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Abstract 

A one-dimensional numerical simulation of detonation propagation is performed with an 

introduction of the vibrational relaxation mechanism in a single-step chemical model for 

the first time. This coupling mechanism is constructed based on the energy transfer 

between the translational-rotational mode and the vibrational mode, together with an 

averaged two-temperature model in chemical kinetics. A time ratio 𝜏𝛼  between the 

characteristic chemical time scale and the characteristic vibrational time scale is 

introduced to illustrate whether this coupling effect is crucial in stabilizing the detonation. 

The simulation is initialized first with an extended steady-state profile and the inclusion 

of the vibrational energy in the equations. For the particular case considered in this study 

with a nondimensional heat release 𝑄 = 50 , a ratio of specific heat 𝛾 = 1.2 , and a 

nondimensional characteristic vibrational temperature 𝜗 = 20, the stability boundary is 

indicated at an activation energy 𝐸𝑎 = 26.47 under thermal equilibrium. Two mildly 

unstable cases for a Chapman-Jouguet (CJ) detonation and an overdriven detonation are 

then studied with the variation of  𝜏𝛼. The results reveal that the detonation is stabilized 

by the vibrational nonequilibrium effect with a smaller pulsation amplitude and a longer 

oscillation period in the shock pressure history, and the neutral stability is shifted. For the 

CJ detonation case, the critical 𝜏𝛼 below which the coupling effect is significant is 7.2. 

The stabilization of detonation can be attributed to the change of overall chemical reaction 

rate and thus a shift of the stability limit towards higher activation energy. For an 

overdriven detonation, the critical 𝜏𝛼 is approximately 21 for the studied cases. Since the 

changes in both overdriven factors 𝑓 and 𝜏𝛼 contributed to the stabilization of detonation, 

a reduction of the neutral stability limit of 𝑓  is foreseen when the coupling effect is 

significant. Lastly, the effect of different 𝜗  on the stability limit is demonstrated at 
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equilibrium state with vibrational energy included and it is suggested that the shift of 

stability limit would reach the maximum at around 𝜗 = 15. This inaugural work provides 

a reference on the importance of considering thermal nonequilibrium flow in detonation 

stability and the implication to the related engine design.  
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1. Introduction 

Detonation occurs when a supersonic wave induces shock compression, heats up 

the reactants in the flow and initiates chemical reactions, such that the energy released in 

the form of heat sustains propagation. Although the establishment of a self-sustained 

detonation under a short flow-through time scale in the detonation engine design remains 

a challenge, the great thermal propulsion performance of the detonation engine still 

attracts researchers’ attention nowadays. Many efforts have been done in numerical 

simulations to study the detonation engine performance under practical operation states, 

for instance, the pulse detonation engine (PDE), rotating detonation engine (RDE) and 

oblique detonation wave engine (ODWE) [1-3]. In particular, as pointed out in the 

literature, the role that the detonation stability plays in supersonic propulsion devices is 

worth to be investigated theoretically, experimentally and numerically [4].  

A detonation wave structure can be studied one-dimensionally by a well-known 

steady-state solution named the Zel’dovich–von Neumann–Döring (ZND) model 

developed in the 1940s [5-7]. Nevertheless, a gaseous detonation wave in reality often 

exists in multidimensional form and is inherently unstable due to the interaction between 

the transverse wave and the leading shock at the triple point within the reaction zone. A 

cell or a diamond pattern of cellular instability can thus be observed in a two-dimensional 

rectangular channel when the detonation wave propagates [8]. However, to some extent, 

detonation can be one dimensional in nature, and thus, the corresponding pulsating 

detonation stability has been studied extensively in past decades [9-11]. 

To investigate the instability of a detonation wave from an analytical approach 

(for instance, the linear stability analysis), it is common to solve the steady one-

dimensional conservation equations first with a single, irreversible reaction in an 

Arrhenius form and then introduce small perturbations in the solution to see if the 



amplitudes of the perturbations grow or decay. The use of an idealized chemical model 

enables investigators to check the reliability of the cases before conducting numerical 

simulations with detailed chemistry involving multiple species. In the middle of the 20th 

century, Erpenbeck [12-14] conducted an extensive mathematical study on this idealized 

one-reaction detonation instability using an initial value Laplace transform approach. 

