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Nomenclature

Ar = pore aspect ratio, 2b∕H
b = half-width of square pore, radius of circular pore, m
c = sound speed, m∕s
H = thickness of porous layer, m
p = pressure, Pa
R = reflection coefficient
t = time, s
x, y, z = coordinates
Z = porous layer impedance, kg∕�m2 ⋅ s�
ρ = density, kg∕m3

ϕ = porosity

Subscripts

h = waves in the pore
i = incident waves
r = diffracted waves

I. Introduction

H YPERSONIC cruise vehicles flying at low angles of attack and
high lift-to-drag ratios, such as the X-43A, are normally

designed with predominantly two-dimensional (2D) shapes and rel-
atively sharp leading edges. When a hypersonic flow passes such a
configuration, the acousticMack secondmode is considered to be the
major instability leading to boundary-layer transition from laminar to

turbulent flow, which suggests that the laminar run can be increased
by the stabilization of the second mode [1–4]. Among the various
techniques that could suppress or attenuate the Mack second mode
[5], the use of porous coating has been demonstrated to have a
minimal effect on the mean flow but to greatly suppress the Mack
second mode [6–10], and it is considered to be one of the most
promising control techniques in this context.
In addition to the use of direct numerical simulations of the flow-

field within the microstructures to determine the stabilization effect
on the hypersonic boundary layer [11–13], the acoustic impedance
boundary condition of the vertical velocity at the wall (v 0

w � p 0
w∕Z)

is usually adopted to model the porous coating. This treatment saves
computational resources for numerical simulations [14–20] and
assists the linear stability theory (LST) analysis [7,8,21,22]. Here,
Z is the surface impedance, which is a complex quantity that depends
on properties of the wall material, porosity parameters, mean flow
characteristics on the wall surface, and flow perturbation parameters
such as wave frequency and wavelength. v 0

w and p 0
w are the vertical

velocity and pressure perturbations, respectively. Fedorov et al. [7]
were the first to develop a formulation of Z for equally spaced
cylindrical blind pores by applying the theory of sound wave propa-
gation in thin and long tubes. They subsequently proposed analytical
solutions, hereinafter called Fedorov’s models, for slits and pores
of circular, rectangular, and triangular cross sections, taking account
of gas rarefaction effects [23]. Although Fedorov’smodels have been
widely applied to study the stabilization effect of porous coatings,
the solutions were derived based on the acoustic characteristics
of a single slit or pore and consequently neglect the couplings
among adjacent units as well as their contribution to the overall
impedance. This simplification is considered to be responsible for
the low-frequency shift of the reflection curves [21,24], resulting in a
possible frequency mismatch between the most amplified Mack
second-mode instability wave and the minimum reflection property
of microstructures in the process of optimizing the coating. Recently,
Zhao et al. [25] used the plane wave expansion method [26–28] to
improve Fedorov’s slit model by considering high-order diffracted
waves when the acoustic disturbance penetrates the porous surface.
In this way, wave scattering and coupling effects are taken into
account, with a consequent improvement in the accuracy of predicted
reflection frequency. The present note extends the planewave expan-
sion method to derive impedance models for porous coatings with
three-dimensional (3D) pores of circular and square cross sections,
which are considered more practical for engineering applications.
The accuracy of the predicted reflection frequency is compared
with that of Fedorov’s models and the effect of pore shape is also
discussed.

II. Theoretical Model

As shown in Fig. 1, the porous coating is taken to be a rigid surface
that is periodically corrugated with subwavelength pores of circular
or square cross section and is of infinite extension in the x and z
directions. In accordance with the definitions of the geometrical
parameters in previous research [25], H and s are the pore depth
and unit-cell period, respectively, and b is the radius in the case of a
circular pore and the half-width in the case of a square pore.
The aspect ratio is defined as Ar � 2b∕H for both kinds of pores,

and the porosity is defined as ϕ � πb2∕s2 for a circular pore and

ϕ � 4b2∕s2 for a square pore. The coating is assumed to be located in
a quiescent atmosphere with uniform and constant density ρ and
sound speed c.
The acoustic field of an arbitrary incident plane wave penetrating

the coating surface can be expressed as (the time dependence e–jωt is
omitted for simplicity)
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pi � ejkxxejkzze−jkyy;
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jρω

