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Abstract: In this paper, we propose an intelligent joint filter (JF) for enhancing the 10 

performance of vector tracking loop (VTL) in the Global Navigation Satellite System 11 

(GNSS). The JF combines the advantages of extended Kalman filter (EKF) and unbiased 12 

finite-impulse response (UFIR) filter. To this end, a supervised machine learning 13 

algorithm, named Gaussian mixture model (GMM) clustering, was used for providing 14 

excellent joint strategy. Those three types of filter-based vector tracking loop were first 15 

implemented and then processed with a set of raw satellite signals based on the 16 

software-defined receiver (SDR). Finally, comparative analyses and results of the tracking 17 

performance of EKF/UFIR/JF were carried out. Results show that the EKF-VTL has 18 

optimal tracking performance but sensitive to the noise statistics, which means it’s not 19 

robust. The UFIR-VTL is suboptimal but more robust compare to EKF-VTL. The 20 

proposed JF-VTL is both optimal and robust. 21 
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In response to the increasingly severe Global Navigation Satellite System (GNSS) 27 

environment, many techniques have been widely developed and applied in GNSS, such as 28 

antenna design, algorithm improvement and external aids [1–4]. Among these techniques, 29 

the vector tracking loop (VTL) technique has been extensively exploited in the GNSS 30 

receiver, because it is low cost and easy to implement [5]. The advantages of VTL over the 31 

conventional scalar tracking loop (STL) have been proved in many tough scenarios, e.g., 32 

high dynamics, intermittent signal outages, multipath interference and non-line-of-sight 33 

reception [6–8]. 34 

In VTL, all the tracking information of working channels is deeply coupled and 35 

interacted with each other. That is, the VTL is supervised because it combines all the 36 

tracking channels and takes full advantage of the relativity between them via a single 37 

integration filter, which is typically based on the extended Kalman filter (EKF). However, 38 

according to the Kalman filter theory, the optimal estimation of EKF depends on the 39 

exactly known noise statistics, which refer to the process noise covariance matrix Q  and 40 

the measurement noise covariance matrix R . Otherwise, the filter results are inaccurate or 41 

even diverging [9]. Aim to this weakness, some scholars propose to use adaptive algorithms 42 

to adjust the noise online, it works but it degrades the real-time performance and does not 43 

lead to satisfactory results for time-varying systems in most cases [10,11]. Besides, the R  44 

update time and window size N of adaptive EKF are still determined empirically [12]. 45 

In recent years, another popular Kalman-like filter, namely unbiased finite-impulse 46 

response (UFIR) filter, attracted the numerous attention of scholars. The UFIR filter was 47 

first proposed by Yuriy S. Shmaliy [13] and has been successfully applied to the discrete 48 

time-varying nonlinear systems [14,15]. Unlike EKF, the UFIR filter can ignore noise 49 

statistics completely, which means that it is immune to the errors in the noise statistics. 50 

Another advantage of UFIR over the EKF algorithm is that it only requires an optimal 51 

horizon of optN  points for minimizing the mean-square error (MSE). Fortunately, the optN52 



 

 

can be accurately achieved via measurements [16], which is much easier than for the noise 53 

statistics required by the EKF. 54 

Because of above mentioned, the purpose of this letter is to enhance the tracking 55 

performance of VTL in terms of both accuracy and robustness. To achieve this, firstly, a set 56 

of raw satellite data was collected from the open area by a vehicle motion experiment. 57 

Secondly, the EKF and UFIR algorithm was used to build the VTL, respectively, and were 58 

processed the data through the same software-defined receiver (SDR). Based on this, 59 

tracking measurements like code frequency, pseudorange will be extracted, and the 60 

performance comparative analysis of these two methods is carried out. Finally, we unite the 61 

EKF and UFIR to propose a joint filter (JF), in which the Gaussian mixture model (GMM) 62 

clustering algorithm was used to provide a better joint strategy. As a surprised Machine 63 

learning theory, GMM clustering is a distribution-based algorithm. In GMM, the 64 

probability density distribution of samples can be determined by the weighted sum of 65 

several Gaussian distribution functions [17,18]. Compared with the existing works, the 66 

main contributions of this letter could be summarized as follows: 67 

(1) We use UFIR algorithm to construct the VTL and verify its feasibility, which 68 

demonstrated suboptimal but robust compare to EKF-VTL.  69 

(2) Based on the first contribution, we further combine the advantages of EKF and the 70 

