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Abstract— Different revolutionary applications, like the 
unmanned autonomous systems (UAS), require a highly precise 
positioning with centimetre-level accuracies. And Real-Time 
Kinematic (RTK) GNSS positioning stands a chance to these 
potential applications. RTK positioning can provide a 
centimetre-level positioning in open-sky or sub-urban 
environments. However, the performance is limited in a deep 
urban canyon with severe multipath and cycle slip effects. The 
measurements with noise will introduce error and results in bad 
solution quality. Therefore, removal on the bad measurements 
and remain those good-condition signals become essential for 
performing RTK in the urban environment. Based on this idea, 
this paper proposes using 3D building model with position 
hypothesis to select the healthy satellites for RTK positioning. 
We believed that using the 3D building model can better 
exclude the unhealthy or non-line-of-sight (NLOS) satellite 
compare to using a fixed high elevation angle mask. Therefore, 
this paper will compare the position results between 3D 
mapping aided (3DMA) GNSS RTK and the GNSS RTK with 
a fixed elevation angle mask. Geodetic- and commercial-grade 
receivers are employed to perform experiments in the urban 
environment of Hong Kong. The experiment results with 
geodetic-grade receiver shows that 3DMA GNSS RTK can 
provide a positioning accuracy with 10cm averagely.  

Index Terms—GNSS; Navigation; RTK; 3D building 
model; Urban canyons; Multipath; NLOS; 3DMA GNSS 

I. INTRODUCTION

GNSS is widely adopted in different unmanned 
autonomous system (UAS). With the differential GNSS 
(DGNSS) correction, smartphones or low-cost receivers can 
achieve one to two meters positioning error. However, 
positioning in the urban environment is always a challenge for 
GNSS positioning, where buildings can block, reflect or diffract 
the signals. Once the receiver receives these noisy 
measurements, it will degrade the positioning performance. For 
positioning with code measurements only in the urban 
environment, different techniques have been implemented to 
identify and exclude or correct those unhealthy measurements. 
They were starting with urban positioning strategies with extra 
equipment, which is suitable for vehicle-mounted applications. 
[1, 2] proposed using the sky-pointing fisheye camera to 
exclude the NLOS satellites by image recognition. Another 
approach is using a 3D light detection and ranging (LiDAR) to 

provide surrounding environment obstacles and detect the 
NLOS signal [3]. LiDAR can estimate the distance between 
building and itself as well as the visibility of the satellite. 
Therefore, with the NLOS propagation model, the reflection 
delay of the NLOS classified satellite can be predicted [4]. By 
integrating with the sky-pointing fisheye camera with LiDAR, 
the positioning accuracy in urban areas can be improved [5]. 
Also, research on the tightly-coupled GNSS/INS system for 
autonomous navigation in urban areas [6]. 

Followed by the receiver based urban positioning 
techniques, consistency-check method [7] can detect and 
exclude those unhealthy measurements to obtain better 
positioning accuracy. The trend on 3D building model 
resources become open access, which can aid the positioning in 
the urban environment. It is well-known as 3D mapping aided 
(3DMA) GNSS [8]. Common 3DMA GNSS algorithms are 
NLOS-excluded positioning [9], shadow matching [10, 11], 
likelihood-based 3DMA GNSS [12], ray-tracing 3DMA GNSS 
[13-15], and skymask 3DMA GNSS [16]. The integrated 
solution of 3DMA GNSS can achieve accuracy within 10-meter 
in the urban environment in both along and across street 
accuracy [12].  

Although the range-based GNSS can achieve several 
meters accuracy suitable for smartphone and IoT applications, 
it is not for UAS, which requires a high precision positioning 
accuracy. Therefore, a higher resolution measurement, which is 
carrierphase measurement, is required to provide finer 
positioning accuracy. Real-time kinematic (RTK) positioning 
stands a chance for the application which requires centimetre-
level accuracy positioning. RTK positioning is one of the most 
precise positioning technologies currently, which cooperates 
carrierphase measurements based on relative positions to obtain 
a centimetre-level accuracy positioning [17]. Conventionally 
GNSS RTK positioning is used to employ by limited 
applications operating in open-sky environment such as a 
geodetic survey. RTK positioning brings the sub-meter-level 
positioning accuracy to centimetre-level one. In conventional 
RTK positioning [18], the float position and float ambiguities 
are obtained by the least square method. Then the ambiguity 
resolution (AR) is performed by least-squares ambiguity 
decorrelation (LAMBDA) method to search for the optimal 
integer set in the ambiguity search ellipsoid. After the AR 
process, the integer ambiguities with minimum mean squared 
error (MMSE) can be found. The MMSE integer set becomes 
the fixed solution, and this method is named integer least 
squares (ILS) estimation [19]. The ratio test is to examine the 
confidence of integer set with MMSE to be unlike across other 
integer sets within searching space [20]. Low likelihood of the 
fixed integer set means it can be discriminated with enough 
confidence to provide precise position. The critical value is 
derived empirically with testing data, a threshold of 3 is usually 
used as a rule of thumb for ratio test validation [21]. There is 
also other research using a different critical value for ratio test, 
like k = 1.5 [22] and k = 2 [23]. Another method to obtains a 
fixed solution is the best integer equivariant (BIE) estimator 
[24, 25]. The BIE-estimator is optimal in the MMSE sense by 
weighted averaging all integer sets in AR processes. The BIE-
estimator, therefore, outperforms the float solutions and 
maintains the same accuracy as the fixed ILS solutions. 
Furthermore, no integer validation test is required.  
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Different researches have shown that RTK can provide 
high accuracy positioning solution in open-sky as well as some 
sub-urban environments [26]. Other studies also show that 
multi-constellation and -frequencies can achieve a higher fixing 
rate [27-30]. However, centimetre-level accuracy positioning 
with RTK is still a challenge even with measurements from 
multi-constellation and frequencies. In a highly urbanised 
environment surrounded by tall buildings, the GNSS signal can 
be reflected or diffracted, which results in NLOS reception and 
multipath effects. Where research shows that the multipath 
effect with lack of multipath suppression technique can results 
in increment on time to ambiguity resolution (TAR) [31]. 
Another serious problem, especially for carrierphase 
measurement, is the cycle slip effect due to the loss of lock for 
the signals [32]. These uncertainties for carrierphase 
measurements may result in incorrect ambiguity resolution 
(AR) processes with a low fixing rate [26]. To achieve better 
performance of RTK positioning in urban environments, 
excluding the unhealthy measurements is one of the 
approaches. A research in [33] proposed a cycle slip detection 
scheme and fixed by the MEMS-IMU to perform the RTK 
positioning. In [34], implemented using the sky-pointing 
fisheye camera with image processing technique to exclude the 
NLOS received satellites. Where this approach is suitable for 
vehicle-mounted application such as autonomous driving, 
another research does not require any extra equipment to 
improve the performance of RTK in the urban environment, 
such as selecting satellite with signal-to-noise ratio (SNR) [35] 
and increase the cut-off elevation angles [36]. These approaches 
can improve the availability of RTK GNSS in the urban canyon.  

