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Abstract: 19 

The central nervous system (CNS) has a highly complex biophysical and 20 

biochemical environment. Despite decades of intensive research, it is still an 21 

enormous challenge to restore its functions and regenerate lost or damaged 22 

CNS tissues. Current treatment strategies remain sub-optimal because of (1) 23 

the hostile microenvironment created post CNS injury, and (2) insufficient 24 

understanding of the pathophysiology of acute and chronic CNS diseases. Two-25 

dimensional (2D) in vitro models have provided tremendous insights into a wide 26 

range of cellular interactions. However, they fail to recapitulate the complex 27 

cellular, topographical, biochemical, and mechanical stimuli found within the 28 

natural three-dimensional (3D) CNS. Also, the growing ethical needs to use 29 

fewer animals for research further necessitates 3D in vitro models to mimic all 30 

or part of the CNS. In this review, we critically appraise the status quo and 31 

design considerations of 3D in vitro neural disease and injury models that 32 

resemble in vivo conditions. This review mainly focuses on the most recent 33 
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advances in tissue engineering techniques such as microfluidics, organs-on-a-1 

chip and stem cell technology. Furthermore, we review recent models aiming to 2 

elucidate the underlying pathophysiology of CNS diseases. If armed with 3 

deeper understanding, it will be possible to develop high-throughput drug 4 

screening platforms and new treatments for CNS diseases and injuries. 5 

 6 

Keywords: central nervous system, cellular microenvironment, 7 

microtechnology, 3D in vitro models, disease models 8 

 9 

1. Introduction 10 

The central nervous system (CNS) is the most complex entity of the human 11 

body. It is susceptible to irreversible degenerative and traumatic injuries, which 12 

can severely impair its function and significantly reduce the life quality of 13 

patients. CNS diseases and injuries remain some of the most challenging 14 

medical, social, and economic problems to date [1]. Specifically, CNS diseases 15 

such as Alzheimer’s disease (AD) and Parkinson’s disease (PD) are 16 

significantly more prevalent in the elderly [2, 3]. With an ageing global 17 

population, the number of people affected by these degenerative neurological 18 

disorders is expected to rise to unprecedented levels. Therefore, laboratory-19 

based, bottom-up studies of the complicated pathophysiological mechanisms 20 

of the CNS diseases promise to accelerate the evaluation and development of 21 

novel repair strategies. 22 

To study CNS pathology, researchers have relied on animal models and in 23 

vitro 2D cell cultures. These two methods have revealed many fundamental 24 

findings including the roles of specific genes, molecular and cellular signalling 25 

pathways. However, they both suffer from various drawbacks: (1) The use of 26 

animals for research has raised ethical concerns from animal rights groups; (2) 27 

There is a wide gap between animal and human physiology, so one must 28 

always extrapolate animal data to predict the human scenario; (3) On the other 29 

hand, although 2D cell cultures circumvent ethical issues, they fail to provide a 30 

realistic CNS microenvironment and thus cannot fully recapitulate cellular 31 

behaviours or cell-matrix interactions. More recently, organotypic cultures 32 

modelling traumatic CNS injuries have gained popularity for enabling the 33 
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simultaneous evaluation of different independent factors in the same animal, 1 

thereby considerably reducing time and costs associated with in vivo models. 2 

Comprising of a multi-cellular in vitro environment, organotypic cultures render 3 

the elucidation of the underlying mechanisms of injury as well as the evaluation 4 

of numerous treatments feasible. Compared to a 2D culture environment, 5 

organotypic conditions can, to a degree, bridge the gap between single/co-6 

culture systems and in vivo models. However, there remain several challenges 7 

to further improve this system; (1) by its very nature, organotypic models exhibit 8 

axotomized neuronal pathways, which require reconstruction prior to exhibiting 9 

any functionality, (2) most organotypic brain slices to study diseases such as 10 

AD or PD are derived from embryonic or post-natal donors due to their superior 11 

survival, which, however, does not adequately reflect the adult characteristics 12 

of AD or PD, and (3) maintaining long-term culture conditions and sterility to 13 

study disease mechanisms and screen arrays of candidate drugs renders 14 

organotypic models relatively laborious and costly. Within a native tissue, cell-15 

cell and cell- extracellular matrix (ECM) interactions establish a 3D 16 

communication network through biochemical and biophysical cues that is vital 17 

in maintaining the specificity and homeostasis of tissues [4]. These interactions 18 

also regulate key events in the cell life cycle, such as proliferation, migration, 19 

and apoptosis [5]. Therefore, a 3D model based on human-derived cells that 20 

re-establishes in vivo cell-cell and cell-ECM interactions is superior to 21 

conventional 2D cultures and animal models.  22 

Ideal 3D in vitro models not only incorporate the appropriate cell types and 23 

biomimetic ECM, but also provide biochemical (e.g., growth factors) and 24 

biophysical cues (e.g., mechanical stimuli). This will ensure greater precision 25 

and reliability when recreating the complex and intricate nature of the 26 

microenvironment encountered within native tissues [6, 7]. These extracellular 27 

cues can significantly influence the cell viability, proliferation, migration, and 28 

differentiation within both the brain and the spinal cord [8-10]. Considering the 29 

great significance of the 3D CNS models, herein we will review the engineering 30 

efforts required to simulate various components of the native CNS 31 

microenvironment. First, various applicable techniques for mimicking in vivo 32 

CNS microenvironments are reviewed. Then, we discuss the importance of 33 
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various biochemical and biophysical cues in the CNS, such as ECM, bioactive, 1 

architectural, mechanical and electrical cues. Lastly, we dedicate the bulk part 2 

of this review to evaluating the most recent 3D in vitro models of common CNS 3 

diseases and injuries. Towards the end, we outline our projections with respect 4 

to the future directions of engineering more precise 3D in vitro CNS models.  5 

 6 

2. Techniques for engineering in vitro 3D cultures  7 

To recreate microenvironmental cues found under in vivo conditions, various 8 

micro-scale techniques are currently available, including spheroids, organoids, 9 

electrospinning, microfluidics and 3D printing, etc. [11-13]. Principally, these 10 

techniques can be either scaffold-free or scaffold-based. Recent reviews on the 11 

progress of micro-scale 3D brain modelling using various technologies can be 12 

found from [14-17]. 13 

 14 

2.1 Scaffold-free in vitro 3D culture  15 

Scaffold-free models do not require a physical scaffold or matrix, as the cells 16 

can produce their own ECM. For example, spheroids are self-assembled 17 

spherical clusters of cell colonies and can closely mimic the 3D architecture of 18 

in vivo CNS tissues [18]. Due to easy synthesis, such technique has gained 19 

great popularity in modelling various CNS diseases [19]. Moreover, when co-20 

cultured with other cell types, spheroids can model the in vivo intercellular 21 

signalling, architecture, and hence the complicated CNS pathophysiology [20-22 

22]. For instance, Vadivelu et al. used a floating liquid marble technique to 23 

generate uniform-sized spheroids consisting of olfactory ensheathing cells 24 

(OECs) [23]. The transplantation of the OEC spheroids can bridge the defect 25 

and promote axonal regeneration in spinal cord injuries [24]. By co-culturing 26 

OEC spheroids with Swann cells and astrocytes, they observed unique cell 27 

characteristics that were unreported in 2D cultures.  28 

Similar to spheroids, organoids also do not require scaffolds to form. They 29 

are self-assembled aggregates of multiple cell types derived from pluripotent 30 

stem cells or isolated organ progenitors [25]. An organoid is a miniaturized, 31 

simplified in vitro model of an organ, and can accurately reflect some of the 32 

human brain microenvironments [26-28]. For instance, Ormel et al. created 33 
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cerebral organoids, within which microglia spontaneously developed with their 1 

