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Evolution of a two-dimensional air/SF6 single-mode interface is numerically investigated by an upwind CE/SE method under a 
cylindrically converging circumstance. The Rayleigh-Taylor effect caused by the flow deceleration on the phase inversion (RTPI) 
is highlighted. The RTPI was firstly observed in our previous experiment, but the related mechanism remains unclear. By isolating 
the three-dimensional effect, it is found here that the initial amplitude (a0), the azimuthal mode number (k0) and the re-shocking 
moment are the three major parameters which determine the RTPI occurrence. In the variable space of (k0, a0), a critical a0 for 
the RTPI occurrence is solved for each k0, and there exists a threshold value of k0 below which the RTPI will not occur no matter 
what a0 is. There exists a special k0 corresponding to the largest critical a0, and the reduction rule of critical a0 with k0 can be well 
described by an exponential decay function. The results show that the occurrence of the RTPI requires a small a0 which should be 
less than a critical value, a large k0 which should exceed a threshold, and a right impinging moment of the re-shock which should 
be later than the RTPI occurrence. Finally, the effects of the incident shock strength, the density ratio and the initial position of 
the interface on the threshold value of k0 and on the maximum critical a0 are examined. These new findings would facilitate the 
understanding of the converging Richtmyer-Meshkov instability and would be helpful for designing an optimal structure of the 
inertia confinement fusion capsule.
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1 Introduction

Richtmyer-Meshkov (RM) instability occurs when an ini-
tially perturbed interface separating two different fluids is ac-
celerated by a shock wave [1, 2], and plays a central role in
understanding the hydrodynamic processes involved in iner-
tial confinement fusion (ICF) [3], supersonic combustion [4]
and supernova explosions [5]. The RM instability primarily
results from the baroclinic vorticity caused by the misalign-
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ment of the pressure gradient across the shock with the den-
sity gradient across the interface. The induction of the baro-
clinic forces also dominates the Rayleigh-Taylor (RT) insta-
bility [6] in which the pressure gradient is caused by a force
field. Unlike the RT instability where the perturbation can be
either unstable or stable depending on whether the accelera-
tion is directed from the lighter fluid to the heavier one or vice
versa, the perturbation in RM instability is always unstable,
regardless of the direction of the shock impact.
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During past few decades, the interaction of a planar shock
with a two-dimensional (2D) single-mode interface was stud-
ied extensively [7-10]. However, the physical background of
ICF cares more about the interaction of a converging shock
with a disturbed interface. As a result, the converging RM in-
stability has become an imperative [11, 12]. Compared with
the planar RM instability in which only the spanwise direc-
tion is involved, the converging RM instability is much more
complicated because both the radial and angular directions
need to be considered. Based on the linear model of small
disturbance proposed by Taylor [6] for the planar RT stabil-
ity, Bell [13] and Plesset [14] respectively extended the linear
model to cylindrical and spherical cases following the incom-
pressible hypothesis. In the cylindrical geometry, the devel-
opment of a single-mode disturbance is described by

att + 2
Rt

R
at + (k0A + 1)

Rtt

R
a = 0, (1)

where a is the perturbation amplitude, k0 is the azimuthal
mode number, A is Atwood number defined as A = (ρ2 −
ρ1)/(ρ2 + ρ1) with ρ1 and ρ2 being the densities of the inci-
dent and transmitted fluids, respectively, R is mean cylindri-
cal radius of the moving interface and is usually defined as
the radius of an unperturbed interface. The subscript ‘t’ rep-
resents the derivative of quantity with respect to time, and
similarly hereinafter. In this formula, the interface radius
R varies with time, which is the major difference from the
planar RT instability. This geometrical effect is called Bell-
Plesset (BP) effect and it disappears when R tends to infin-
ity. To deal with the compressible case, Bell suggested that a
uniform compression term ρt/ρ, which satisfies the potential
equation ∇2Φ = −ρt/ρ with Φ the potential function and ρ
the average value of ρ1 and ρ2, stands for the compressibility.
Thus, the formula is re-derived here as:
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In the converging RM instability, the impact of implod-
ing shock will result in an instantaneous increment for the
convection velocity of interface Rt(0+) and the growth rate
of perturbation at(0+). Following the impulsive model by
Richtmyer [1], Mikaelian [15] put forward an incompressible
equation by regarding the shock as an impulsive acceleration
(g = Rtt = ∆vδt) with ∆v the interface velocity jump induced
by the shock and neglecting the weak change of the convec-
tion velocity in the early stage,

a(t) = (0+)
[
1 + (k0A+ + 1)