∂pi
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ρω

ejkxxejkzze−jkyy (1)

where pi is the incident pressure, vy;i is the y component of the

particle velocity, and j � ������
−1

p
. kx and kz are the parallel x and z

momenta, respectively. ky � �k20 − k2x − k2z�1∕2 is the perpendicular

momentum, in which k0 � ω∕c is the wavenumber, with ω

being the angular frequency. The reflected pressure field p�m;n�
r and

y-component particle velocity v�m;n�
y;r of the (m, n)th-order diffracted

wave are expressed as

p�m;n�
r � Rmne

jk�m�
x xejk

�n�
z zejk

�m;n�
y y;

v�m;n�
y;r � k�m;n�

y

ρω
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jk�m�
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�n�
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y y (2)

Here, k�m�
x � kx � �2πm∕s�, k�n�z � kz � �2πn∕s�, and k�m;n�

y ���������������������������������������������
k20 − �k�m�

x �2 − �k�n�z �2
q

, m, n ∈ Z. Rmn is the reflection coefficient

of the (m, n)th-order diffraction. Inside the pore, the fundamental

wave mode dominates in the long-wavelength limit (2b ≪ λacs,
where λacs is the wavelength of the incident acoustic wave),

and the sound pressure and particle velocity within the pore are

given by

ph � C1e
jkhy � C2e

−jkhy;

vy;h � kh
~ρω

�C1e
jkhy − C2e

−jkhy� (3)

Here, the dynamic density ~ρ, compressibility ~C, and wavenumber kh
are complex and frequency-dependent quantities owing to the exist-

ence of thermal and viscous boundary layers inside the narrow pore:

~ρ � ρ∕Ψν; ~C � γ − �γ − 1�Ψt

ρc2
;

k2h � ω2 ~ρ ~C � k20
γ − �γ − 1�Ψt

Ψv

(4)

in which, for a circular pore,

Ψvkt � −
J2�bkvkt�
J0�bkvkt�

(5)

with J0 and J2 being Bessel functions of zeroth and second order,

respectively, whereas, for a square pore,

Ψvkt � 2k2vkt
X∞
M�0

�
1

αMM
0

�
2
�
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tan�αMb�
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�
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q
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(6)

In both Eqs. (5) and (6), kvkt has the same form:

k2vjjt �

8>>><
>>>:
k2v � jω

ρ

μ
; viscouswave number

k2t � jω
ρCp

κ
; thermalwave number

(7)

The subscript vkt is either v or t, denoting the effect of the viscous
or thermal boundary layer, respectively. In the above equations, κ is
the thermal conductivity, μ is the viscosity, and γ � Cp∕Cv is the

ratio of the specific heat at constant pressureCp to the specific heat at

constant volume Cv.
The bottom of the cavity is rigid (vy;hjy�−H � 0) and thus we have

C1 � C2e
2jkhH ≡ Ce2jkhH . At the interface, the continuity of the

sound pressure requires that the mean pressure over the opening area

at y � 0� equals the pressure inside the pore at y � 0–. Application
of this condition to the case of a circular pore gives

1

πb2

ZZ
x2�z2≤b2

�
ejkxxejkzz �

X�∞
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Rmne

jk�m�
x xejk

�n�
z z

�
dx dz

� C�1� e2jkhH� (8)

After a simple process of deduction, we have

X�∞

m;n�−∞
�δmn;00 � Rmn�Smn � C�1� e2jkhH� (9)

where Smn � �1∕πb2� RRx2�z2≤b2 e
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x xejk
�n�
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q �
is the over-

lap integral between the (m, n)th-order diffracted mode and the

fundamental mode inside the circular pore; δmn;00 is the Kronecker

delta function defined as δmn;00 � 1 for �m; n� � �0; 0� and δmn;00 �
0 otherwise; J1 is the Bessel function of first order.
The continuity requirement on the particle velocity vy is

that it should be continuous at the opening area and equal to zero

elsewhere:
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a) Circular pores b) Square pores
Fig. 1 Schematic illustrations of porous coatings with pores of different cross sections.
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We multiply the above equation by e−jk
�r�
x xe−jk

�q�
z z (where r and q

are integers) and average over the unit cell area

1

s2

X�∞

m;n�−∞

Z
x;z�s∕2

x;z�−s∕2

k�m;n�
y

ρω
�δmn;00 −Rmn�ej�k

�m�
x −k�r�x �xej�k

�n�
z −k�q�z �z dxdz

� 1

s2

ZZ
x2�z2≤b2

kh
~ρω

C�1− e2jkhH�e−jk�r�x xe−jk
�q�
y z dxdz (11)

Using the orthogonality of the exponential function, we can solve
Eq. (11) to give

Rrq � δrq;00 − C�1 − e2jkhH�ϕ ρkh

~ρk�r;q�y

Srq (12)

