
Interfacial instability at a heavy/light interface
induced by rarefaction waves

Yu Liang1,2, Zhigang Zhai1, Xisheng Luo1 and Chih-yung Wen2,†
1Advanced Propulsion Laboratory, Department of Modern Mechanics, University of Science and 

Technology of China, Hefei 230026, China
2Department of Mechanical Engineering and Interdisplinary Division of Aeronautical and Aviation 

Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong

(Received xx; revised xx; accepted xx)

The interaction of rarefaction waves and a heavy/light interface is investigated 
using numerical simulations by solving the compressible Euler equations. An 
upwind space–time conservation element and solution element (CE/SE) scheme 
with second-order accuracy in both space and time is adopted. Rarefaction waves are 
generated by simulating the shock-tube problem. In this work, the SF6/air interface 
evolution under different conditions is considered. First, the gas physical parameters 
before and after the rarefaction waves impact the interface are calculated using 
one-dimensional gas dynamics theory. Then, the interaction between the rarefaction 
waves and a single-mode perturbation interface is investigated, and both the interface 
evolution and the wave patterns are obtained. Afterwards, the amplitude growth of 
the interface over time is compared between cases, considering the effects of the 
interaction period and the strength of the rarefaction waves. During the interaction of 
the rarefaction waves with the interface, the Rayleigh–Taylor instability induced by 
the rarefaction waves is well predicted by modifying the nonlinear model proposed 
by Zhang & Guo (J. Fluid Mech., vol. 786, 2016, pp. 47–61), considering the 
variable acceleration. After the rarefaction waves leave the interface, the equivalent 
Richtmyer–Meshkov instability is well depicted by the nonlinear model proposed by 
Zhang et al. (Phys. Rev. Lett., vol. 121(17), 2018, 174502), considering the growth 
rate transition from Rayleigh–Taylor instability to Richtmyer–Meshkov instability. The 
differences in the heavy/light interface amplitude growth under the rarefaction wave 
condition and the shock wave condition are compared. The interface perturbation is 
shown to be more unstable under rarefaction waves than under a shock wave.
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1. Introduction
The interfacial instability of a heavy fluid accelerated by a light fluid is generally

known as Rayleigh–Taylor (RT) instability (Rayleigh 1883; Taylor 1950). It is induced
by a baroclinic torque created by the misalignment of the pressure gradient, ∇p, and
the density gradient, ∇ρ, at the perturbed interface, with ∇ρ · ∇p < 0. A similar
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phenomenon is Richtmyer–Meshkov (RM) instability (Richtmyer 1960; Meshkov
1969), which occurs when an interface separating two fluids of different densities
is accelerated by an impulsive acceleration (e.g. a shock wave). Both RT instability
and RM instability play important roles in inertial confinement fusion (Lindl et al.
2014) and astrophysical problems (Shimoda et al. 2015). Extensive studies have been
performed to understand RT and RM instability, and several comprehensive reviews
have been presented (Sharp 1983; Brouillette 2002; Ranjan, Oakley & Bonazza 2011;
Zhou 2017a,b).

In contrast, the interfacial instability induced by rarefaction waves attracts less
attention than that driven by continuous acceleration (RT instability) or shock waves
(RM instability), although the interfacial instability induced by rarefaction waves is
also a factor in many engineering and scientific problems. For example, interfacial
instability occurs in a jet-engine combustor at the interface between fuel and air
when the flow passes through the rarefaction waves generated by the geometrical
configuration of the engine or by fuel injection (Li & Book 1991). In addition, in
the interaction of a blast wave with an interface between materials, the rarefaction
waves that follow the leading shock wave move outward from the energy source point
(Miles et al. 2004; Kuranz et al. 2009). The interface thus experiences a complex
acceleration history due to the combination of the leading shock wave and the
subsequent rarefaction waves, and RT instability occurs when the blast wave crosses
the interface or transits through a region where the density decreases. In addition,
in shock–bubble interaction (Niederhaus et al. 2008) and shock–droplet interaction
(Sembian et al. 2016; Guan et al. 2018), rarefaction waves are generated by the shock
wave interacting with the downstream heavy/light interface. The internal rarefaction
waves accelerate the upstream interface motion, and focusing of these waves even
generates cavitation bubbles near the downstream interface in a droplet.

Numerically, the RT instability induced by rarefaction waves has been investigated
(Li & Book 1991; Li, Kailasanath & Book 1991), and the mixing enhancement due
to the rarefaction waves in supersonic mixing layers was determined. However, the
time-varying amplitude growth of the interface perturbation induced by rarefaction
waves has not been quantitatively investigated. Experimentally, the RT instability
driven by rarefaction waves was investigated in a vertical rarefaction tube (Morgan,
Likhachev & Jacobs 2016; Morgan et al. 2018). Puncturing of the diaphragm
separating the vacuum tank beneath the test section generated rarefaction waves
that travelled upwards and accelerated the interface downwards. Two-dimensional
(2-D) and three-dimensional (3-D) single-mode perturbation diffuse interfaces were
created, and planar laser-induced Mie scattering photography was used to visualise the
interface evolution. The effects of the interface diffusion and the Atwood number on
the interface evolution were investigated. The interaction of rarefaction waves with the
interface persisted throughout the entire experimental period. The interfacial instability
after the rarefaction waves leave the interface and the effects of the rarefaction wave
strength on the interfacial instability have not been studied.