(R0

R
− 1

)]
,

at = a(0+)(k0A+ + 1)∆v
R0

R2 , (3)

with R0 the initial interface radius and A+ the post-shock At-
wood number. Recently, some simplifications have been im-
plemented to analyze the coupled features between nonlinear
effect and BP effect in the nonlinear stage [16-19]. A com-
mon feature of these models is that the BP effect offsets a part
of the feedback from high-order nonlinearity to the funda-
mental mode, which extends the linear stage compared with
the planar RM instability, coinciding with the result of laser
driven experiment [20]. Some numerical work [21-23] fo-
cused on the effect of the reflected shock which is inevitable
in the converging RM instability. Actually, before the reshock
(the interaction of the reflected shock from center with the
interface), the convection velocity of the shocked interface is
unsteady. Therefore, the third term Rtt in eq. (1) will continu-
ously contribute to the interface development compared with
the planar RM instability. This additional effect in converg-
ing geometry will cause RT instability or stability depended
on whether the lighter fluid accelerates heavier fluid or vice
versa. Therefore, the coupling of BP effect, RT effect, RM in-
stability and reshock greatly complicates the converging RM
instability.

At early stages of the converging RM instability, the con-
vection velocity of interface varies little, and eq. (3) pro-
vides a fairly good description of the perturbation evolu-
tion. When the interface approaches the focusing point,
the pressure gradient in the radial direction is so notable
that the RT effect cannot be ignored any more. Lombardini
et al. [24, 25] performed large-eddy simulations of turbu-
lent mixing about spherically converging RM instability, and
indicated that the RT instability appears during the circula-
tory velocity-variation process and the baroclinic instabilities
(RM and RT) dominate the perturbation growth on the whole
evolutionary process when the convergence ratio is far less
than 30. In our previous work [26], the interaction of a cylin-
drically converging shock with an air/SF6 interface was ex-
perimentally studied, and the interface amplitude was found
to decrease continuously and even to be negative before the
reshock, which was ascribed to the strong and long-term ef-
fect of RT stabilization (RT-induced phase inversion, RTPI).
Here we should point out that for a single shock impact, the
“normal phase inversion” generally occurs for a heavy/light
interface, and the “RTPI” generally occurs for a light/heavy
interface with small initial amplitude and high wave number.
The RTPI will be helpful to find a freezing interface in ICF,
and needs further investigations. Unfortunately, the soap film
technique created a three-dimensional (3D) interface in our
experiment, and it was difficult to discriminate the RT sta-
bilization effect from the 3D effect on the RTPI since both
of them contribute to the decline of the amplitude growth.
Meanwhile, it was concluded that this RTPI occurs only when
the initial perturbation amplitude is small enough. However,



the mechanism and the dominant parameters of the RTPI such
as how small the initial perturbation can trigger the RTPI re-
main unclear. In this work, we aim to numerically investigate
the evolution of a 2D single-mode interface in a cylindrical
geometry to eliminate the 3D effect such that the RT stabi-
lization effect on the RTPI is emphasized. The first step is
to find whether a critical state exists for the RTPI emergence
in a large range of initial wavenumber and initial amplitude,
and then the influences of other initial parameters such as the
incident shock strength, Atwood number and initial location
of the interface on the RTPI will be examined.

2 Numerical method

To describe the compressible multi-component flow problem,
we employ a quasi-conservative five-equation model [27].
The governing equations of the volume fraction-based five-
equation model [28] can then be expressed as:

∂αi

∂t
+ V · ∇αi = 0, i = 1 or 2,

∂ρiαi

∂t
+ ∇ · (ρiαiV) = 0, i = 1 and 2,

∂ρV
∂t
+ ∇ · (ρV ⊗ V + pI) = 0, ⊗ is the Kronecker product,

∂E
∂t
+ ∇ · [V(E + p)] = 0, (4)

where αi denotes the volume fraction of fluid i, ρi the density
of fluid i, ρ the density of the mixture, V the velocity vec-
tor, p the pressure, E the total energy and I the unit matrix.
The equation of state of perfect gas is employed to close the
system,

p = (γ − 1)(E − 1
2
ρV · V), (5)

where

1
γ − 1

= Σ
αi

γi − 1
. (6)

The total density and the sound speed of the mixture can be
respectively calculated as:

ρ = Σαiρi, c =
√
γ(p)/ρ. (7)

We note that this model can prevent pressure oscillation
across an interface separating two materials.