At the meanwhile, some of the researches proposed 
cooperating the 3D building model to aid the RTK positioning. 
One innovation approach is the continuous-LOS method [37]. 
It assumes the signals that can be tracked continuously 
indicating a good quality of the measurements. Therefore, 
better positioning results can be obtained with only healthy 
measurements. These researches show that the selection of 
correct (e.g., LOS) satellites for RTK is important. Also, [38] 
proved that RTK GNSS could be achieved when approximate 
positions were within 5-15m from the true position with the aids 
of 3D maps. For the UAS application, the 3D maps can help the 
path planning to avoid GNSS challenging places and maximize 
the performance of RTK GNSS [39].  

This paper aims to incorporate RTK positioning with the 
3DMA position hypothesis method to select the optimal 
satellites for AR process, named as 3DMA GNSS RTK. 
Excluding unhealthy satellites based on the building geometry 
is the key strength of the proposed method. This strength is 
obvious for RTK receivers located at the environment with 
unevenly distributed buildings where the elevation angle mask 
should variate along with all azimuth angles. 

Several designed experiments on both urban and suburban 
environments in Hong Kong are performed to evaluate 
positioning performance on with and without 3DMA, as well as 
with different elevation angle cut-off value.  

The remainder of this paper is organised as follows: the 
system overview of the proposed 3DMA GNSS RTK is 
introduced in section 2. The experiments result, and analysis is 
presented in section 3. Finally, section 4 includes the conclusion 
and future works. 

II. THE PROPOSED 3DMA GNSS RTK 

The flowchart of the proposed 3DMA GNSS RTK is 
shown in Fig. 1. The algorithm can be divided into the online 
and offline processes. The offline stage includes processing the 
3D building model for NLOS classification. Here, we utilise the 
resource from GNSS shadow matching, which is the skyplot 
with highest elevation angle of the building boundaries, as 
known as ‘skymask’. The process will be discussed in section 
Fig. 1. At the online stage, the real-time RTK positioning and 
3DMA GNSS RTK are performed. First, the conventional RTK 
positioning with ambiguity resolution is performed and used as 
an initial guess. Based on the RTK solution, the hypothesis 
positioning candidates can be distributed. On each candidate, 
the satellite visibility will be estimated, then find the float 
solution and followed by ambiguity resolution. The 
carrierphase measurements with fixed ambiguities will then be 
used to estimate the weighting of the candidates, and the 
weighted average candidates’ position can be found. This 
weighted average position is used as an accurate float solution 
for the 3DMA GNSS RTK. The float solution will then perform 
NLOS exclusion and ambiguity resolution by BIE-estimator 
again to find the final solution. 

 



 

 

 
 

A. Skymask Generation 
The resources used in GNSS shadow matching are utilised 

for LOS/NLOS classification at each candidate, which is the 
‘skymask’. ‘Skymask’ is the skyplot with the building 
boundaries with the highest elevation angle. The skymask 
generation process is needed for NLOS classification at real-
time positioning stage. The skymask generation is done offline 
to reduce the computation load for the receiver. The detailed 
skymask generation processes can be found in [16].  

A large area of 3D building model is required to increase 
the availability of this algorithm as well as other 3DMA GNSS 
algorithms, which can be obtained by combining satellite 
images and airborne LiDAR [40, 41]. The 3D building model 
covered area is divided into grid point. At each grid point 𝑗𝑗, the 
skymask 𝑒𝑒𝑙𝑙𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑗𝑗(𝑎𝑎𝑎𝑎) is generated in 1-degree resolution on 
azimuth angle 𝑎𝑎𝑎𝑎 and 0.1-degree resolution on elevation angle. 
The satellite is placed on the skymask to classify the 𝑖𝑖 -th 
satellite 𝑆𝑆𝑉𝑉𝑖𝑖  to LOS/NLOS. If the satellite elevation angle is 
higher than that of skymask at a corresponding azimuth angle, 
it will be classified as LOS, 𝑆𝑆𝑉𝑉𝐿𝐿𝐿𝐿𝐿𝐿. Vice versa, the satellite will 
be NLOS, 𝑆𝑆𝑉𝑉𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁.  

 
𝑆𝑆𝑉𝑉𝐿𝐿𝐿𝐿𝐿𝐿 = �𝑆𝑆𝑆𝑆 ∈ 𝑆𝑆𝑉𝑉𝑖𝑖 | 𝑒𝑒𝑙𝑙𝑖𝑖 > 𝑒𝑒𝑙𝑙𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑗𝑗(𝑎𝑎𝑧𝑧𝑖𝑖)� 
𝑆𝑆𝑉𝑉𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = �𝑆𝑆𝑆𝑆 ∈ 𝑆𝑆𝑉𝑉𝑖𝑖 | 𝑒𝑒𝑙𝑙𝑖𝑖 ≤ 𝑒𝑒𝑙𝑙𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑗𝑗(𝑎𝑎𝑧𝑧𝑖𝑖)� 

(1) 

The pre-processed skymask are stored in the server-side. 
When performing real-time positioning, the skymask can be 
downloaded from the server. 

B. Conventional GNSS RTK for Initial Guess 
GNSS RTK cooperates both code (pseudorange) and 

carrierphase measurements to resolve the rover (receiver) 
position by estimating the relative distance to a reference 
station. In this paper, we use multi-constellation and dual-
frequency measurements. All measurements will perform a 
simple selection with 𝐶𝐶 𝑁𝑁0⁄  larger than 15dB-Hz and elevation 
angle 𝑒𝑒𝑒𝑒 larger than 15-degrees. The implemented GNSS RTK 
is based on the [42]. The equations in this Section B are 
fundamental to the derivation of the proposed hypothesised 
3DMA GNSS RTK.  