In this work, SF6/air interfaces separating gases with different densities are
considered. The interaction of rarefaction waves with the interface is quantified
using one-dimensional (1-D) gas dynamics theory. The interface evolution and wave
patterns are acquired from 2-D simulations with the in-house conservation element
and solution element (CE/SE) scheme (Shen et al. 2015a; Shen, Wen & Zhang
2015b; Shen & Wen 2016). The time-varying amplitude growth of the interface
induced by rarefaction waves is compared for different initial conditions. The effects
of the interaction time of the rarefaction waves with the interface and the rarefaction
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wave strength on the interfacial instability are highlighted. Notably, the interaction
time of rarefaction waves with the interface is defined as the period between the
time at which the rarefaction wave head (RWH) reaches the initial average position
(IAP) of the interface and the time at which the rarefaction wave tail (RWT) leaves
the IAP, while the rarefaction wave strength is defined as the ratio of the difference
between the initial pressure across the interface and the pressure behind the RWT to
the initial pressure across the interface. Furthermore, nonlinear models are established
considering the two stages of RT and RM instability, and the model predictions agree
well with the numerical results. Finally, quantitative comparisons of the interfacial
instability induced by rarefaction waves and a shock wave are investigated for the
first time.

2. Numerical methods
2.1. Numerical set-up and scheme

The process of rarefaction waves interacting with a heavy/light interface examined
in this study is described by the compressible Euler equations. An in-house upwind
space–time CE/SE scheme with a second-order accuracy in both space and time (Shen
et al. 2015a,b; Shen & Wen 2016) is utilised. A volume-fraction-based five-equation
model (Abgrall 1996; Shyue 1998) is used to illustrate the different species residing
on both sides of the inhomogeneous interface. The contact discontinuity restoring
HLLC (Harten–Lax–van Leer–Contact) Riemann solver (Toro, Spruce & Speares
1994) is used to determine the numerical fluxes between the conservation elements.
The use of this scheme in capturing shocks and details of complex flow structures
for shock–bubble and shock–droplet interactions has been well validated (Shen et al.
2015b; Shen & Wen 2016; Shen et al. 2017; Shen & Parsani 2017; Fan et al. 2019).
Recently, the CE/SE scheme was further proven by Zhai et al. (2019) to be reliable in
the study of the RT instability effects on the cylindrically converging RM instability,
which justifies the use of this scheme in computing the physics of fluids consisting
of both RT instability and RM instability.

Two-dimensional simulations are performed in the present study. The initial settings
of the simulation are presented in figure 1(a). Non-reflecting boundary conditions are
enforced by implementing stretching grids beyond the top and bottom boundaries
(y = −200 and y = 300 mm) to increase numerical dissipation and eliminate the
effects of the rarefaction waves reflected from the top and bottom boundaries on
the interface evolution; reflecting and periodic conditions are imposed at the right
and left boundaries (x = 0 and x = 60 mm), respectively. The initial amplitude (a0),
wavelength (λ) and wavenumber (k) of the 2-D single-mode perturbation sharp
interface are 2.0 mm, 60 mm and 104.72 m−1, respectively, in all cases. The zones
of the initial gases A (air), B (SF6) and C (SF6) are defined as zone 5, zone 1
and zone 0, respectively. There are two reasons for the gas pair of SF6 and air
being chosen as the test gases on the two sides of the interface: First, the density
of SF6 in zone 5 (ρ5) is 6.143 kg m−3, and the density of air in zone 1 (ρ1) is
1.204 kg m−3; thus, the initial Atwood number (A) of the SF6/air interface, which
is defined as (ρ5 − ρ1)/(ρ5 + ρ1), equals 0.672. Therefore, the development of RT
instability and RM instability induced by rarefaction waves is rapid when the SF6/air
interface is chosen, providing the interface evolves for a long time. Second, due
to the non-toxicity and stability of SF6, the gas pair of SF6 and air chosen in the
present study is a good candidate for further experimental studies in a rarefaction
tube. The specific heat ratios in zone 5 (γ5) and zone 0 (or 1) (γ0(1)) are 1.399 and
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FIGURE 1. Schematics of the initial configuration for the numerical simulation (a), the
flow field when the rarefaction wave head impacts the initial average position of the
interface (b) and the flow field after the rarefaction wave tail leaves the interface (c).

1.094, respectively. The sound speeds in zone 5 (c5) and zone 0 (or 1) (c0(1)) are
343.1 m s−1 and 133.9 m s−1, respectively. The initial pressure in zone 5 (or 1)
(p5(1)) is 101 325 Pa. The other initial gas parameters in zone 0 are shown in table 1.
The initial interface is set above the diaphragm and the distance between the IAP
of the interface and the diaphragm is L; L is varied from 10.0 mm to 50.0 mm to
change the interaction time of the rarefaction waves with the interface, and ρ0 (p0)
in zone 0 is varied from 0.1ρ1 (0.1p1) to 0.5ρ1 (0.5p1) to change the pressure ratio
on the two sides of the diaphragm. The ratio of L to λ, L/λ, and the ratio of p1
to p0, p10, are shown in table 1 for different cases. The initial pressure of gas C is
lower than that of both gases A and B. Therefore, rarefaction waves arise when the
diaphragm (at x= 0) between gases B and C suddenly bursts, and move upwards to
interact with the interface.