The five-equation model is solved by an upwind space-
time conservation element and solution element (CE/SE)
scheme with second-order accuracy in both temporal and spa-
tial scales [29, 30]. The upwind CE/SE scheme is a minor
modification of the centered CE/SE scheme originally pro-
posed by Chang [31] such that it inherits most properties

of the central scheme and significantly improves the calcu-
lation accuracy of the contact discontinuities by introducing
an upwind flux in the evaluation of spatial derivatives. The
rotated HLLC flux which can sharply capture the interfaces
and achieve carbuncle-free results is adopted in this study.
Furthermore, a simple limiter is employed to strictly preserve
the positivity of volume fractions without loss of accuracy
and conservativeness [32]. The detailed descriptions and ex-
tensive verifications and applications on complex flow can be
found in the references [29, 30, 32-34].

We first perform a validation of the numerical method by
comparing numerical results with our previous experiments
[35], in which a cylindrically converging shock interacting
with unperturbed and perturbed cylindrical interfaces was in-
vestigated. These experiments present nice 2D feature. In
numerical configuration, a 90◦ computational domain with
the dimensions of 50 mm × 50 mm, as sketched in Figure 1,
is adopted. As a result, if an initial perturbed interface is in-
volved, the interface must be perpendicular to the upper and
right walls (crest or trough) to avoid the reflection from the
walls, i.e., the azimuthal mode number adopted in the compu-
tational domain should be an even number. The initial discon-
tinuous interface sharply separates SF6 inside from air out-
side, and both gases are assumed to be perfect gases at initial
temperature and pressure of 298 K and 101325 Pa, respec-
tively. A uniform state behind the initially imploding shock is
considered, in which the density, pressure and radial velocity
are calculated from Rankine-Hugoniot relation. The reflec-
tion conditions are applied to right and top boundaries, while
non-reflection conditions to left and bottom boundaries. To
avoid the possible singularity of two different boundary con-
ditions on the left-top and right-bottom corners, the virtual
mesh points on top and right boundaries close to the corners
are specified as inflow condition. In this way, the meshes
at the corners are dealt with the same boundary condition in
both x and y directions, which eliminates the singularity. Note
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Figure 1 (Color online) The schematic of the computational domain and
boundary condition of unperturbed case. The solid and dashed lines repre-
sent the reflective and non-reflective boundaries, respectively.



that this treatment produces a negligible influence on the
whole instability development.

In experiments, the gas inside is not pure SF6 but a mixture
of SF6 and air. Based on the velocities of the incident shock
wave and the transmitted shock waves, the properties of the
mixture inside the interface will be firstly determined accord-
ing to one-dimensional gas dynamics theory. The compari-
son of the experiments with the numerical simulations will
provide more accurate values of the properties. The proper-
ties of the mixture and the numerical parameters are listed in
Table 1, which are the same as those in experiments [35]. Be-
fore computations, the grid convergence is checked. The den-
sity profiles for different rectangular mesh sizes along the ra-
dius direction at t = 50 µs after a converging shock impinging
an unperturbed cylindrical air/SF6 interface are considered.
The initial conditions are the same as those in unperturbed
case in our previous experiments. As presented in Figure 2,
the density profiles are convergent as the mesh size reduces.
To save the computational cost, the mesh size of 0.1 mm is
chosen. However, for the cases with high wave numbers, the
mesh size is refined to 0.05 or 0.025 mm. Qualitative and
quantitative comparisons of movements of shock waves and
interface during the interaction of a converging shock with an
unperturbed interface are given in Figures 3 and 4. Generally
a good agreement is achieved. Further, the shock behaviors
and interface morphologies after a converging shock interact-
ing with a perturbed interface with three different initial am-
plitudes (a0 = 1, 2 and 3 mm) are compared. Take the experi-
ment (a0 = 1 mm) as an example for comparing the interface
morphology and wave pattern. As shown in Figure 5, the nu-
merical method nicely captures the evolution of the interface
and waves. The interface amplitudes for three cases from nu-
merical simulations are shown in Figure 6, which presents a
very good agreement with the experimental measurements at
all stages, including the reshock stage.

