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Stabilization of a Mach 6 Boundary Layer Using a Two-

Dimensional Cavity 

Jiaao Hao* and Chih-Yung Wen† 

The Hong Kong Polytechnic University, Kowloon, Hong Kong 

The stability of a hypersonic boundary layer over a flat plate to wall blowing-suction with 

the effect of a two-dimensional cavity at different locations is investigated using direct 

numerical simulations. The results indicate that the second mode is damped when the cavity 

is placed closely downstream of the synchronization point of mode F and mode S, whereas the 

effect is reversed if it is located upstream and further downstream of the synchronization point. 

Strong damping of the disturbances is observed inside the cavity, which is found to be 

consistent with the thermoacoustic interpretation. It is suggested that an efficient way to 

stabilize the boundary layer dominated by the second-mode instabilities is to put a local cavity 

in the close downstream region of the synchronization point corresponding to the most 

dangerous frequency. 

I. Introduction

The performance of hypersonic vehicles is significantly affected by the boundary-layer laminar–turbulent 

transition, which can greatly increase the surface heating and frictional drag and lead to a considerable decrease in the 

payload capacity. 

In a weak-disturbance environment that are frequently encountered by a hypersonic vehicle, the path to transition 

comprises three stages including receptivity, linear eigenmode growth, and nonlinear breakdown to turbulence [1]. 

Compared to subsonic and moderate-supersonic flows, the transition mechanisms of hypersonic boundary layers are 

much more complex and much less understood. In addition to the first mode corresponding to the compressible 

counterpart of Tollmien–Schlichting waves, there are the second, third, and higher modes interpreted as trapped 

acoustic waves [2]. For hypersonic boundary-layer flows over a flat plate, mode F originates from the fast acoustic 

wave, whereas mode S (or the first mode) originates from the slow acoustic wave near the leading edge through the 

receptivity process. The phase velocities of mode F and mode S intercept at the so-called synchronization point, where 

the two modes exchange energy and excite the second mode (either mode F or mode S). Under high Mach number 

conditions, the second-mode instabilities can dominate the transition process. 

To control the second-mode instabilities, multiple techniques have been proposed including local heating or 

cooling trips [3], roughness elements [4,5], and porous coatings [6]. In these studies, the relative positions of these 

elements to the synchronization point of mode F and mode S have been found to be critical to the control effectiveness. 

For example, it was found that the second mode is amplified when a heating trip is located upstream of the 

synchronization point, whereas the effect is reversed if it is placed downstream [3]. Similar trend has also been 

demonstrated for local roughness elements and porous coatings. 

Recently, Bountin et al. [7] found that the second mode could be strongly suppressed using a wavy surface 

composed of multiple small cavities by means of direct numerical simulations (DNS) and experiments. A series of 

shallow cavities that generate relatively stable shear layers was used to stabilize the second-mode waves, while 

avoiding exciting any detrimental acoustic resonances. This idea was inspired by the numerical study addressing the 

stability of hypersonic boundary layers over a compression corner [8]. It was shown that the second mode grows 

exponentially in the regions upstream of the separation bubble and downstream of the reattachment shock wave, 

whereas it remains neutral in the separation region. It is important to note that the flow structure in the vicinity of the 

separation bubble is similar to that behind a local roughness element. Therefore, the cavity location relative to the 

synchronization point of mode F and mode S is also supposed to be critical to the wavy-wall stabilization concept. 

*Research Assistant, Department of Mechanical Engineering, jiaao.hao@polyu.edu.hk.
†Professor, Department of Mechanical Engineering, cywen@polyu.edu.hk.

This is the Pre-Published Version.
This is the peer reviewed version of the following article: Hao, J., & Wen, C. (2019). Stabilization of a Mach 6 boundary layer using a two-
dimensional cavity. In AIAA Scitech 2019 Forum (p. 1131) , which has been published in final form at https://doi.org/10.2514/6.2019-1131.
Copyright © 2019 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.



2 

The objective of this study is therefore to investigate the effect of cavity location on the stabilization of a 

hypersonic boundary layer using DNS. Simulations of a Mach 6 flat-plate boundary layer with a local two-dimensional 

cavity placed at different locations are performed to identify the role of the synchronization point. 

II. Governing Equations 

The governing equations are the two-dimensional compressible Navier–Stokes equations in the following 

conservative form: 
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Here, the vectors of the conservative variables and the vectors of the inviscid and viscous fluxes in the x direction are, 
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where ρ is the density, u and v are the velocities in the x and y directions, respectively, p is the pressure, and e is the 

specific total energy. The flux vectors in the y direction have similar expressions. 