For the data of the numerical simulations, the nodes with a volume fraction of SF6
between 15 % and 85 % are chosen as the finite-thickness interface. Then, the mean
value of y of these nodes on each row is taken as the average position of the local
interface. The amplitude is defined as half of the distance between the local interface
position closest to the upper boundary and that closest to the bottom boundary.
Notably, a separate test was conducted with the ranges of 1 %–99 %, 5 %–95 %,
10 %–90 % and 15 %–85 % of volume fraction of SF6 as the finite-thickness interface.
The results show that the time-varying amplitude growth of the interface is not
sensitive to the choice of the volume fraction range.

2.2. Code validation
The evolution of a 2-D single-mode perturbation diffuse interface with the gas pair of
SF6/CO2 for 3.5 wavelengths induced by rarefaction waves obtained in experimental
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FIGURE 2. Code validation based on comparisons of (a) the interface evolutions for the
gas pair of CO2/SF6 and 3.5 wavelengths from experiments (left) and Miranda simulations
(middle) obtained from Morgan et al. (2018) and the present simulation (right), where
numbers represent the time in ms; and (b) the time-varying amplitude growth for the gas
pair of air/SF6 and 1.5 wavelengths.

work (Morgan et al. 2018) is used for the code validation. Figure 2(a) illustrates the
comparisons of the interface evolution between the numerical results (right) and the
images obtained from the experiments (left) and Miranda simulations (middle). It can
be observed that both the amplitude and the overall shape of the 2-D perturbation in
the current numerical results agree well with the experiments and Miranda simulations
before 3.3 ms. After 4.2 ms, more small vortices occur along the interface in the
current numerical simulations compared with the Miranda simulations when the mesh
sizes are the same (=0.1 mm). The discrepancies are ascribed to Navier–Stokes
simulations being used in the work of Morgan et al. (2018) and Euler simulations
being used in this study. However, the whole interface evolution and mixing width
growth in the numerical simulations are in agreement with the Miranda simulations.
In addition, the time-varying amplitude growth of a 2-D single-mode perturbation
diffuse interface with the gas pair of SF6/air for 1.5 wavelengths calculated by the
Miranda code is compared with the current numerical results, as shown in figure 2(b).
The current simulations also quantitatively agree well with the Miranda simulations.

2.3. Grid independence test
Four mesh sizes of 0.4 mm, 0.2 mm, 0.1 mm and 0.05 mm were tested for grid-
convergence validation. The density along the symmetry line of the interface at 2.5 ms
converges when the mesh size is reduced to 0.1 mm and 0.05 mm in the numerical
simulations, as sketched in figure 3(a). In addition, the amplitude of the interface at
2.5 ms also converges when the mesh size is reduced to 0.1 mm and 0.05 mm in
the numerical simulations, as shown in figure 3(b). Therefore, to ensure the accuracy
and minimise the computational cost, an initial mesh size of 0.1 mm is adopted for
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FIGURE 3. Grid-convergence validation. (a) Density profiles, where the inset shows the
data extracted along the symmetry line of the interface at 2.5 ms from the present
simulation, and (b) the time-varying amplitude growth, where the inset shows how the
amplitude a is measured.

all simulations. Notably, due to the large thickness of the initial interface (=3.4 mm),
grid-convergence validation with the density and amplitude profiles across the diffuse
interface is challenging.

3. One-dimensional gas dynamics theory

Before qualitative and quantitative analyses are performed on the interactions of
rarefaction waves with a perturbed heavy/light interface, 1-D gas dynamics theory
(Owczarek 1964; Velikovich & Phillips 1996) is used to estimate the flow conditions
in zones 2, 3 and 4 in figure 1 after the rarefaction wave–interface interactions.
We define pmn = pm/pn, cmn = cm/cn, αn = (γn + 1)/(γn − 1), βn = (γn − 1)/2γn

and δn =
√

2/γn(γn − 1), where ‘m’ and ‘n’ are the numbers of zones shown in
figure 1. After the diaphragm bursts, rarefaction waves move upwards, and a shock
wave moves downwards, followed by the burst diaphragm, as seen in figure 1(b). The
Mach number (Ms) of the shock wave, the pressure (p2) and the flow velocity (u2), in
zone 2 can be obtained using 1-D gas dynamics theory (Owczarek 1964; Velikovich &
Phillips 1996), as shown in table 2. As mentioned in § 1, the dimensionless pressure,
|p2 − p1|/p1, is proposed to evaluate the pressure change along the propagation
direction of the rarefaction waves and is defined as the rarefaction wave strength (see
table 2). It is shown that as p10 increases, |p2 − p1|/p1 increases, implying that the
rarefaction waves are stronger.

