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 1 

1. Introduction 2 

When fine reactive powder, produced and used in many factories, is suspended cumulatively in an 3 

oxidizing atmosphere, such as air or oxygen (O2), it bears a potential danger of ignition and further 4 

development into detonation, leading to severe financial losses, personnel injuries and fatalities [1, 2]. On 5 

the other hand, with the characteristics of high energy density, low detonability limit and easy storage and 6 

transportation [3], reactive solid particles (especially metal particles) are in favor for many propellant 7 

applications, such as solid rocket propellants [4, 5] and, more recently, potential use for detonation in 8 

hypersonic propulsion [6]. Therefore, the study of detonation processes in reactive gas-particle two-phase 9 

mixtures is of great importance for dust explosion hazard prevention and fire safety in factories, and for 10 

advanced propulsion applications. 11 

Some experiments involving gas-particle detonation have been reported, such as Zhang et al. [7-9], 12 

Veyssiere et al. [10], Borisov et al. [11] and Ingignoli et al. [12]. They detonated various suspensions of 13 

reactive particles, including aluminum (Al), starch, and anthraquinone particles, in air or oxygen 14 

atmospheres using different initiation sources. Findings indicated that detonation of such mixtures is only 15 

feasible when the characteristic size of particles is less than a few micrometers and it needs to be in large 16 

tubes by using strong initiation sources; therefore, it imposes greater difficulties compared with classical 17 

gaseous detonation experiments. In addition, given the dispersion problems of mixtures of suspended solid 18 

particles in gases, it is challenging to achieve well-controlled and reproducible experimental conditions. 19 

Consequently, available experimental data on detonation characteristics, structures, and detonability of solid 20 

particle-gas mixtures are still rather limited and comparison among them is difficult as well, which renders 21 

numerical simulation an important aspect of studying gas-particle detonations. 22 

As gas-particle two-phase detonations are complex multi-physics problems involving high-speed 23 

reactive flows, mathematical models describing these types of flows are extremely complicated and still 24 

under development. Based on the classic experimental observations for combustion of large reactive particles 25 

in quiescent atmospheres [13, 14], the diffusion-controlled combustion theory for droplets has often been 26 

applied to two-phase detonation problems of solid particles [15, 16]. Considering the dependence of the 27 

combustion of fine metal particles on pressure, which has been reported in experiments [9, 17, 18], a kinetics-28 

controlled combustion model for gas-particle detonation was proposed by Fedorov’s group [19-22]. Recently, 29 
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a combination of the above two widely used models, the surface-kinetic-oxidation and diffusion hybrid 1 

reaction model was proposed by Zhang et al. [23] and has been applied in references [24, 25]. All these 2 

simulation results lead to an important quantitative relationship in gas-particle detonation; that is, many 3 

characteristic lengths in two-phase detonation, such as the induction length, two-phase relaxation lengths, 4 

detonation cell size, etc. are proportional to the particle size to a power of 1.42. Another significant 5 

conclusion in hybrid gas-particle detonation is that the existence of reactive particles in gaseous explosive 6 

mixtures exerts unique effects on the structure and propagation of the detonation wave, depending on the 7 

particle size, and multiple detonation regimes with different velocities and structures exist in certain ranges 8 

[26, 27]. 9 

Among current numerical simulations of gas-particle detonation, apart from the great progress in 10 

combustion modelling of solid particles, the methodology employed to address the multiphase high-speed 11 

reactive flow remains limited to the Eulerian-Eulerian method (EEM). The EEM is also referred to as the 12 

two-fluid model; it considers the particle phase as a continuous medium, such that continuous medium 13 

mechanics can be used to describe the motion of the particle phase which then becomes another “fluid”. This 14 

is a simple and effective way to deal with the discrete phase, but some inherent limitations emerge when 15 

more realistic conditions are considered. All particles within one numerical mesh are assumed to be in the 16 

same states, such as the same particle size, temperature, velocity and so on. However, the number of particles 17 

within one mesh may be large, and their states may differ depending on their initial states and history of 18 

interactions. For example, the particles involved in industries or experiments are always characterized by a 19 

specific particle size distribution, with a relatively wide range of particle diameters [5, 9, 23]. Also, as known, 20 

the forces acted upon and the heat transferred to particles from the gases in two-phase flows differ by the 21 

particle size, which results in different temperatures and velocities of particles within one mesh. Moreover, 22 

as mentioned above, many characteristics of gas-particle two-phase detonation are significantly influenced 23 

by the particle size. Consequently, in light of these various limitations, the EEM is evidently insufficient to 24 

reflect the true physics of gas-particle detonations and to simulate them accurately. 25 

In the modelling of multiphase low-speed incompressible flows, another discrete phase method, the 26 

Eulerian-Lagrangian method (ELM), is often used [28, 29]. The ELM tracks every Lagrangian particle in 27 

the condensed phase by Newton’s laws of motion, allowing for the states of every particle to be solved 28 

individually. The ELM seems more physically reasonable in modelling gas-particle detonation, especially 29 
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more capable in dealing with suspensions with particle size distributions. However, it has not been developed 1 

to solve high-speed reactive flows yet, potentially because the number of fine particles has proven too large 2 

and simulations too expensive to achieve in the past. Nowadays, with the rapid development of computer 3 

technologies, high-performance computer clusters are readily accessible, and parallel computing techniques 4 

can be applied to accelerate computation with high efficiency. Therefore, we are motivated to develop an 5 

algorithm to solve gas-particle detonation problems under an Eulerian-Lagrangian framework by using 6 

parallel computations. We intend to study gas-particle detonation in a more realistic manner. However, the 7 

application of parallel computation under an Eulerian-Lagrangian framework is not as easy as that under a 8 

purely Eulerian framework. A large amount of information exchange from one computational core to another, 9 

for calculations of the interaction source terms between two phases, leads to formidable costs in cores’ 10 

communication, especially when the Eulerian framework is staggered with the Lagrangian framework due 11 

to the relative movement between these two phases. Only when this problem is solved properly can parallel 12 

computing techniques be used to accelerate computation of high-speed two-phase flows under an Eulerian-13 

Lagrangian framework. 14 

On the other hand, for the solution of the gaseous phase in the Eulerian framework, the conflict between 15 

stability and numerical accuracy is one of the focused issues for nearly every established method in 16 

computational fluid dynamics (CFD), especially when solving high-speed reactive flows such as detonation 17 

problems. As for two-phase reactive flows, apart from the reaction source terms, phase interactions, 18 

including forces, heat transfers and mass transfers, also exist in the source terms, which poses a greater 19 

challenge to numerical schemes [30, 31]. In 1991, by using a unique approach of enforcing flux conservation 20 

in both space and time with thorough physics considerations, Chang and To [32] developed the space-time 21 

conservation element and solution element (CE/SE) method to solve conservation laws in fluid dynamics. 22 

Thereafter, CE/SE has been demonstrated to obtain highly accurate numerical solutions for 1D, 2D and 3D 23 

flow problems involving shocks, contact discontinuities, vortices, etc. by Chang and co-workers [32-40]. 24 

Recently, the CE/SE method has been successfully extended to solve gaseous detonation problems [41-44], 25 

two-phase shock-droplet interactions [45-47] and other high-speed reactive flows [48]. A high-order CE/SE 26 

scheme with a hybrid grid has also been developed [49]. Further, Wang et al. [50, 51] have successfully 27 

applied the CE/SE method to study two-phase detonation problems under an Eulerian-Eulerian framework 28 

without using parallel computing techniques. It is proven that the CE/SE method is of high accuracy and 29 
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good stability in solving two-phase detonation problems, at least in the Eulerian-Eulerian framework. 1 

Therefore, the present work aims to extend the CE/SE method to solve gas-particle two-phase detonation 2 

problems under an Eulerian-Lagrangian framework using Message Passing Interface (MPI) parallel 3 

computing technique. 4 

The remaining parts of this paper are organized as follows. The detailed descriptions about the physical 5 

models and governing equations of high-speed two-phase reactive flows under the Eulerian-Lagrangian 6 

framework are presented in Section 2, following by the introductions of the particle combustion model in 7 