characteristic ramified morphology. Upon inflammatory stimulation, the 2 

organoid-derived microglia had similar responses compared to their native 3 

counterparts [29].  4 

Both the spheroid- and organoid-based 3D cultures possess great potential 5 

in modelling CNS diseases and are believed to be effective tools for high-6 

throughput drug testing [16, 17]. However, their reliance on passive oxygen and 7 

nutrient diffusion severely limits their maximum size, which results in necrotic 8 

cores if surpassed [28]. 9 

 10 

2.2 Scaffold-based in vitro 3D culture 11 

A scaffold can overcome the above-mentioned limitation by providing a pathway 12 

for nutrients and oxygen to reach the core. In addition, a scaffold can have 13 

tuneable bioactive, architectural, mechanical, and electrical cues. With these 14 

controllable parameters, one can engineer a unique tissue microenvironment 15 

resembling those found within the ECM of CNS tissues.  16 

 17 

2.2.1 Electrospinning 18 

Electrospinning is an easy, versatile and popular technique for producing 19 

tissue-engineered scaffolds. It creates fibres with ECM-like structures and 20 

enables one to easily tune physical properties such as fibre diameter and 21 

porosity [30, 31]. In a typical setup, a high voltage potential over the working 22 

distance creates an electrostatic force, which draws charged polymer threads 23 

to a collector. If the collector is a stationary plate, the deposited micro- or 24 

nanofibres form a mat with random orientations. On the other hand, a collector 25 

with a rotating wheel leads to fibres with orderly, parallel alignments. For neural 26 

tissue engineering, a uniaxially aligned fibrous network that orients cell growth 27 

is an important criterion to ensure accurate simulation [32, 33]. Xie et al. found 28 

that the direction of neurite outgrowth can either be parallel or perpendicular to 29 

the nanofibre alignment, depending on parameters including fibre density, 30 

protein deposited on fibre surface, and surface properties of the supporting 31 

substrate [34]. 32 
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 In one study, Luo et al. used electrospun polylactic acid (PLA) nanofibrous 1 

scaffolds for long-term culture of neuromuscular junction (NMJ), a specialized 2 

synapse associated with neurodegenerative diseases. They co-cultured 3 

primary embryonic motor neurons from Sprague-Dawley rats and C2C12 cells 4 

in a random or aligned nanofiber configuration. While the conventional 2D glass 5 

substrate could only maintain the culture for 2 weeks, random and aligned PLA 6 

scaffolds had 7-week cell survival rates of 55 % and 70 % respectively [35].  7 

 In another study, Jakobsson et al. used a semi-spherical array of metal 8 

needles as the collector for electrospinning. Without the compression of fibres 9 

in a typical setup, they obtained low-density electrospun poly-ε-caprolactone 10 

(PCL) fibrous scaffolds. The high porosity allowed for full 3D infiltration of neural 11 

cells. Using neural progenitor cells, they observed a highly integrated network, 12 

synaptogenesis, and extensive neurite outgrowth. Compared to the 2D culture, 13 

where neuronal cells grew on top of glial cells in separate layers, cells 14 

intermixed in 3D culture, which is observed in vivo [36]. 15 

 16 

2.2.2 Microfluidics 17 

Microfluidics controls microlitres to picolitres of fluids in networks of micro-18 

channels. Microfluidic chips are excellent in vitro models to study CNS 19 

degeneration and regeneration for three reasons [12]. Firstly, these platforms 20 

enable one to analyse cell secretions, transcriptions, and protein expressions 21 

at the single-cell level through designed compartmentalisation. As a result, one 22 

can study more in-depth with regards to myelination, neurite outgrowth, signal 23 

propagation, and neuronal networks [37, 38]. Secondly, such platforms can 24 

help probe cell-cell communication by co-culturing different CNS cells in one or 25 

more connected chambers [39-41]. Thirdly, microfluidics can accurately model 26 

or control the biophysical and biochemical cues of the microenvironment, so 27 

that one can monitor various cellular events post-injury or post-disease [42].  28 

For example, Wevers et al. used a microfluidic platform to culture induced 29 

pluripotent stem cells (iPSCs)-derived neural stem cells (NSCs) into 3D, ECM-30 

embedded, neuronal-glial networks [43].The platform had a 384-well microtiter 31 

plate format, with 96 tissue chips (4 wells per chip). The plated organoids were 32 

suitable for 3D analyses of biological processes such as cell differentiation, cell-33 
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cell interactions, cell-ECM interactions and related gene expression. Similarly, 1 

Wang et al. created an organ-on-a-chip system to mimic blood brain barrier 2 

(BBB) for drug screening. They used human induced pluripotent stem cells 3 

(hiPSCs) to produce brain microvascular endothelial cells (BMECs), and 4 

cocultured them with rat primary astrocytes. They used this microfluidic system 5 

to test permeability of various model drugs, and obtained data that were 6 

comparable to in vivo values [44]. 7 

 8 

2.2.3 3D printing 9 

3D printing is a technique that deposits materials in a layer-by-layer fashion to 10 

create 3D objects. With the help of computer-aided design (CAD) software, one 11 

has the capacity to produce customisable hardware parts for rapid prototyping 12 

of CNS disease models. For instance, Johnson et al. printed microchannels and 13 

compartmentalized chambers with PCL solid. They then deposited neurons, 14 

Schwann cells, and epithelial cells into separate chambers based on how cells 15 

are organized in vivo. The team proceeded to obtain insights about 16 

pseudorabies virus infection, thus highlighting the usefulness of this nervous 17 

system on a chip [45].  18 

As a branch of 3D printing, 3D bioprinting utilizes the biological ingredients 19 

(e.g., biomaterials incorporated with viable living cells) as the ink to build 20 

functional 3D tissue constructs [46]. With precise spatiotemporal control over 21 

cell and biomaterial distributions, 3D-bioprinted objects can have accurate, 22 

complex and even personalized features that imitate the fine shape and 23 

architecture of natural tissues [47, 48]. While this technique has shown 24 

promising results in treating a range of brain-related injuries and disorders, it 25 

also possesses the capacity to produce normal or diseased tissues for cell 26 

behaviour studies [49]. For example, Lozano et al. printed brain-like structures 27 

with discrete layers as an in vitro model to study cortical cell survival and axonal 28 

development [50]. Specifically, primary cortical neurons were encapsulated 29 

within a peptide-modified hydrogel, gellan gum-RGD to create a three-layer 30 

construct that included two cellular layers (top and bottom) and an acellular 31 

middle layer. After culture for 5 days, they observed that the neuronal network 32 

was formed in the brain-like structure, and extensive axons penetrated into the 33 
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acellular layer. These results not only validated the versatility of bioprinting to 1 

control cell and ECM organisation for constructing a complex and viable 3D 2 

cell-containing construct, but also highlighted the possible reproduction of a 3 

more accurate 3D in vitro brain-like microstructure that might increase our 4 

understanding of neurological diseases and injuries. 5 

 6 

2.3 Stem cell technology 7 

Current disease and injury models mainly use primary cultures of CNS cells 8 

(e.g. NSCs, neurons, astrocytes, oligodendrocytes) dissociated from embryonic 9 

or early postnatal tissues of mice, rats, or adult neural cells [8]. Well-established 10 

difficulties extrapolating results derived from animal cells and the phenomenon 11 

of senescence associated with adult stem cells have fuelled the need for better 12 