3 Results and discussion

Previous work [26, 35] showed that after the passage of a
cylindrically converging shock, the movement of an unper-
turbed interface will experience three stages: a nearly steady

phase with a constant velocity at first, an inward-moving de-
celerating phase before reshock, and an outward-moving de-
celerating phase after reshock. If the initial interface is dis-
turbed, the RT stabilization effect (heavier fluid accelerates
lighter one) during the inward-moving deceleration phase be-
fore reshock will suppress the perturbation growth, possibly
causing the occurrence of phase inversion, and RT instabil-
ity (lighter fluid accelerates heavier one) coupled with RM
instability will dominate the flow after reshock. The phys-
ical parameters which may influence the existence of phase
inversion before the reshock include the initial amplitude a0,
azimuthal mode number k0, initial Atwood number A, shock
Mach number M0 when incident shock impacts interface, and
initial interface radius R0. In this work, the influence of a0 on
the RTPI is first under consideration while keeping other pa-
rameters fixed. Subsequently, how other parameters affect the
RTPI will be discussed. In numerical setup, a 90◦ computa-
tional domain with the dimensions of 220 mm × 220 mm
is adopted. The initial stationary cylindrical interface and
imploding shock are positioned at R0 = 195 mm and Rs =

212 mm, respectively, which are the same as those in our ex-
periment [26]. Besides, both gases are regarded as pure in
computation, differing from the experimental settings where
the gas contamination must be considered. Also, nitrogen is
chosen as an ambient gas in computation instead of air in ex-
periment. The initially converging shock with an intensity
of Ma = 1.25 moves inward and when it meets the interface,
the intensity increases to 1.26 calculated by the CCW relation
[36-38]. The other numerical settings are the same as those
described in sect. 2.

3.1 Evolution of perturbed interface with different ini-
tial amplitudes

For a single-mode interface, the equation of interface shape
can be described as r = R0 + a0 cos(k0θ). Here we will first
discuss the influence of a0 on the RTPI by keeping other
parameters (M0, A, R0, k0) = (1.26, 0.68, 195 mm, 20)
unchanged. The development of three disturbed interfaces
(Cases I1, I2 and I3 with a0 = 1.0, 1.65 and 2.0 mm, respec-
tively) is representatively shown in Figure 7 for the detail of
the interface morphology. Time-variation of interface ampli-

Table 1 Physical parameters of mixture inside for unperturbed interface and perturbed interface at temperature T0 =298 K and pressure p0=101325 Pa. The
ambient air is considered as pure. a0, initial amplitude; Ma, initial shock Mach number; γ, specific heat ratio; ρ, density of gas; Rs, initial position of shock
from the origin; R0, initial position of interface from the origin

Case a0 (mm) Ma γ ρ (kg/m3) Rs (mm) R0 (mm)

Unperturbed 0 1.27 1.152 3.611 38.6 25

Perturbed-Case1 1 1.23 1.157 3.49 41.9 24.2

Perturbed-Case2 2 1.26 1.135 4.09 41.1 24.3

Perturbed-Case3 3 1.27 1.164 3.32 42.5 24.6
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tude, defined as a = (r1 − r2)/2 where r1 and r2 are respec-
tively the varying radii of crest and trough near the diagonal
as shown in Figure 7, is plotted in Figure 8(a). The amplitude
evolution can also be divided into three stages after the com-
pression, corresponding to the counterparts in undisturbed
case. At the first stage, the amplitude increases because of
the RM instability, and the weak convergence effect has a lim-
ited influence on the linear growth of perturbation before t1 ≈
820 µs. During the second stage before reshock, the am-
plitude reduces for all cases owing to the RT stabilization ef-
fect which is caused by the stronger adverse pressure gradient
near the geometry origin. It is observed that the amplitude in
Case I1 reduces to be negative before reshock, indicating the
RTPI occurrence (t = 1356-1434 µs). The amplitude in Case
I3 is still positive before reshock, and thus the RTPI does not
occur. In Case I2, the amplitude is decreased to nearly zero at
reshock-time, which means that the initial amplitude in Case
I2 is almost the critical value for the RTPI occurrence with
other fixed initial parameters. As a result, a RTPI only oc-
curs with small initial amplitudes, verifying our experimental
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Figure 7 (Color online) The schlieren pictures showing the evolution of
the single-mode interface for Cases I1, I2 and I3. PI: phase inversion.

work. After reshock, the reflected shock facilitates the occur-
rence of a normal phase inversion (PI) for an SF6/air interface
in Cases I2 and I3 (t = 1467-1623 µs), while a normal PI is
absent in Case I1. The RM instability caused by the reflected
shock coupled with the RT instability greatly promotes the
perturbation growth.