Thereafter, Lee and Stewart [15] revisited the problem by introducing a normal mode 

approach in linear stability analysis. While fundamental detonation physics has been 

assessed with this stability analysis, the increase in computational power in recent years 

has enabled a series of parametric studies regarding the dependence on activation energy, 

overdriven factors, heat release, etc with this simplified chemical model. The fairly 

accurate prediction of the stability boundaries and the oscillation periods in slightly 

unstable pulsating detonation by linear stability analysis helps in establishing a more 

realistic simulation involving complicated chemical reactions. By contrast, in the analysis 

on shock pressure history from numerical simulation, the governing equations are solved 

without introducing small perturbation particularly. The startup errors are sufficient to 

trigger the pulsating instability. However, the computational cost heavily depends on the 

grid resolution, particular near the stability boundary where the growth or decay rate of 

the profile is small. Examples of such scenarios have been discussed numerically and 

analytically by different authors in recent decades [16-19]. 

On the other hand, recent studies have revealed that the mechanism of vibrational 

relaxation is crucial in the delay of flame ignition and stabilization of supersonic scramjet 

combustion [20-22] and in gaseous detonation to account for the differences in cell sizes 

between experiments and simulations [23-25]. From statistical thermodynamic, 

molecules are known to consist of translational, rotational, vibrational, and electronic 

energy modes [26]. After encountering the shock, translational equilibrium can be 

established quickly in less than 10 molecular collisions, while the rotational equilibrium 

can be obtained within 20 molecular collisions. However, thousands of collisions are 

required for the vibrational mode to establish its equilibrium, and therefore is notably 

important in this study [27]. For instance, the ignition time scale and the vibrational time 

scale of a typical H2/air detonation were investigated by Taylor et al. [25], and they 

revealed that the ignition time scale can be less than the vibrational time scale. In this 

context, Shi et al. [23] simulated both one-dimensional (1D) and two-dimensional (2D) 

H2/O2 detonation with 70% argon dilution and reported that the case under vibrational 

nonequilibrium shows significant elongation in the half-reaction length and an enlarged 



detonation cell size. The computed cell size becomes comparable with the experimental 

size, and the significant influence of the vibrational relaxation mechanism is therefore 

demonstrated. To further expand the theoretical understanding of the coupling effect 

between vibrational relaxation and chemical reaction on the half reaction length and the 

cell size, Uy et al. [24] proposed an extended ZND model with a simplified vibration-

chemistry coupling mechanism. It is shown that the energy transfer between the 

translational-rotational mode and the vibrational mode reduces the effective temperature 

and slows down the chemical reaction rate, which is manifested in terms of elongation in 

the half-reaction length within the reaction zone. A critical time ratio of the chemical time 

scale versus the vibrational time scale, below which the vibrational nonequilibrium 

should be considered, was reported in the related parametric studies. 

Although the effect of the coupling mechanism between the chemical reactions 

and molecular vibrational nonequilibrium has been reported by many authors, the 

consideration of this coupling mechanism in detonation stability analysis has not been 

studied before. Based on the findings of stability analyses with different chemical kinetics 

in previous papers, a shift of the neutral stability limit is expected for detonation in a state 

of vibrational nonequilibrium compared with that in a state of equilibrium. 

In this paper, a single-step chemical reaction in an Arrhenius form coupled with a 

vibrational relaxation mechanism is considered in a detonation stability analysis through 

numerical simulation. The time ratio introduced by Uy et al. [24] is adopted to denote the 

different states of thermal nonequilibrium in the detonation. The present study aims to 

numerically investigate the possibility of a shift in the neutral stability range for the 

selected unstable cases under different time ratios. Through this study, a critical time ratio 

for which the solution converges to a state of equilibrium is also suggested.  

2. Mathematical model 

2.1 Governing equations 

To simulate the detonation propagation inside a channel, one-dimensional 

reaction Euler equations are applied, and the corresponding normalized form is presented 

as follows: 

𝜕𝜌

𝜕𝑡
+

𝜕(𝜌𝑢)

𝜕𝑥
= 0 

(1) 



𝜕(𝜌𝑢)

𝜕𝑡
+

𝜕(𝜌𝑢2 + 𝑝)

𝜕𝑥
= 0 

(2) 

𝜕(𝜌𝑒)

𝜕𝑡
+

𝜕[𝑢(𝜌𝑒 + 𝑝)]

𝜕𝑥
= 0 

(3) 

 

  Referring to previous works [23, 24, 28], under a state of vibrational 

nonequilibrium, the energy equation is reformulated such that vibrational energy and 

translational-rotational energy terms are separated for investigation. Thus, the specific 

internal energy 𝑒 , specific translational-rotational energy 𝑒tr , and specific vibrational 

energy 𝑒v are described as follow, while ignoring the electronic mode: 

𝑒 = 𝑒tr + 𝑒v +
𝑢2

2
− 𝜆𝑄 

(4) 