UFIR algorithm to build the joint filter (JF), which can achieve better tracking 71 

performance under different noise conditions. 72 

The rest of the paper is organized as follows. Section 2 introduces the methodology of 73 

the conventional VTL, which is based on the EKF algorithm and the proposed UFIR-VTL. 74 

The principles and implementation details of the proposed fusion algorithm are presented in 75 

Section 3. Experiment results to verify the tracking performance of the proposed method 76 

and some comparative analysis are provided in Section 4 and the conclusions of the study 77 

are presented in Section 5. 78 



 

 

2. Methodology 79 

2.1. VTL model 80 

As mentioned earlier, by making the most of the internal connections between the 81 

tracking channels, VTL couples all the channels information together using a single 82 

navigation processor. As shown in Fig. 1, based on the navigation solutions and the satellite 83 

ephemeris, the navigation processor can predict the receiver states information including 84 

position, velocity, clock bias and drift. In specific, the code phase errors and the frequency 85 

errors obtained from the discriminator output are not used to correct the corresponding 86 

numerically controlled oscillator (NCO) directly. The discriminator outputs are converted 87 

to pseudo-range error and pseudo-range rate error measurements. With the navigation 88 

solution and satellite ephemeris, the code and frequency errors at the next epoch can be 89 

predicted to drive the NCO. If only use the pseudoranges information in the state 90 

formulation of EKF, the vectorized method is called VDLL. Furthermore, both 91 

pseudoranges and pseudoranges rates can be used to establish VDFLL. In this letter, VDLL 92 

is the objective.  93 

 94 

Fig. 1. Block diagram of VTL. 95 

In VTL, the system equation at epoch k  is as follows: 96 
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where
T

x y zp p p t  X    = , is the state vector, in which xp
yp , and zp are the 98 

three-dimensional receiver position errors in an earth-centered and earth-fixed (ECEF) 99 

coordinates; t is the receiver clock bias error.; 1 4 4k− = I . The symbol “ ” denotes the 100 

estimates. 101 

The measurement equation is the function of the state vector with a first-order Taylor’s 102 

expression, which is given by: 103 

 ˆ
k k kZ X=   (2) 104 

where  1 2 n=Z    , is the measurement vector;  represents the 105 

pseudorange error; n  is the number of satellites involved in tracking;   is the 106 

measurement matrix, calculated by: 107 

 

1, 1, 1,

2, 2, 2,

, , ,

1

1

1

x y z

x y z

n x n y n z

e e e

e e e

e e e

 
 
 
 
 
  

H =  (3) 108 

where e  is the line-of-sight (LOS) vector between the receiver and the satellites. 109 

2.2. EKF-based tracking loop 110 

The EKF algorithm for the non-linear system is given as follows: 111 

(1) Time update 112 
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(2) Measurement update 115 
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Here, K  is the Kalman gain and used to correct the measurements; 
/

ˆ
k kX and /k kP are the 119 

estimate and error covariance, respectively. It is should be noted that, to make the EKF 120 

optimal, the process noise covariance Q and measurement noise covariance R  should be 121 

known exactly.   122 

2.3. UFIR filter 123 

Different from the EKF, the UFIR operates with only the averaging horizon of N  124 

points, instead of the noise statistics. To reduce the computational burden, the iteration of 125 

UFIR is used in this letter. As shown in Fig. 2, the UFIR algorithm operates from m to k . 126 

The iteration estimates 
sX̂  at s  in a batch form on a horizon[ , ]m s , and then updates 127 

estimates iteratively to reach the final value at k . 128 

 129 

Fig. 2. The flow chart of the iterative UFIR algorithm. 130 

The algorithm can be written as follows: 131 



 

 

(1) Preparation 132 

 ( )
1
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where m,sC and m,sy are the mapping matrix and extended observation vector, respectively, 134 

and represented as: 135 
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where m

s is an auxiliary matrix, given by: 138 
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(2) Time update 140 
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(3) Measurement update 142 
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where lG  is the generalized noise power gain (GNPG), lK represents the bias correction 146 

gain, not the Kalman gain in Equation (6). 147 

The UFIR filtering algorithm is easy to implement in nonlinear systems as EKF. The only 148 

tuning parameter required is the optimal horizon
optN , to minimize the mean-square error 149 