Section 3, the CE/SE method in Section 4, and the two-phase MPI parallel accelerating technique in Section 8 

5. Then, in Sections 6.1-6.3, three cases that have been reported in previous papers [23, 24, 31] are employed 9 

to benchmark the capacities of the developed computer code for high-speed gas-particle flow simulations, 10 

especially for gas-particle detonation problems. Finally, in Section 6.4, realistic gas-particle detonations with 11 

log-normal particle size distributions are investigated and compared with their monodisperse counterparts to 12 

showcase the superiorities of the developed Eulerian-Lagrangian code in polydisperse gas-particle 13 

detonation simulations. 14 

 15 

2. Governing equations and physical models 16 

In this study, gas-particle detonation is modelled under an Eulerian-Lagrangian framework. Small 17 

reactive solid particles are assumed to be spherical in shape and uniformly suspended in the oxidizing gas 18 

atmosphere. The two-phase mixture is further assumed to be diluted enough to neglect the volume fraction 19 

of solid particles and particle-particle collisions. In the highly transient two-phase flow with strong shock 20 

waves, the gas and particles are treated to be in thermal and mechanical non-equilibrium, which means that 21 

the temporal momentum exchange, heat transfer as well as mass exchange between gas and particles are 22 

updated throughout the process. Further, the temperature distribution within particles is considered uniform 23 

due to small particle sizes and reaction heat is ideally absorbed only by gas. Based on the above assumptions, 24 

the motion of gas in the two-dimensional form can be described by the unsteady, multi-species, reactive 25 

Euler equations with interphase interaction terms: 26 

 ,
t x y

  
   

  

U F G
S W   (1) 27 

where U is the vector of conserved variables, F and G are the conservation flux vectors in the x- and y-28 
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directions, and S and W are the vectors of the gas-particle interaction and chemical reaction source terms, 1 

respectively. 2 
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and 7 

  
T

1 , , , 0, 0, 0 .ns W     (6) 8 

In the gas-phase equations (2)-(4), ρi is the mass density of species i and i = 1, … , ns; ns is the number of 9 

species contained in the gas mixture; p, u and v are the gas pressure and x- and y-components of gas velocity, 10 

respectively; and ρ and E are the mass density and total energy of the gas mixture. In Eq. (5), the subscript 11 

pk represents all the quantities related to the kth particle. The corresponding definitions of these quantities 12 

will be detailed later when introducing the particle governing equations in this section (Eqs. (12)-(21)). To 13 

include all effects of particles into the gas source term S, the summation is done within the small volume 14 

element dV, and np is the number of particles in dV. In Eq. (6), �̇� for i = 1, …, ns is the mass production 15 

rate of gaseous species i by chemical reactions. By assuming infinitely fast reactions in the gas phase, �̇� is 16 

only determined by the chemical reactions involved and the amounts of reactants available in the gas phase. 17 

The specific chemical reactions will be introduced in Section 6, depending on the problems considered. 18 

The mass density ρ and total energy E of the gas mixture can be calculated by 19 

  2 2

1

1
, ,

2

ns

i
i

E h p u v   


       (7) 20 

where h is the specific enthalpy of the gas mixture, calculated by 21 
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with the specific enthalpy of each individual species, hi, obtained from the 9-coefficient (a1-a7, b1 and b2) 2 

NASA representation as a function of gas temperature T [52]: 3 
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1 2 3 4 5 6 7 1

1 1 1 1
ln .

2 3 4 5
i

i i i i i i i i

i

h
a T a T T a a T a T a T a T b T

RT
             (9) 4 

In Eq. (9), Ri is the gas constant of species i and can be expressed as 5 

 
0 ,i

i

R
R

W
   (10) 6 

where R0 = 8.314 J/(mol·K) is the universal gas constant, and Wi is the molecular weight of species i. By 7 

assuming each individual species as a perfect gas, the equation of state of the gas mixture is given by 8 

 
1

.
ns

i i
i

p RT


   (11) 9 

Under the Eulerian-Lagrangian framework, the motion of every particle is tracked by Newton’s laws of 10 

motion. For the kth particle, the governing equations can be written as 11 

 ,pk

pk

d

dt


L
S   (12) 12 

where Lpk is the vector of the Lagrangian variables of the kth particle, and Spk is the corresponding vector of 13 

the source terms. Lpk and Spk are expressed as 14 

 
T

, , , , , ,pk pk pk pk pk pk pk pk pkm x y m u m v E   L   (13) 15 

and 16 

 
T

, , , , , .pk pk pk pk xk yk pk pk pkJ u v f f e J q     S   (14) 17 

In Eqs. (13) and (14) (also in Eq. (5)), Jpk is the mass regression rate of the kth particle and it only 18 

contributes to the density change of the particle vapor in the gas mixture and has no contribution to other 19 

species. Particle regression is related to particle combustion; hence, Jpk is determined by the combustion 20 

model of the particle and referred to as the combustion rate of the particle, which will be discussed in Section 21 

3. upk and vpk are the x- and y-components of the kth particle’s velocity, respectively. epk is the specific internal 22 

energy of the kth particle and can also be evaluated by Eq. (9) with particle temperature Tpk. For the 23 

condensed phase, the internal energy is always considered equal to the enthalpy. Notably, different sets of 24 
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polynomial coefficients are chosen to evaluate the epk of different particle phases; therefore, the latent heats 1 

of phase change are automatically included. mpk and Epk are the mass and total internal energy of the kth 2 

particle, respectively, and Epk = mpk·epk. 3 

In addition, fxk and fyk are the x- and y-components of the drag force acting on the kth particle and can 4 

be modelled as follows: 5 

 
 

 

2
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8
,
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  (15) 6 

where dpk is the diameter of the particle and CDk is the drag coefficient, 7 

 
2/324 1

1 Re .
Re 6

Dk pk

pk

C
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  (16) 8 

In Eqs. (15) and (16), the gas-particle relative velocity and the relative Reynolds number Repk can be 9 

calculated by 10 

    
1/ 22 2

,pk pk pkV V u u v v       
  (17) 11 

and 12 

 Re ,
pk pk

pk

d V V




   (18) 13 

where μ is the viscosity coefficient of gas and can be obtained by Sutherland’s law: 14 

 

2/3
1

2

,
C T

T C
 


  (19) 15 

with C1 = 1.458×10-6 kg/(m·s) and C2 = 110.4 K for air. 16 

Accordingly, the convection heat transfer between the gas and the kth particle is expressed as follows: 17 

  Nu ,pk pk pk pkq d T T     (20) 18 

with the particle Nusselt number expressed as 19 

 
0.55 0.33Nu 2 0.459Re Pr ,pk pk    (21) 20 

where Pr = 0.72 is the Prandtl number and λ is the heat conduction coefficient of gas, calculated by 21 

 .
Pr

pC 
   (22) 22 
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In Eq. (22), Cp is the specific heat at constant pressure of the gas mixture, and can also be obtained from the 1 

9-coefficient NASA polynomial representation: 2 

 
1

,
ns

i
p pi

i

C C

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   (23) 3 
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 5 

3. Particle combustion model 6 

The combustion rate of solid particles is much slower than that of homogeneous gaseous reactions, 7 

often by one or several orders of magnitude, because it is always limited by the slow diffusion rates of 8 

reactants and products in the adjacent zone of the burning particle as well as by some slow surface chemical 9 

reactions [3, 4, 8, 13, 14]. Therefore, in solid particle combustion modelling, the combustion process is 10 

always divided into two steps. First, some mass of the particle is transferred into the gas phase as a vapor 11 

with a finite regression rate (Jpk). Then, this amount of particle vapor is reacted with the oxidizing gaseous 12 

species via infinitely fast reactions (�̇� ), completely or partially, depending on the available amount of 13 

oxidizing gas. That is, the combustion rate of the particle has been determined by Jpk in most previous particle 14 

combustion models. 15 

To date, three main particle combustion models have been widely used in gas-particle detonation 16 

simulations: the diffusion-controlled combustion model [15, 16], the kinetic-controlled combustion model 17 