alternatives that have a greater potential in mimicking human CNS disease 13 

states. One promising strategy involves harvesting recent exciting 14 

developments in human stem cell technology and integrating this knowledge 15 

into sophisticated engineered artificial 3D microenvironments to generate 16 

realistic CNS-like platforms to study damaged or diseased neural tissues. In 17 

particular, induced pluripotent stem cells (iPSCs) represent a revolutionary 18 

technology to obtain 3D in vitro cell-based tissue equivalents. iPSCs can be 19 

generated using readily accessible cells (e.g., human fibroblasts) from patients 20 

with any condition and then be differentiated into disease-relevant neural cell 21 

types through numerous reliable protocols [51, 52]. Although there are still 22 

some roadblocks to consider, an in vitro disease model with an iPSC-based 23 

technology has many advantages. The most distinct one being that patient-24 

specific iPSCs carry the precise genetic profile that may result in relevant 25 

diseases in the respective individual, accurately recapitulating disease 26 

phenotypes and providing an enviable opportunity to study complex genetic 27 

diseases of the CNS, especially in the case of rare diseases [11, 53]. 28 

Additionally, these disease models are able to elucidate the mechanisms of 29 

action by studying the initial development and pathological progression, as well 30 

as predicting patient treatment responses, which can pave the way for 31 

personalized regenerative medicine using the patient’s own cells [53]. For 32 

example, iPSCs derived from PD patients, would not only represent a more 33 
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powerful tool in replicating PD in vitro and deciphering its pathophysiological 1 

mechanisms, but could also further provide a source for replacement therapies 2 

[54]. In addition, stem cell technology can be combined with other above-3 

mentioned scaffold-free or scaffold-based techniques to model a more brain-4 

like 3D in vitro microenvironment.  5 

 6 

3. Design considerations for recapitulating natural microenvironment in 7 

the CNS 8 

The native CNS microenvironment is profoundly complex and is governed by a 9 

complex interplay between its 3D matrix, cellular components, naturally 10 

occurring signalling moieties, growth factors and cytokines. Novel advances in 11 

the microtechnological manipulation of tissue engineered 3D scaffolds focus on 12 

the mimicry of biochemical and biophysical cues found within the native CNS 13 

microenvironment (Figure 1). The following subsections will summarise the 14 

most recent advancements in tissue engineering of the environmental cues in 15 

the context of the latest microtechnologies used to obtain realistic 3D in vitro 16 

microenvironments. 17 

 18 

3.1 Engineering CNS extracellular matrix 19 

As an integral part of the CNS microenvironment, the ECM affects almost all 20 

aspects of the nervous system development and function (e.g. cell support, 21 

NSC maintenance, differentiation and behaviour of progeny cells) [55, 56]. 22 

Currently, both natural and synthetic materials have been developed to 23 

construct a scaffold that can mimic the ECM properties of the in vivo 24 

microenvironment. The diverse composition of the ECM in the CNS is distinct 25 

compared to those of other organs. It is largely composed of proteoglycans of 26 

the lectican/hyalectan-family and their binding partners hyaluronic acid, link 27 

proteins, and tenascins [57, 58]. For this reason, natural materials that are the 28 

native ECM compounds or polymers extracted from tissues can inherently 29 

display many bioactive elements. For example, decellularized ECM, one of 30 

most promising nature materials, has received increasing attention. Medberry 31 

et al. used decellularised ECM derived from porcine brain and spinal cord to 32 

synthesise a hydrogel scaffold. They then proceeded to use such scaffold to 33 
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support unipolar or bipolar neurite growth and extension [59]. In comparison to 1 

decellularised scaffolds derived from the urinary bladder matrix, the CNS-ECM 2 

scaffolds resulted in longer neurites. This finding illustrated the importance of 3 

providing a relevant microenvironment to suit a particular tissue engineering 4 

purpose.  5 

  Despite these benefits, natural materials are difficult to purify reproducibly, 6 

frequently resulting in batch-to-batch variability. In addition, they are structurally 7 

weaker and liable to be disrupted when the cells attach on them and apply a 8 

cell-generated tension. Therefore, synthetic materials have been successfully 9 

introduced to scaffold fabrication because of their excellent mechanical support 10 

and scaffold stability. However, they usually lack the necessary bioactive 11 

elements. To combine the advantages of both natural and synthetic materials, 12 

synthetic materials modified with various bioactive elements have been 13 

proposed [60-63]. The usage of different scaffold modification techniques to 14 

alter material characteristics grants a tighter control over the behaviours of 15 

exogenous stem cells and can serve to guide the behaviours of endogenous 16 

ones. Overall, given the complexity of the CNS in both health and ill-health, the 17 

ability to externally control the features of scaffolds mimicking CNS 18 

microenvironments to guide cell behaviour is of fundamental importance to 19 

further understand the mechanisms of CNS pathologies. This will ultimately 20 

result in the development of better treatment strategies.  21 

In addition to the ECM components, the extracellular microenvironment 22 

contains a variety of cues that guide cellular behaviours and determine the cell 23 

fate. They can be divided into two categories: biochemical (e.g. peptides, 24 

growth factors, cytokines, cell-cell co-culture) and biophysical (e.g. architecture, 25 

mechanical and electrical stimuli). 26 
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 1 

Figure 1. Schematic illustration of tissue engineering strategies employed to 2 

model injuries and diseases of the CNS. Biophysical and biochemical cues are 3 

engineered into a 3D matrix by various microtechnologies and then integrated 4 

with different cell types. Using these 3D in vitro models, one can investigate 5 

underlying pathophysiological mechanisms, screen drug candidates, and 6 

develop platforms for personalised medicine. 7 

 8 

3.2 Engineering biochemical cues 9 

Bioactive moieties such as peptides and growth factors influence cell 10 

behaviours with cell-material interactions for specific and controllable 11 

responses [64]. A typical approach used in the designing of such bioactive 12 
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materials is to chemically integrate ECM whole proteins or ECM peptide 1 

sequences into scaffold materials. The use of peptide sequences as opposed 2 

to whole protein conjugates is particularly favoured due to its simpler 3 

conjugation chemistry and lower cost. For example, Wang et al. created a self-4 

assembling nanofibre scaffold composed of RADA-16 peptides with alternating 5 

positively and negatively charged amino acid residues. The scaffold was 6 

modified with FG loop (FGL) motif that was the synthesized peptide ligand of 7 

fibroblast growth factor receptor (FGFR) derived from the neural cell adhesion 8 

molecule (NCAM) [65]. Using the unmodified scaffold as a negative control, 9 

they investigated how the FGL motif affects the behaviours and functions of rat 10 

spinal cord-derived NSCs [66]. The FGL-enriched scaffolds displayed better 11 

proliferation and migration into the 3D nanofibrous scaffolds, while maintaining 12 

similar levels of neural differentiation. Apart from peptides, the scaffolds can be 13 

modified with other bioactive agents such as neurotrophins [67, 68] and 14 

therapeutic drugs (e.g., chemotherapeutic compounds) [69, 70]. These agents 15 

can modulate the cellular environment both in vitro and in vivo, to accelerate 16 

neuronal growth and functional recovery after CNS injury.  17 

Neurotransmitter-based materials are another type of bioactive scaffolds 18 

that can improve the cell-material interactions. Neurotransmitters such as 19 

dopamine and acetylcholine are chemical messengers secreted by neurons 20 

and are critical for modulating neural activity in the nervous system. Hence, 21 

integrating their functionalities into biomaterials may be a feasible alternative to 22 

guide axonal projections and promote neuronal growth [71-73]. Further details 23 

describing engineered bioactive cues for nerve tissue engineering can be found 24 

in other reviews [64, 74].  25 

More recently, with the advances in microfluidic technology, researchers 26 

have developed organ-on-chip systems which manipulate bioactive cues. For 27 

instance, Kim et al. used a compartmentalised microfluidic device to control 28 

axonal growth by both surface modification and soluble factors [75]. After 29 

making a laser-induced lesion, they analysed cell-cell interactions between 30 

neurons and glial cells. Moreover, the platform enabled them to examine the 31 

complex bidirectional signalling processes that occur in the specific neuronal 32 

structures including axons and dendrites. 33 
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 1 