The RWH moves with speed −c1, and the RWT moves with speed (γ1+1)u2/2− c1.
Therefore, the rarefaction wave zone expands as the waves move upwards. After the
RWH impacts the interface, the weaker rarefaction waves are transmitted into gas A,
and the compression waves are reflected into gas B. The zones in gas A and gas B on
the two sides of the interface are defined as zone 4 and zone 3 after the RWT leaves
the interface, as shown in figure 1(c). During the interaction of the rarefaction waves
and the interface, the interface accelerates, and its final velocity reaches u3 (≡ u4).
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Case Ms p2 (Pa) |p2 − p1|/p1 u2 (m s−1) p3(4) (Pa) u3(4) (m s−1) 1t (µs) ḡ (m s−2)

SA1 1.71 30412.9 0.700 144.9 44785.4 189.1 104.6 1807707.6
SA2 1.71 30412.9 0.700 144.9 44785.4 189.1 209.3 903853.8
SA3 1.71 30412.9 0.700 144.9 44785.4 189.1 313.9 602569.2
SA4 1.71 30412.9 0.700 144.9 44785.4 189.1 418.5 451926.9
SA5 1.71 30412.9 0.700 144.9 44785.4 189.1 523.1 361541.5
SA6 1.46 44328.2 0.563 100.4 58058.8 131.5 202.3 650271.9
SA7 1.33 54881.6 0.458 74.8 67076.7 98.1 145.1 676275.5
SA8 1.24 63696.8 0.371 56.8 74270.6 74.8 107.3 696958.8
SA9 1.18 71416.1 0.295 42.9 80147.4 56.4 79.5 709586.1

TABLE 2. Physical properties of different gases calculated from 1-D gas dynamics theory
(Owczarek 1964; Velikovich & Phillips 1996) for all cases. Ms is the Mach number of
the shock wave; p2 and p3(4) are the pressures in zone 2 and zone 3 (or 4), respectively;
|p2 − p1|/p1 represents the rarefaction wave strength; u2 and u3(4) are the flow velocities
in zone 2 and zone 3 (or 4), respectively; 1t is the interaction time of the rarefaction
waves with the interface; and ḡ is the average acceleration imposed on the interface by
the rarefaction waves.

According to 1-D gas dynamics theory (Owczarek 1964; Velikovich & Phillips 1996):

u3 =
c1

γ1β1
(pβ1

21 − 1)−
c1δ1(p32 − 1)
(α1p32)0.5

pβ1
21. (3.1)

The unknown parameter in (3.1) is p32 (= p31/p21), which satisfies the relation

c51 =
γ5β5

pβ5
31 − 1

[
1
γ1β1

(pβ1
21 − 1)−

δ1(p32 − 1)
(α1p32 + 1)0.5

pβ1
21

]
. (3.2)

Here, p32 can be derived from (3.2) using a numerical iterative algorithm and then
substituted into (3.1) to acquire u3, as listed in table 2.

As discussed in previous work (Li & Book 1991; Li et al. 1991; Morgan et al.
2016, 2018), the perturbation growth at the heavy/light interface is dominated by
RT instability during the interaction of the rarefaction waves with the interface.
Therefore, it is important to derive the interaction time of the rarefaction waves with
the interface, 1t, and the interface acceleration, g. The sufficiently small ratio of the
interface amplitude to the wavelength (0.033) in this study means that the interaction
of the rarefaction waves with the interface is regarded as a quasi-1-D case. This
implies that the interface begins to accelerate after the RWH reaches the IAP of the
interface at t= 0 and stops accelerating after the RWT leaves the IAP of the interface
at t=1t. When the RWH reaches the IAP of the interface, the span of the rarefaction
waves region (S, defined as the distance between RWH and RWT) is (γ1 + 1)u2δt/2,
and δt= L/c1 is the time period between the RWH formation and the moment when
it reaches IAP of the interface. By analogy with the acceleration profiles derived
from the flat interface displacement obtained in figure 6 of the experimental work of
Morgan et al. (2018), the acceleration imposed on the flow is assumed to linearly
decrease from the RWH to the RWT, and the expressions for the time-varying g and
interface displacement (x) are thus

g= ḡ
[
ε − (2ε − 2)

t
1t

]
,

x=
∫ 1t

0
ḡ
[
ε − (2ε − 2)

t
1t

]
t dt,

 (3.3)
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where ḡ is the average acceleration imposed on the interface and ε is the parameter
indicating the acceleration strength distribution in the direction of propagation of the
rarefaction waves. The value of ε is greater than 1 and less than 2. When ε equals
1, g is uniform across the rarefaction waves; when ε equals 2, g at the RWT is 0.
Then, 1t and ḡ in the interaction problem between the IAP of the interface and the
rarefaction waves can be solved as follows:

1t=
3(γ1 + 1)u2L

4c1u3 − εc1u3 + 6c2
1 − 3(γ1 + 1)c1u2

,

ḡ=
u3

1t
=

4c1u2
3 − εc1u2

3 + 6c2
1u3 − 3(γ1 + 1)c1u2u3

3(γ1 + 1)u2L
.

 (3.4)

When ε equals 1.2, the time-varying SF6/air interface displacements calculated by (3.3)
agree well with their 1-D numerical counterparts, as shown in figure 4(a). The values
of 1t and ḡ for different cases are also listed in table 2.