The fluid is assumed to be a perfect gas with the specific heat ratio γ = 1.4. The viscous stresses are modeled 

assuming a Newtonian fluid and Stokes’ hypothesis, and the heat fluxes are calculated using Fourier’s law. The 

dynamic viscosity is evaluated using Sutherland’s law, and the coefficient of conductivity is determined via a constant 

Prandtl number Pr = 0.72. 

III. Computational Details 

A. Geometry and flow conditions 

The flat plate has a length of 0.2 m. The schematic of the local cavity is illustrated in Fig. 1. The length of the 

cavity is l = 12 mm, and the depth is d = 1.8 mm corresponding to the boundary-layer thickness. The length-to-depth 

ratio is l/d = 6.67 so that it can be regarded as a shallow cavity. The dimensions are chosen to be the same as those 

used in Bountin et al. [7]. 

 
Fig. 1  Schematic of the cavity geometry. 

The freestream conditions are specified as follows: the Mach number M∞ = 6.0, the unit Reynolds number Re∞ = 

10.5 × 106 m−1, and the static temperature T∞ = 43.18 K. The wall is assumed to be isothermal with Tw = 293 K. Note 

that the flow density, velocities, pressure, and temperature are nondimensionalized by ρ∞, u∞, ρ∞u∞
2, and T∞, 

respectively. 

B. Flow solver 

The numerical simulations are performed using a multiblock parallel finite-volume CFD code called PHAROS [9]. 

It has been successfully applied to hypersonic thermochemical nonequilibrium simulations over capsule, double-cone, 

and hollow-cylinder/flare configurations [10–13]. In this study, PHAROS is extended to higher order for hypersonic 

transition simulations. The inviscid terms are calculated using the modified Steger–Warming scheme [14]. The ninth-

order upwind scheme is used for the reconstruction of dependent variables in smooth regions, whereas the second-

order MUSCL reconstruction [15] with the van Leer slope limiter is used near discontinuities. The viscous fluxes are 

calculated using the second-order central difference scheme. 
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C. Simulation strategy 

The computational mesh is constructed with 1500 and 200 nodes in the x and y directions, respectively. There are 

approximately 100 grids within the boundary layer. For the cavity cases, approximately 100 × 100 nodes are 

distributed in the domain of the separated flow. Grid independence was verified using a finer grid with 3000 × 400 

nodes in the main domain and 200 × 200 nodes inside the cavity. 

The simulation strategy contains two steps. First, the steady base flow is computed with a large Courant–

Friedrichs–Lewy (CFL) number of 1000 to achieve fast convergence using a line relaxation method [16]. In the second 

step, after disturbances are introduced using a local blowing-suction actuator on the wall, time-accurate unsteady 

simulations are performed using an explicit third-order Runge–Kutta method. The induced mass flux by the actuator 

is determined by 
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where x1 = 10 mm, x2 = 15 mm, and f = 138.74 kHz. The forcing amplitude is set to ε = 10−3 to ensure the linear 

evolution of the excited disturbances. 

D. Validation 

To evaluate the accuracy of the present simulations, the results for the baseline flat-plate case are compared with 

the DNS data of Zhao et al. [1] and the predictions from the linear stability theory (LST). The instantaneous pressure 

perturbation is processed using the Fourier transformation to obtain the pressure perturbation amplitude |p'| and phase 

angle φ'. In a spatial stability problem, the local wave number can be defined via 
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Figure 2 compares the calculated evolution of pressure perturbation amplitude along the surface with that predicted 

by Zhao et al. [1]. In Ref. [1], DNS were performed using a fifth-order upwind compact scheme and a sixth-order 

central difference scheme to discretize the inviscid and viscous fluxes, respectively. As seen from the figure, good 

agreement is obtained. There are strong modulations of pressure perturbation amplitude downstream of the actuator, 

which can be attributed to the coexistence of mode F, mode S, acoustic waves, and entropy and vorticity waves [17]. 

After x ≈ 0.1 m, mode S has become the dominant mode leading to an exponential increase in the pressure perturbation 

amplitude. 

 

Fig. 2  Comparison of the pressure perturbation amplitude obtained from DNS and that predicted by Zhao et 

al. [1]. 
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Figure 3 compares the imaginary part of the wave number and the phase velocity obtained from numerical 

simulations and those of mode F and mode S from LST. According to the LST predictions, mode F is always stable, 

whereas mode S is unstable from x = 0.044 m. The synchronization point of mode F and mode S corresponding to f = 

138.74 kHz is located at x = 0.105 m. Strong oscillations of growth rate and phase velocity before the synchronization 

point are also caused by the coexistence of different modes. According to Fedorov et al. [18], mode S evolves from 

the first mode to the second mode in the vicinity of the synchronization point and becomes dominant further 

downstream. Consequently, the growth rate and phase velocity obtained from DNS agree well with those of mode S 

from LST after the synchronization point. 