𝑒tr =
𝜖

2
𝑇tr, 𝜖 =

2

(𝛾 − 1)
 

(5) 

𝑒v =
𝜗

exp(𝜗 𝑇v⁄ ) − 1
 

(6) 

 

where 𝜌 , u, p,  𝑄 , 𝛾 , 𝜖 , 𝜗 , 𝑇tr, 𝑇v  and 𝜆 are the density, velocity, pressure, local heat 

release, the ratio of specific heats, degree of freedom of reactant (or product) molecules, 

characteristic vibrational temperature, translational-rotational temperature, vibrational 

temperature and the reaction progress variable for the product, respectively. 𝜆 is equal to 

zero at the upstream state and is equal to 1 at the downstream state, representing the 

completion of the reaction. Notably, Eqs. (5) and (6) are in nondimensional forms so that 

the gas constant 𝑅 is not seen. The determination of these two energy modes follows the 

approach from statistical thermodynamics [26]. 𝑇v  can be obtained through Newton’s 

iteration with the known function 𝑒v expressed in Eq. (6). 

 

  For the chemical kinetics, a simplified single-step Arrhenius model is applied to 

describe the chemical reaction process. Park’s two-temperature model is adopted to 

represent the coupling of the translation-rotational mode with the vibrational mode. 

Park’s two-temperature model has been demonstrated in many works related to high-

temperature flow, particularly in understanding the fundamental physics of detonation 

and hypervelocity flows due to its simplicity. The expressions of the chemical kinetics 

with Park’s two-temperature model are given as: 

 



𝜕(𝜌𝜆)

𝜕𝑡
+

𝜕(𝜌𝑢𝜆)

𝜕𝑥
= 𝜌𝑘(1 − 𝜆)exp (−

𝐸𝑎

𝑇𝑎𝑣𝑔
) 

(7) 

𝑇𝑎𝑣𝑔 = √𝑇tr𝑇v (8) 

where 𝑘 and 𝐸𝑎 denote the chemical rate constant and activation energy, respectively. 𝑘 

is evaluated with different choices of 𝐸𝑎 such that the half-reaction length computed is 

fixed (in this case, is equal to unity) at the thermal equilibrium condition [29]. 

  To manifest the importance of the vibrational relaxation mechanism in the 

simulation, the Landau-Teller model is adopted to describe the energy exchange between 

the translational-rotational mode and the vibrational mode. The transfer rate equation is 

then formulated as: 

𝜕(𝜌𝑒v)

𝜕𝑡
+

𝜕(𝜌𝑢𝑒v)

𝜕𝑥
= 𝜌

𝑒v
𝑒𝑞 − 𝑒v

𝜏v
 

(9) 

where 𝑒v
𝑒𝑞

 and 𝜏v  are the vibrational energy at the thermal equilibrium state and the 

vibrational relaxation time scale, respectively. By assuming that the translational-

rotational mode and the vibrational mode reach the equilibrium state immediately after 

the shock, 𝑒v
𝑒𝑞

 described in Eq. (6) is a function of the translational-rotational temperature 

𝑇tr (in other words, 𝑇v = 𝑇tr). Unlike the single-step Arrhenius rate, which depends on 

the chemical rate constant 𝑘, the vibrational energy change rate in Eq. (9) depends on the 

vibrational relaxation time scale 𝜏v. 

  For the thermal equilibrium case with the consideration of the vibrational energy 

term inside the energy equation, i.e., Eq. (4), the relaxation rate equation is neglected in 

the simulation, as the vibrational equilibrium is assumed to be quickly established 

immediately behind the shock. In this case, 𝑇tr = 𝑇v is held within the reaction zone. 

  Note that the parameters presented in this paper are nondimensionalized with 

respect to the corresponding values at the initial reactant state, which is denoted with the 

subscript 0: (the superscript * represents the dimensional quantities) 

𝜌 =
𝜌∗

𝜌0
, 𝑝 =

𝑝∗

𝑝0
, 𝑇 =

𝑇∗

𝑇0
, 𝑢 =

𝑢∗

√𝑅𝑇0

, 𝑥 =
𝑥∗

ℒ1/2
, 𝜗 =

𝜗∗

𝑇0
,  

 

𝑡 =
𝑡∗

ℒ1/2/√𝑅𝑇0

, 𝑄 =
𝑄∗

𝑅𝑇0
, 𝑘 =

𝑘∗

√𝑅𝑇0/ℒ1/2

, 𝐸𝑎 =
𝐸𝑎

∗

𝑅𝑇0
 

(10) 

where ℒ1/2 is the half-reaction length and is defined as the distance from the shock to 

where one half of the reactant is consumed. It is set as unity in this study. 