The effects of L and p10 on 1t and ḡ are discussed here. Figures 4(b) and 4(c) show
the variations in 1t and ḡ with L/λ when p10=10.0 and with p10 when L/λ = 0.50,
respectively, according to (3.4). As seen in figure 4(b), when L/λ, i.e. the span of the
rarefaction wave region, increases, 1t linearly increases but ḡ sharply decreases when
L/λ is less than 0.1. Additionally, figure 4(c) shows that as p10, i.e. the rarefaction
wave strength, increases, 1t increases but ḡ decreases.

4. Results and discussion
4.1. Qualitative analysis

The numerical schlieren images (Desse & Deron 2009) of the SF6/air interface
evolution induced by the rarefaction waves in different cases are presented in figure 5.
Time zero is defined as the moment at which the RWH impacts the IAP of the
interface. The SA1 case is used as an example to detail the interaction process, as
shown in figure 5(a). The black layer in the first frame shows the density-varying layer
across the rarefaction waves (−25 µs). The initial interface accelerates after the RWH
impacts it; then, RT instability is triggered on the interface, and the perturbation on
the interface gradually grows. Then, after the RWT leaves the interface, the interface
acceleration decreases to zero, and the baroclinic vorticity generated by the mismatch
of the density gradient on the interface and the pressure gradient induced by the
rarefaction waves dominates the later interface evolution (33 µs). The interfacial
instability at this stage is similar to RM instability; the baroclinic vorticity generated
by the shock wave dominates the perturbation growth after the shock wave leaves
the interface. Generally, we define the flow structure of a heavy fluid penetrating a
light fluid as a spike and the flow structure of a light fluid penetrating a heavy fluid
as a bubble. Later, at approximately 68 µs, a pair of large vortices appears on the
head of the spike; these are caused by the velocity shears on the two sides of the
interface and represent Kelvin–Helmholtz instability. Eventually, the large A leads to
spike–bubble asymmetry, and a mushroom-shaped spike structure forms in the final
nonlinear evolution stage, which adopts a shape very different to the adjacent bubble
structures (103 µs). In figure 5, it can be seen that the interfacial morphologies are
similar during the whole evolution process in SA1, SA3 and SA5. In contrast, the
interface evolution is faster when p10 is larger, as can be seen by comparing SA3,
SA7 and SA9, which means that stronger rarefaction waves induce a faster evolution
of the interface.

https://doi.org/10.1017/jfm.2019.1025
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Y. Liang, Z. Zhai, X. Luo and C. Wen

0 0.5 1.0 1.5 2.0 1 5 10 15 20

8

6

4

2

0

8

6

4

2

0

0.5

0.4

0.3

0.2

0.1

0

0.5

0.4

0.3

0.2

0.1

0

0 100 200 300 400 500

50

40

30

20

10

SA4

SA1
SA2
SA3

SA5

SA7
SA6

SA8
SA9

t (µs)

x 
-

 x
0 (

m
m

)

L/¬ p10
Î

t (
m

s)

(÷ 107) (÷ 107)

g 
(m

 s-
2 )

Ît
g

(a)

(b) (c)

FIGURE 4. (a) The comparisons of the time-varying SF6/air interface displacements
obtained from the 1-D simulation (symbols) with the theoretical predictions (lines)
calculated from (3.3). The comparisons of 1t and ḡ by changing (b) L/λ with p10= 10.0
and (c) p10 with L/λ= 0.50.

4.2. Quantitative analysis
The amplitude variations of the SF6/air interfaces with time in the dimensionless form
for cases of (a) different L and a fixed p10 (= 10.0) and (b) different p10 and a fixed
L (L/λ = 0.50) are shown with symbols in figure 6. The time and amplitude of the
perturbed interface are normalised as ku3At and k[a(t)− a0], respectively, where a(t)
is the time-varying amplitude of the interface. As seen in figure 6, the dimensionless
amplitude for every case increases in an ‘S’-shaped trend as the dimensionless time
increases. The vertical dashed lines with the same colours as the symbols mark the
inflection point at t=1t for each case. During the interaction of the rarefaction waves
with the interface (0< t<1t), RT instability occurs at the interface and the interface
amplitude growth rate continues to increase due to the continuous acceleration of the
rarefaction waves (i.e. the amplitude growth curve traces a ‘concave-up’ shape). After
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FIGURE 5. Schlieren images of the SF6/air interface evolution induced by rarefaction
waves in cases (a) SA1, (b) SA3, (c) SA5, (d) SA7 and (e) SA9. Numbers represent
the time in µs. ( f ) Schlieren images of the interface evolution in cases SA1 (left), SA3
(middle) and SA5 (right) at dimensionless time ku3At= 10.3.

the RWT leaves the evolving interface, there is no body force (g) imposed on the
interface. Therefore, the interface moves downwards at a constant velocity u3, and the
interface evolution enters the RM instability stage.