 

 a) Imaginary part b) Phase velocity 

Fig. 3  Comparison of the wave number obtained from DNS and those of mode F and mode S from LST. 

IV. Results 

In this study, four cases with different cavity locations are considered with xm = 0.04, 0.08, 0.12, and 0.16 m, 

respectively. For the wall blowing-suction actuator with f = 138.74 kHz, the cavity is located upstream of the 

synchronization point of mode F and mode S for cases 1 and 2, whereas it is placed downstream of the synchronization 

point for cases 3 and 4. 

A. Steady solution 

The simulated steady base flow around the cavity for case 1 is shown in Fig. 4. There is a weak shock wave 

generated near the flat-plate leading edge due to the viscous interaction as seen from the pressure contour. From the 

streamline pattern, the flow separates from the leading edge of the cavity resulting in a shear layer bridging the length 

of the cavity. A compression wave can be observed near the cavity trailing edge induced by the shear layer 

impingement. It is important to note that no self-sustaining oscillations occur in the base flow. 

 
Fig. 4  Pressure contour and streamline pattern around the cavity for case 1. 

Figure 5 shows the streamwise velocity profiles in the wall-normal direction at different locations for case 1. The 

baseline flat-plate results are also plotted. Clearly, the flow is almost unaffected in the upstream region of the cavity. 

At x = 0.04 m located at the middle of the cavity, the velocity profile is strongly distorted presenting a thinner boundary 
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the velocity profile without cavity is eventually reestablished after x = 0.08 m. The results indicate that the cavity only 

has local effects on the steady base flow similar to the numerical observations on the boundary-layer flow around a 

local roughness element [5]. 

 
 a) x = 0.03 m b) x = 0.04 m c) x = 0.06 m d) x = 0.08 m 

Fig. 5  Distributions of streamwise velocity in the wall-normal direction at different locations for case 1. 

B. Effect of cavity location on boundary-layer stability 

Figure 6 compares the pressure perturbation amplitudes along the surface for different cases with the baseline flat-

plate result. For the baseline case, the second mode starts to amplify exponentially after the synchronization point and 

researches its maximum at x ≈ 0.150 m. Clearly, the development of the pressure perturbation is unaffected upstream 

of the cavity. When the cavity is placed upstream of the synchronization point (cases 1 and 2), the maximum amplitude 

is increased compared with the baseline value. In contrast, the second mode is stabilized when the cavity is located 

closely downstream of the synchronization point (case 3). However, as the cavity moves further downstream (case 4), 

the pressure perturbation is amplified again. It is interesting to note that there is no significant change in the disturbance 

amplitude across the cavity for cases 1 and 2, whereas the pressure perturbation amplitude is significantly reduced for 

cases 3 and 4. The results indicate that the unstable second mode is destabilized when the cavity is placed upstream 

and further downstream of the synchronization point and stabilized only when the cavity is located closely downstream 

of the synchronization point. 

 

Fig. 6  Distributions of the pressure perturbation amplitudes along the surface for different cases. 

Figure 7 compares the imaginary parts of the wave number for different cases with the baseline flat-plate result 

and those of mode F and mode S obtained from LST. Again, the cavity only has local effect on the development of 

disturbances especially for cases 1 and 2. The baseline result is recovered further downstream of the cavity and the 

numerical results agree well with the theoretical prediction of mode S. Note that the growth rates immediately after 

the cavity are much larger than that for the flat plate for cases 3 and 4, which corresponds to the steep increase in the 

pressure perturbation amplitude as shown in Fig. 6. For case 4, even though the disturbances are significantly reduced 

across the cavity, the growth rate after the cavity increases so much that the perturbation amplitude experiences a 

strong growth and exceeds the flat-plate result. 
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 a) Case 1 b) Case 2 

 

 c) Case 3 d) Case 4 

Fig. 7  Distributions of the imaginary parts of the wave number along the surface for different cases. The 

dashed vertical lines indicate the boundaries of the cavity. 

The finding helps to explain the numerical results of Bountin et al. [7]. In their study, it was shown that the second 

mode is damped by the wavy surface in the frequency band from 110 to 150 kHz, while the disturbance amplitude 

increases for frequencies less than 110 kHz and remains almost unchanged for frequencies larger than 150 kHz. It is 

well-known that the location of the synchronization point is in inverse proportion to the frequency [4] so that most 

cavities of the wavy surface are located upstream of the synchronization point for relatively low frequencies. As a 

result, the second mode is amplified. Under high-frequency conditions, there are cavities located further downstream 

of the corresponding synchronization point, which is detrimental to the overall stabilization effect. 