(MSE), which can be obtained by minimizing the trace of the error covariance matrix kP , as 150 

follows [14]: 151 

 = arg min {tr ( )}opt N kN NP  (17) 152 

where,  153 

 ( ) = E{[ ( )][ ( )] }T

k k k k k
ˆ ˆN N N− −x x x xP  (18) 154 

3. Proposed method 155 

3.1. Architecture 156 

To combine the advantages of EKF and UFIR, we first run these two algorithms-based 157 

VTL simultaneously, to obtain two different estimates EKF

kX̂ and UFIR

kX̂ . Then, we fuse 158 

these estimates with proper weights using the GMM clustering strategy. The GMM 159 

clustering is used because it can maximize the probability distribution of the samples and 160 

output the probability value. The architecture of the proposed method is shown in Fig. 3.  161 



 

 

 162 

Fig. 3. The architecture of the proposed method. The upper left block diagram exhibits that the samples 163 

extracted from the tracking loop follow the Gaussian distribution since the data points (‘+’) appear along 164 

the reference line (red). 165 

3.2. GMM clustering 166 

GMM is defined as the combination of finite Gaussian probability density functions, 167 

which represent the distribution of samples and can be expressed as follows [18]: 168 
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where x  is the sample data; M is the number of Gaussian components;   is the model 170 

parameters, including mean vector  , covariance matrix   and weight , satisfy
1

1
M

l

l=

= ; 171 

( | , )l lp x  represents the Gaussian component, and can be obtained by: 172 
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where D is the dimension of x . 174 



 

 

To obtain the maximum likelihood of probability density, the 175 

expectation-maximization (EM) algorithm is usually used to estimate the GMM parameter. 176 

The EM algorithm is as follows: 177 

E-step, calculate the probability of sample 178 

 ( = | ; , , , )i i

l lp j x=       (21) 179 

where i is a latent variable, represents the probability that the ith sample belongs to 180 

each Gaussian component. 181 

M-step, update the model parameter 182 
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 (22) 183 

Iterate over the Equation (21) and Equation (22), until the parameter converges to 184 

stable values. 185 

3.3. Fusion 186 

In VTL, the innovation covariance was extracted for GMM cluster analysis. We assign 187 

E

k and U

k to be the weights of EKF and UFIR, respectively. After we obtain the Gaussian 188 

weights of the samples according to the two steps above, the fusion weights in Figure 3 can 189 

be computed as: 190 

 
E U
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Furthermore, the JF estimate can be given as: 192 
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k k k k k k k k
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where E

kX̂ and U

kX̂ are the estimates of EKF and UFIR, respectively. 194 

4. Results and discussion 195 

In this section, we 1) verified the effectiveness of designing VTL with UFIR filter, 2) 196 

evaluated the performance of the proposed method. To accomplish this objective, a 197 

vehicle-mounted experiment was carried out. The experimental data were processed using 198 

the EKF-, UFIR- and JF-based VTLs, and some comparative analyses of these three kinds 199 

of VTLs are also provided. 200 

4.1. Experimental setup 201 

Fig. 4 presents the experiment set up of the field test, trajectory and the sky plot of 202 

visible satellites. The experiment was implemented in an open area of Hong Kong. The 203 

experiment equipment includes the vehicle, NovAtel GPS antenna, NLS Stereo front-end, 204 

and laptop. Specifically, the raw satellite signals are first collected by the antenna that fixed 205 

to the top of the car, and then down convert to the intermediate frequency (IF) signal by the 206 

front-end. Finally, the data is saved in the computer for post-processing, in which an 207 

open-sourced GPS software-defined receiver (SDR) was used. The key parameter settings 208 

are listed in Table 1. 209 

 210 



 

 