The cross-over point of the interface amplitude growth appears at approximately
the dimensionless time of 10.3 for cases with different L, as shown in figure 6(a).
The schlieren images of cases SA1, SA3 and SA5 at this moment are presented in
figure 5( f ). The asymmetry between the spike and the bubble is obvious in all three
cases, which implies that the interface evolution has entered the nonlinear stage at this
moment. The interfaces have similar shapes at the cross-over point. In addition, the
vortices on two sides of the spike in the SA1 case are larger than those in the other
two cases, which indicates that a larger vortex shear is induced when the interaction
period is shorter.

4.3. Nonlinear theory analysis
The nonlinear models separately proposed by Zhang & Guo (2016) and Zhang et al.
(2018) to predict the single-mode perturbation interface amplitude growth under
RT instability (ZGRT model) and RM instability (ZRM model) are adopted for
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FIGURE 6. Comparisons of the dimensionless amplitude of the SF6/air interface among
cases of (a) different L and a fixed p10= 10.0 and (b) different p01 and a fixed L/λ= 0.50.
Symbols represent the interface amplitude growth obtained from the simulations. Solid
lines and dashed-dotted lines with the colours corresponding to the symbols represent
the predictions of the modified ZGRT model proposed by Zhang & Guo (2016) and the
modified ZRM model proposed by Zhang, Deng & Guo (2018), respectively, and vertical
dashed lines of the colours corresponding to the symbols represent the separation between
the RT and RM instability stages at t=1t.

comparison with the numerical simulations and to interpret the results shown in
figure 6. The model of Zhang & Guo (2016) shows a remarkable ability to predict
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Case SA1 SA2 SA3 SA4 SA5 SA6 SA7 SA8 SA9

v1t
b (m s−1) 49.2 40.6 35.0 31.1 28.1 31.7 27.1 22.5 17.9
v1t

s (m s−1) 65.8 61.7 58.1 55.0 52.3 44.6 34.7 27.2 20.8
vimp (m s−1) 26.6 26.6 26.6 26.6 26.6 18.5 13.8 10.5 8.0
θ 4000 3700 3500 1800 300 8000 11 000 20 000 28 000

TABLE 3. Physical parameters in the ZGRT model and ZRM model. Here v1t
b and v1t

s are
the bubble and spike growth rates at t =1t, respectively; vimp is the interface amplitude
growth rate calculated with impulsive theory (Richtmyer 1960); and θ is the transition
coefficient from RT instability to RM instability.

the growth of both the bubble and the spike. Based on the feature that all bubbles
and spikes closely follow a universal curve in terms of scaled dimensionless variables
at any density ratio, the growth rates of both the bubble and the spike are derived
(Liu et al. 2018). The ZGRT model is written as follows:

dv
dt
=−α(A)k(v2

− v2
qs), (4.1)

where v(= da(t)/dt) is the interface amplitude growth rate

α(A)=
3
4

(1+ A)(3+ A)
[3+ A+

√
2(1+ A)]

[4(3+ A)+
√

2(1+ A)(9+ A)]
[(3+ A)2 + 2

√
2(1+ A)(3− A)]

, (4.2)

vqs =

√(
Ag
3k

8
(1+ A)(3+ A)

[3+ A+
√

2(1+ A)]2

[4(3+ A)+
√

2(1+ A)(9+ A)]

)
, (4.3)

with a positive Atwood number for bubbles and the negative counterpart for spikes
with the same density ratio. The initial amplitude growth rate (v0) at t = 0 equals 0.
α(A) is a function of A. Due to the limited variance in A with time caused by the
rarefaction waves (Morgan et al. 2018), A is set as the initial value of 0.672, and α(A)
equals 1.232 in the present study. The parameter vqs is the interface amplitude growth
rate in the quasi-steady stage of RT instability. Notably, vqs is a function of time
because g is time dependent (3.3), which is different from the original ZGRT model.
The time-varying growth rates of the bubble and the spike (vb and vs) induced by RT
instability are obtained by integrating equation (4.1) over time. The bubble and spike
growth rates (v1t

b and v1t
s ) at t=1t for all cases are listed in table 3. The predictions

of the modified ZGRT model considering the time-varying acceleration imposed on
the interface amplitudes are represented with solid lines in figure 6 and agree well
with the numerical results in all cases.

As shown in figure 6(a), at a particular t during the early stage of the interaction,
the interface amplitude decreases as L/λ increases (for a fixed p10). When L/λ is
small, 1t is small but ḡ is large, as illustrated in figure 4(b). This high equivalent
body force (g) imposed on the interface results in a high amplitude growth rate, v,
and consequently a large interface amplitude (4.1). However, when L/λ is fixed, the
interface amplitude decreases as p10 increases at a particular t during the early stage of
the interaction, as depicted in figure 6(b). When p10 is large, 1t is large but ḡ is small,
as illustrated in figure 4(c), consequently yielding a small interface amplitude (4.1).