3.3 Engineering biophysical cues  2 

Scaffold architecture also plays a vital role in cellular responses such as neural 3 

development [76-80]. The ECM offers a natural network of nanofibres to 4 

support cells and to guide cell behaviour via focal adhesion interactions [81]. In 5 

neural tissue engineering, there is tremendous potential in developing scaffolds 6 

that imitate the architecture of natural human tissues at the micro- and nano-7 

scale [82-86]. For example, Lee et al. found that a larger diameter (2-4 µm) of 8 

electrospun polystyrene fibres tended to support myelination compared to 9 

smaller nanofibers (0.2-0.4 µm) [87]. Coating the smaller nanofibers with 10 

biopolymers such as laminin [88], nectin-like protein 1 (NECL1) [89], and 11 

poly(L-lysine) did not improve myelination, illustrating the strong influence of 12 

physical size. Mohtaram et al. discovered that compared with the larger 13 

diameter (85 ± 4 µm) of electrospun poly (ε-caprolactone) fibrous scaffolds, 14 

fibrous scaffolds with a smaller diameter (43.7 ± 3.9 µm) could induce higher 15 

expressions of the neural markers (e.g., Nestin and Pax6) in iPSCs [90]. In 16 

addition, the aligned substrate topography can influence neurite outgrowth [91, 17 

92] and NSC differentiation [93, 94]. Bechara et al. found NSCs had better cell 18 

attachment, proliferation, and elongated morphology, when grown on micro-19 

patterned nanowire surfaces bordered by surfaces without a structured 20 

topography [95]. Li et al. designed a high-throughput, microfluidic screening 21 

device with a large library of micro-patterned substrates. They assessed how 22 

those topographical features can act as physical cues to promote neuronal 23 

development including axon and dendritic outgrowth [96]. 24 

In addition to the fibre diameter, the aligned substrate topography has also 25 

been proven to influence neurite outgrowth [91, 92] and NSC differentiation [93, 26 

94]. In addition to the geometric features at the nanoscale level, the higher level 27 

of organisation of the substrate at the microscale level also proved to be 28 

important for engineering NSC microenvironments [95, 97]. For example, in a 29 

study by Bechara et al., NSCs grown on micro-patterned nanowire surfaces 30 

bordered by surfaces not exhibiting a structured topography exhibited improved 31 

cell attachment, proliferation and elongated morphologies [95]. Similarly, 32 

another study by Thapsukhon et al. showed that when nanofibrous sheets were 33 
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rolled into a tube to guide neural development, improved cell attachment and 1 

proliferation were observed [98]. The tubular shape provided adequate cell 2 

binding and increased permeability, which allowed for cell infiltration and fluid 3 

and nutrient diffusion. These findings indicate that there is greater potential for 4 

nanofibrous tubes to be used as temporary scaffolds in reconstructive nerve 5 

surgery.  6 

Besides scaffold architecture, cells also respond to surrounding 7 

mechanical stimuli via membrane receptors, which can regulate their 8 

morphology, proliferation, and differentiation [97, 99]. Brain tissue is one of the 9 

softest tissues in the human body and its elastic modulus is about 1 kPa, with 10 

some variation depending on age and anatomical location [100, 101]. In one 11 

study, Leipzig grew forebrain-derived stem cells on a photo-polymerizable 12 

methacrylamide chitosan biomaterial with tuneable Young’s elastic modulus 13 

[102]. The results showed that stem cells proliferated optimally on 3.5-kPa 14 

substrates and that they differentiated into mature neurons when Young’s 15 

modulus of substrate was <1 kPa. Keung et al. further explored the molecular 16 

mechanisms through which stem cells could transduce mechanical cues to 17 

determine cell fate [103]. The study used Rho-family guanosine 18 

triphosphatases (Rho GTPases), the extensively studied molecular switches 19 

that regulate a wide range of signal transduction pathways in somatic cells. 20 

They found that Rho GTPases enabled NSCs to adjust their own stiffness in 21 

response to substrate stiffness. Consequently, the NSCs could selectively 22 

differentiate into either astrocytes or neurons. Another study found that 23 

increasing contact stiffness from physiological values (100 Pa) to shear moduli 24 

(≥10 kPa) can lead to morphological and inflammatory changes of both 25 

primary rat microglial cells and astrocytes, in vitro and in vivo. In addition to 26 

matrix stiffness, applied in vitro mechanical force such as strain, compression 27 

and shear can trigger various cellular responses [104, 105]. For example, 28 

Chang et al. found that for neurites grown on parallel channels, stretching 29 

caused the neuronal marker β-tubulin III to rise and the expression of MAP2 to 30 

increase significantly. These findings indicated that mechanical tension may not 31 

only promote NSCs to differentiate towards neuronal cells, but also enhance 32 

neurite outgrowth and its maturation [106]. Overall, passive and active 33 
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mechanical cues both play a vital role in the physiological process of CNS cells.  1 

Electrical activity also has a remarkable influence on both the CNS 2 

development and its regenerative processes post-injury [107]. There are many 3 

findings demonstrating that exogenous electrical stimulations (ESs) play a 4 

significant role in modulating neural behaviour [108-110]. For example, ESs at 5 

a physiological level may regulate and expedite the directed migration of NSCs 6 

towards the cathode [111, 112]. The migration directedness and distance to the 7 

cathode increased with increasing field strength, whilst reversal of the field 8 

polarity reversed the migration [113]. Another study by Aznar-Cervantes et al. 9 

proved that ESs are superior over neural growth factor treatments in causing 10 

PC-12 cells to differentiate into cells with neural phenotypes [114]. Depending 11 

on the voltage, the electrical field gradient can also affect adult NSCs, both 12 

morphologically and phenotypically. A direct current with short-duration 13 

(<10min/day for 2 days) ESs on NSCs in vitro combined with biochemical 14 

factors resulted in mature neuronal morphologies and signs of differentiation 15 

[115]. The neurite lengths were evidently longer compared to those with no 16 

stimulation. Additionally, the neurites and soma of neuronally differentiated 17 

NSCs displayed elevated levels of calcium ions during stimulation, indicating 18 

the presence of functional neurons with the ability of electrical conductance and 19 

communication with other cells. 20 

CNS disease/injury models that combine both biochemical and biophysical 21 

cues can closely mimic their native counterparts [107]. In the following sections, 22 

we will comprehensively review the latest developments of 3D in vitro CNS 23 

models created by various microtechnologies. 24 

 25 

4. 3D in vitro disease and injury models of CNS 26 

4.1 Neurodegenerative disease models 27 

4.1.1 Alzheimer’s disease 28 

Alzheimer’s disease (AD) is the most common form of dementia and is 29 

characterised by a gradual decline in cognitive and executive functions. AD 30 

affects 5.5 million people in the United States alone and with an ageing 31 

population, cases are predicted to increase dramatically [116, 117]. There is no 32 