[19-22], and the surface-kinetic-oxidation and diffusion hybrid combustion model [23-25]. Although these 18 

models are in Eulerian forms, the corresponding Lagrangian forms to be used under the current Eulerian-19 

Lagrangian framework can be easily derived from the original Eulerian forms. No extra physical 20 

consideration needs to be introduced. In this paper, the surface-kinetic-oxidation and diffusion hybrid 21 

combustion model [23] is employed to model the combustion rate of solid particles. 22 

For the combustion of fine metal particles, the dependence of the burning rate on pressure has been 23 

identified in many experiments (i.e., [9, 17, 18]), which predicts the kinetics combustion regime for fine 24 

particles. Therefore, a combination of the kinetics combustion regime for fine particles and the diffusion 25 

combustion regime for large particles, namely the surface-kinetic-oxidation and diffusion hybrid combustion 26 

model, was proposed by Zhang et al. [23]. Its corresponding Lagrangian form of the combustion rate can be 27 
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expressed as 1 
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with the mass depletion rate of the oxidizing gas koxi, caused by the combustion of the kth particle, expressed 3 

as 4 

 
oxi oxi .

dk sk
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k k
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
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  (26) 5 

Here, kdk and ksk are the reaction rates for the diffusion combustion regime and the kinetics combustion 6 

regime, respectively, and Coxi is the molar concentrations of oxidizing gas. kdk and ksk can be formulated as 7 

follows: 8 
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and  10 

 0/

0 .a skE R T

skk k e    (28) 11 

In Eq. (29), Wp and Woxi denote the molecular weights, and νp and νoxi denote the stoichiometric coefficients 12 

of particles and oxidizing gas, respectively; ρp is the particle material density; Ctotal represents the molar 13 

concentrations of the overall gas mixture; K is the diffusion reaction rate constant; and dpk,0 is the initial 14 

diameter of the kth particle. In Eq. (28), Tsk = (T + Tpk)/2 is assumed to be the particle surface temperature; 15 

k0 and Ea are the reaction rate constant and the activation energy for the kinetics reaction regime, respectively. 16 

 Figure 1 shows comparisons among the diffusion, kinetics, and the resulting hybrid reaction rates from 17 

Eqs. (26)-(28) as functions of the particle diameter and temperature for an Al-air mixture, where K = 4 × 18 

106 s/m2, k0 = 1.2 × 103 kg·m/mol·s, and Ea = 71.1 kJ/mol. It can be seen that, the diffusion rate increases as 19 

the particle diameter reduces, but does not change with temperature. On the contrary, the kinetics rate is 20 

independent of the particle diameter but increases exponentially with temperature. Therefore, when the 21 

particle diameter is small (from Fig. 1(a)) or the temperature is low (from Fig. 1(b)), ks/kd ≪ 1 and the hybrid 22 

combustion model would be reduced to the kinetics limit (koxi → ksCoxi, Eq. (28)). On the other hand, when 23 

the particle diameter is large (from Fig. 1(a)) or the temperature is high (from Fig. 1(b)), ks/kd ≫ 1 and the 24 

hybrid combustion model would be reduced to the diffusion limit (koxi → kdCoxi, Eq. (28)). It is obvious that 25 

the above kinetics-diffusion hybrid combustion model is dependent on the particle size (inherent in the 26 
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diffusion process), temperature (inherent in the kinetics combustion rate) and pressure (via oxidizing gas 1 

concentration). In the meanwhile, this hybrid model does not require an artificial particle ignition 2 

temperature, which is thought to be more capable of capturing the true combustion processes of reactive 3 

particles [24, 25]. 4 

 5 

Fig. 1. Reaction rates of (a) different particle diameters at Ts = 1200 K and (b) different temperature at dp = 6 

2 µm. 7 

 8 

4. Numerical algorithm 9 

4.1 In-house CE/SE scheme based on quadrilateral meshes 10 

Since the introduction of the original CE/SE scheme by Chang and co-workers [32] in 1991, many types 11 

of CE/SE schemes have been developed based on different definitions of conservation elements (CEs) and 12 

solution elements (SEs). In this study, our in-house CE/SE scheme based on general quadrilateral meshes 13 

[50, 51] is used to solve the conservation laws of gas-phase equations and to obtain the Eulerian-Lagrangian 14 

solutions of the two-dimensional gas-particle detonation problems. Figure 2 depicts the space-time 15 

geometrical configuration of the quadrilateral-mesh-based two-dimensional CE/SE scheme. The projection 16 

of mesh points on the x-y plane is shown in Fig. 2(a), in which the interval between the staggered mesh 17 

points ● and ○ is Δt/2 in the time direction. The conservation element CE(Pʹ) is defined by the hexahedron 18 

ACEGAʹCʹEʹGʹ in Fig. 2(b), and the solution element SE(Pʹ) is constituted by three orthogonal planes 19 

(BFFʺBʺ, DHHʺDʺ and AʹCʹEʹGʹ) intersecting at Pʹ as demonstrated in Fig. 2(c). Based on the above 20 

definitions of CE and SE, the quadrilateral-mesh-based CE/SE scheme can be easily constructed and 21 

extended to the three-dimensional scenario directly.  22 
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 1 

Fig. 2. Space-time geometrical configuration of the quadrilateral-mesh-based two-dimensional CE/SE 2 

scheme. 3 

 4 

Because the operator-splitting technique [53] is applied to treat the source terms of the gas-phase 5 

equations, the source terms in Eq. (1) are not considered at this stage. The treatment of the source terms in 6 

Eq. (1) will be addressed later in Section 4.2. When not considering source terms S and W, Eq. (1) can be 7 

rewritten as 8 

 0.
t x y

  
  

  

U F G
  (29) 9 

Let x1 = x, x2 = y and x3 = t be the coordinates of a three-dimensional Euclidean space E3. Then, Eq. 10 

(29) can be expressed as 11 

 0, H   (30) 12 

with the space-time flux vector H = (F, G, U). The conventional integral form of Eq. (29) can be given by 13 

 0,
V
  H   (31) 14 

where V is an arbitrary space-time domain in E3. 15 

By applying Gauss’s divergence theorem, Eq. (31) can be rewritten as 16 

 
 

0,
S V

d  H s   (32) 17 

where S(V) is the boundary of the region V; ds = dσ·n with dσ and n being the area and the unit outward 18 

normal vector of a surface element on S(V), respectively. 19 

Assume that the above integral conservation law, Eq. (32), is satisfied in the conservation element 20 

CE(Pʹ); that is, let region V be CE(Pʹ). Then, the integration in Eq. (32) can be expressed as follows: 21 
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To evaluate the integrations in Eq. (33), the physical variables at an arbitrary point (xPʹ + dx, yPʹ + dy, 2 

tPʹ + dt) in SE(Pʹ) can be approximated by the first-order Taylor’s expansions at Pʹ: 3 
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  (34) 4 

where XPʹ, (Xx)Pʹ, (Xy)Pʹ and (Xt)Pʹ are the values of X and its first-order derivatives respective to x, y and t at 5 

point Pʹ, respectively; and X represents U, F or G. Similarly, the same expansions can be applied to the other 6 

four SEs related to CE(Pʹ), i.e., SE(A), SE(C), SE(E) and SE(G). 7 

Accordingly, with Taylor’s expansions to the first order in the five SEs related to CE(Pʹ), Eq. (33) can 8 

be summarized as 9 
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  (36) 12 

Equations (35) and (36) construct the unknown conserved-variable vector U at point Pʹ at tA + Δt/2 13 

from the known vectors U, F, G and their derivatives respective to x, y and t at point A, C, E and G at tA. 14 

Obviously, in order to evaluate the unknown variables at tA + Δt, apart from the conserved-variable vector U 15 

at tA + Δt/2, other vectors F, G and their derivatives at tA + Δt/2 must be known as well. Fortunately, as 16 

vectors F and G are functions of U, the vectors required to be evaluated in the computation are U, Ux, Uy 17 

and Ut. In addition, when substituting Eq. (34) into Eq. (29), one can obtain 18 

      ' ' '
.t x yP P P

  U F F   (37) 19 
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Consequently, the final vectors needed to be evaluated at every half time step by the iterations are U, Ux and 1 