For the satisfactory of small perturbation hypothesis, three
models (eqs. (1)-(3)) are applicable to predict the amplitude
growth in Case I2. The numerical result shows that a startup
time is needed to achieve the linear growth because the rip-
ples from the transmitted shock and reflected shock need
some times to be settled down. In a planar geometry, Lom-
bardini and Pulllin [39] regarded the transmitted and reflected
shocks as moving boundaries and considered the flow field
between them as an incompressible one, putting forward a
startup time as:
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Figure 8 (Color online) Time-variation of interface amplitude in three per-
turbed cases (a), and comparison of amplitude growth between the numeri-
cal result and theoretical predictions from models for Case I2 (b). Bell-INC
means the prediction by the incompressible Bell theory; Bell-COM means
the prediction by the compressible Bell theory; Mikaelian means the predic-
tion by the theory proposed by Mikaelian.

τ =
1
2k

[
1 − A+

Us2
+

1 + A+

−Us1

]
, (8)

where k is wave number in the planar geometry, Us2 and −Us1

are speeds of reflected shock and transmitted shock relative
to the interface, respectively. The prediction of startup time
in the planar geometry has already been verified [39]. Sim-
ilarly, we can transform the wave number in the converg-
ing geometry to that in planar geometry as k = k0/R0, and
then the startup time in the converging case is estimated to be
86.5 µs. However, the numerical result reveals that a startup
time of τ ≈ 152 µs is needed to achieve the linear growth,
which is about twice over the theoretical estimation. Based
on the numerical startup time in the converging case, the pre-
dictions of amplitude growth for Case I2 are shown in Fig-
ure 8(b), together with the numerical result. In the theoret-
ical predictions, the impulsive growth rate is considered as
an initial value, and the growth rates are calculated by dis-



cretely numerical integration with R, the convection velocity
Rt and the acceleration Rtt at each discrete step. The impul-
sive model gives a good prediction of the linear growth rate,
while the predictions from three models deviate from the nu-
merical result before the end of stage 1. The divergence of
two Bell models from the numerical result is believed to be
caused by weak nonlinearity. The estimation by Mikaelian’s
model deviates most from the numerical result because Rt is
ignored in this model. In stage 2, although both Bell models
provide a correct tendency of amplitude growth, the diver-
gence between them is amplified, which may be caused by
the flow compressibility. Although a uniform compression
term ρt/ρ around the interface is adopted to describe the com-
pressibility in eq. (2), the real ρt/ρ near the geometry center
or the shock is quite different from the value near the inter-
face. It is thought that this uniform compressible assumption
is inappropriate to predict the amplitude development at late
stages.

In Case I1, the perturbation amplitude of the basic fre-
quency a(k0) does not undergo a normal PI during reshock. If
we focus only on the perturbation of basic frequency, a sketch
of the coupling between reshock and RT stabilization effect,
as shown in Figure 9, can facilitate to understand why the
normal PI does not occur in Case I1. According to the model
proposed by Taylor [6] with small perturbations, the classical
RT stabilization effect owns an essentially periodic oscilla-
tory behavior, i.e., the initial positive amplitude will reduce to
negative and then reversely to positive again, behaving as an
infinite loop if viscosity is neglected. In the converging case,
however, the period would be shortening with time because
the adverse pressure gradient becomes larger and larger.