2.2 Evaluation of vibrational relaxation time scale 

One of the motivations in this study is to determine whether the detonation 

phenomena would be stabilized by the thermal nonequilibrium effect. As discussed in the 

previous section, the different vibrational time scales will alter the rate of change of 

vibrational energy in the vibrational relaxation process. Therefore, a time ratio of the 

chemical time scale to the vibrational time scale 𝜏𝛼 is introduced based on our previous 

analyses [24, 28] to characterize the shift of the equilibrium state: 

𝜏𝛼 ≡
𝜏𝑐

𝜏v
 (11) 

where 𝜏𝑐 is the chemical time scale evaluated from the single-step Arrhenius rate and is 

defined as the time for which one-half of the reactant is consumed. 𝜏𝑐 is a fixed parameter 

if the corresponding parameters in the chemical model are fixed. Therefore, the evaluation 

of 𝜏v to indicate different degrees of vibrational nonequilibrium becomes possible based 

on the input of different time ratios 𝜏𝛼. Notably, the vibrational relaxation time in the 

realistic detonation simulation varies within the reaction zone if an empirical model is 

implemented (commonly the Millikan and White model for gaseous mixture [30]). Uy et 

al. [28] has presented a detailed procedure to tune the model of vibrational relaxation time 

for replicating a realistic reactive mixture in their study on the prediction of half reaction 

length in H2/O2/Ar detonation. However, the complex mechanism involving multiple 

species collisions complicates the analysis. Therefore, 𝜏𝛼  is utilized instead for the 

parametric study of the effect of vibrational nonequilibrium here. 

2.3 Establishment of steady-state profile 

For all cases of detonation instability, a steady-state profile is required as the 

initial study condition. The necessity of considering detonation instability from a steady, 

planar state was discussed in the previous study by Sharpe and Falle [9]. To include the 

change in the vibrational energy term based on the formulation in Eq. (4), the Rankine-

Hugoniot relation is rewritten accordingly, and the new steady-state ZND solution is 

expressed as follows (subject to the specific volume 𝑣 and pressure 𝑝 across the shock 

profile): 

𝑣 =
𝛾𝑀2 + 1

𝑀2(𝛾 + 1)
[1 ∓ 𝑤𝜉(𝜆, 𝑒v)], 

 

𝑝 =
𝛾𝑀2 + 1

𝛾 + 1
[1 ± 𝛾𝑤𝜉(𝜆, 𝑒v)] 

 



𝜉(𝜆, 𝑒v) = √1 +
𝑒v − 𝜆𝑞

𝛺
, Ω =

𝛾(𝑀2 − 1)2

2𝑀2(𝛾2 − 1)
, 𝑤 =

𝑀2 − 1

𝛾𝑀2 + 1
 

(12) 

where 𝑀 is the Mach number. Note that the terms 𝜆 and 𝑒v within the reaction zone can 

be evaluated by both the single-step Arrhenius equation and the Landau-Teller model, 

i.e., Eqs. (7)-(9). To describe an overdriven detonation, a degree of overdrive 𝑓 is defined 

based on the relation between the steady detonation speed 𝐷 and the Chapman-Jouguet 

detonation speed 𝐷𝐶𝐽 (and hence the Mach number), which is expressed below: 

𝑓 = (
𝑀

𝑀𝐶𝐽
)

2

 
(13) 

 

3. Computation method 

  In this paper, the unsteady Euler equations coupled with chemical and vibrational 

mechanisms are solved numerically by the conservation element and solution element 

(CE/SE) method with second-order accuracy [31]. This numerical method unifies the 

treatment of both space and time and has been applied in many studies related to 

hypersonic flows [32-36] and gaseous detonation [23, 36]. 

The computations are initially set up based on the steady-state solution presented 

in section 2.3. According to previous research on detonation stability by Sharpe and Falle 

[9], an effective numerical grid resolution of 128 points per half-reaction zone length (128 

p/ ℒ1/2) was suggested for numerical convergence and to resolve the detailed structures 

of the pulsating detonation. Note that the simulated detonation wave propagates from left 

to right in the positive x-direction. As discussed by Sharpe and Falle [9], to avoid the 

boundary effect during the calculation, a zero gradient boundary condition was initially 

set at the left-hand side with a half-reaction length at least 1000 behind the position of the 

shock. 