Uy. 2 

 The evaluation of derivatives of U respective to x and y at point Pʹ can be obtained by using the 3 

continuous conditions at points Aʹ, Cʹ, Eʹ and Gʹ: 4 
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where 6 
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The weighted average function W in Eq. (38) is used to avoid numerical oscillations when dealing with 8 

discontinuities that are common in detonation problems, and it is defined as 9 

 , , ,
x x x x

W x x
x x

 

 


   

 

 


   


  (40) 10 

where α is an adjustable constant and usually equals 12. 11 

 12 

4.2 Integration of source terms and particle Lagrangian equations 13 

 Source terms of the governing equations can be computed together with the space-time integration in 14 

the CE/SE scheme [35, 41, 42, 51, 54]. However, because the Jacobian matrixes of the source terms of 15 

interphase interactions and chemical reactions, which are required in the coupling treatment of source terms 16 

in the CE/SE scheme, are rather complicated to compute for two-phase detonation problems, especially 17 

under the Eulerian-Lagrangian framework, a separated treatment of these source terms is employed in this 18 

study. Notably, the good accuracy and stability of the CE/SE scheme have been proved preserved in high-19 

speed reactive flow simulations [43, 48, 55], when source terms are treated separately. On the other hand, 20 
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since the characteristic time scales of the source terms involving interphase interactions and chemical 1 

reactions are much smaller than that of flow dynamics, stiffness problems always occur in two-phase 2 

detonation simulations. Therefore, under the Eulerian-Lagrangian framework in this study, the source terms 3 

of interphase interactions and chemical reactions are explicitly integrated as ordinary differential equations 4 

(along with the integration of particle Lagrangian equations) by using an operator-splitting technique with 5 

multiple sub-time steps [53] to overcome the stiffness problems of two-phase detonation simulations. The 6 

detailed implementation process can be illustrated as follows: 7 
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(41) 9 

where the subscripts n and m refer to the global time step (Δt) and the sub-time step (Δtʹ), respectively, and 10 

N is the total number of sub-time steps within one global convection time step of gaseous Euler equations. 11 

N can be chosen to be 1020, depending on the degree of stiffness in the problem. 12 

 13 

4.3 Deployment of particles  14 

When tracking every particle individually under the Lagrangian framework, it is the specified number 15 

of particles that should be dealt with rather than the particle number density as in the two-fluid model of 16 

two-phase flows. To correctly evaluate the gas-particle interaction source terms in Eq. (5), the proper dV 17 

(the volume of the equivalent 3D computational mesh) needs to be chosen. Therefore, the gas-particle two-18 

phase flow described under the Eulerian-Lagrangian framework is inherently a 3D problem. Assume that 19 

particles are space-uniformly dispersed in the physical 3D space with the same interparticle distance Δh in 20 

the x-, y- and z-directions initially. Taking the Al-air mixture with a particle diameter of 2 μm and density of 21 

1.25 kg/m3 as an example, the corresponding particle number density is roughly 1.1×1014/m3, yielding a 22 

mean interparticle distance of Δh = 20.84 μm. The computational cost for a 3D problem is extremely large, 23 

and 1D and 2D simulations are always carried out to investigate the gas-particle detonation problems under 24 

the assumption of initially uniform distribution of particles. 25 

In 1D simulations, uniformities in the y- and z-directions are assumed and only the flow along the x-26 

direction is calculated. Hence, only one string of particles is considered, along with the cross-section of the 27 
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equivalent 3D computational zone (y-z plane) setting as Δh×Δh, as shown in Fig. 3(a). Then, dV = Δx×Δh×Δh, 1 

where Δx is the 1D mesh size, and several particles are included within dV depending on the chosen size of 2 

Δx. 3 

Similarly, uniformity in the z-direction is assumed in 2D simulations and the flow is developed along 4 

the x-y plane. Then, only one layer of particles in the equivalent 3D computational zone needs to be 5 

considered, along with the thickness (Δz) setting as Δh, as shown in Fig. 3(b). Therefore, dV = Δx×Δy×Δh, 6 

where Δx and Δy are the 2D mesh sizes. Again, the number of particles included within dV is dependent on 7 

the chosen sizes of Δx and Δy. 8 

 9 

Fig. 3. Deployment of particles and equivalent 3D computational zones (  refers to a particle). 10 

 11 

5. Parallel technology 12 

5.1 MPI communication cost in Eulerian-Lagrangian framework 13 

The emphasis on the parallel implement technology in this paper is due to the formidable 14 

communication costs when MPI parallelization is applied to the Eulerian-Lagrangian framework to solve 15 

the high-speed gas-particle flows by using the traditional data structures. It is well known that in single-16 

phase fluid dynamics, the flow field is generally represented and solved in the Eulerian coordinate. Therefore, 17 

static arrays are often used to store flow field information in computer codes, mainly due to the simplicity 18 

in implementation and convenience of addressing, especially when structured grids are employed. The 19 

popular use of static arrays also stems from two historical reasons: first, in early CFD codes, the application 20 

of arrays makes codes written in Fortran be of high efficiencies; second, when MPI parallelization 21 

technology is introduced to accelerate the solution of problem, the convenience of static array is preserved, 22 

and only the boundary information of the computational zone for each CPU is needed to communicate with 23 

other adjacent CPUs, leading to the great success of the combination of MPI and static arrays in single-phase 24 
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flow solutions. 1 

However, when the Eulerian-Lagrangian framework is employed to solve high-speed gas-particle two-2 

phase flows, the use of MPI parallelization technology with static arrays is of great difficulties. In the 3 

Eulerian-Lagrangian framework, the Eulerian framework is still used to represent and solve the gas-phase 4 

flow, while the Lagrangian framework is used to represent and solve the motion of particles. Apparently, the 5 

use of static arrays in the Eulerian framework is not problematic, but obstacles arise when storing particle 6 

information in static arrays. Taking the 1D two-phase flow interacted with a string of particles as an example 7 

(Fig. 4), at the initial moment, information about gas and particles at the same location is stored in the same 8 

CPU (Fig. 4(a)). No communication between CPUs for calculating gas-particle interactions is needed, and 9 

only the boundary information of the computational zone of each CPU needs to be transferred. Notably, 10 

relative motion between the gas and particles is inherent in high-speed two-phase flows. Hence, as time 11 

proceeds, the information related to gas in the Eulerian framework and particles in the Lagrangian framework 12 

will be staggered, as shown in Fig. 4(b). At this time, when gas-particle interactions are calculated, 13 

information on the gas and particles must be transferred between CPUs. For example, when gas-particle 14 

interactions in the zone of [x2, x3] are being calculated, apart from particle information (colored in blue) 15 

remaining in CPU B, particle information (colored in red) in CPU A should also be considered along with 16 

the gas information stored in CPU B. Therefore, a large amount of information between CPU B (about the 17 

gas) and CPU A (about the particles) should be transferred between each other. Besides, the scale of 18 

communication is determined by the number of particles stored in CPU A and meanwhile staggered with 19 

CPU B. As time proceeds further, information in the Lagrangian framework will be completely staggered 20 

with that in the Eulerian framework, as shown in Fig. 4(c). At this moment, when gas-particle interactions 21 

are calculated, information about all particles stored in CPU A should be transferred to other CPUs (CPU B 22 

and CPU C), and information about the gas stored in other CPUs should be transferred to CPU A as well. If 23 

the number of particles stored in each CPU is N in the initial state, then the cost of communication for 24 

calculating gas-particle interactions will be of the magnitude of O(N). It should be noted that, N is a huge 25 

number in most gas-particle flows, and it is always larger than the number of meshes of the gas phase in 26 

each CPU. That is, the cost of communication may be even larger than the cost of computation. Therefore, 27 

when comparing with the cost of computation or the amount of information needed to be transferred to other 28 