curative treatment, and symptomatic management is limited [118-120]. The two 33 
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major pathological hallmarks of AD are β-amyloid plaques and the 1 

accumulation of neurofibrillary tangles [121, 122]. The ‘amyloid hypothesis’ 2 

posits that the excessive accumulation of β-amyloid peptides results in 3 

neurofibrillary tangles composed of hyperphosphorylated tau, which 4 

subsequently accumulates in axons, dendrites, and cell bodies. These will 5 

ultimately cause neuronal death [123-125]. This hypothesis has only recently 6 

been proved in an in vitro setting. Commonly used cell models do not reflect 7 

the complexity of AD as it is still challenging to simultaneously incorporate 8 

various cellular components (e.g. axons, synapses) and AD-specific 9 

pathological proteins (e.g. tau) [126].  10 

3D cultures can recapitulate the natural CNS microenvironment to promote 11 

neuronal maturation and increase tau formation, which is essential for 12 

reconstituting tauopathies such as AD [127]. In one study, Zhang et al. cultured 13 

neuroepithelial stem cells derived from human iPSCs, with RADA-16 self-14 

assembling peptides (SAPs). Upon adding cations, the SAPs self-assembled 15 

into a 3D hydrogel (Figure 2A) [128]. Both P21-activated kinases (PAKs; a 16 

critical link in mechano-transduction pathways) and drebrin (an actin-stabilising 17 

protein in the brain) had high degrees of expressions in these 3D hydrogels, 18 

but not in 2D culture models. They postulated the reason to be related to the 19 

soft mechanical surroundings (stiffness of a few Pascal), which resembles brain 20 

tissue much more than conventional 2D culture dishes. The addition of Aβ 21 

oligomers, which are thought to be directly linked to the pathogenesis of AD 22 

[129], attenuated the expressions of both proteins. This was observed in the 3D 23 

SAP matrix, but not in 2D culture systems, further proving the superiority of the 24 

3D model [130]. However, it did not evaluate the aforementioned ‘amyloid 25 

hypothesis’ by investigating whether excessive accumulation of Aβ oligomers 26 

would lead to neurofibrillary tangles composed of aggregated tau proteins.  27 

Subsequently, Choi et al. provided experimental validation of this 28 

hypothesis (Figure 2B) [131]. In their study, they used ReNcell VM human 29 

neural precursor (ReN) cells embedded in a Matrigel scaffolds and 30 

supplemented with neuronal growth factors. They first demonstrated the 31 

accumulation of high levels of both β-amyloid and phosphorylated tau. Then, 32 

they attenuated tauopathy by inhibiting β-amyloid generation. The findings thus 33 
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provided a possible causal link between these two pathological processes. The 1 

scaffold material had high levels of brain ECM proteins, providing appropriate 2 

bioactive and architectural cues for optimal cell differentiation. Furthermore, 3 

compared to 2D culture conditions, 3D culture displayed dramatically increased 4 

neuronal and glial differentiation, β-amyloid deposition and subsequent levels 5 

of tau isoforms. The authors postulated the reason to be bioactive cues and 6 

secreted β-amyloid diffusing into a large volume of media in 2D conditions with 7 

subsequent removal upon media changes. A 3D culture, on the other hand, 8 

would limit diffusion and thus accelerate neuronal and glial differentiation and 9 

aggregation of β-amyloid. 10 

Microfluidics aims to enhance current 3D disease models to create in vivo-11 

like dynamic microenvironments. In one study, Park et al. used a 3D culture-12 

based microfluidic device as an AD model, and exposed neurospheroids to 13 

interstitial flow. Compared to static cell cultures, the dynamic culture conditions 14 

yielded larger spheroid sizes, had a greater neurite extension and an enhanced 15 

neural progenitor cell differentiation. This was likely due to the continuous 16 

supply of fresh medium and removal of metabolic waste through the flow. 17 

Additionally, exposure of neurospheroids to β-amyloid by an osmotic 18 

micropump remarkably decreased their viability compared to when they were 19 

exposed under static conditions (Figure 2C) [132]. The reason was believed to 20 

be the interstitial flow enabling deeper infiltration of β-amyloid into the 21 

neurospheroids, causing more neurons to undergo apoptosis. The addition of 22 

dynamic flow further adds to a more realistic in vitro brain model. This model 23 

was further enhanced by the same group to include microglial cells capable of 24 

inducing a neuroinflammatory microenvironment [133]. Using a microfluidic 25 

triculture system involving neurons, astrocytes and microglia resulted in 26 

microglial recruitment and secretion of neurotoxic soluble factors with 27 

subsequent loss of neurons and astrocytes. It was identified that chemotactic 28 

microglial recruitment depended on Aβ accumulation and upregulation of 29 

chemokine (C-C motif) ligand 2/monocyte chemoattractant protein 1 30 

(CCL2/MCP-1), both factors are known to be upregulated in human AD brains. 31 

Despite recent advances, the design of 3D in vitro models must account for 32 

some important limitations. For instance, the self-assembling nature of some 33 
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3D AD models makes them difficult to control, resulting in marked differences 1 

in cell microenvironments [128] and batch-to-batch variations [134]. 2 

Furthermore, the use of iPSC-derived neurons to model AD holds several 3 

limitations: (a) their relative developmental age does not consider the fact that 4 

AD usually develops in adults beyond their fifth decade [135], and (b) the 5 

variability within iPS cell lines and resulting genetic and epigenetic variations of 6 

subsequent clones make it difficult to develop reproducible in vitro models [136].  7 

 8 

Figure 2. 3D neural cell culture models for AD. (A) Schematic diagram 9 

illustrating the differences of pPAK expression of differentiated neuron and its 10 

responses to Aβ oligomers in 2D cultures and 3D SAP matrix cultures. 11 

Reproduced from [128], Copyright 2014, with permission from Elsevier. CCBY-12 

NC-ND 3.0. (B) Schematic diagram of the thin-layer and thick-layer 3D culture 13 

protocols as well as detergent extraction processes. Reproduced from [131], 14 

Copyright 2014, with permission from Nature Publishing Group. (C) The 15 

structural design of a 3D brain-mimicking microfluidic device. Normal and AD 16 

brain-mimicking microfluidic platform with neurospheroids cultured under 17 

dynamic conditions without or with addition of synthetic amyloid-β, respectively. 18 

Reproduced from [132], Copyright 2015, with permission from The Royal 19 

Society of Chemistry. 20 
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 1 

4.1.2 Parkinson’s disease 2 

Parkinson’s disease (PD) is the second most common neurodegenerative 3 

disorder, characterised by bradykinesia, rigidity, resting tremor, and 4 

deteriorating cognitive function [137]. An abnormal accumulation of the α-5 

synuclein protein in the form of toxic Lewy bodies results in irreversible 6 

degeneration of dopamine-producing neurons originating in the substantia 7 

nigra pars compacta. PD has no cure, and current treatment options are mainly 8 

limited to dopamine replacement strategies, which are complicated by long-9 

term movement-related side effects [138, 139]. Understanding the complex 10 

molecular pathophysiology of PD, it is crucial to developing effective therapies. 11 

However, it is nearly impossible to extract live neurons from PD patients, let 12 

alone making representative in vitro models to study the disease [140].  13 

Stem cell-based in vitro models mimicking PD have thus been developed 14 

using cell cultures and synthetic scaffolds [141]. For example, iPSCs derived 15 

from PD patients have been differentiated into dopaminergic neurons exhibiting 16 

signs of PD pathophysiology in vitro. Up until recently, most in vitro studies have 17 

relied on 2D cultures to demonstrate dopaminergic differentiation of stem cells. 18 