Substituting Eq. (12) into the pressure continuity condition
(9) yields

2S00 − C�1 − e2jkhH�ϕ ρ

~ρ

X�∞

r;q�−∞

kh

k�r;q�y

S2rq � C�1� e2jkhH� (13)

The coefficient C is then determined as

C � 2S00

�1� e2jkhH� � �1 − e2jkhH�ϕ�ρ∕ ~ρ�P�∞
r;q�−∞�kh∕k�r;q�y �S2rq

(14)

and is substituted into Eq. (12). With the relation −j tan�khH� �
�1 − e2jkhH∕1� e2jkhH�, the reflection coefficients of Eq. (12) can
then be expressed as

Rmn � δmn;00 �
2j tan�khH��ρ∕ ~ρ�ϕ�kh∕k�m;n�

y �Smn

1 − j tan�khH��ρ∕ ~ρ�ϕP�∞
r;q�−∞�kh∕k�r;q�y �S2rq

(15)

Assuming normal incidence of the Mack second mode (i.e.,
kx � 0, kz � 0, and ky � k0) [24] and that the periodic spacing

s ≪ λacs, the effective impedance Z of the porous coating with
circular pores can be derived as

Z � p

v

����
y�0

� �1∕s2� R x;z�s∕2
x;z�−s∕2�pi �

P�∞
m;n�−∞ p�m;n�

r � dx dz
�1∕s2� R x;z�s∕2

x;z�−s∕2�vy;i �
P�∞

m;n�−∞ v�m;n�
y;r � dx dz

� ρc
R00 � 1

R00 − 1
(16)

where the reflection coefficient of zeroth-order diffraction (specular
refraction) is

R00 � 1� 2j tan�khH��ρ∕ ~ρ�ϕ�kh∕k0�
1 − j tan�khH��ρ∕ ~ρ�ϕP�∞

r;q�−∞�khS2rq∕
�����������������������������������������������������
k20 − �2rπ∕s�2 − �2qπ∕s�2

p
�

(17)

For the case of a square pore, by applying the continuity

requirements of pressure and velocity at the unit surface, a derivation

similar to that from Eqs. (8–14) leads to expressions for

the impedance and for the reflection coefficients that are similar to

those in Eq. (16) and in Eqs. (15) and (17), respectively, except that

Smn � �1∕4b2�∫ x;z�b
x;z�−be

jk�m�
x xejk

�n�
z z dx dz � sinc�k�m�

x b�sinc�k�n�z b�.
Because the derivation includes the higher-order diffracted modes,
the mutual wave coupling among neighboring pores is taken into
account. In particular, Eq. (17) reduces to Fedorov’s model if all
higher-order modes are neglected and the porosity ϕ is allowed to
tend to zero (so that the local oscillations inside each pore become
independent), and reads

R00 � 1� 2j tan�khH��ρ∕ ~ρ�ϕ�kh∕k0�
1 − j tan�khH��ρ∕ ~ρ�ϕ�kh∕k0�

(18)

III. Validation and Discussion

To mimic the operational environment as much as possible,
a steady flow calculation of a Mach 6 hypersonic flat-plate flow
was first conducted [29]. The freestream flow conditions are referred
to the wind tunnel experiment of Bountin et al. [30]: Mach number

Ma∞ � 6.0, unit Reynolds number Re∞ � 10.5 × 106 m−1,
and temperature T∞ � 43.18 K. The wall is isothermal with a
temperature of Tw � 293 K. The flow parameters at the wall

(ρw � 5.59 × 10−3 kg∕m3 and pw � 470.1 Pa) are obtained at
75% of the plate length where the Mack second mode dominates
[29,30], and are provided to test the acoustic characteristics of the
porous coatings. The following assumptions are also hypothesized:
1) a continuum without rarefaction effect, 2) a perfect gas with
Prandtl number Pr � 0.72 and γ � 1.4, and 3) Sutherland-law tem-
perature-dependent viscosity/conductivity [24]. Two corresponding
acoustic Reynolds numbers, Reacs � ρwcwb∕μw of 10 and 100, are
chosen [24]. The aspect ratio Ar, porosity ϕ, and the normalized
incident-wave frequency (facs � fH∕c � H∕λacs) are varied in the
range of 0.06–0.5, 0.2–0.8, and 0–1.5, respectively. These porous
parameters are also relevant for practical applications in high-altitude
hypersonic flight [21,24]. Figure 2 compares the reflection coeffi-
cient contours obtained from the proposed model and Fedorov’s
model. It is observed that the results of two models are consistent
at lower facs, and diverge when facs increases for both kinds of
coatings (circular and square pores). As addressed in Ref. [25], when
facs increases, the interactions among adjacent pores become strong
and the higher-order terms in the proposedmodel take effect, yielding
the differences from the Fedorov’s model. By including the data
from a finite element solver (COMSOLMultiphysics), the reflection
coefficient distributions at different combinations of Ar, ϕ, and
Reacs are compared in Fig. 3. In the previous investigations
of the porous coating with 2D slits [21,24,25,31], a resonant mode
of fres � ϕ∕Ar with jRj approaching unity was found. For coatings
with 3D pores, when λacs approaches s, resonant modes can still