As demonstrated by experiment and computation, the am-
plitude may reduce to negative induced by the RT stabiliza-
tion effect in a light/heavy imploding configuration. Whether
the normal PI occurs after reshock is dependent on the
reshock-time. For small initial amplitudes, a critical state,
i.e., the amplitude reduces to zero, denoted by P1 in Figure 9
exists before the RTPI occurs. If the reflected shock impinges
the evolving interface before the critical state, such as P0 mo-
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Figure 9 (Color online) RT periodic phase diagram without considering
the reshock.

ment in the first decline stage, the reflected shock will add a
negative growth rate (−vRE which is approximately propor-
tional to the amplitude at the reshock-time) to the negative
growth rate caused by the RT stabilization effect (−vRT), re-
sulting in a quickly normal PI. Under this condition, a RTPI
will not occur. Coincidentally, if the reflected shock encoun-
ters the interface at P1 moment, the reflected shock will not
affect the perturbation growth rate, while the amplitude will
continuously reduce to negative because of the RT stabiliza-
tion effect. At this moment, the perturbation amplitude is
zero, but the negative growth rate caused by the RT stabiliza-
tion effect (−vRT) is the largest. If the reflected shock arrives
at the interface after the critical moment, the RTPI will first
occur. An additional critical state, as denoted by P3 where the
amplitude is maximal and the growth rate induced by the RT
stabilization effect is zero, exists theoretically. If the reflected
shock reaches at P3 moment, the positive growth rate induced
by the reflected shock (+vRE) is maximum, and will entirely
dominate the interface because vRT is zero. Finally, the re-
flected shock will result in occurrence of a normal PI. From
P1 to P3 moments, the growth rate caused by the RT stabi-
lization effect changes from the maximum to zero, while the
growth rate caused by the reflected shock varies from zero to
the maximum. When the reflected shock collides with the in-
terface at the moment between P1 and P3, the reflected shock
will add a positive vRE to the negative vRT. There will be a
balanced state as indicated by P2 at which the positive vRE

will exactly offset the negative vRT. At the moments between
P1 and P2, the positive vRE cannot offset the negative vRT, but
only decays the negative growth rate. As a result, a normal PI
will not occur. At the moments between P2 and P3, the pos-
itive vRE exceeds the negative vRT, and will lead to the emer-
gence of a normal PI. Further, if the reflected shock reaches
at the moments between P3 and P4, where P4 is also a criti-
cal state with the maximum positive vRT and zero amplitude,
the reflected shock will add a positive vRE to the positive vRT,
leading to occurrence of a normal PI quickly. If the periodic
oscillation can develop to further stage before reshock, differ-
ent types of the coupling between periodic RT stabilization
effect and reflected shock may occur. In the present work, the
state between P0 and P1, the critical state P1, and the state
between P1 and P2 are found in the Cases I3, I2 and I1, re-
spectively. Features of the interface at different reshock times
are summarized in Table 2.

3.2 Effect of azimuthal mode number on critical initial
amplitude

The critical state before reshock is a competitive result be-
tween the RT stabilization effect and the RM instability. Note
that the increase of azimuthal mode number k0 promotes both



Table 2 Features of the interface at different reshock times

Reshock time vRT vRE State

< P0, P1 > − − Normal PI

P1 MAX − 0 First critical

< P1, P2 > − + RTPI

< P2, P3 > − + Double PI

< P3, P4 > + + Double PI

P4 MAX + 0 Second critical

· · · · · · · · · · · ·

RM instability and RT stabilization effect. The influence of
k0 on the critical state can be assessed by finding the critical
a0 for different k0. Other parameters of (M0, A, R0) = (1.26,
0.68, 195 mm) are unvaried. Here keeping the parameters of
(M0, A, R0) unchanged is categorized as Case I for the follow-
ing discussion. The variation of critical a0 with k0, termed as
critical line, is given in Figure 10. Although the amplitude
of the basic mode a(k0) cannot thoroughly describe the in-
terface morphology when k0 is large because of the strong
nonlinearity, it can also be regarded as a meaningful assess-
ment of the competition between the RM instability and the
RT stabilization effect. One can find that a higher k0 generally
needs a smaller a0 to achieve the critical state. For the same
a0, a higher k0 strengthens the contribution to the RM insta-
bility more than to the RT stabilization effect provided that
the time scales of RM instability and RT stabilization effect
are the same. Besides, once k0 is smaller than 14, a RTPI will
not occur no matter what a0 is. Therefore, kt = 14 is defined
as the threshold k0 for Case I. Further, a special k0 (named
ks) corresponding to a maximum critical a0 (a0p) exists. The
critical a0 increases (decreases) with k0 growing when k0 is
smaller (larger) than ks. The reason of existing this maximum
critical value may lie in the different response of the RM
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Figure 10 (Color online) The effect of azimuthal mode number k0 on
critical initial amplitude a0. kt and ks are truncation and special azimuthal
mode numbers, respectively. The dashed line represents fitting curve from
attenuation function, and similarly hereinafter.

instability and the RT stabilization effect for different mode
numbers. The RM instability favors the growth of the funda-
mental mode since it dominates in the linear stage, and the RT
stabilization effect reduces higher modes more significantly
because it is exerted on an involving interface. Therefore, the
maximum critical a0p (ks) represents the balance of the RM
instability and the RT stabilization effect.