  Before the instability analysis, a one-dimensional piston-supported detonation 

case with 𝐸𝑎 = 50, 𝑄 = 50, 𝛾 = 1.2 and 𝑓 = 1.6 reported by Shen and Parsani [37] was 

simulated for code validation. The average periods of oscillation computed by our code 

for the cases with the grid resolutions of 10 points per ℒ1/2 (p/ ℒ1/2), 20 p/ ℒ1/2, 40 p/ 

ℒ1/2  and 80 p/ ℒ1/2  are 7.60, 7.43, 7.37 and 7.34, respectively. The percentage 

differences with the same cases computed in [37] are within 0.01%. The code is well 

validated. 



 

4. Results and Discussion 

In this study, 𝛾 = 1.2, 𝑄 = 50 and 𝜗 = 20 are fixed to illustrate the importance 

of vibrational nonequilibrium in the 1D detonation simulation. The stability boundary for 

the equilibrium state with vibrational energy included is determined first, and two mildly 

unstable cases for a CJ detonation and an overdriven detonation are then studied by 

varying the time ratio 𝜏𝛼. Notably, the choice of 𝜗 depends on the range of normalized 

vibrational temperature that is interested in the problem and is arbitrarily fixed here for 

easy demonstration in Sections 4.1, 4.2 and 4.3.  The effect of different 𝜗 on the shift of 

stability boundary for detonation at equilibrium state with vibrational energy included is 

studied in Section 4.4. 

4.1 Stability boundary study for equilibrium state with vibrational energy 

included 

The shock pressure history for the thermal equilibrium case with vibrational 

energy included is first investigated to represent the development of detonation 

instability. By varying the activation energy 𝐸𝑎 at fixed parameters of the heat release 

𝑄 and the specific heat ratio 𝛾 in the chemical kinetics, the neutral stability limit below 

which the detonation becomes stable is identified. As the detonation wave propagates, 

the detonation is determined to be unstable if the recorded shock pressure grows with 

time, while the detonation is considered stable if the shock pressure decays with time. For 

instance, the pressure histories of the detonation specified at 𝑄 = 50 and 𝛾 = 1.2 with 

different 𝐸𝑎  values are presented in Fig. 1. For the case of 𝐸𝑎  at 26.30 (Fig. 1a), the 

perturbation of the propagating detonation decays with time, denoting that a stable 

condition would eventually be reached. In contrast, a growing perturbation is observed as 

time goes on in the case of 𝐸𝑎 at 26.70 (Fig. 1b). These results reveal that the neutral 

stability boundary will fall between these two values, and it is found that the limit reaches 

approximately 𝐸𝑎 = 26.47, i.e., above which the detonation is unstable. Compared with 

the neutral stability limit of 𝐸𝑎 = 25.27 found by Sharpe and Falle [9] under thermal 

equilibrium for the same 𝑄 and 𝛾 but without consideration of the vibrational energy, the 

introduction of the vibrational energy term in Eq. (4) raises the stability boundary with 

the conventional ZND solution, indicating that the presence of vibration energy will lead 



to the detonation stability. 

 

 

Fig. 1. Shock pressure history at a) 𝐸𝑎 = 26.30 and b) 𝐸𝑎 = 26.70 under the vibrational 

equilibrium (eq) assumption. Other fixed parameters are 𝑄 = 50, 𝛾 = 1.2, 𝜗 = 20 and 

𝑓 = 1.0 

 

Furthermore, a grid convergence study is conducted and is presented in Table 1, 

showing the determination of the neutral stability boundary under different numerical 

resolutions. The result confirms that a resolution of 128 grids per half-reaction length of 



the steady-state ZND detonation is sufficient to provide a converged value of the limit, 

thus proving the statement mentioned in section 3. 

 

Table 1 

 Determination of neutral stability boundary for different numerical resolutions 

Grids per half-reaction length  𝐸𝑎 

8 26.36 

16 26.38 

32 26.44 

64 26.46 

128 26.47 

256 26.47 

 

4.2 Shock pressure history of a mildly unstable CJ detonation with different 𝝉𝜶 

It is known that the increase in activation energy 𝐸𝑎  in detonation simulation 

always leads to an increase in instability. To investigate whether the propagating 

detonation would be stabilized or destabilized at different states of vibrational 

nonequilibrium, a variation of 𝜏𝛼 is tested in the case of 𝐸𝑎 = 27, which is unstable if at 

thermal equilibrium. Fig. 2 shows the shock pressure histories for 𝜏𝛼 at 3, 5, 7, 9 and 11 

with the equilibrium case as the benchmark solution. Generally, the peak amplitude is 

smaller in cases with lower 𝜏𝛼 , and the period of oscillation becomes longer as 𝜏𝛼 

decreases. For instance, the period of oscillation at 𝜏𝛼 = 3 is 12.89 on average, whereas 

that of the equilibrium case is 10.66. Fig. 3 shows the temporal variations in the peak 

pressure difference for the corresponding profiles in Fig. 1, and the difference is 

calculated by subtracting each peak pressure from the 1st peak value in the shock pressure 

histories accordingly. In other words, the 1st peak amplitude serves as a reference to 

determine whether the perturbation of the propagating detonation grows or decays with 

time. 