This, as previously described, fails to fully mimic the microenvironment in a 19 

living organism. As a result, 3D SAP scaffolds composed of amino acid 20 

sequences have been developed to improve survival and differentiation of 21 

NSCs [142, 143]. SAP scaffolds could support cell viability and induce much 22 

higher differentiation of murine embryonic stem cells (ESCs) into dopaminergic 23 

neurons, compared to 2D plates (41.5% ± 3.4% versus 8.3% ± 1.4%) [144]. 24 

This was thought to be due to the differences in spatiotemporal distribution of 25 

nutrients, cell surface receptors and other molecular signals in 3D culture 26 

environments. In particular, a higher surface exposure to midbrain patterning 27 

factors in the 3D SAP system was considered to be the crucial differentiating 28 

factor between 2D and 3D systems.  29 

Although animal-derived stem cells are useful, their experimental results 30 

cannot be fully translated into human setting. Brito et al. cultured human 31 

midbrain-derived neural progenitor cells (hmNPCs) of foetal origin. Under 32 

stirred culture conditions, the hmNPCs aggregated into neurospheres and 33 
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differentiated towards a dopaminergic lineage [145]. The same group further 1 

developed this dynamic culture system for more efficient dopaminergic 2 

differentiation and neuronal maturation, making it suitable as a 3D in vitro PD 3 

model [146]. They exposed their neurospheres to the bioactive signalling factor 4 

cyclic adenosine monophosphate (cAMP). This led to significantly upregulated 5 

dopaminergic markers since cAMP is thought to promote the differentiation, 6 

maturation, and survival of midbrain dopaminergic neurons [147, 148]. These 7 

studies demonstrate the relevance of 3D in vitro neurospheres in elucidating 8 

PD pathogenesis. By taking advantages of neuronal precursor cells to self-9 

organise into 3D structures [19, 149], one can mimic the fundamental 10 

processes of brain development [150]. This provides significant advantages in 11 

recapitulating physiological and pathophysiological mechanisms of brain 12 

function and dysfunction. Nevertheless, the foetal origin of the neural progenitor 13 

cells limits their clinical relevance in modelling PD associated with old age. 14 

 15 

4.1.3 Multiple sclerosis 16 

Multiple sclerosis (MS) is a chronic inflammatory disorder of the CNS, 17 

characterised by immune cell infiltration, demyelination, axonal degeneration, 18 

and gliosis [151]. Myelin is essential for the efficient transmission of action 19 

potentials throughout the nervous system. Following demyelination, for 20 

unknown reasons, only limited remyelination occurs [152], characterised by a 21 

smaller diameter of myelin [153]. It is therefore crucial to develop reproducible 22 

in vitro models to study how demyelination happens, and what biochemical and 23 

biophysical cues can induce better remyelination in MS.  24 

    For instance, Harrer et al. exposed murine organotypic cerebellar slice 25 

cultures (OSCs) to demyelinating factors to characterise their in vitro 26 

regenerative abilities [154]. This ex vivo system was found to be useful for 27 

evaluating therapeutic strategies to prevent demyelination and enhance 28 

remyelination in MS patients. However, disadvantages like loss of myelin during 29 

staining and questionable data caused by insufficient diffusion of 30 

demyelination-inducing agents through whole brain slices remained. For these 31 

reasons, Vereyken et al. developed 3D whole brain spheroid aggregates in vitro, 32 

in which all cell types of the CNS were represented [155]. They exposed the 33 
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single cell suspensions of rodent embryonic brains to constant rotational forces 1 

on a gyratory shaker. These continuous mechanical cues supported the 2 

spherical aggregation of embryonic brain cells into 3D spheroids. Once cultured 3 

for 4 weeks, myelin formation was detected throughout the whole spheroid. 4 

Exposure of spheroids to lysophosphatidylcholine (LPC), an agent used to 5 

induce demyelination [156], led to isolated myelin breakdown while sparing 6 

axons and causing little astrogliosis. They achieved remyelination thanks to 7 

OPCs present within whole brain spheroids, which provide mitogenic cues [157] 8 

and trophic factors [158] that were required for myelin production and 9 

unaffected by LPC. Furthermore, LPC toxicity could be attenuated by 10 

compounds such as simvastatin, which supports process extension and OPC 11 

differentiation. These results demonstrate that this 3D in vitro model can model 12 

demyelination and investigate interventional strategies.  13 

 14 

4.1.4 Huntington’s disease 15 

Huntington’s disease (HD) is an incurable hereditary neurodegenerative 16 

disorder, affecting around 5-7 individuals out of 100,000 (lower in Asian 17 

countries) [159]. It is inherited in an autosomal dominant fashion, typically 18 

manifesting between the ages of 35-55 with changes in personality, cognition, 19 

and motor skills [160]. The clinical course of HD is progressive for over many 20 

years, ultimately leading to severe brain atrophy and death [161]. For 21 

individuals affected with HD, there is an expansion of CAG repeat region within 22 

the huntingtin (HTT)-encoding genes, resulting in aggregates of polyglutamine 23 

[162].  24 

Many stem cell-based 2D in vitro HD models have been developed [163-25 

165], but a limited number of relevant physiological models exist. Similarly, 26 

animal models, for the aforementioned reasons, are increasingly falling out of 27 

favour. Therefore, researchers have developed more suitable in vitro systems 28 

to elucidate HD pathophysiology. For example, Zhang et al. used suspensions 29 

of self-aggregating HD-iPS cells to generate NSCs [166]. Within this 3D system, 30 

the HD-NSCs differentiated into striatal neurons containing the same CAG 31 

expansion found in the HD patient from whom the iPS cell line was established. 32 

Such differentiated cells could serve as a human HD cell model to analyse its 33 
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pathophysiology or for drug screening. Despite some success in developing 1 

stem cell-based 3D in vitro cultures, most knowledge about the molecular 2 

pathways of HD still comes from analyses of HD mouse models or post-mortem 3 

HD tissue. With the help of patient-derived iPSCs, new avenues of elucidating 4 

the pathophysiology of HD will be available in the future.  5 

 6 

4.2 Traumatic injury models 7 

Traumatic brain injury (TBI) is amongst the most serious public health problems 8 

worldwide [167]. It is usually caused by an external physical impact resulting 9 

from falls, sports injuries, motor vehicle accidents, and explosions [167]. 10 

Currently, there are very few effective treatments available [12]. This is because 11 

the CNS has a limited regenerative capacity due to the lack of Schwann cells 12 

in peripheral nervous system. Moreover, glial scar tissue containing nerve 13 

growth inhibitory factors acts as a mechanical and biochemical barrier for both 14 

axon growth and myelination [168].  15 

In vitro models of CNS trauma are typically obtained by using different 16 

mechanical stimuli, such as compression, stretch, and laceration. For example, 17 

Bar-Kochba et al. identified the effects of impact strain and strain rate on 18 

primary cortical neurons embedded in collagen gels (Figure 3A) [169]. In 19 

another study, Weightman et al. used a modified scalpel to sever an organotypic 20 

spinal cord slice and create an in vitro spinal cord injury (SCI) model. They then 21 

examined cell-nanomaterial interactions in such an injury-simulating 22 

environment (Figure 3B) [170]. This model not only replicated cellular 23 

responses to in vivo neurological injury, but also demonstrated that aligned 24 

topography could induce the outgrowth and alignment of astrocytes and 25 

neurons within injury sites. In another study, Zuidema et al. observed a similar 26 

effect of topography on cells following SCI. They seeded astrocytes and 27 

neurons on an anisotropic-to-isotropic electrospun poly-L-lactic acid (PLLA) 28 

fibre/film, which resembled the SCI-induced structural changes [171]. They 29 

showed that neurite outgrowth was aligned on the fibrous parts of the 30 

biomaterial, but reduced when approaching the isotropic, non-fibrous domains.  31 