CPUs in single-phase flows (only boundary information of the computational zone for each CPU), the 29 
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amount of information transfer about particles and gas between CPUs is dreadful in these gas-particle flows 1 

when using static arrays to store particle information. 2 

 3 

Fig. 4. Static array structure under the Eulerian-Lagrangian framework. 4 

 5 

5.2 MPI implement using new data structure 6 

The communication problem of MPI parallelization under the Eulerian-Lagrangian framework and the 7 

inherent disadvantage of using static arrays to store particle information have been demonstrated in detail in 8 

the previous section. Notably, the order in which particles are presented in the Lagrangian framework is not 9 

as necessary as that for the gas phase in the Eulerian framework; that is, one does not need to store the initial 10 

location relationship among particles. The only operation required for coding is to traverse every particle 11 

one by one. Therefore, a new dynamic data structure, namely the linked list, is introduced to store particle 12 

information and solve the communication problem in this work. 13 
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 1 

Fig. 5. Linked lists and operation sequence. 2 

 3 

As shown in Fig. 5, each CPU owns one linked list to store information of the particles that are at the 4 

corresponding locations to the gas phase. In each linked list, one node represents one particle and consists 5 

of two parts: the data part that stores particle information, and the pointer that points to the next node of the 6 

particle. The pointer of the last node of the linked list points to the “NULL”, which means that the list has 7 

ended. This kind of linked list is a common dynamic data structure in advanced programming and works 8 

well in the MPI parallelization of gas-particle two-phase flow solutions, as will be discussed later in Section 9 

5.3. 10 

In addition, four basic operations of the linked list are needed as well: allocate, free, delete and insert. 11 

The “allocate” operation is used to allocate new memory to store information about the “new” particle, the 12 

“free” operation to free the memory that stores information about an “old” particle, the “delete” operation to 13 

remove one particle from the linked list, and the “insert” operation to add one particle at the end of the linked 14 

list, as depicted in Fig. 5. 15 

The whole operation sequence about the above-mentioned four basic operations is explained as follows. 16 

When the particle phase is staggered with the gas phase because of relative motion, the information of the 17 
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particles, whose locations exceed the corresponding location ranges assigned to the present CPUs, will be 1 

transferred to and stored in the CPUs with the correct particle location ranges. For CPU A in Fig. 5, where 2 

one particle is removed, 3 

  1. send the information of the specific particle to CPU B; 4 

  2. delete the particle node from the linked list; 5 

  3. free the memory of the separated node. 6 

Meanwhile, for CPU B in Fig. 5, where a new particle is received, the corresponding operation sequence is 7 

  1. receive the information of the new particle from CPU A; 8 

  2. allocate a new node and store the information into the data field of the node; 9 

  3. insert the new particle node at the end of the linked list. 10 

 11 

 With this dynamic data structure and the corresponding operation sequences, information about 12 

Lagrangian particles is always stored in the CPUs of the correct Eulerian coordinates, and therefore excessive 13 

communication between CPUs when calculating gas-particle interactions is avoided, as shown in Fig. 6. 14 

Moreover, with the limitation of the CFL condition, only “one” particle at most will cross the CPU boundary 15 

at every iteration; that is, the information of “one” particle at most will be transferred to the other CPU at 16 

one iteration step by the above operation sequence. As a result, the communication cost of the MPI parallel 17 

for the gas-particle interaction calculation will be reduced from O(N) to O(1) when using this data structure. 18 

Furthermore, with the limitation of the CFL condition, the physical location of a Lagrangian particle only 19 

moves to the adjacent gas-phase Eulerian mesh within one timestep; that is, when a particle moves to another 20 

CPU, the target CPU must be the adjacent one. Therefore, the target CPU can be easily tracked by using a 21 

CPU map stored in a static array and the cost for tracking the adjacent CPU can be neglected, compared with 22 

those spent on flow field solutions and MPI data communications. 23 

 24 

Fig. 6. Dynamic data structure using the linked list in Eulerian-Lagrangian framework list. 25 

 26 
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5.3 Parallel performance 1 

To demonstrate the MPI parallelization performance with the use of linked lists, a 2D Al-air detonation 2 

propagation problem is tested in this section. The initial states of the flow field are p0 = 1 atm and T0 = 300 3 

K, and a small ignition zone with high pressure and temperature is set at the left end of the domain, as shown 4 

in Fig. 7(a). The mesh size used is Δx = Δy = 0.05 mm, which results in approximately 24 million meshes in 5 

the computational domain (600 mm × 100 mm). The concentration of Al particles is Ωp = 0.5 kg/m3, and the 6 

size of the Al particles is dp = 2 µm, resulting in about 75 million particles in the computational domain. 7 

 8 

 9 

Fig. 7. MPI parallel test of a 2D Al-air detonation propagation problem. 10 

 11 

All MPI parallel tests are carried out on the Tianhe-2 super computer from China with core numbers of 12 

1, 2, 3, 4, 6, 12, 24, 48, 96, 192 and 384. The use of one core means that the calculation is done serially. Each 13 

computation node of Tianhe-2 consists of two 12-core Xeon E5 2692 processors with 64 GB RAM, and a 14 

high-speed interconnect technology, called TH Express-2, with a speed of 80-140 Gb/s is used in data 15 

communications between computation nodes. The typical result of the tested problem at t = 0.35 ms is shown 16 

in Fig. 7(b), with 384 cores. The parallel performance is evaluated by the speedup parameter, which is 17 

calculated by dividing the time used in parallel calculation using different cores with that in serial calculation, 18 

and the results are presented in Fig. 8 along with the ideal speedups. Notably, the MPI parallelization by 19 
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using static arrays is impossible, even with only 2 cores, as the communication cost would be unacceptably 1 

large, which has been explained in Section 5.1. Therefore, the parallel efficiency by using static arrays would 2 

be obviously very low and is not given here. As indicated in Fig. 8, when 384 cores are used, the code using 3 

linked lists still has a reasonable parallel efficiency of about 50% for the tested problem, which means that 4 

the linked list data structure works well in the MPI implement when solving gas-particle two-phase flows. 5 

 6 

 7 

Fig. 8. Speedups of the tested problem using linked lists. 8 

 9 

6. Numerical examples 10 

With the details of physical models and numerical technologies described in previous sections, a 11 

computer code for simulating gas-particle two-phase high-speed reactive flows has been developed under 12 

an Eulerian-Lagrangian framework using the CE/SE method with MPI parallelization. In this section, the 13 

developed computer code will be carefully validated by three traditional problems that were investigated 14 

under the Eulerian-Eulerian framework, including the 1D inert gas-particle shock tube problems [31] and 15 

the 1D and 2D gas-particle detonation problems with a hybrid combustion model [23, 24]. In the end, in 16 

order to show the superiorities of the Eulerian-Lagrangian code in realistic gas-particle detonation 17 

simulations, polydisperse gas-particle detonations with log-normal particle size distributions, which are 18 

infeasible under the Eulerian-Eulerian framework, are investigated and compared with their monodisperse 19 

counterparts. 20 

 21 

6.1 Gas-particle shock tube problems with no combustion 22 
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The high-speed gas-particle (dusty-gas) flows, especially the non-stationary ones, which are always 1 

characterized by non-equilibrium transition regions due to momentum and energy exchanges between the 2 

two phases, are very different from their pure gas counterparts [30]. In this section, the traditional 1D inert 3 

gas-particle shock tube problems, which have been investigated numerically by Saito et al. in [31], are 4 

simulated to test the capacities of the developed computer code in capturing the non-equilibrium two-phase 5 

transport processes in unsteady gas-monodisperse particle flows with no combustion. 6 

The shock waves are propagating in the mixture consisting of fine inert glass particles (ρp = 2500 kg/m3, 7 

dp = 10 µm) suspended in air. Aside from treating the air as a calorically perfect gas with the ratio of specific 8 

heats of γ = 1.4, the problems are modelled as described in previous sections. In [31], the results were given 9 

in the non-dimensional forms, and the reference state parameters were chosen as the initial states in the 10 

driven section of the shock tube, namely pref = 1.013×105 Pa, ρref = 1.293 kg/m3, Tref = 271.8 K. Other 11 

reference quantities were given as below, 12 
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Two cases characterized by different propagation regimes of shock waves as described in [31] are simulated 14 

in this section and the chosen mesh sizes in both cases are Δx/Lref = 0.01. Since the computation scales of 15 

these 1D cases are small, serial computations (with 1 core) are performed in this section and the simulation 16 

results are obtained within 1 hour. 17 

The first case being simulated is the so-called partially dispersed one. The initial conditions of the 18 

problem are given in Eq. (43). In this case, the leading shock is propagating at a constant speed after a short 19 

transition period, and the steady frozen shock wave Mach number is about Maf = 1.207, as shown in Table 20 