The double-differenced (DD) formulation is in system-
specific pivot satellite manner, where one master satellite, ∗𝑚𝑚,  
for each constellation and measurement frequency. Their DD 
code ∇∆𝜌𝜌  and carrier ∇∆𝜙𝜙  measurements for the 𝑖𝑖 -th and 
commonly received satellite at both rover 𝑆𝑆𝑉𝑉𝑟𝑟 and base station 
𝑆𝑆𝑉𝑉𝑏𝑏 can be expressed in meter, as, 

 
∇∆𝜌𝜌𝑖𝑖 = 𝜌𝜌𝑟𝑟𝑖𝑖 − 𝜌𝜌𝑟𝑟𝑚𝑚 − �𝜌𝜌𝑏𝑏𝑖𝑖 − 𝜌𝜌𝑏𝑏𝑚𝑚� = ∇∆𝐷𝐷𝑖𝑖 + 𝜀𝜀𝜌𝜌𝑖𝑖 
∇∆𝜙𝜙𝑖𝑖 = 𝜙𝜙𝑟𝑟𝑖𝑖 − 𝜙𝜙𝑟𝑟𝑚𝑚 − �𝜙𝜙𝑏𝑏𝑖𝑖 − 𝜙𝜙𝑏𝑏𝑚𝑚�

= ∇∆𝐷𝐷𝑖𝑖 + λi∇∆𝑁𝑁𝑖𝑖 + 𝜀𝜀𝜙𝜙𝑖𝑖 
(2) 

where ∗𝑟𝑟 stands for rover data while ∗𝑏𝑏 stands for base station 
data.  ∇∆𝐷𝐷  is the double-differenced geometry distance. 𝜀𝜀∗  is 
other error terms from receiver noise, etc. λi is the wavelength 
of the 𝑖𝑖-th common satellite between rover and base station 
(excluding the master one). ∇∆𝑁𝑁  is the double differenced 
integer ambiguity, where this will be obtained by AR which will 
be discussed in the sub-section 2).  

We assume the distance between rover and reference 
station is short, e.g. smaller than 10km, hence the atmospheric 
error can be almost eliminated by DD. As well as the satellite 
and receiver clock error can be eliminated by DD. In other 
words, the remaining element after DD should be the DD 
geometric distance ∇∆𝐷𝐷 between satellite, rover and reference 
station, and other noise 𝜀𝜀. The geometric distance for satellite 𝑖𝑖 
to the receiver is calculated by the Pythagoras theorem of 
satellite ECEF position and receiver ECEF position, 

 
𝐷𝐷∗𝑖𝑖 = �𝐩𝐩𝑖𝑖 − 𝐩𝐩∗�

= ��𝑝𝑝𝑥𝑥𝑖𝑖 − 𝑝𝑝∗,𝑥𝑥�
2 + �𝑝𝑝𝑦𝑦𝑖𝑖 − 𝑝𝑝∗,𝑦𝑦�

2 + �𝑝𝑝𝑧𝑧𝑖𝑖 − 𝑝𝑝∗,𝑧𝑧�
2
 

(3) 

Noted that geometric distance is applicable for both rover 
and reference station, 𝐷𝐷𝑟𝑟𝑖𝑖  and 𝐷𝐷𝑏𝑏𝑖𝑖 , respectively. Therefore, the 
DD of the geometric distance between receiver and satellite can 
be expressed as, 

 ∇∆𝐷𝐷𝑖𝑖 = 𝐷𝐷𝑟𝑟𝑖𝑖 − 𝐷𝐷𝑟𝑟𝑚𝑚 − �𝐷𝐷𝑏𝑏𝑖𝑖 − 𝐷𝐷𝑏𝑏𝑚𝑚� (4) 
This DD geometric distance can be used to form the 

known term vector for least square estimation. It represents the 
baseline distance between rover and reference station.  

 
1) Initial Float Value Estimation by Least-Squares 

The initial state estimation on the float position and 



 

ambiguities is done by the least-squares method. Where the 
state and DD observation model can be linearized as follows, 

 𝐲𝐲 = 𝐀𝐀𝐀𝐀 (5) 
where 𝐲𝐲 is the measurement vector, 

 𝐲𝐲 =

⎣
⎢
⎢
⎢
⎢
⎡∇∆𝜌𝜌

1 − ∇∆𝐷𝐷1

⋮
∇∆𝜌𝜌𝑖𝑖 − ∇∆𝐷𝐷𝑖𝑖

∇∆𝜙𝜙1 − ∇∆𝐷𝐷1

⋮
∇∆𝜙𝜙𝑖𝑖 − ∇∆𝐷𝐷𝑖𝑖 ⎦

⎥
⎥
⎥
⎥
⎤

 (6) 

𝐀𝐀 is the design matrix of the baseline and ambiguities. The 
first three columns of design matrix are the difference of the 
unit LOS vector for the satellites. While the upper right is a zero 
matrix and lower right is a diagonal matrix of the wavelength 
for corresponding satellite. 

 
𝐀𝐀 =

⎣
⎢
⎢
⎢
⎢
⎡𝐮𝐮𝐫𝐫

𝟏𝟏 − 𝐮𝐮𝐫𝐫𝐦𝐦 0 … 0
⋮ ⋮ ⋱ ⋮

𝐮𝐮𝐫𝐫𝐢𝐢 − 𝐮𝐮𝐫𝐫𝐦𝐦 0 … 0
𝐮𝐮𝐫𝐫𝟏𝟏 − 𝐮𝐮𝐫𝐫𝐦𝐦 𝜆𝜆1 … 0

⋮ ⋮ ⋱ ⋮
𝐮𝐮𝐫𝐫𝐢𝐢 − 𝐮𝐮𝐫𝐫𝐦𝐦 0 … 𝜆𝜆𝑖𝑖⎦

⎥
⎥
⎥
⎥
⎤

  

where 𝐮𝐮𝐫𝐫∗ = 𝐩𝐩𝐫𝐫−𝐩𝐩∗

𝐷𝐷𝑟𝑟∗
= �𝑝𝑝𝑟𝑟,𝑥𝑥−𝑝𝑝𝑥𝑥∗

𝐷𝐷𝑟𝑟∗
, 𝑝𝑝𝑟𝑟,𝑦𝑦−𝑝𝑝𝑦𝑦∗

𝐷𝐷𝑟𝑟∗
, 𝑝𝑝𝑟𝑟,𝑧𝑧−𝑝𝑝𝑧𝑧∗

𝐷𝐷𝑟𝑟∗
� 

(7) 

 𝐱𝐱  is the state vector including  𝐛𝐛 = �𝑏𝑏𝑥𝑥,𝑏𝑏𝑦𝑦,𝑏𝑏𝑧𝑧�  is the 
baseline between the rover and reference station (𝐩𝐩𝑟𝑟 = 𝐩𝐩𝑏𝑏 + 𝐛𝐛) 
and the float DD ambiguities. 