More recently, Dolle et al. used a microfluidic device to model diffuse axonal 32 

injury, one of the most common pathological features of TBI (Figure 3C) [172]. 33 
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In the device, they cultured organotypic brain slices on a polydimethylsiloxane 1 

substrate. This model could precisely control the strain on individual axons or 2 

bundles of axons in a 3D environment. After applying external pressure to cells, 3 

they observed axonal responses that are typically seen in vivo following human 4 

brain injury. This model enables repeated testing and is a non-invasive research 5 

platform. 6 

 7 

Figure 3. 3D in vitro CNS traumatic injury models. (A) Schematic diagram of 8 

neuronal compression model fitted onto a confocal microscope for 9 

spatiotemporal nerve injury analysis. Reproduced from [169], Copyright 2016, 10 

with permission from Nature Publishing Group. CCBY-NC-ND 4.0. (B) 11 

Schematic diagram of (i) the production of organotypic lesioned spinal cord 12 

slice cultures and (ii) the fabrication of the aligned electrospinning nanofibers 13 

to cover the lesioned slices. Reproduced from [170], Copyright 2014, with 14 

permission from Elsevier. (C) Schematic diagram (before and after strain 15 

application, top and sectioned views) of the organotypic uniaxial axonal strain 16 

model. Reproduced from [172], Copyright 2013, with permission from The 17 

Royal Society of Chemistry. (D) Schematic diagram of the 3D brain-like cortical 18 

tissue model. (Di) The architectural features of the brain; (Dii) The design 19 

concept of the modular brain-like tissue model; (Diii) The design of TBI model 20 

to study the brain-like tissue responses by the weight-drop impact on the tissue. 21 

Reproduced from [173], Copyright 2014, with permission from Proceedings of 22 
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the National Academy of Sciences USA. 1 

 2 

To further engineer functional 3D in vitro brain-like cortical tissues, Tang-3 

Schomer et al. designed a compartmentalised model. They seeded primary 4 

neurons in a porous silk scaffold and filled the space with a collagen gel (Figure 5 

3D) [173]. The scaffold-gel composites demonstrated mechanical properties 6 

comparable to rodent brain tissue and maintained the neural culture for months. 7 

They used a weight-drop model to induce TBI and demonstrated impact force-8 

dependent injury responses. Furthermore, the model exhibited excitatory 9 

neurotransmitter glutamate release, and impact-induced transient hyperactivity 10 

which was similar to in vivo conditions.  11 

     12 

4.3 Neurodevelopmental disorder models 13 

4.3.1 Epilepsy 14 

Epilepsy encompasses a variety of syndromes which predispose the 15 

affected individual to generating an abnormal, transient discharge of neurons 16 

in the brain, or a seizure [174]. Depending on the brain region involved, the 17 

effects of seizures range from changes in cognition, convulsions and unusual 18 

sensations. Realistic in vitro disease models of epilepsy are useful for toxicity 19 

testing of new pharmacological agents and elucidating underlying mechanisms 20 

of seizure generation. Additionally, in vitro models enable the discovery of side 21 

effects of the tested drugs early on, thus reducing time and cost. Unfortunately, 22 

current models heavily rely on expensive animal work, rendering their results 23 

possibly untranslatable to the human scenario. Ideally, an in vitro model of 24 

epilepsy should employ cell types found in the human brain capable of forming 25 

functional neurophysiological networks and displaying seizure-like activity. It 26 

should further be amenable to high-throughput drug screening [175]. Currently 27 

available in vitro seizure models including their advantages and limitations are 28 

summarized in Table 1. 29 

 30 
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Table 1. Comparison of in vitro seizure models (Reproduced from [175], 1 

Copyright 2018, with permission from copyright owner) 2 

 3 

 4 

4.3.2 Autism  5 

Autism spectrum disorder (ASD) is a complex and heterogeneous 6 

neurodevelopmental disorder, which is usually defined as deficits in social 7 

communications, interactions, and restricted, repetitive patterns of behaviours. 8 

Model Advantages Limitations 

Acute slice assay √ Validated 

representative of in vivo 

adult rodent brain 

√ Defined 

cytoarchitecture 

√ “Gold standard” 

× Difficult inter-species 

extrapolation 

× Damage to 

cytoarchitecture and 

neuronal projections 

during preparation 

× Low throughput 

Organotypic slice 

culture 

√ Representative of in 

vivo rodent 

√ Retains functional 

tissue networks 

× Difficult inter-species 

extrapolation 

× Neonatal source, so not 

representative of matured 

system 

× Time consuming 

Primary CNS culture √ Representative of in 

vivo cell types 

√ Validated model 

√ Higher throughput than 

slices 

× Difficult inter-species 

extrapolation 

× Loss of 3D structure 

× Not representative of 

multicellular architecture 

of in vivo CNS 

iPSC-derived 

culture 

√ Human-based, 

humanoid pheno- and 

genotype, can model 

genetic component of 

epilepsy of patients with 

specific mutations 

√ Fewer ethical 

considerations 

× Expensive and time 

consuming 

× No standard protocol 
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In some cases, ASD can cause cognitive delay. Little is known about the 1 

pathophysiology of ASD [176]. Animal models still cannot fully recapitulate such 2 

disorders, due to the broad spectrum of behavioural phenotypes and the 3 

inherent difficulty in creating them in rodents. During differentiation of normal 4 

human neural progenitor cells, many ASD-related genes and signalling 5 

pathways are highly co-expressed indicating the neurodevelopmental origin of 6 

ASD [177, 178]. Thus, relevant models should focus on the early disease 7 

development during which genes and environmental factors may play a 8 

significant role.  9 

In a recent study, Mariani et al. developed 3D neural cultures in organoids 10 

derived from iPSCs to explore neurodevelopmental variations in patients with 11 

severe ASD [179]. While they did not identify a single underlying genomic 12 

mutation, gene network analyses showed an upregulation of genes involved in 13 

cell proliferation, neuronal differentiation, and synaptic assembly. Organoids 14 

developed from individuals with ASD displayed an accelerated cell cycle and 15 

overproduction of GABAergic inhibitory neurons, which are hypothesised to be 16 

an underlying cause of ASD.  17 

Rett syndrome (RTT), while not technically part of ASD according to 18 

symptomatology, shares commonalities with ASD in its early stages [180, 181]. 19 

Maria et al. isolated fibroblasts from patients with RTT symptoms, and infected 20 

them with retroviral reprogramming vectors [182]. After culture for 2-3 weeks, 21 

compact iPSC colonies appeared in the background of fibroblasts, and then 22 

were manually picked up and transferred to Matrigel. They dissociated the cell 23 

clusters and plated them onto low-adherence culture dishes for 5-7 days to 24 

obtain embryoid bodies (EBs) for neural differentiation. The formed EBs were 25 

then transferred and plated on poly-ornithine/laminin-coated dishes. After a 26 

week of culture, EB-derived rosettes became visible and were collected for use. 27 