More attempts of two Bell models for predicting the am-
plitude growth are implemented by varying (k0, a0). It is sur-
prising that for k0 = 20, the RTPI will always occur for any
a0, which is not true obviously. Moreover, a kt is predicted
according to the models of Bell, and the RTPI will (will not)
occur for any a0 when k0 > kt (k0 < kt). For finding the
kt, three situations with different startup times are adopted to
initiate the calculation: (1) the startup time is ignored and
the 0+ moment is adopted; (2) the startup time of 152 µs
for k0 = 20 is adopted; (3) the variation of startup time with
inverse ratio of k0 is adopted. For varying (k0, a0), the kt

for three startup times are calculated to be 12.99, 12.75 and
13.11, respectively, according to the incompressible model,
and 12.58, 12.50 and 12.62, respectively, based on the com-
pressible model. As a result, although the Bell models cannot
correctly predict the interface development for a long time
and the RTPI, they can give a reasonable prediction of kt. For
simplicity, the startup time is ignored in following calcula-
tions.

3.3 Parametric study of the critical line

We shall examine the variation of critical a0 with k0 by chang-
ing other initial parameters (M0, A, R0) and discuss the in-
fluences of initial parameters on kt and ks. As listed in Ta-
ble 3, only one parameter will change in Cases II-VII com-
pared with Case I. For all cases, the pure N2 with a density of
1.18 kg/m3 and the specific heat ratio of 1.4 at initial T0 =

288 K and p0 101325 Pa is chosen as the ambient gas.
In Cases II and III, the heavy gas is changed to pure R22

and a mixture of SF6 and N2 (30%SF6+70%N2, volume frac-
tion), respectively. Inevitably, both the specific heat ratio γ2

and the density of the heavy gas ρ2 will be changed when us-

Table 3 The physical parameters in each case

Case Gas 2 γ2 ρ2 (kg/m3) A R0 (mm) M0

I SF6 1.094 6.177 0.68 195 1.259

II R22 1.172 3.657 0.512 195 1.259

III 30% SF6+70% N2 1.2024 2.682 0.389 195 1.259

IV SF6 1.094 6.177 0.68 195 1.156

V SF6 1.094 6.177 0.68 195 1.515

VI SF6 1.094 6.177 0.68 295 1.259

VII SF6 1.094 6.177 0.68 97.5 1.259



ing a different heavy gas. Nevertheless, the Atwood number
A is believed to dominate the whole process. The compar-
ison of critical lines among Cases I, II and III is shown in
Figure 11. It is obvious that the case with a smaller A owns
a larger kt (kt = 24 in Case II and 34 in Case III). Be-
sides, for Cases II and III, kt are estimated to be 22.75 and
35.43, respectively, from Bell’s incompressible model, and
to be 21.57 and 32.98, respectively, from Bell’s compressible
model. Again, the theoretical predictions match well with the
numerical results. Furthermore, a smaller A corresponds to a
smaller a0p, and the critical line reduces more slowly as k0

increases.
The critical lines of Cases I, IV and V are numerically

calculated and compared in Figure 12 to illustrate the effect
of initial imploding shock strength M0. It is found that a
stronger imploding shock will lead to a smaller kt (kt = 18
in Case IV and 10 in Case V) and a lower a0p. For Cases
IV and V, kt predicted by the two Bell models are 18.12 and
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Figure 11 (Color online) Comparison of the critical lines among Cases I,
II and III, showing the effect of initial Atwood number.
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Figure 12 (Color online) Comparison of the critical lines among Case I,
IV and V, showing the effect of initial imploding shock intensity.

10.13, respectively, based on incompressible assumption, and
17.75 and 9.44, respectively, according to compressible sim-
plification. Similarly, the theoretical predictions coincide
well with the numerical results.