 𝐱𝐱 = �𝑏𝑏𝑥𝑥, 𝑏𝑏𝑦𝑦,𝑏𝑏𝑧𝑧,∇∆𝑁𝑁1, … ,∇∆𝑁𝑁𝑖𝑖�T (8) 
To solve (5) by the least-square estimation, we can find the 

vector of float solution 𝐱𝐱�,  
 𝐱𝐱� = 𝐍𝐍−1𝐀𝐀T𝐐𝐐−1𝒚𝒚 (9) 

where 𝐍𝐍 is the normal matrix calculated by 𝐍𝐍 = (𝐀𝐀𝐓𝐓𝐐𝐐−𝟏𝟏𝐀𝐀). 𝐐𝐐 
is the cofactor matrix, which is formed by weighting factor of 
each satellite and its pivot satellite. The weighting factor 𝜏𝜏 for 
each satellite can be calculated by [43]. If the carrier-to-noise 
ratio 𝐶𝐶/𝑁𝑁0 is larger than a threshold T, then the weighting 𝜏𝜏 is 
given as 1, otherwise 𝜏𝜏 is calculated as  

𝜏𝜏 =
1

𝑠𝑠𝑠𝑠𝑠𝑠2 𝑒𝑒𝑒𝑒
�10−

𝐶𝐶/𝑁𝑁−T
a ��

A

10−
F−T
a
− 1�

𝐶𝐶/𝑁𝑁 − T
F − T

+ 1�� (10) 

where 𝑒𝑒𝑒𝑒 and is the elevation angle of corresponding satellite. 
T, F, A, a are the constants for controlling the weighting surface. 
In here, we set T = 50, F = 20, A = 50, a = 30 heuristically. 
Based on (10), we get two vectors. The first vector contains the 
𝑖𝑖 -th available satellite’s weighting factor, given that 𝐪𝐪𝐬𝐬𝐬𝐬𝐬𝐬 =
�𝜏𝜏𝑟𝑟1 + 𝜏𝜏𝑏𝑏1, … , 𝜏𝜏𝑟𝑟𝑖𝑖 + 𝜏𝜏𝑏𝑏𝑖𝑖 �

T
. The second vector is the pivot satellite’s 

weighting factor for corresponding 𝑖𝑖 -th available satellite 
𝐪𝐪𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩 = [𝜏𝜏𝑟𝑟𝑚𝑚 + 𝜏𝜏𝑏𝑏𝑚𝑚, … , 𝜏𝜏𝑟𝑟𝑚𝑚 + 𝜏𝜏𝑏𝑏𝑚𝑚]T , respectively. Noted that 
these two vectors are both a single column vector with total 
number of available satellites. Therefore, the cofactor matrix 
for each satellite and both measurements can be calculated,  

 
𝐪𝐪 = 𝐪𝐪𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐪𝐪𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩T + 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝐪𝐪𝐬𝐬𝐬𝐬𝐬𝐬) 

𝐐𝐐 = �𝐪𝐪 ∙ c12 𝟎𝟎
𝟎𝟎 𝐪𝐪 ∙ c22

� 
(11) 

c1  and c2  are the scale factors for pseudorange and 
carrierphase measurements variance, we set c1 = 0.3 and c2 =
0.003 here. After the float solution 𝐱𝐱� is resolved in (9), with 
float baseline in ECEF coordinates 𝐛̂𝐛 and float ambiguities 𝐚𝐚�, 

the normalized weighted sum of the squared measurement 
residuals of the LS can be obtained.  

 𝛿𝛿2 =
(𝐲𝐲 − 𝐲𝐲�)T𝐐𝐐−𝟏𝟏(𝒚𝒚 − 𝐲𝐲�)

𝑠𝑠 − 𝑢𝑢
 (12) 

where 𝑠𝑠 is the total number of observations including code and 
carrier measurements, which is the size of 𝐲𝐲 . And  𝑢𝑢  is the 
number of unknowns which is the size of 𝐱𝐱� . The 𝛿𝛿2  is then 
multiply to the inverse of the normal matrix 𝐍𝐍−1 then perform 
Cholesky factorization, 𝑈𝑈 = 𝑐𝑐ℎ𝑜𝑜𝑜𝑜�𝛿𝛿2𝐍𝐍−1� . Finally, the 
variance-covariance (VC) matrix 𝐂𝐂 can be obtained, 

 𝐂𝐂 = 𝐔𝐔𝐓𝐓𝐔𝐔 = �
𝐐𝐐𝐛̂𝐛𝐛̂𝐛 𝐐𝐐𝐛̂𝐛𝐚𝐚�
𝐐𝐐𝐚𝐚�𝐛̂𝐛 𝐐𝐐𝐚𝐚�𝐚𝐚�

� (13) 

The float ambiguities 𝐚𝐚� and ambiguity VC matrix 𝐐𝐐𝐚𝐚�𝐚𝐚� will 
be used for LAMBDA) [19] and will be introduced in the 
coming sub-section 2). The main goal of ambiguity resolution 
(AR) is to find an integer vector that can minimize the squared 
error of LS estimated float ambiguity vector 𝐚𝐚�, given that,  

 min
𝐚𝐚
‖𝐚𝐚� − 𝐚𝐚‖𝐐𝐐𝐚𝐚�𝐚𝐚�−𝟏𝟏

2  where 𝐚𝐚 ∈ Z𝑛𝑛 (14) 
The integer vector 𝐚𝐚 with minimum squared vector will be 

the fixed ambiguities, notated as 𝐚𝐚�. The fixed ambiguities will 
then use to find the fixed solution 𝐛̌𝐛.  

 𝐛̌𝐛 = 𝐛̂𝐛 − 𝐐𝐐𝐛̂𝐛𝐚𝐚�𝐐𝐐𝐚𝐚�𝐚𝐚�
−𝟏𝟏(𝐚𝐚� − 𝐚𝐚�) (15) 

where both fixed ambiguity 𝐚𝐚� and fixed solution 𝐛̌𝐛 should be 
subjected to the minimization constrain.  

 
2) Integer Ambiguity Resolution (AR) 

The LAMBDA is introduced in [19, 44] for AR, also 
implemented in [42]. The main feature of the LAMBDA 
method is the decorrelation of the ambiguities by Z-
transformation, which parameterize the original ambiguities 𝐚𝐚 
to new ambiguities 𝔃𝔃 = 𝐙𝐙𝑇𝑇𝐚𝐚�.  

The VC matrix 𝐐𝐐𝐚𝐚�𝐚𝐚� will first be decomposed into matrices 
𝐋𝐋 and 𝐃𝐃.  