1. The Maf is greater than 1; that is, the shock wave propagation mode is supersonic. Therefore, the shock 21 

wave will be characterized by a partially sharp front (PSF) followed by a transition zone (T-Z), which can 22 

be clearly seen in Fig. 9. 23 
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Further, in the transition zone, significant lags between gas and particles in the changes of velocity and 25 

temperature can be observed in Figs. 9(c) and 9(d), implying non-equilibrium thermal and mechanical 26 

processes between gas and particles. In this case, the transition length, which is defined by a 99% ratio of 27 
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up/u, is 10.2 Lref. 1 

 2 

Table 1 3 

Frozen and equilibrium shock Mach numbers for problems in Eqs. (43) and (44). 4 

 Partially dispersed case, Eq. (43) Completely dispersed case, Eq. (44) 

Maf Mae Maf Mae 

Present 1.207 1.843 0.915 1.398 

In Ref. [31] 1.2 1.8 0.9 1.4 

 5 

 6 

 7 

Fig. 9. Solutions of the gas-particle shock tube problem with initial conditions of Eq. (43) at t/tref = 30: (a) 8 

pressure, (b) density, (c) velocity and (d) temperature. 9 
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Another case being simulated, as described by the initial conditions of Eq. (44), is the so-called 1 

completely dispersed dusty shock wave, which shows different shock wave characteristics with those of the 2 

partially dispersed shock. In this case, the shock wave is propagating in the subsonic mode, as the Maf is 3 

smaller than 1 (Maf = 0.915 as shown in Table 1). Therefore, the shock wave will be characterized by a 4 

completely dispersed front (CDF) interacted with the transition zone (T-Z), as indicated in Fig. 10. 5 

Nevertheless, the shock wave speed is still at a constant value, and the equilibrium shock wave Mach number 6 

is essentially greater than 1 (Mae = 1.398). Moreover, it can be revealed that, the transition length is 24.3 Lref 7 

for this case, which is larger than that of the partially dispersed case. Hence, the effects of the momentum 8 

and energy exchanges between two phases on shock wave propagation are greater in the completely 9 

dispersed case. 10 
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  (44) 11 

Moreover, the detailed results available in [31] of the above two cases have also been provided in Table 12 

1 and Figs. 9-10 for comparisons. Obviously, the calculated shock Mach numbers agree well with those 13 

given in [31]. And all distributions of flow parameters obtained by the developed code in this paper overlap 14 

those in [31], except the differences in the particle profiles. As illustrated in Figs. 9(c), 9(d), 10(c) and 10(d), 15 

the spatial distributions of particles in this paper are terminated at the contact discontinues, whereas the 16 

curves in [31] are extended to the driver section of the tube. This is because the Eulerian-Eulerian simulations 17 

conducted in [31] could not deal with “zero” particle concentration in the driver section of the tube. The 18 

compromise treatment is to set the particle concentration at a very low value (such as 10-6 ρref) at the location 19 

where it should be zero. However, this problem no longer exists in the Eulerian-Lagrangian simulations in 20 

this paper, since the “zero” particle concentration is simply achieved by setting no particle at that location. 21 

From the results above, it can be concluded that depending on the frozen shock wave Mach number, 22 

there are two propagation regimes of shock waves in gas-particle mixtures, namely the partially and 23 

completely dispersed shock waves. This conclusion is consistent with that obtained by the Eulerian-Eulerian 24 

simulations of Saito et al. in [31], which reveals the good capacity of the developed Eulerian-Lagrangian 25 

CE/SE code in inert high-speed gas-monodisperse particle flow simulations.  26 
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 1 

 2 

Fig. 10. Solutions of the gas-particle shock tube problem with initial conditions of Eq. (44) at t/tref = 50: 3 

(a) pressure, (b) density, (c) velocity and (d) temperature. 4 
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6.2 1D Gas-particle detonation using hybrid combustion model 6 

The surface-kinetic-oxidation and diffusion hybrid combustion model, as described in Section 3, was 7 

firstly proposed by Zhang et al. [23]. In the same work, Zhang et al. applied this hybrid combustion model 8 

in their Eulerian-Eulerian simulations of Al-air two-phase detonations [23]. Herein, the same case of Zhang 9 

et al. [23] is simulated by our developed Eulerian-Lagrangian code with implementation of the hybrid 10 

combustion model for validation of the code.  11 

 The detonation wave is propagating in the dilute mixture consisting of small spherical Al particles 12 

suspended in air. The air is initially at an elevated pressure of p0 = 2.5 atm and a temperature of T0 = 300 K. 13 

The concentration of Al particles is Ωp = 1.25 kg/m3, and the particle diameter is dp = 2 μm. For Al particles, 14 
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the parameters in the hybrid combustion model, Eqs. (25)-(28), are given by K = 4×106 s/m2, k0 = 1200 1 

kg·m/(mol·s), and Ea = 71.1 kJ/mol. Following the approach of Zhang et al. [23] and the experimental 2 

observations of single Al particle combustion in Olsen and Becksteed [56], the assumptions are made that 3 

the oxidation of Al takes place on the particle surface and the product Al2O3 exists in the form of condensed 4 

state along with the condensed Al, rather than in the gas phase. That is, a particle, when burning, is assumed 5 

to be composed of two parts: Al and Al2O3. Accordingly, the combustion of Al particles is expressed by the 6 

following single-step global chemical reaction with a heat of reaction of 838 kJ/mol: 7 

 2 2 3

3 1
Al O Al O , 838 kJ/mol.

4 2
mH       (45) 8 

No decomposition and evaporation of the product Al2O3 is considered [23]. Meanwhile, the melting and 9 

evaporation points of Al in [23] are set at 933.6 K and 2465 K, respectively; and the latent heats of Al melting 10 

and evaporation processes are 10.7 and 290 kJ/mol, respectively. The melting point of Al2O3 is given at 2327 11 

K. The melting latent heat of Al2O3 is neglected in these simulations due to its rather small magnitude. The 12 

internal energies of the particle components in [23] are evaluated via constant heat capacity values of 24.2 13 

J/(mol·K) for Al and 79.3 J/(mol·K) for Al2O3. 14 

Based on the above details of the hybrid combustion model of Al particles, 1D simulation results of the 15 

same Al-air two-phase detonation as in [23] are obtained by the developed Eulerian-Lagrangian code in this 16 

paper, as shown in Figs. 11 and 12. The grid size used in the simulation is chosen to be Δx = 0.2 mm, which 17 

has been validated by careful convergence tests to exclude the influences of grid resolutions. Because large 18 

number of reactive Al particles (about 0.3 million) are under consideration in this 1D case, 24 cores (one 19 

node of the Tianhe-2 super computer) with MPI parallel are chosen to reduce the running time (~ 12 hours) 20 

with a reasonable parallel efficiency. 21 
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 1 

Fig. 11. Time evolutions of pressure distributions of the 2-μm Al-air detonation with constant heat 2 

capacities, at t = 0.4, 0.8, …, 3.2 ms. 3 

 4 

Fig. 12. Profiles in the 2-μm Al-air detonation front with constant heat capacities, at t = 3.2 ms, (a) gas 5 

pressure and density, (b) temperatures of gas and particles. 6 

 7 

Figure 11 presents the time evolution of pressure distributions along the 1D computational zone from 8 

1 to 3.2 ms with a time interval of 0.4 ms. It can be seen that the detonation wave forms after a short transition 9 

period and reaches its steady state after about 1.2 ms. The calculated 1D detonation speed is equal to D = 10 

1793 m/s, and the peak pressure is equal to pmax/p0 = 36.47. In the simulations of Zhang et al. [23], the 11 

calculated 1D detonation speed is equal to D = 1758 m/s, and the peak pressure is equal to pmax/p0 = 36.63. 12 