From Fig. 3, the peak amplitudes decay with time in the case of 𝜏𝛼 =  3, 5 and 7 

and the decay rate becomes faster at a smaller 𝜏𝛼. These observations deviate from the 



expectation of growing perturbations at 𝐸𝑎 = 27  under thermal equilibrium. Instead, 

both the decaying pulsation and the longer period of oscillation indicate that the 

propagation detonation is stabilized because of vibrational nonequilibrium. As 𝜏𝛼 

decreases (recall the definition of 𝜏𝛼 ≡  𝜏𝑐/𝜏v in Eq. (11)), the chemical time scale 𝜏𝑐 

and the vibrational time scale 𝜏v become comparable with each other and the condition 

becomes more thermal nonequilibrium. At 𝜏𝛼 > 9 , the pulsation increases as time 

proceeds, which implies that the detonation becomes unstable as it approaches thermal 

(vibrational) equilibrium, i.e., 𝜏𝑐 ≫ 𝜏v. After several computations within the selected 𝜏𝛼 

range, the critical 𝜏𝛼  for which the detonation is stabilized at 𝐸𝑎 = 27 is 7.2. The 

stabilization in detonation under the vibrational nonequilibrium state is due to the 

presence of the exchange of energy between the translational-rotational mode and the 

vibrational mode within the chemical reaction. Although no further conclusion could be 

made on the relation between the overall reaction rate and the detonation stability, it is 

clear that the latter one is sensitive to the vibrational relaxation process. This finding is 

analogous with the case of the change of half reaction length in detonation considering 

vibrational nonequilibrium, as reported by Uy et al [24], in which the computed half-

reaction length increases as 𝜏𝛼 decreases. Shi et al [23] also share a similar conclusion on 

the fact that time is needed before the onset of severe chemical reaction, and thus leads 

to the elongated half-reaction length computed at the vibrational nonequilibrium in the 

numerical simulation using detail chemistry. Following the above discussion, a shift of 

the neutral stability limit of the activation energy to a higher value is foreseen if the 

vibrational nonequilibrium effect plays a significant role in chemical kinetics. 



 

 



 

 



 

Fig. 2. Shock pressure history at 𝐸𝑎 = 27 for vibrational nonequilibrium (Neq) cases at 

a) 𝜏𝛼 = 3 (period = 12.89) b) 𝜏𝛼 = 5 (period = 12.10) c) 𝜏𝛼 = 7 (period = 11.75) d) 

𝜏𝛼 = 9 (period = 11.51) and e) 𝜏𝛼 = 11 (period = 11.39) with the equilibrium case (eq) 

(period = 10.66) as reference. Other fixed parameters are 𝑄 = 50, 𝛾 = 1.2, 𝜗 = 20 and 

𝑓 = 1.0. 

 



 

Fig. 3. The variations in the peak pressure difference with time for different vibrational 

nonequilibrium (Neq) cases in Fig. 2 at 𝜏𝛼 = 3, 5, 7, 9 and 11. 

4.3 Shock pressure history of a mildly unstable overdriven detonation with 

different 𝝉𝜶 

Another factor that would stabilize or destabilize the detonation propagation is the 

detonation speed attributed to the overdriven factor 𝑓. Generally, the increase in 𝑓 in the 

numerical simulation of detonation can stabilize the pulsation as the detonation wave 

propagates. In linear stability analysis, it is common to study the behaviour of an 

overdriven detonation over a CJ detonation [15, 38] because detonation, in reality, can be 

propagated in a piston-supported form [39]. Moreover, different modes of detonation 

propagation can be illustrated through variations in 𝑓 [40]. For a case of detonation at 

𝐸𝑎 = 50, 𝑄 = 50 and 𝛾 = 1.2 without considering the presence of vibrational energy, 

the stability limit above which the detonation is stable is 𝑓 = 1.731 [15]. Therefore, in 

this study, an unstable case with 𝑓 = 1.6 is investigated while other parameters in the 

simulation, i.e., values of 𝐸𝑎 , 𝑄  and 𝛾 , are fixed accordingly as mentioned above. 