 𝐐𝐐𝐚𝐚�𝐚𝐚� = 𝐋𝐋−𝑇𝑇𝐃𝐃−1𝐋𝐋−1 (16) 
where matrix 𝐃𝐃 is a diagonal matrix, and matrix 𝐋𝐋 is a lower 
triangular matrix. The decorrelation process is to find the 
transformation matrix 𝐙𝐙 which is an integer approximation of 
𝐋𝐋. From [45], by the properties of invertible ambiguity and the 
integer transformation matrix 𝐙𝐙 can be found which equals to 
𝐋𝐋, 

 𝐐𝐐𝐳𝐳�𝐳𝐳� = 𝐙𝐙𝑇𝑇𝐐𝐐𝐚𝐚�𝐚𝐚�𝐙𝐙 = 𝐙𝐙𝑇𝑇𝐋𝐋−𝑇𝑇𝐃𝐃−1𝐋𝐋−1𝐙𝐙 = 𝐃𝐃−1 (17) 
And the estimate 𝔃𝔃� can be found, 

 𝔃𝔃� = 𝐙𝐙𝑇𝑇𝐚𝐚� (18) 
And during the decorrelation process, the VC matrices 

𝐃𝐃�−1 and 𝐋̃𝐋−1 are updated, 

 𝐐𝐐𝐳𝐳�𝐳𝐳� = 𝐋̃𝐋−𝑇𝑇𝐃𝐃�−1𝐋̃𝐋−1 
𝐐𝐐𝐳𝐳�𝐳𝐳�
−1 = 𝐋̃𝐋𝐃𝐃�𝐋̃𝐋𝑇𝑇 (19) 

where the minimization problem for AR in equation (14) 
becomes, 

 min
𝔃𝔃
‖𝔃𝔃� − 𝔃𝔃‖𝐐𝐐𝐳𝐳�𝐳𝐳�−𝟏𝟏

𝟐𝟐  with 𝔃𝔃 ∈ Z𝑛𝑛 (20) 
And the decomposition 𝐋̃𝐋 and 𝐃𝐃�  in (19) will be used for 

integer searching with transformed ambiguities.  
Noted that the integer searching can be done on original 

ambiguities 𝐚𝐚  as well as the transformed ambiguities 𝔃𝔃 . 
However, the searching will be more efficient with the 
decorrelated ambiguities [46]. In here, the ambiguities still 
noted as 𝐚𝐚 for remaining parts where the ambiguities can be 



 

transformed or not. From (14), we can expend the minimizer to,  
 (𝐚𝐚� − 𝐚𝐚)𝑇𝑇𝐐𝐐𝐚𝐚�𝐚𝐚�

−𝟏𝟏(𝐚𝐚� − 𝐚𝐚) ≤ χ2  (21) 
where χ2 is a positive value to control the size of the ellipsoidal 
region [47]. Together with (16), we get,  

 ∑ 𝑑𝑑𝑖𝑖�(𝑎𝑎𝑖𝑖 − 𝑎𝑎�𝑖𝑖) + ∑ 𝑙𝑙𝑗𝑗𝑗𝑗�𝑎𝑎𝑗𝑗 − 𝑎𝑎�𝑗𝑗�𝐼𝐼
𝑗𝑗=𝑖𝑖+1 �2 ≤ χ2𝐼𝐼

𝑖𝑖=1   (22) 
where 𝑑𝑑𝑖𝑖  is the 𝑖𝑖 -th diagonal element at matrix 𝐃𝐃 . 𝑙𝑙𝑗𝑗𝑗𝑗  is the 
element at the 𝑗𝑗-th row and 𝑖𝑖-th column at matrix 𝐋𝐋. (22) shows 
the integer searching process is done in the sequential 
conditional adjustment. Where to find the 𝑖𝑖-th ambiguity 𝑎𝑎𝑖𝑖, the 
(𝑖𝑖 + 1) -th up to the end of 𝐼𝐼 -th ambiguities must be 
conditioned. The whole implementation of integer searching 
can be found in [42]. Noted that if the ambiguities are 
transformed at the beginning, a back transformation needs to be 
done.  

 𝐚𝐚� = 𝐙𝐙−𝟏𝟏𝔃𝔃�  (23) 
For different AR approach, the integer set used for 

baseline coordinate estimation will be different. The AR 
approaches can be divided into ILS [19] with ratio test [21] and 
BIE estimator [24]. 

In this study, the BIE estimator will be used for AR to 
estimate the ambiguity set. As we believed that the success rate 
of fixed solution using ILS is not satisfactory in urban areas. 
For the BIE, the ambiguity set is calculated by the weighted 
average of the integer set found by LAMBDA [24]. As 
indicated in [37, 48], the positioning accuracy of BIE is better 
than that of the float solution of ILS. Meanwhile, BIE can 
maintain a similar accuracy as the fixed solution of ILS. Unless 
the special case of a 100% and 0% success rate, their 
performance will become equal for ILS and BIE estimator [48]. 
See the calculation of the BIE below. 

 
𝐚𝐚� = ∑ 𝑧𝑧

exp�−12‖𝐚𝐚�−𝔃𝔃‖𝐐𝐐𝐚𝐚�𝐚𝐚�
2 �

∑ exp�−12‖𝐚𝐚�−𝔃𝔃‖𝐐𝐐𝐚𝐚�𝐚𝐚�
2 �

𝔃𝔃∈Θa�
λ

𝔃𝔃∈Θ𝑎𝑎�
𝜆𝜆   

with Θa�λ = �𝔃𝔃 ∈ Z𝑛𝑛 | ‖𝐚𝐚� − 𝔃𝔃‖𝐐𝐐𝐚𝐚�𝐚𝐚�
2 < χ2� 

(24) 

The BIE estimator obtains the ambiguity set by taking the 
integer-summation over finite integer set 𝔃𝔃 inside 𝑛𝑛-dimension 
integer space Z𝑛𝑛 by tuning the ellipsoidal region constant χ2, 
where depends on the float solution and its variance matrix. The 
weighted average ambiguity set 𝐚𝐚�, which equals to 𝛁𝛁∆𝐍𝐍 in (2), 
is then used to calculate the fixed solution with (15).  

C. AR and Scoring at Positioning Hypothesis 
Candidate 

After conventional GNSS RTK estimated the initial 
position in section B, then the 3DMA GNSS RTK will estimate 
the ‘truth visibility’ to select the best set of the healthy satellite 
by distributing a number of hypothesis position candidates 
around the initial position. On each candidate j, a score will be 
given based on matchness between the DD carrierphases ∇∆𝛟𝛟 
that survived from the skymask aided NLOS exclusion and the 
simulated DD carrierphases ∇∆𝛟𝛟�𝑗𝑗  based on the position 
candidate j. Theoretically speaking, the candidate with highest 
score should obtain similar or even identical satellite visibility 
to the ground truth [49]. This will be discussed in this section. 
The weighted average candidates based on the given score will 
be the ‘accurate float position’ for visibility estimation. Noted 
that here we name it accurate float position as the ambiguities 
have not mapped to integer space and it is not the final solution 
for 3DMA GNSS RTK. Based on the visibility at the accurate 

float position, the healthy satellites will be selected to perform 
GNSS RTK, which will be discussed in section D.  