be found at fres � �2∕ ���
π

p �� ����
ϕ

p
∕Ar� for circular pores (in particular,

fres � 1.26 in Fig. 3c) and at fres �
����
ϕ

p
∕Ar for square pores

(in particular, fres � 1.12 in Fig. 3d). The predicted reflection
coefficients by the proposed model are in good agreement with
the numerical results up to the limit λacs � s, whereas that by the
Fedorov’s models tend to be shifted to the higher facs. Notably, when
the interaction of the scattered waves at the porous surface
becomes strong (i.e., when facs approaches fres), the predictions by
Fedorov’s model deviate from the numerical results. In addition, a

possible coupling between diagonal pores (λacs �
���
2

p
s) is not

found. The acoustic Reynolds number, Reacs, mainly affects the

oscillatory behavior of the reflection coefficient. At lowerReacs (e.g.,
Reacs � 10 in Fig. 2a), the viscosity dissipates the acoustic energy in
deep pores (e.g., Ar � 0.2) without additional reflection from the



pore bottoms, and the reflection coefficient monotonically decreases

with frequency in Fig. 3a. At higher Reacs (e.g., Reacs � 100 in

Figs. 2b and 2c), reflections from the pore bottoms lead to destruc-

tive/constructive reinforcement at some specific frequencies [24],

causing the resonant-like curves in Figs. 3b–3d.

Notably, Sousa et al. [19] have made comparisons of measured

and predicted absorption coefficients, using the inverse Helmholtz

solver, the homogeneous absorber theory, and the model for acoustic

impedance of a porous surfacewith randomporosity used byFedorov

et al. [8] for the classical C∕C under different base pressures. The

facs facs

facs facs
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Fig. 3 Comparison of reflection coefficient amplitude from COMSOL (black square), the proposed model (red solid curve), and Fedorov’s model (blue
dashed curve).

Fig. 2 Reflection coefficient contours from the proposedmodel (color contours) and Fedorov’s model (black solid lines). Left column:ϕ is kept constant

and ϕ � 0.2. Right column: Ar is kept constant and Ar � 0.4.
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discrepancies between the measured and predicted absorption
coefficients may be partially attributed to the lack of considering of
the scattering effect in the models. More in-depth investigations of
the scattering effects on the C∕C composite with an irregular porous
surface will be conducted in the future.
According to previous research [11], the stabilization effects of

coatings with different slit or pore shapes could be collapsed in good
agreement for the same hydraulic diameter dh � 4Ap∕C, whereAp is
the slit or pore area and C is the circumference. In line with this, and
for the same values of ϕ and H, the predicted reflection coefficients
are generally consistent with each other up to the resonant frequency
of the slits (Fig. 4).

IV. Conclusions

In the present Note, the theoretical impedance models have been
developed to describe the acoustic characteristics of plane ultrasonic
acoustic waves impinging on porous coatings corrugated with sub-
wavelength pores of circular or square cross section. The proposed
models consider high-order diffracted modes and therefore incorpo-
rate scattered-wave interactions among adjacent pores. In contrast
with the results of Fedorov’s models, the predicted reflection coef-
ficients have been shown to be consistent with numerical results from
a finite element solver (COMSOL Multiphysics), and the coupling
modes induced by neighboring pores are reproduced well. The
distributions of the reflection coefficient show the oscillatory behav-
ior at higher acoustic Reynolds numbers; otherwise they monoton-
ically decrease especially for deep pores. Additionally, the acoustic
characteristics are in general agreement for coatingswith different slit
or pore shapes, provided that these have the same hydraulic diameter
dh, porosity ϕ, and depthH. In a future study, the stabilization effect
on the Mack second mode will be investigated by spatially resolving
the flowfields in the slits or pores in the hypersonic flow using direct
numerical simulation. Thiswill allow an evaluation of the accuracy of
the proposed impedance models when these are used to provide an
acoustic impedance boundary condition at the wall.
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