C. Evolution of second mode across the cavity 

As shown in Fig. 6, the second mode is strongly damped across the cavity when it is placed downstream of the 

synchronization point. To understand the development of the second-mode wave in the vicinity of the cavity, the 

instantaneous contours of pressure disturbances for cases 3 and 4 as well as the baseline flat-plate case are shown in 

Fig. 8. For the flat-plate case, the disturbances in the boundary layer after x = 0.105 m correspond to the second mode, 

which propagates downstream with the phase velocity slightly lower than the velocity at the boundary-layer edge. 

Interpreted as trapped acoustics waves, the second-mode wave travels between the wall and the sonic line (relative to 

the phase velocity) and induces the two-cell structures of the pressure disturbance field. For cases 3 and 4, the basic 

features are similar to the flat-plate result upstream and downstream of the cavity; however, the pressure disturbance 

fields are strongly distorted around the cavity. Significant disturbances can be seen inside the cavity, which is in 

contrary to the experimental observations on the boundary-layer flows around a roughness element. The disturbances 

in the separation region behind the roughness element has been shown to be much smaller than those in the upper 

boundary layer by Tang et al. [19]. They modeled the second mode around a roughness element as sound waves 

passing a vortex sheet between two high-speed regions and proved that the second mode cannot penetrate the shear 
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layer. As a result, the second-mode wave around the wall region weakens as the majority of the acoustic wave is not 

present in the region according to Fong [20]. 

 
a) Flat plate 

 
b) Case 3 

 
c) Case 4 

Fig. 8  Instantaneous pressure disturbance fields for different cases. 

 
a) Flat plate 

 
b) Case 3 

 
c) Case 4 

Fig. 9  Instantaneous pressure disturbance fields for different cases. 

Although the flow structures around the cavity and roughness element are similar, the stabilization mechanisms 

are completely different and yet to be investigated. The pressure disturbances inside the cavity cross the zero axis 

twice, indicating that the instability corresponds to the third mode [21]. Similar to the finding of Balakumar et al. [8], 
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the second-mode disturbances become the third-mode disturbances when they propagate across the separation region, 

and these third-mode disturbances change back into the second mode downstream. 

Figure 9 shows the contours of the instantaneous disturbance energy for different cases. Here, the disturbance 

energy is defined as k = (uʹuʹ+vʹvʹ)/2. It is seen that the second-mode wave enters the cavity and experiences strong 

damping. Take case 4 as an example, the disturbance energy is reduced by a factor of 20 inside the cavity. 

To explain the damping phenomenon, the thermoacoustic interpretation of the unstable mode recently proposed 

by Kuehl [22] is adopted in this study. In this theory, it has been demonstrated that the second-mode wave in 

hypersonic boundary layers is consistent with a thermoacoustic standing wave trapped in a thermoacoustic impedance 

well and derives energy from the base flow through the thermoacoustic Reynolds stress. Starting from the Navier–

Stokes equations, one can easily obtain the following acoustic energy equation: 
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where c is the speed of sound and V2 = u2 + v2. It is assumed that the flow variables ϕ can be decomposed into 

  = + , where   denotes the mean-flow part and   is the disturbance. Then Eq. (6) can be linearized into the 

disturbance energy equation expressed as 
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With the cubic nonlinearity and viscous effects neglected, the so-called cycle-average disturbance energy equation 

can be obtained as 
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where R is the gas constant. Time averaging is performed over the period corresponding to the actuating frequency to 

separate the time scales of wave oscillation and disturbance growth. Note that the second equality in this equation is 

derived via the equation of state. Clearly, the thermoacoustic Reynolds stress acts as an energy source so that the 

second mode will be amplified where it is negative. 

 Figure 10 shows the contour of the thermoacoustic Reynolds stress for case 4. As seen from the figure, regions of 

negative values occur in the boundary layer after the synchronization point corresponding to the second-mode 

amplification. Inside the cavity, the negative region of the thermoacoustic Reynolds stress shrinks significantly, which 

explains the damping of the disturbances. 

 
Fig. 10  Thermoacoustic Reynolds stress contour for case 4. 

V. Conclusions 

In this study, the stabilization of a hypersonic boundary layer with a local two-dimensional cavity is investigated 

using direct numerical simulations. Four cases are considered with the cavity located upstream or downstream of the 

synchronization point of mode F and mode S. The results indicate that cavity location plays an important role in the 

development of mode S excited by wall blowing-suction. When the cavity is placed upstream or further downstream 
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of the synchronization point, the second mode is destabilized. In contrast, the second mode is stabilized only if the 

cavity is placed closely downstream of the synchronization point. The stabilization effect of the relative location 

between the cavity and the synchronization point is similar to those for a local roughness element and a heating trip. 

The disturbances are significantly damped inside the cavity located downstream of the synchronization point, which 

can be explained by the thermoacoustic interpretation. It is suggested that an efficient way to stabilize the boundary 

layer is to put a local cavity in the close downstream region of the synchronization point corresponding to the most 

dangerous frequency. 
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