Similar to 3DMA GNSS algorithm [12], hypothesis 
position candidates are distributed around the initial position by 
the conventional GNSS RTK in section B. Candidates are 
distributed with 5m radius with a 50cm resolution. The 
visibility and ambiguity will be estimated, and the score will be 
given to the candidate to represent the probability of a candidate 
being the ground truth or not. Here, the BIE-estimator is 
selected for the AR at each candidate due to its superiority 
under noisy measurement [25].  

Identical to conventional GNSS RTK, healthy 
measurement with  𝐶𝐶 𝑁𝑁0⁄  value larger than 15dB-Hz and 
elevation angle 𝑒𝑒𝑒𝑒 larger than 15-degree will be selected. Also, 
at each candidate 𝑃𝑃𝑗𝑗 , satellites will first perform LOS/NLOS 
classification with continuous-LOS estimation proposed in [37] 
to select healthy measurements. In each candidate, the healthy 
measurements are then passed to AR process, which is similar 
to the conventional ILS and BIE-estimation in section B.  

The survived code and carrier measurements are first 
double differenced as same as the conventional GNSS RTK. 
The DD code ∇∆𝜌𝜌  and carrier ∇∆𝜙𝜙  measurements for 𝑖𝑖 -th 
satellite at 𝑗𝑗-th candidate can be expressed as, 

 
∇∆𝜌𝜌𝑗𝑗𝑖𝑖 = ∇∆𝐷𝐷𝑗𝑗𝑖𝑖 + 𝜀𝜀𝜌𝜌𝑗𝑗𝑖𝑖  

∇∆𝜙𝜙𝑗𝑗𝑖𝑖 = ∇∆𝐷𝐷𝑗𝑗𝑖𝑖 + λi∇∆𝑁𝑁𝑗𝑗𝑖𝑖 + 𝜀𝜀𝜙𝜙𝑗𝑗𝑖𝑖  
(25) 

where ∇∆𝑁𝑁𝑗𝑗𝑖𝑖  is the ambiguity resolved by the BIE estimator 
based on the LS estimated float ambiguity 𝐚𝐚�𝑗𝑗  at candidate 𝑗𝑗. 
The superscript i denotes the index of the common satellite 
survived from the quality checks (𝐶𝐶 𝑁𝑁0𝑖𝑖⁄ > 15dB - Hz, 𝑒𝑒𝑙𝑙𝑖𝑖 >
15° ) and skymask aided NLOS exclusion 𝑒𝑒𝑙𝑙𝑖𝑖 >
𝑒𝑒𝑙𝑙𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑗𝑗(𝑎𝑎𝑧𝑧𝑖𝑖) . Then, the survived DD measurements are 
used to LS and estimate the float ambiguities 𝐚𝐚�𝑗𝑗  and its VC 
matrix 𝐐𝐐𝐚𝐚�𝐚𝐚�,𝐣𝐣 . With the known candidate position 𝐩𝐩𝑗𝑗 , the 
geometric distance between candidate position 𝐩𝐩𝑗𝑗 and satellite 
𝐩𝐩𝑖𝑖 yields to, 

 𝐷𝐷𝑗𝑗𝑖𝑖 = �𝐩𝐩𝑖𝑖 − 𝐩𝐩𝑗𝑗� (26) 
Also, the DD geometric distance for LS, 

 ∇∆𝐷𝐷𝑗𝑗𝑖𝑖 = 𝐷𝐷𝑗𝑗𝑖𝑖 − 𝐷𝐷𝑗𝑗𝑚𝑚 − �𝐷𝐷𝑏𝑏𝑖𝑖 − 𝐷𝐷𝑏𝑏𝑚𝑚� (27) 
Noted that the DD geometric distance ∇∆𝐷𝐷𝑗𝑗𝑖𝑖 will also be 

used together with the resolved integer ambiguity to model the 
carrierphase and to score the candidate. The DD measurement 
will obtain the float solution of position 𝐛̂𝐛𝑗𝑗 and ambiguities 𝐚𝐚�𝑗𝑗 
at each of the 𝑗𝑗-th candidate by LS. Total 𝐼𝐼 survived satellite 
will put into the least square to estimate the float ambiguities 𝐚𝐚�𝑗𝑗 
as well as VC matrix 𝐐𝐐𝐚𝐚�𝐚𝐚�,𝑗𝑗 by (5) to (13) presented in section 
II.B.1). 

After obtaining the float ambiguities 𝐚𝐚�𝑗𝑗  and VC matrix 
𝐐𝐐𝐚𝐚�𝐚𝐚�,𝑗𝑗, we can resolve the integer ambiguity for candidate 𝑗𝑗. In 
this paper, the AR process will employ the LAMBDA with 
BIE-estimator [24] to resolve the ambiguity set. 𝐐𝐐𝐚𝐚�𝐚𝐚�,𝑗𝑗  is 
decomposed and resolve the transformation matrix 𝐙𝐙𝑗𝑗 by (16) 
and (17) respectively. Then the float ambiguities will transform 
with the transformation matrix with (18) as well as the VC 
matrix by (19). After that, the LAMBDA method based on (20) 
to (22) will retrieve several sets of ambiguities inside integer 
space. The BIE-estimator will be employed to find the weighted 



 

average of integer sets 𝔃𝔃. For the ambiguities at 𝑗𝑗-th candidate, 
denoted as 𝐚𝐚�𝑗𝑗, is then given as, 

 
𝐚𝐚�𝑗𝑗 = �𝔃𝔃

exp �−1
2 �𝐚𝐚�𝑗𝑗 − 𝔃𝔃�

𝐐𝐐𝐚𝐚�𝐚𝐚�,𝑗𝑗

2 �

∑ exp �−1
2 �𝐚𝐚�𝑗𝑗 − 𝔃𝔃�

𝐐𝐐𝐚𝐚�𝐚𝐚�,𝑗𝑗

2 �𝔃𝔃∈Θ𝔃𝔃∈Θ

 

With Θ = �𝔃𝔃 ∈ 𝑍𝑍𝑛𝑛 | ‖𝐚𝐚� − 𝔃𝔃‖𝑸𝑸𝒂𝒂�𝒂𝒂� ,𝒋𝒋
2 < χ2� 

(28) 

Here, the number of integer set is heuristically set to 100 
times of the total number of ambiguities to reduce the 
computational load. 