When t > 1t, the interface evolution enters the equivalent RM instability stage.
The model proposed by Zhang et al. (2018) covers the entire time domain from the
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early to late stages of RM instability development and is applicable to interfaces with
arbitrary fluid density ratio. The predictions of the model have shown good agreement
with the data from several independent numerical simulations (Holmes et al. 1999;
Latini, Schilling & Don 2007; Latini & Schilling 2020) and experiments (Collins
& Jacobs 2002; Jacobs & Krivets 2005). In the ZRM model, the incompressible
amplitude growth rate is written as follows:

v = v0
1+ a1(A)(kv0)t+ a2(A)(kv0)

2t2

1+ b1(A)(kv0)t+ b2(A)(kv0)2t2 + b3(A)(kv0)3t3
, (4.4)

where

ai(A)= ζi(A)+ ηi(A)b1(A), i= 1, 2, (4.5)
bi(A)= σi(A)+ωi(A)b1(A), i= 2, 3, (4.6)

b1(A)= 1
4(c1 + c2)(3− A2)A+ 1

2(c1 − c2). (4.7)

In (4.4)–(4.7),

ζ1(A)=−(A+ ka0), ζ2(A)= φ(A)[2A3
− 5A− (18A2

− 3)ka0 − 12A(ka0)
2
],

η1(A)= 1, η2(A)= φ(A)[3+ 6(ka0)
2
],

σ2(A)= φ(A)[8A3
− 6A2α(A)− 8A+ 3α(A)− 12Aα(A)ka0], σ3(A)= α(A)ζ2(A),

ω2(A)= φ(A)3− 6A2
+ 6α(A)A− [12A− 6α(A)]ka0, ω3(A)= α(A)η2(A),

φ(A)=
1

6α(A)− A− ka0
> 0 for ka0 < 0.5,

c1 =
3
2
(1+ 4ka0)[(1− 2ka0)

√
2+ 4k2a2

0 − (1+ 4ka0)ka0]

2− 8ka0 + 11(ka0)2 − 24(ka0)3
,

c2 =
(1− ka0)(1− 4ka0)

1+
√

3+ 3ka0

1+ 3ka0
(1− 4ka0)+ 2(ka0)2

.


(4.8)

For all cases, A = 0.672, ka0 = 0.209, a1(A) = 1.172, a2(A) = 1.197, b1(A) = 2.053,
b2(A)= 2.774, b3(A)= 1.475, c1(A)= 2.219, c2(A)= 0.096, ζ1(A)=−0.882, ζ2(A)=
−1.989, η1(A) = 1, η2(A) = 1.552, σ2(A) = −2.222, σ3(A) = −2.451, ω2(A) = 2.433,
ω3(A)= 1.912 and φ(A)= 0.475. The two-point Padé approximant given by (4.4)–(4.6)
satisfies all known properties of the incompressible RM instability (Zhang et al. 2018).
For the incompressible RM instability with a small ka0, vimp = ka01vA. The linear
amplitude growth rate calculated with impulsive theory (Richtmyer 1960) is generally
taken as v0, where 1v is the jump velocity of the interface and is commonly adopted
as the interface velocity (u3). In this study, it was found that both v1t

b and v1t
s induced

by RT instability are much larger than vimp, as shown in table 3. In effect, v1t
b /vimp

ranges from 1.71 to 2.24 and v1t
s /vimp ranges from 2.41 to 2.59 for cases SA1–SA9.

Setting g = 0 in (4.1) or substituting v1t
b/s for v0 in (4.4) overestimates the interface

amplitude growth. To solve this problem, v0 in the ZRM model is considered as a
transition velocity from v1t

b/s induced by RT instability to vimp: v0b/0s= (v
1t
b/s−vimp)/[1+

θ(t−1t)] + vimp, including the initial bubble or spike growth rate (v0b/0s) under RM
instability and the transition coefficient (θ ). In this study, the values of θ (table 3)

https://doi.org/10.1017/jfm.2019.1025
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Interfacial instability induced by rarefaction waves

(a) (b)
Interface

Average
position

Rarefaction
waves

Gas AGas B

2� 2� 3� 4�1� 5� 5�

FIGURE 7. Schematics of the interaction of a shock wave with a single-mode perturbation
interface (a) before the shock wave impacts the interface and (b) after the shock wave
impacts the interface.

Case SA3′ SA6′ SA7′ SA8′ SA9′

Mi 1.701 1.457 1.327 1.242 1.179
|p2′ − p1′ |/p1′ 1.976 1.172 0.794 0.566 0.407

TABLE 4. Physical parameters of different cases under the shock wave condition. Mi
represents the Mach number of the shock wave and |p2′ − p1′ |/p1′ represents the
dimensionless pressure gradient of the shock wave under the shock wave condition.

are adjusted to fit the curves of the modified ZRM model to the numerical results in
all cases (shown as dashed-dotted lines in figure 6). As the interaction time or/and
rarefaction wave strength increases, θ decreases.

Moreover, as mentioned earlier, when L/λ is small (under a fixed p10), 1t is small
(figure 4a). Although the consequently large ḡ results in a high amplitude growth rate
at t=1t, the amplitude growth rate decreases as time proceeds (4.4). Therefore, when
comparing the cases of different L/λ (under a fixed p10) at a later time, it can be
seen that the amplitude growth rate for a small L/λ has a longer decay time than that
for a large L/λ, which eventually yields a smaller interface amplitude (see figure 6a).
Similar explanations can be applied to the cases in figure 6(b) with different p10 but
the same L/λ. In summary, a small L/λ and a small p10 lead to a small 1t and a
large ḡ, which in turn result in an initially large interface amplitude that decreases to
a small interface amplitude over time.