Different 𝜏𝛼 denoting the state of vibrational nonequilibrium by means of the time scale 

ratio are allowed to vary in the computation. Fig. 4 shows the shock pressure history with 

𝜏𝛼 = 5, 10, 20  and 30 . A peak difference analysis similar to that in section 4.2 is 

performed and is presented in Fig. 5. Noted that the initial drops of peak pressure 

difference in Fig. 4 and Fig. 5 are due to the numerical startup errors, and a stable 

configuration of the profile would be obtained eventually [16]. 

Under the fixed 𝑓, the propagating detonation is stabilized under the small 𝜏𝛼 

value, which shows the same effect as that in section 4.2. A longer period of oscillation 

is again observed as 𝜏𝛼 decreases, where the increase of period oscillation can reach 15% 

(at 𝜏𝛼 = 5) compared with that in the equilibrium cases. From the peak difference 

analysis, the critical 𝜏𝛼 below which the vibrational relaxation mechanism is significant 

is approximately 21, where the pulsation shows a decay with time. These results indicate 

that the neutral stability limit of the overdriven factor 𝑓 can be shifted to a smaller value 

as 𝜏𝛼  decreases. Since both the increase of 𝑓  (considering detonation speed) and the 

decrease of 𝜏𝛼  (considering vibrational-chemical coupling effect) contribute to the 

stabilization in detonation analyses, with the decrease of 𝜏𝛼 indicating the significant role 

of vibrational relaxation in chemical kinetics, the neutral stability of 𝑓  is reduced 

accordingly. 

 

 



 

 



 

Fig. 4. Shock pressure history at 𝑓 = 1.6 with vibrational nonequilibrium (Neq) case of 

a) 𝜏𝛼 = 5 (period = 9.32) b) 𝜏𝛼 = 10 (period = 8.74) c) 𝜏𝛼 = 20 (period = 8.43) and d) 

𝜏𝛼 = 30 (period = 8.33) taking equilibrium case (eq) (period = 8.09) as reference. Other 

fixed parameters are 𝑄 = 50, 𝛾 = 1.2, 𝜗 = 20 and 𝐸𝑎 = 50 

 

 



Fig. 5. The variations in the peak pressure difference with time for different vibrational 

nonequilibrium (Neq) cases in Fig. 4 at 𝜏𝛼 = 5, 10, 20 and 30. 

 

4.4 Shock pressure history of detonation at thermal equilibrium state with 

different 𝝑 

 

In the above discussion, the characteristic vibrational temperature 𝜗  relevant to the 

vibrational energy content inside the system is fixed for demonstration. The change of 𝜗 

in the system may possibly shift the stability limit to a large extent. Therefore, the effect 

of different 𝜗 (from 10 to 30) on the stability limit is presented in this section, while the 

other parameters are fixed, analogous to the neutral stable case of equilibrium state with 

vibrational energy included (i.e., 𝐸𝑎 = 26.47, 𝑄 = 50, 𝛾 = 1.2 and 𝑓 = 1.0 presented in 

section 4.1).  

 

Figure 6 shows the peak difference analysis for the tested range of 𝜗. Note that a startup 

error appears again at the beginning of the profile. As expected, the detonation is neutrally 

stable at 𝜗 = 20, and the instability becomes severe at the high 𝜗 case. In other words, 

the stability limit of 𝐸𝑎 should be much smaller for these cases, i.e., 𝐸𝑎 < 26.47. Notably, 

if 𝜗 is large, denoting a small vibrational energy content considered in the system, the 

limit would be shifted to the thermal equilibrium case where the vibrational relaxation is 

neglectable, i.e., 𝐸𝑎 = 25.27. On the other hand, for the cases of 𝜗 < 20 , the peak 

pressure difference history decays at first (see 𝜗 = 15 in Fig. 6), and then the instability 

is developed again when 𝜗 further decreases (see 𝜗 = 10). A local maximum of stability 

limit is foreseen at around 𝜗 = 15, and the stability limit shifts to a lower value of 𝐸𝑎 

again if 𝜗 keeps decreasing. With a search of neutral stability limit similar to the work 

done in section 4.1, it is found that the limit with 𝜗 = 15 is at 𝐸𝑎 = 26.62 while 𝑄 = 50, 

𝛾 = 1.2 and 𝑓 = 1.0 are fixed. Hence, the range of stability limit of 𝐸𝑎  evaluated by 

considering the vibrational relaxation in CJ detonation would be within a range from 