After the integer ambiguity is resolved, we can obtain the 
score for the 𝑗𝑗-th candidate. In (25), the DD carrierphase mainly 
consists of the DD geometric distance and the DD integer 
ambiguities. Therefore, we can model the carrierphase after 
integer ambiguity resolution by, 

 ∇∆𝜙𝜙�𝑗𝑗𝑖𝑖 = ∇∆𝐷𝐷𝑗𝑗𝑖𝑖 + λi𝑎𝑎�𝑗𝑗𝑖𝑖 (29) 
The score for the 𝑗𝑗-th candidate 𝑆𝑆𝑗𝑗 can be obtained by the 

mean square error between measurements and modelled 
carrierphase based on the Gaussian noise assumption. In theory, 
after the exclusions, only healthy measurements are remained 
and the likelihood should follow the Gaussian distribution [50]. 

 𝑆𝑆𝑗𝑗 = exp �−0.5 ×
1
𝐼𝐼
� �∇∆𝜙𝜙𝑖𝑖 − ∇∆𝜙𝜙�𝑗𝑗𝑖𝑖�

2𝐼𝐼

𝑖𝑖=1
� (30) 

where 𝐼𝐼 is the total number of survival satellites after exclusion. 
Noted that in the �∇∆𝜙𝜙𝑖𝑖 − ∇∆𝜙𝜙�𝑗𝑗𝑖𝑖�, if the candidate is closer to 
the ground truth, the value of ∇∆𝐷𝐷𝑗𝑗𝑖𝑖  will be close to the 
measurement ∇∆𝜙𝜙𝑖𝑖  itself. As a result, the better integer 
ambiguity 𝑎𝑎�𝑗𝑗𝑖𝑖  can be obtained to describe the carrierphase 
measurements ∇∆𝜙𝜙𝑖𝑖 . In other words, a smaller value of 
�∇∆𝜙𝜙𝑖𝑖 − ∇∆𝜙𝜙�𝑗𝑗𝑖𝑖� , as well as the mean square error (MSE) 
1
𝐼𝐼
∑ �∇∆𝜙𝜙𝑖𝑖 − ∇∆𝜙𝜙�𝑗𝑗𝑖𝑖�

2𝐼𝐼
𝑖𝑖=1 , a higher score will be given, as shown 

in the heatmap of Fig. 2(a). 
 

D. 3DMA GNSS RTK 
After scoring each candidate, the accurate float position 

(3DMA HYPO with the light blue point in Fig. 2(b)) can be 
found by weighted averaging the candidate 𝐩𝐩𝑗𝑗 with their score 
𝑆𝑆𝑗𝑗, where there are total 𝐽𝐽 positioning candidates. 

 𝐩𝐩3𝐷𝐷𝐷𝐷𝐷𝐷 =
∑ 𝑆𝑆𝑗𝑗 × 𝐩𝐩𝑗𝑗
𝐽𝐽
𝑗𝑗=1

∑ 𝑆𝑆𝑗𝑗
𝐽𝐽
𝑗𝑗=1

 (31) 

 

 
Fig. 2. Heatmap on (a) mean square error (MSE) of position 

hypothesis candidates, smaller or bluish the better; and (b) score of 
position hypothesis candidates calculated by (30), larger or reddish 

the better. Green star: ground truth; Light blue point (3DMA HYPO): 
position hypothesis solution calculated by (31). 

 
At the accurate float position 𝐩𝐩3𝐷𝐷𝐷𝐷𝐷𝐷, the AR with BIE-

estimator will be done once again to refine the positioning 
result. It means the 𝐩𝐩3𝐷𝐷𝐷𝐷𝐷𝐷 plays a role in providing accurate 
float solution to the AR. GNSS RTK with satellite visibility at 
𝐩𝐩3𝐷𝐷𝐷𝐷𝐷𝐷 will be performed once again, which is the same as what 
have done in (25) but replacing 𝐩𝐩𝑗𝑗  with 𝐩𝐩3𝐷𝐷𝐷𝐷𝐷𝐷 . The NLOS 
exclusion and continuous-LOS estimation will be performed 
based on the hypothesis position solution 𝐩𝐩3𝐷𝐷𝐷𝐷𝐷𝐷. Identical to 
the conventional RTK positioning, float solution of position 
𝐛̂𝐛3𝐷𝐷𝐷𝐷𝐷𝐷 , ambiguities 𝐚𝐚�3𝐷𝐷𝐷𝐷𝐷𝐷 , and VC matrix 𝐐𝐐𝐚𝐚�𝐚𝐚�,3𝐷𝐷𝐷𝐷𝐷𝐷  are 
obtained by the least square method same as section B.1). Then 
the AR process with BIE-estimator is performed by inputting 
𝐚𝐚�3𝐷𝐷𝐷𝐷𝐷𝐷 and 𝐐𝐐𝐚𝐚�𝐚𝐚�,3𝐷𝐷𝐷𝐷𝐷𝐷. By following (17) to (24), the BIE will 
estimate the ambiguities 𝐚𝐚�3𝐷𝐷𝐷𝐷𝐷𝐷 by weighted average all integer 
sets with its MSE,  

𝐚𝐚�3𝐷𝐷𝐷𝐷𝐷𝐷 = �𝔃𝔃
exp �−1

2 ‖𝐚𝐚�3𝐷𝐷𝐷𝐷𝐷𝐷 − 𝔃𝔃‖𝐐𝐐𝐚𝐚�𝐚𝐚�,3𝐷𝐷𝐷𝐷𝐷𝐷
2 �

∑ exp �−1
2 ‖𝐚𝐚�3𝐷𝐷𝐷𝐷𝐷𝐷 − 𝔃𝔃‖𝐐𝐐𝐚𝐚�𝐚𝐚�,3𝐷𝐷𝐷𝐷𝐷𝐷

2 �𝓏𝓏∈Θ𝓏𝓏∈Θ

 

With Θ = �𝔃𝔃 ∈ 𝑍𝑍𝑛𝑛 | ‖𝐚𝐚� − 𝔃𝔃‖𝐐𝐐𝐚𝐚�𝐚𝐚�
2 < χ2� 

(32) 

And the final 3DMA GNSS BIE RTK solution 𝐛̅𝐛3𝐷𝐷𝐷𝐷𝐷𝐷 as, 
𝐛̅𝐛3𝐷𝐷𝐷𝐷𝐷𝐷 = 𝐛̂𝐛3𝐷𝐷𝐷𝐷𝐷𝐷 − 𝐐𝐐𝐛̂𝐛𝐚𝐚�,3𝐷𝐷𝐷𝐷𝐷𝐷𝐐𝐐𝐚𝐚�𝐚𝐚�,3𝐷𝐷𝐷𝐷𝐷𝐷

−𝟏𝟏 (𝐚𝐚�3𝐷𝐷𝐷𝐷𝐷𝐷 − 𝐚𝐚�3𝐷𝐷𝐷𝐷𝐷𝐷) (33) 
After mapping the ambiguities from real numbers 𝐚𝐚�3𝐷𝐷𝐷𝐷𝐷𝐷 

to integer one 𝐚𝐚�3𝐷𝐷𝐷𝐷𝐷𝐷  with BIE estimator, the fixed baseline 
solution 𝐛̅𝐛3𝐷𝐷𝐷𝐷𝐷𝐷 can be obtained.  