4.4. Interfacial instability induced by a shock wave and rarefaction waves
Finally, the interface amplitude growth induced by the rarefaction waves and that
induced by a shock wave of comparable strength are compared. As shown in
figure 7(a), a shock wave is initiated in gas B and then moves towards the SF6/air
interface separating gases A and B. Under the shock wave conditions, the initial
physical parameters of gases in zone 1′ and zone 5′ correspond to those in zone 1
and zone 5 in the SA3 and SA6 ∼ SA9 cases under the rarefaction wave conditions.
Correspondingly, the cases under the shock wave conditions are denoted as the SA3′
and SA6′ ∼ SA9′ cases. In the present study, to obtain comparable results for cases
under the shock wave condition and their rarefaction wave counterparts, the interface
velocity under the shock wave condition is set equal to that under the rarefaction
wave condition, i.e. u3′ = u3 (figure 7b). The corresponding shock wave Mach number
(Mi) is calculated according to 1-D gas dynamics theory (Owczarek 1964; Han &
Yin 1992) and listed in table 4 for different cases.

Comparisons of the time-varying SF6/air interface amplitude growth induced by
rarefaction waves and by a shock wave are shown in figure 8. First, after the
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FIGURE 8. Comparisons of the dimensionless amplitudes of the SF6/air interface induced
by the rarefaction waves and a shock wave.

rarefaction waves impact the heavy/light interface, the interface amplitude grows
continuously. However, after a shock wave impacts the heavy/light interface, the
amplitude first decreases and then increases because of the indirect phase inversion
induced by the baroclinic mechanism (Brouillette 2002). Second, as the rarefaction
wave strength increases, the dimensionless interface amplitude growth becomes larger
at a later time. In contrast, as the shock wave strength increases, i.e. Mi increases, the
dimensionless interface amplitude growth becomes smaller, which agrees with previous
studies (Rikanati et al. 2003; Stanic et al. 2012; Dell, Stellingwerf & Abarzhi 2015).
For the RM instability with a strong shock, the high pressure behind the shock front
inhibits bubble growth (Rikanati et al. 2003). Meanwhile, after the passage of the
shock, a significant part of the shock energy goes to the compression and background
motion of the fluids, and only a small part of it is available for interfacial mixing
(Stanic et al. 2012; Dell et al. 2015). Third, the interface amplitude growth under the
rarefaction wave condition is always larger than that under the shock wave condition.
In the current study, the initial density gradients along the interface are the same under
the rarefaction wave condition and the shock wave condition. However, the initial
pressure gradients are different. The dimensionless pressure gradients, |p2′ − p1′ |/p1′ ,
calculated with the 1-D gas dynamics theory (Owczarek 1964; Han & Yin 1992)
under the shock wave conditions are shown in table 4 for all cases. It is noted
in every corresponding case, the dimensionless pressure is larger under the shock
wave condition. However, the interface amplitude growth under the rarefaction waves
condition is larger and the interaction time between the wave and the interface is
longer, which indicates that more vorticity is deposited when the pressure gradient is
continuous. In summary, when the post-rarefaction flow velocity equals the post-shock
flow velocity, i.e. vimp is the same, the interface perturbations under the rarefaction
wave condition are more unstable than those under the shock wave condition.
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5. Conclusions
Numerical simulations of the interfacial instabilities of a heavy/light interface

induced by rarefaction waves are performed using the upwind space–time CE/SE
scheme. Ideal rarefaction waves are generated by simulating diaphragm burst in a
shock tube. The effects of the distance between the diaphragm and the interface
and the pressure ratio between the two sides of the diaphragm, i.e. the interaction
time (span) and strength of the rarefaction waves, on the interfacial instability are
determined.

The physical parameters before and after the rarefaction waves impact the interface
are calculated with 1-D gas dynamics theory (Owczarek 1964; Velikovich & Phillips
1996). During the interaction of the rarefaction waves with the heavy/light interface,
the interface is accelerated and RT instability is induced. The expressions for the
interaction time and interface acceleration are also obtained according to 1-D gas
dynamics theory. It is found that both the span and the strength of the rarefaction
waves influence the interaction time and the interface acceleration. For a perturbed
interface, the rarefaction waves with a short interaction time and/or a high strength
enhance the interfacial mixing. After the rarefaction waves leave the interface, RM
instability dominates the interfacial instability. The ZGRT model proposed by Zhang
& Guo (2016) and the ZRM model proposed by Zhang et al. (2018) are modified
considering the time-varying acceleration and the growth rate transition from RT
instability to RM instability, respectively. Each model accurately coincides with the
interfacial amplitude growth during the corresponding interfacial instability stage. Last,
comparisons of the interface amplitude growth under the rarefaction wave condition
and a shock wave condition are investigated, with the same initial gas physical
parameters and final interface velocity. As clearly observed, the interface perturbation
is more unstable under the rarefaction wave condition than under the shock wave
condition due to the higher amount of vorticity deposited by the continuous pressure
gradient. In future studies, the interfacial instability of a light/heavy interface induced
by rarefaction waves will be investigated.
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