Good agreement is observed. 13 

The comparisons of pressure, gas temperature and particle temperature profiles at t = 3.2 ms with those 14 

in Zhang et al. [23] are illustrated in Fig. 12. As seen, all the profiles in present simulation agree well with 15 
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those in previous simulations. The maximum product temperature is about 5150 K in present simulation, 1 

while it is about 5100 K in previous simulations (Fig. 12(b)). The two-phase detonation characteristics with 2 

condensed combustion products, identified in previous Eulerian-Eulerian simulations [23], can be well 3 

captured in the present Eulerian-Lagrangian simulation, including the double pressure peaks shown in Fig. 4 

12(a), and Al evaporation plateau and gas temperature kink shown in Fig. 12(b). Additionally, the non-5 

equilibrium feature of thermal processes between gas and particles is also well delineated, as evidenced by 6 

the temperature lag between these two phases in Fig. 12(b).  7 

Notablely, constant heat capacities were used in the above simulations. Nevertheless, as discussed by 8 

Teng et al. [25], the use of constant heat capacities in the evaluation of internal energies of the condensed 9 

phases (Al and Al2O3) is not physics-consistent. When heat capacities of Al and Al2O3 are described as 10 

functions of temperature and introduced into this case using Eq. (9), the calculated 1D detonation speed and 11 

peak pressure are then equal to D = 1535 m/s and pmax/p0 = 27.25, respectively. The corresponding values in 12 

the experiments of Zhang et al. [9] are D = 1460-1500 m/s and pmax/p0 = 26.0-28.4, respectively. The 13 

simulation results using realistic heat capacities of Al and Al2O3 concur well with the experimental 14 

observations. 15 

 16 

6.3 2D detonation cell structure using hybrid combustion model 17 

The hybrid combustion model by Zhang et al. [23] has been applied in the Eulerian-Eulerian simulations 18 

of Briand et al. [24] to model the detonation cellular structures of Al-gas suspensions as in experiments of 19 

Zhang et al. [8] and Ingignoli et al. [12]. In the experiments of Zhang et al. [8], the two-phase mixture 20 

consists of flake Al particles with an estimated equivalent diameter of dp = 13.5 μm and air at standard 21 

pressure and temperature. The particle concentration is Ωp = 0.5 kg/m3 and the measured detonation cell 22 

width is approximately λ = 40 cm. In the experiments of Ingignoli et al. [12], the two-phase mixture consists 23 

of flake Al particles with an estimated equivalent diameter of dp = 8.6 μm and pure oxygen at standard 24 

pressure and temperature. The particle concentration is Ωp = 1.5 kg/m3 and the measured detonation cell 25 

width is about λ = 5-10 cm. 26 

Different from Zhang et al. [23], the product Al2O3 was still treated as a gas in the simulations of Briand 27 

et al. [24]. The parameters in the hybrid combustion model, Eqs. (25)-(28), are given by K = 1.6×106 s/m2, 28 

Ea = 71.1 kJ/mol, and k0 = 8.2×103 and 6.6×104 kg·m/(mol·s) for the Al-air detonation in Zhang et al. [8] 29 
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and the Al-O2 detonation in Ingignoli et al. [12], respectively. The results obtained by the developed Eulerian-1 

Lagrangian code with 192-core MPI parallel (8 nodes of the Tianhe-2 super computer) are shown in Figs. 2 

13 and 14. Notably, this core number is chosen to obtain simulation results within an acceptable running 3 

time (~ 8 days) in these 2D cases. It can be revealed that both cellular structures in the Al-air and Al-O2 4 

detonations are regular in size. The simulated cell widths are about λ = 40 cm and λ = 10 cm for the Al-air 5 

detonation in Zhang et al. [8] and the Al-O2 detonation in Ingignoli et al. [12], respectively, which agree well 6 

with their experimental observations. Meanwhile, the similar results have been obtained by Briand et al. [24]. 7 

 8 

Fig. 13. Traces of maximum pressure in the Al-air detonation (dp = 13.5 μm, Ωp = 0.5 kg/m3) by the 9 

developed Eulerian-Lagrangian code. 10 

 11 

 12 

Fig. 14. Traces of maximum pressure in the Al-O2 detonation (dp = 8.6 μm, Ωp = 1.5 kg/m3) by the 13 

developed Eulerian-Lagrangian code. 14 

 15 

6.4 Polydisperse gas-particle detonation 16 

6.4.1 Log-normal particle size distribution 17 

In reality, dust materials in industries and experiments are always characterized by a specific particle 18 

size distribution, with a relatively wide range of particle diameters [5, 9, 23]. That is, particle suspensions 19 

are always polydisperse in size, rather than monodisperse with only one particle size as discussed in the 20 

above sections and in most of previous studies. In non-equilibrium gas-particle flows, the forces acted upon 21 

and the heat transferred to particles from gases differ by the particle size. And in reactive particle flows, 22 

particle combustion rates also depend on the particle size [15, 23]. As a result, many characteristics of gas-23 
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particle detonations are significantly influenced by the particle size, including initiation energy, deflagration-1 

to-detonation transition (DDT) distance, burning time, length of reaction zone, cell size, etc. [8, 22, 26, 27]. 2 

Therefore, it is important to systematically study the features of polydisperse gas-particle detonation, the 3 

differences with monodisperse detonation, and the effects of multiple time and length scales in a specific 4 

particle size distribution. However, the traditional Eulerian-Eulerian method has its own limitations in 5 

addressing these problems, because different temperatures, velocities and sizes of particles should be 6 

distinguished within one computational mesh. Contrarily, the Eulerian-Lagrangian method, which tracks 7 

every Lagrangian particle of the condensed phase by Newton’s laws of motion, is capable of simulating 8 

polydisperse gas-particle detonation. Accordingly, in this section both 1D and 2D polydisperse Al-air 9 

detonations with log-normal particle size distributions are studied by the developed Eulerian-Lagrangian 10 

code, and the results are compared with those of monodisperse Al-air suspensions, to demonstrate the 11 

superiorities of the Eulerian-Lagrangian method in realistic gas-particle detonation simulations. 12 

The log-normal particle size distribution, fn(dp), frequently used to represent the sizes of solid particles 13 

[58], is firstly introduced as follow: 14 
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  (46) 15 

where dnM and σ0 are the number median diameter and standard deviation of the distribution, respectively. 16 

Accordingly, in numerical simulations, the particles are uniformly distributed in the computation domain 17 

with the same particle number density as described in Section 4.3, and particle diameters are set by a random 18 

number generator using Eq. (46). 19 

 In the Al-air detonation experiment of Zhang et al. [9], which has been simulated in Section 6.2 as a 20 

monodisperse detonation, the test material is actually micrometric-grade atomized Al with a nominal 21 

diameter (volume-average diameter, �) of 2 μm, known as H-2 Al, supplied by Valimet Incorporated. The 22 

detailed scanning electron micrograph of the test H-2 Al particles can be found in [9]. 23 

An important relationship for the calculation of various mean diameters of the log-normal distribution 24 

is 25 

  
2 2
0 /2

0
,kk k

n nMs f s ds d e


   (47) 26 

where s is the integration variable. As indicated in Zhang et al. [23], another parameter describing the test 27 

H-2 Al particles is the mass-weighted-average particle diameter ��  = 3.3 μm. The �  and ��  can be 28 
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calculated by integrations of fn(dp) with Eq. (47): 1 
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  (48) 2 

which yields dnM = 1.37 μm and σ0 = 0.5. The size distribution of this test material is shown in Fig. 15 by the 3 

number frequency distribution function defined in Eq. (46). For comparison, the log-normal distribution 4 

with fixed � = 2 μm but larger σ0 = 0.9 is presented in Fig. 15 as well. 5 

 6 

Fig. 15. Log-normal particle size distributions with the nominal diameter � = 2 μm and different standard 7 

deviations. 8 

 9 

6.4.2 1D case 10 

 The same condition of the monodisperse 2-μm Al-air detonation case in Section 6.2 is simulated here, 11 

but with two log-normal particle size distributions: one as in Zhang et al. [9] with σ0 = 0.5 and the other more 12 

widely polydisperse one with σ0 = 0.9. Notably, in order to obtain more physics-consistent results, the 13 

realistic heat capacities of Al and Al2O3 are described as functions of temperature via Eq. (9), instead of 14 

constant values. The calculated 1D detonation speeds are equal to D = 1560 and 1601 m/s for the 15 

polydisperse Al-air suspensions with σ0 = 0.5 and 0.9, respectively, while the peak pressures are pmax/p = 16 