Fig. 4. Experiment setup and sky plot of visible satellites 211 

Table 1 212 

Parameters settings. 213 

Parameter Value Unit 

GNSS signal type GPS L1 C/A - 

Intermediate frequency 6.5 MHz 

Sampling rate 26 MHz 

Coherent integration time 1 ms 

VTL type EKF/UFIR/JF - 

4.2. Results 214 

A: Feasibility validation of UFIR-VTL 215 

In Figure 4(c), there are seven satellites available. Here we select the PRN 10 with the 216 

highest carrier-to-noise ratio (CNR=48 dB-Hz) as the objective. Figure 5 and 6 shows the 217 

code phase and frequency error curves of PRN10, respectively, since the code phase errors 218 

and code frequency errors are important performance indexes in the VTL. The loop 219 

tracking time is 20 seconds. Because it is difficult to adjust the process and measurement 220 

noise statistics through the hardware devices, draw on some common knowledge, we assign 221 

undesired measurement noise covariance in the periods of 8-12 seconds to simulate noise 222 

interference. As we can see from Fig. 5 and 6, the UFIR-VTL can produce tracking 223 

accuracy that is slightly worse than EKF-VTL, where the statistics of noise is exactly 224 

known. However, under the noise interference in the periods of 8-12 seconds, the tracking 225 

results of EKF show a larger error than that of UFIR. The above analyses demonstrate that 226 

the EKF does not suit well the noise interference in VTL, while the UFIR is a better 227 

robustness way to against the noise uncertainties in the GNSS receiver. The 228 

root-mean-square errors (RMSEs) of two evaluation indexes are given in Table 2.  229 



 

 

 230 

Fig. 5. Code phase errors of PRN 10. 231 

 232 

Fig. 6. Code frequency errors of PRN 10. 233 

Table 2 234 

RMSEs of code phase and frequency errors under different noise conditions. 235 

Methods 

RMSEs of code phase errors (Chip)  RMSEs of code frequency errors (Hz) 

Without With  Without With 

EKF-VTL 0.028 0.081 6.20 25.30 

UFIR-VTL 0.030 0.031 6.40 6.47 

B: Performance evaluation of JF 236 

In this section, we mainly focus on accessing the performance of the JF algorithm. 237 

Since the fused information is the state vector in VTL, the horizontal and vertical 238 

positioning errors are used as evaluation indexes. To evaluate the positioning accuracy of 239 

the proposed JF method, we used the NovAtel Flexpak6, as a reference receiver to provide 240 

a benchmark trajectory. Fig. 7 shows the three-dimensional position RMSEs values of 241 



 

 

EKF-, UFIE- and JF-methods. As can be seen, the accuracy of EKF is slightly better than 242 

that of UFIR under normal conditions. However, during the segment of noise interference, 243 

the EKF output shows a larger error than UFIR, which is an outcome of the ignorance of 244 

noise statistics. Furthermore, according to the subgraphs in Fig. 7, the JF can produce good 245 

positioning results of the whole process compare with the other two methods. Specifically, 246 

the proposed method can always close to the optimal filter regardless of the presence or 247 

absence of noise interference. This is owing to the probabilistic weights provided by the 248 

GMM cluster. Fig. 8 depicts the results of the probabilistic weight of EKF and UFIR, 249 

respectively. When the noise condition is ideal, the weights of EKF are relatively large, 250 

while in the case of noise interference, the weights of UFIR do. The results imply that the 251 

weights can be adjusted adaptively according to the noise conditions. 252 

Thus, as shown in Fig. 9, the JF combines the optimality of EKF and the robustness of 253 

UFIR tends to achieve the most accurate estimation results overall. 254 

 255 

Fig. 7. Position RMSEs of EKF, UFIR, and JF, respectively. (a) North; (b) East; (c) Up. 256 

 257 



 

 

 258 

Fig. 8. The probabilistic weights of the EKF and UFIR, respectively. 259 

 260 

Fig. 9. Performance of EKF, UFIR and JF filters under different noisy environments. 261 

5. Conclusion 262 

The conventional EKF-based VTL is impractical, as it depends on the measurement 263 

noise statistics and is an uncertain process requiring manual experience. In this paper, a 264 

joint filter approach based on the EKF and UFIR algorithms is proposed, to enhance the 265 

VTL performance in GNSS-noisy environments. To achieve this, the UFIR was first 266 

applied to build VTL, which demonstrated more robust than EKF-based VTL but at the 267 

cost of a little precision while the noise interference occurred. To provide a better joint 268 

effect, the probabilistic weights of EKF and UFIR is determined using the GMM clustering 269 

algorithm. Moreover, the performance of the joint model is evaluated by a car-mounted 270 



 

 

experiment. The experiment results show that compare with the other two methods, the 271 

proposed JF can effectively ensure not only the optimal estimation but also the robustness. 272 

The fusion of the inertial navigation system (INS) and GNSS will be studied in our future 273 

work. 274 
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