35. (a) Locations of particle S25 in the flow; (b) Terms in the Lagrangian 

temperature derivative for particle S25 on the plane of symmetry in the cellular case with 

w=85. 

From the analysis of S17 (w = 75) and S25 (w = 85), we conclude that for the gas studied 

here, the newly formed Mach stem is responsible for burning the reactant. Without the 

formation of new triple points, the Mach stem will continue to decay to a weak incident 

shock, and the reaction will quench. The scenarios to burn the gas have already been well 

observed and analysed from particles on the plane of symmtry. Notably, the particles along 

the  line were not decomposed as we did in the planar cases, because the  line is no 

longer the re-initiation path. Furthermore, in the free space far from the symmetry, the 

flow structure behind the leading shock is complicated for the cellular case. The 

assumption that the flow is symmetric along the  line is no longer valid for particles in 

this region. 

4. Conclusion 

This paper presents the numerical results of a weakly unstable detonation diffraction. To 

mimic the experimental conditions, a long inlet channel was used to exclude the influence 

of the boundary condition at the rear end of the channel. The diffractions of a planar 



detonation wave and a cellular detonation wave were investigated. The critical channel 

width for successful transmission was smaller for the cellular detonation wave than for its 

planar counterpart. One of the most significant findings of this study is that for planar 

detonation diffraction, due to the large induction time gradient of the shocked but 

unreacted gas, a bulge of flame appears at the upper-right portion. Re-initiation is 

attributed to the formation of the compression wave induced by the relatively intensive 

heat release in the shocked but unreacted zone and its amplification towards the diffracted 

shock. Re-initiation occurs if the coalescence of the compression wave and the shock wave 

is overdriven. This is similar to the one of the key mechanisms of deflagration to 

detonation transition (DDT). In addition, the rarefaction wave seems to be crucial for the 

formation of the re-initiation bubble. In the planar case with w = 100, early reflection 

suppressed the reaction along the  direction and destroyed the DDT process. This 

hypothesis is supported by the successful transmission case without the presence of 

reflected rarefaction wave. The second major finding is that the transverse wave can 

facilitate the successful transmission of detonation with a smaller critical inlet channel 

width. In the cellular cases, particle analysis reveals that the particles are mostly burnt by 

the newly formed Mach stem with a velocity higher than DCJ. In the absence of new triple 

point formation, the reaction is quenched when the decay of the Mach stem is significant. 

In the cellular cases, the transmission is largely determined by the effective collisions of 

transverse waves, with multiple randomly distributed hot sites, rather than a single hot 

bubble, as seen in the planar cases. It is also important to note that, our simulations address 

the re-initiation mechanism for an ideal inviscid gas with a simplified chemical model. For 

highly unstable gases, in addition to the consumption of the reactant by Mach stems, the 

propagation/re-initiation dynamics involve the burning mechanism of unreacted pockets. 

Turbulent mixing will be important near the surfaces of the pockets, and three-dimensional 

simulations with diffusive effects should be considered. Further investigation is 

recommended to assess the effects of turbulent fluctuations (Maxwell et al. 2017, 

Radulescu 2018, Radulescu & Borzou 2018), chemical kinetics and non-equilibrium 

thermodynamics (Shi et al. 2017, Uy et al. 2018, Uy et al. 2019) on diffraction problems. 
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