The RTT-iPSCs maintained the ability to undergo X-inactivation and generate 28 

proliferating NSCs and functional neurons. This model has the potential to 29 

recapitulate the early stages of some neurodevelopmental diseases. It may also 30 

be a promising tool for disease diagnosis, drug screening, and personalised 31 

treatment for RTT and ASD. 32 
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Thus far, EBs are one of the most common methods of modelling 1 

neurodevelopmental disorders in vitro. However, it remains questionable 2 

whether these models can reflect neurodegenerative diseases accurately 3 

enough to draw clinically relevant conclusions. Much more research is required 4 

to progress from the current stages of infancy to technically mature models.  5 

 6 

4.3.3 Microcephaly 7 

Microcephaly is another neurodevelopmental disorder characterised by a 8 

reduction in brain size. Currently, the underlying causes and mechanisms of 9 

microcephaly are poorly understood [183], and there is still no available 10 

treatment. To address this issue, human iPSC-derived cerebral organoids have 11 

been applied in the study of microcephaly [28, 184]. For example, Lancaster et 12 

al. developed an in vitro model using fibroblast-derived iPSCs taken from a 13 

patient with severe microcephaly [28]. These iPSCs self-assembled into 3D 14 

EBs and were embedded into droplets of Matrigel to provide an in vivo-like 15 

scaffold (Figure 4). Continuous spinning acted as a mechanical cue to ensure 16 

optimal nutrient absorption, resulting in the rapid development of brain tissues 17 

within 20-30 days. Compared to control EBs, those derived from microcephalic 18 

iPSCs demonstrated smaller neural tissues with only a few progenitors, and 19 

exhibited premature differentiation into neurons. This phenotype could be 20 

reversed by reintroducing CDK5RAP2, a protein that causes premature 21 

neuronal death when mutated and is associated with microcephaly. This model 22 

recapitulates some fundamental mechanisms of mammalian 23 

neurodevelopment and could be used in the future to develop interventions to 24 

prevent the development of microcephaly in utero. 25 
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 1 

Figure 4. (A) Schematic demonstration of the 3D cerebral organoids cell culture 2 

system. (B) Neuroepithelial tissues produced by this technique. (C) 3 

Immunohistochemical stains of neural progenitors (SOX2, red) and neurons 4 

(TUJ1, green) showing complex, heterogeneous regions of cerebral organoids. 5 

(D) Reminiscent ventricles (fluid-filled cavities) shown with white arrow and 6 

retina tissue shown with black arrow. Scale bar: 200 µm. Reproduced from [28], 7 

Copyright 2013, with permission from Nature Publishing Group. 8 

 9 

4.4 Other disease models 10 

Migraine is a common neurological disorder characterised by moderate to 11 

severe headaches, typically with throbbing or pulsating sensations which can 12 

significantly reduce the quality of life. It usually lasts from a few hours up to a 13 

day, heavily inhibiting the productivity of patients [185]. Cortical spreading 14 

depression (CSD), which is considered to be the physiological mechanism 15 

behind the migraine aura, is a propagating wave of large-scale grey matter 16 
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depolarisation. To better understand it, Tang et al. developed a CSD model 1 

using a microfluidic platform and mouse organotypic brain slices [186]. Through 2 

precise focal control of the chemical stimuli (potassium ions) in different areas 3 

of the cortical layers, they found that CSD may be induced under conditions 4 

related to brain damage and awake behaving states such as migraine.  5 

Another CNS disorder called neuronal migration disorder usually occurs 6 

when developing neurons are unable to migrate to the appropriate areas within 7 

the brain. Possible causes include genetic mutations and deletions of genes, 8 

which cause denaturing in microtubules and actin-associated proteins, 9 

disrupting the accurate cortical patterning in the cytoskeleton development 10 

[187]. It is possible to study the genotype-phenotype correlations between 11 

mutated genes and neuronal migration disorder by observing how neurons 12 

arise from NSCs and migrate to the CNS [188]. More recently, Bamba et al. 13 

created a disease model using iPSCs derived from the cerebral cortex of a 14 

lissencephaly patient. They used the serum-free embryoid body-like aggregate 15 

(SFEB) method to develop brain-like structures in floating culture [189]. This 16 

model recapitulated the pathogenesis of human neuronal migration disorder 17 

and enabled the team to observe the real-time behaviour of human cortical 18 

neurons for a long time. 19 

Friedreich’s ataxia (FRDA) is another type of pathogenic mutation, and is 20 

caused by a transcriptional defect in the frataxin gene [190]. Atrophy of sensory 21 

and cerebellar pathways resulted in ataxia, dysarthria, unstable fixation, loss of 22 

deep sensory and tendon reflexes, later leading to a heightened risk of diabetes 23 

and death-inducing cardiomyopathy [191]. To understand how FRDA develops, 24 

Hick et al. isolated neural precursors and cultured them in suspension to form 25 

neurospheres. The neurospheres extended in all directions and formed a dense 26 

network over a month, thus mimicking the process of neural development [192]. 27 

FRDA iPSC-derived neurons showed not only GAA expansion instability but 28 

also signs of mitochondrial functional damage.  29 

Last but not least, Schizophrenia (SCZ), a severe psychiatric disorder, is 30 

characterised by delusions, hallucinations, social withdrawal, cognitive deficits, 31 

and loss of emotion and motivation [193]. Currently, iPSC-derived neurons from 32 
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the fibroblasts of schizophrenic patients are the gold standard for developing 1 

SCZ models [194-196].  2 

Paulsen Bda et al. used such model to study oxygen metabolism in SCZ, 3 

and correlated SCZ development with changes in the levels of oxygen 4 

consumption and reactive oxygen species [196]. Despite some unresolved 5 

limitations, the iPSC-derived disease models are predicted to provide further 6 

insight into the molecular and cellular underpinnings during the initiation and 7 

progression of SCZ. 8 

 9 

5. Conclusion and future prospective 10 

The extracellular microenvironment is tremendously important in controlling the 11 

behaviour of CNS cells. In vitro models that mimic the natural microenvironment 12 

will enable one to study CNS pathology or effects of potential medications. In 13 

this review, we have outlined the typical parameters required to recreate CNS 14 

microenvironments including ECM, biological, architectural, mechanical and 15 

electrical cues. We have also described the commonly used techniques to 16 

engineer the abovementioned cues. Lastly, we have reviewed various CNS 17 

disease models that researchers have developed. 18 

To date, most CNS disease and injury models have been designed primarily 19 

to elucidate known or suspected mechanisms, or to validate isolated 20 

observations. In addition, no single device has the capacity to completely 21 

reconstruct the in vivo CNS environment. Besides the challenge of incorporating 22 

every single cell type in their respective representative numbers, the realistic 23 

reconstruction of a functional 3D CNS microenvironment is commonly limited 24 

by a lack of or delayed vascularization of the core of the 3D construct. This, in 25 

turn, increases the risk of core necrosis and system failure. It becomes more 26 

and more evident that a multi-dimensional approach to tissue engineering is 27 

required to further understand the intricate workings of such microenvironments. 28 

Future efforts to engineer 3D CNS microenvironments will require a 29 

combination of different technologies while mimicking multiple aspects of the 30 

native CNS microenvironment. For in vitro and ex vivo tissue cultures, they are 31 

most likely to comprise a designer ECM scaffold inoculated with NSCs or their 32 

progeny cells, as well as a second, or even third, cell microenvironment 33 
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component. In addition, strategies to accelerate 3D vascular network formation, 1 

such as employing 3D scaffolds with prefabricated tubular networks could 2 

assist in rapid generation of realistic CNS microenvironments. With continuous 3 

advances, we envision that future CNS disease models will make it possible to 4 

fully elucidate specific mechanisms and to identify new treatment strategies.  5 
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