As shown in Figure 13, the comparison of critical lines
among Cases I, VI and VII is given for demonstrating the
effect of initial interface radius R0. Obviously, kt is indepen-
dent on the interface radius R0. The ratios of a0p in Cases
VI and VII over a0p in Case I are calculated to be 1.511
and 0.588, approximately corresponding to the ratios of ini-
tial interface radius of 1.5 and 0.5, showing an approximately
proportional relation of a0p to R0. Similarly, kt predicted by
the two Bell models are 13.05 and 12.48, respectively, based
on incompressible assumption, and 12.61 and 12.11, respec-
tively, based on compressible simplification.

From discussion above, similarities can be found among
the critical lines for different conditions, including the ex-
istence of a kt and a maximum critical amplitude a0p at
ks. Besides, the critical amplitude experiences a slow at-
tenuation after ks. According to the exponential attenuation
function, a0 = B exp (−k0/d) = B1 exp [(ks − k0)/d], where
B1 = B exp (−ks/d) ≈ a0p, the variations of critical amplitude
with k0 are obtained, as shown in Figures 11-13 by dashed
lines. The parameters of B1 and d are listed in Table 4, to-
gether with other parameters. From the comparison, one can
conclude that the reduction rule of critical amplitude with k0

conforms to an exponential attenuation function.

4 Summary

A series of numerical simulations on the converging
Richtmyer-Meshkov (RM) instability are carried out based
on an upwind CE/SE method to investigate the Rayleigh-
Taylor effect on phase inversion (RTPI), which was firstly
observed in our previous experiment. The previous experi-
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Figure 13 (Color online) Comparison of the critical lines among Case I,
VI and VII, showing the effect of initial interface radius.



Table 4 Key values on the critical lines for all cases, and the coefficients of
the exponential decay function

Case kt ks a0p (mm) B1 (mm) d

I 14 18 1.68 1.712 46.738

II 24 30 1.11 1.152 67.309

III 34 44 0.747 0.767 107.766

IV 18 22 1.71 1.803 59.833

V 10 12 1.03 1.035 35.136

VI 14 18 2.54 2.593 42.015

VII 14 16 0.988 1.042 42.742

ment proved that the 3D effect of interface strongly sup-
presses the amplitude growth, and facilitates the RTPI occur-
rence. In this work, a 2D single-mode interface is adopted to
eliminate the 3D effect, and the RT stabilization effect on the
RTPI can be highlighted.

Firstly, the influence of the initial amplitude on the RTPI
is investigated. The evolution of interface with different ini-
tial amplitudes indicates that a small initial amplitude favors
the RTPI emergence, and, interestingly, a critical state with
a zero-amplitude of the interface at the reshock exists for a
special initial amplitude. For the critical case, three models
are adopted to estimate the amplitude growth, and the models
are found to be invalid at late stages possibly because of the
flow compressibility. After reshock, a normal phase inversion
does not occur for the case in which the RTPI occurs, and a
periodic RT phase diagram is adopted to interpret the mech-
anism. It is concluded that whether a normal phase inver-
sion occurs or not is dependent on the competition between
RT stabilization effect and RM instability caused by reflected
shock.

Then the variation of critical amplitude with the azimuthal
mode number, termed as critical line, is numerically solved.
The results show that there is a threshold azimuthal mode
number (kt) below which the RTPI will not occur for any
initial amplitude, and there is also a special azimuthal mode
number (ks) at which the critical amplitude is the largest. It is
observed that the critical line first increases and subsequently
declines separated by ks, and the reduction rule can be well
described by an exponential decay function. Though the (in-
compressible or compressible) Bell models cannot describe
the amplitude growth for a long period, they both provide a
reasonable prediction of kt. Further, a parametric study is per-
formed to evaluate the influences of Atwood number A, shock
Mach number M0 and initial radius of the interface R0 on the
critical line. It is found that the kt is significantly affected by
A and M0, but is insensitive to R0. Specifically, a larger A will
result in a smaller kt and a larger peak of the critical ampli-
tude, while a stronger shock contributes to the decline of both
kt and peak of the critical amplitude. Moreover, the peak of

the critical amplitude is approximately proportional to R0. As
a result, a larger R0 not only results in a long-term RT stabi-
lization effect, but also owns a larger critical amplitude. In
most previous converging RM instability studies, the initial
amplitude is generally large enough compared with the crit-
ical amplitude, and, therefore, the RTPI phenomenon cannot
be observed.
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