26.85 and 26.81, respectively. Compared with the results of the monodisperse counterpart in Section 6.2, the 17 

detonation speed and peak pressure change to a limited extent even with a continuous particle size 18 

distribution. This finding is consistent with the conclusions drawn in [8, 57]. 19 
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The detailed 1D polydisperse Al-air detonation front structures with σ0 = 0.5 and 0.9 at t = 2 ms are 1 

shown in Fig. 16, with the coordinate x originating at the detonation front. The results of the monodisperse 2 

counterpart are also available here for comparison. One important characteristic shown in Figs. 16(a)-(d) is 3 

that most features of monodisperse Al-air detonations, including the double peaks in gas pressure, density 4 

and velocity profiles and the kink in gas temperature profile, as shown by the red lines in Fig. 16, disappear 5 

in polydisperse detonations. There is only a single peak for every gas quantity in the detonation fronts, and 6 

the changes of these quantities after shock compression become smooth, very similar to the wave front 7 

structures in gaseous detonations. These differences between polydisperse and monodisperse detonations are 8 

mainly attributed to the multiple time and length scales in polydisperse suspensions with continuous particle 9 

size distributions. A future study with in-depth analyses is needed to further explain the mechanisms of 10 

polydisperse detonations. 11 

Nevertheless, any effect that occurs in the post-shock-front zone (before the C-J plane), especially 12 

combustion of fuels and other interphase interactions in two-phase mixtures, is of great importance to the 13 

propagation of the detonation wave. Therefore, differences in detonation front structures, observed by 14 

introducing realistic particle size distributions, should exert great influences on two-phase detonation 15 

researches, such as instabilities, initiations, DDT processes, detonation preventions and so on, which rises 16 

the great demand of developing the new Eulerian-Lagrangian method to conduct polydisperse detonation 17 

simulations. 18 

 19 

 20 x [m]

p/
p 0

-0.2 -0.15 -0.1 -0.05 0
14

16

18

20

22

24

26

28
monodisperse

polydisperse: 
0

= 0.5

polydisperse: 
0

= 0.9

(a)

x [m]

T
[K

]

-0.2 -0.15 -0.1 -0.05 0
0

1000

2000

3000

4000
(b)

monodisperse

polydisperse: 
0

= 0.5

polydisperse: 
0

= 0.9

x [m]

u
[m

/s
]

-0.2 -0.15 -0.1 -0.05 0
0

200

400

600

800

1000

1200

1400
monodisperse

polydisperse: 
0

= 0.5

polydisperse: 
0

= 0.9

(c)



34 

 

 1 

Fig. 16. Comparisons of front structures in gas phase of polydisperse and monodisperse Al-air detonations: 2 

(a) pressure, (b) temperature, (c) velocity, (d) density and (e) mass fraction of O2. 3 

 4 

6.4.3 2D detonation cell structure 5 

As known, the detonation cell size is greatly influenced by the characteristic length of reaction zone 6 

[43, 59]. In Fig. 16(e), the reaction zones of polydisperse detonations are shown significantly larger than that 7 

of the monodisperse counterpart, which will lead to different detonation cell sizes. The comparisons of the 8 

cellular detonations between the monodisperse Al-air suspension with a uniform 2-μm particle diameter and 9 

the polydisperse Al-air suspensions with � = 2 μm and σ0 = 0.5 or 0.9 are shown in Fig. 17 by peak pressure 10 

contours. The estimated cell sizes of the monodisperse detonation and the polydisperse detonations with σ0 11 

= 0.5 and 0.9 are λ = 10.5 ± 0.5 mm, 13.3 ± 0.8 mm and 22.2 ± 2.2 mm, respectively. λpolydisperse is 27% larger 12 

for σ0 = 0.5 and even 111% larger for σ0 = 0.9 than λmonodisperse. The order of detonation cell sizes for the 13 

monodisperse and polydisperse detonations are consistent with the order of the lengths of combustion zones 14 

depicted in Fig. 16(e). 15 
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 1 

 2 

Fig. 17. Comparisons of cellular detonations (peak pressure contours) of Al-air mixtures, (a) monodisperse 3 

with dp = 2 μm, and polydisperse with (b) σ0 = 0.5 and (c) σ0 = 0.9. 4 

 5 

Because the cellular structures reflect the multidimensional stabilities of detonation wave propagation, 6 

the precise predictions of detonation cellular structures are essential to the understanding of the mechanisms 7 

of detonation waves propagating in multidimensional spaces and to the prevention of explosion hazards [44]. 8 

It should be noted that, many experimental-consistent detonation cell size simulation results are achieved by 9 

adjusting some key combustion parameters. The current results draw the attention of taking the polydisperse 10 

distribution of particles in the two-phase mixtures into consideration, which also reflects the importance of 11 

conducting simulations under the Eulerian-Lagrangian framework. 12 

 13 

7. Conclusions 14 

Motivated by the facts that the realistic reactive dust in industries and experiments is always 15 

polydisperse in size and the traditional simulation methods developed under the Eulerian-Eulerian 16 

framework are of great difficulties in dealing with this kind of gas-particle suspension, in this paper, a 17 

numerical code is developed by expanding the original Eulerian CE/SE algorithm into an Eulerian-18 

Lagrangian framework for gas-particle two-phase detonation simulations. Meanwhile, a dynamic data 19 
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structure with convenient delete, insert and communication operations is introduced to store the information 1 

of solid particles and overcome the formidable communication costs associated with using traditional MPI 2 

parallelization to accelerate the solution process of two-phase flows under the Eulerian-Lagrangian 3 

framework. The code is proved to be of good MPI parallelization performances with such a dynamic data 4 

structure. 5 

Three cases of high-speed monodisperse gas/inert particle and gas/reactive particle flows that have been 6 

simulated in previous papers [23, 24, 31] are employed to validate and showcase the capacities of the 7 

developed code. The first case is the 1D gas-particle shock tube problem, and the code is proved to be capable 8 

of capturing the typical characteristics of heat and momentum exchanges in two-phase high-speed flows. 9 

Sequentially, the 1D and 2D gas-particle detonation problems with the hybrid combustion model are 10 

simulated. All the results agree well with the previous simulation and experimental results in the reference 11 

papers. 12 

Following the validation of the numerical algorithm, comparisons between the monodisperse and 13 

polydisperse gas-particle detonations with log-normal particle size distributions were conducted. It is found 14 

that the 1D detonation front structures are quite different. Many two-phase detonation features, identified in 15 

monodisperse cases, disappear in polydisperse cases, and the polydisperse detonation front structures are 16 

similar to those of purely gaseous detonations. These differences are expected to result in different 17 

propagation and development characteristics of gas-particle detonations. Moreover, the reaction zones are 18 

larger in polydisperse cases, which yield larger detonation cell sizes consequently. For the case of 19 

polydisperse detonation with σ0 = 0.9, the detonation cell size is even twice larger than those predicted in 20 

monodisperse detonation. In other words, the particle size distributions have effects on the multidimension 21 

stabilities of gas-particle detonations. The importance of considering particle size distribution in realistic 22 

gas-particle detonation modelling and simulating this type of flows under an Eulerian-Lagrangian framework 23 

is clearly demonstrated. 24 

To improve the code capabilities regarding gas-particle detonation simulations, the future work will be 25 

focused on the inclusion of detailed chemistry to model the combustion of reactive particles similar to those 26 

in Liang et al. [60]. Moreover, in-depth analyses need to be done to understand the mechanisms of realistic 27 

polydisperse gas-particle detonations. 28 

 29 
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