𝐸𝑎 = 25.27 to 𝐸𝑎 = 26.62, depending on the choice of 𝜗. Similarly, the range of stability 

limit of  𝑓 in an overdriven detonation while 𝐸𝑎 = 50, 𝑄 = 50, 𝛾 = 1.2 are fixed would 

be within a range from 𝑓 = 1.624 (i.e., evaluated at the case of 𝜗 = 15 following the 

approach in section 4.1) to 𝑓 = 1.731  (i.e., the equilibrium case while vibrational 



relaxation is neglectable). How sensitive these stability limits actually are to changes in 

the fixed vibrational temperature variable for the cases of mildly unstable detonation 

stated in section 4.2 and 4.3 are verified based on the above conclusions. It is worth noting 

that the choice of 𝜗 in the modelling should base on the actual species-interaction in the 

simulation which varies case by case. 

 

 

Fig. 6. The variations in the peak pressure difference with time at 𝜗 = 10, 15, 20, 25 and 

30. Other fixed parameters are 𝑄 = 50, 𝛾 = 1.2, 𝑓 = 1.0 and 𝐸𝑎 = 26.47. 

 

5. Conclusion 

In this paper, one-dimensional CE/SE numerical simulations of a propagating 

detonation are performed by considering the vibrational relaxation mechanism coupled 

with simplified chemical kinetics using Park’s two-temperature model. A ratio of the 

chemical reaction time scale to the vibrational relaxation time scale, 𝜏𝛼, is introduced to 

describe the different degrees of vibrational nonequilibrium. The steady-state ZND 

profile is extended to include the vibrational energy term and serves as an initial condition 



in the simulations. The stability boundary of the activation energy for the corresponding 

detonation cases with 𝑄 = 50 , 𝛾 = 1.2  and 𝜗 = 20  is determined to be 𝐸𝑎 = 26.47 

under thermal equilibrium. 

To elucidate whether the propagating detonation would be stabilized or 

destabilized under thermal nonequilibrium, mildly unstable cases for a CJ detonation and 

an overdriven detonation are simulated with different values of 𝜏𝛼. In a CJ detonation 

with 𝐸𝑎 = 27, which is unstable at an equilibrium state, the shock pressure histories of 

the selected cases show that a smaller amplitude and longer period of oscillation are 

observed as 𝜏𝛼 decreases. The critical 𝜏𝛼 at which the vibrational nonequilibrium effect 

becomes significant is 7.2. It is concluded that detonation stability is sensitive to the 

vibrational relaxation process, and stability behaviour is expected to be the same with the 

equilibrium case when 𝜏𝛼 is large, where the vibrational relaxation becomes insignificant 

in the chemical reaction. In other words, the high activation energy for detonation stability 

is expected at a vibrational nonequilibrium condition. A shift of the neutral stability limit 

results as 𝜏𝛼 varies. 

In the second case with the overdriven factor 𝑓  fixed at 1.6, which is mildly 

unstable under the equilibrium state, the result again shows that the pulsation is stabilized 

at a small 𝜏𝛼 value, reflected by a small amplitude and a long period of oscillation in the 

shock pressure history. The critical 𝜏𝛼 below which the pulsation shows a decay with time 

is approximately 21. Since both the change in 𝑓 and 𝜏𝛼 are equally crucial in stabilizing 

the detonation, the decrease in 𝜏𝛼 attributed to the significance of the vibration-chemistry 

coupling effect reduces the stability limit of 𝑓 for the selected case. 

The effect of 𝜗 on the shift of stability limit is addressed in the end. Based on the 

analysis of the case with  𝐸𝑎 = 26.47 which is neutral stable at 𝜗 = 20, it is suggested 

that the maximum shift of stability limit would be at around 𝜗 = 15. However, the choice 

of 𝜗 in the model should follow the actual species-interaction in the realistic simulations. 

In this numerical research, the effect of the vibration-chemistry coupling effect is 

manifested in terms of the time ratio 𝜏𝛼 . The results suggest that the detonation 

propagation is stabilized under the effect of vibrational nonequilibrium, and hence, a shift 

of the neutral stability limit is predicted. The actual stability limit for each studied case 

requires further study, and linear stability analysis will also be considered. Furthermore, 

for simplicity, a one-step chemical model is utilized in this report to describe the reaction 

process. However, an induction zone should also be considered if the chain-branching 



kinetics is included. Therefore, the coupling effect among the three timescales − induction 

time scale, chemical reaction time scale and vibrational relaxation time scale, is worth 

investigated in the future. From the above analysis, the significance of considering 

vibrational nonequilibrium in detonation stability for propulsion device design is 

addressed regardless. 
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