After discussing the details of both the conventional GNSS 
RTK and proposed 3DMA GNSS RTK, it is followed by the 
designed experiment in the urban environment to demonstrate 
the performance of 3DMA GNSS RTK and evaluate how 
satellite selection is important to GNSS RTK in section III.  

III. POSITIONING PERFORMANCE AND ANALYSIS 

A. Experiment Setup 
Several experiments were conducted in different suburban 

and urban canyons in Hong Kong, as shown in Fig. 3(a). Table 
I summarises the experiments’ information. The calculation of 
the mean and STD of the elevation angle of the skymask can be 
found at [51]. Skymask at the locations of Experiments 1-5 with 
available satellites are shown in Fig. 3(b)-(f), respectively. The 
measurements were collected using the commercial-grade u-
blox F9P and geodetic grade NovAtel FlexPak6. A NovAtel 
GPS-702-GG active antenna was employed and connected to 
two receivers with a splitter to have a common-ground on the 
received signals, as shown in Fig. 4. The reference station of 
Hong Kong Satellite Positioning Reference Station Network 
(SatRef) does not provide the GALILEO data for post-
processing.  Thus, only GPS (L1 and L2) and BeiDou (B1 and 
B2) are used in the evaluation.  

We modified the open-source code goGNSS [52] to 
implement the proposed method in this paper for the evaluation. 
The skymask for satellite visibility estimation is pre-generated 
from the 3D building model. The 3D building model is provided 
by the Lands Department of Hong Kong. According to their 
quantitative positional accuracy assessment results provided, 
the horizontal and vertical positional accuracy for buildings is 
1m, and for terrain model is 2m. In this study, the 3D building 



 

model is only used for NLOS satellite exclusions, the accuracy 
will not affect the classification accuracy much. In [5] 

proposed, when the uncertainty of building model increased to 
8m, the visibility classification can still achieve 95.47%.   

 

 

 
Fig. 3. (a) Experiment locations in Hong Kong urban areas. (b)-(f) Skymask at experiment locations 1-5, respectively. 

 
 

TABLE I 
EXPERIMENT INFORMATION 

Location Number of epochs  
(at 1Hz output rate) Scenario Skymask elevation 

angle mean (degree) 
Skymask elevation 
angle STD (degree) 

Skymask 
Maximum elevation 

angle (degree) 
1 900 Opensky 11.1 14.9 42.0 
2 900 Suburban 30.6 21.0 55.9 
3 1200 Urban 36.9 12.8 51.7 
4 1200 Urban 43.2 17.9 67.6 
5 900 Urban 37.8 15.7 58.3 

 
 

 

Fig. 4. Experiment equipment.  
 

B. Ground Truth Determination and Variation 
As the required positioning accuracy of this study is in 

centimetre-level, therefore, the determination of experiment 
ground truth is important. When doing the experiment, the RTK 
estimated by NovAtel Flexpak 6 is performed at the same time 
to get the average best position as the ground truth. For RTK, 
the Hong Kong SatRef service by Hong Kong Land Department 
is employed. Reference station ‘HKSC’ is selected for the short 
baseline double differencing, where the geometric distance is 



 

about 4.6 km to the experiments’ location averagely. Before 
start recording the raw measurement for both receivers, we wait 
until the NovAtel receiver to resolve the position type on 
narrow integer solution (‘NARROW_INT’ output), which is 
multi-frequency RTK solution with carrierphase ambiguities 
resolved to narrow-lane integers. After the narrow-lane solution 
are obtained about one-minute, we start to record the raw 

measurements for both receivers while the NovAtel keeps 
outputting the RTK solution.  

At the post-processing stage, all the resolved narrow-lane 
integers RTK solution will be extracted and taking average as 
the ground truth. The validation between ground truth and all 
narrow-lane solutions for all experiment are summarised in 
Table II.  

 
TABLE II 

GROUND TRUTH INFORMATION ESTIMATED BY NOVATEL FLEXPAK 6. STD STANDS FOR STANDARD DEVIATION. 

Experiment No. of position 
output (at 1Hz) 

Percentage of 
narrow-lane 

solution 

Maximum 2D 
error 
(cm) 

Minimum 2D 
error 
(cm) 

Mean 2D error 
(cm) 

STD of 2D error 
(cm) 

1 986 95.9% 1.86 0.60 1.00 0.41 
2 967 97.6% 3.64 0.37 1.18 0.66 
3 1321 99.6% 2.56 0.37 0.93 0.50 
4 1005 99.4% 4.25 0.43 1.33 0.77 
5 1292 80.0% 2.56 0.37 0.93 0.50 

 
The average difference between calculated ground truth 

and all narrow-lane position is about 1cm with a standard 
deviation (STD) about 0.5cm. The calculated position is used 
as the ground truth to evaluate the RTK performance of 
different algorithms. However, it is hard to determine which 
algorithm performs better theoretically if the positioning 
difference between two algorithms is within 1cm. 

C. ADOP Value and Positioning Performance 
In theory, after performing the 3DMA exclusion, only the 

healthy satellites are used to AR process for RTK positioning. 
In other words, the ambiguity dilution of precision (ADOP) 
value should be decreased. The ADOP is proposed in [53], 
representing the precision of the float ambiguities. The more 
precise the float ambiguities is, the higher the probability of 
estimating the correct integer ambiguities is. ADOP is an easy-
to-evaluate scalar precision measure that calculated by the 
determinant of the float ambiguity VC-matrix, 𝐐𝐐𝐚𝐚�𝐚𝐚� , and its 
dimension, 𝑛𝑛, 

 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = |𝐐𝐐𝐚𝐚�𝐚𝐚�|1 2𝑛𝑛⁄   [unit: cycle] (34) 
The value of ADOP = 0.12 cycles, usually as a rule of 

thumb for the ambiguity success rate of 99.9% [54]. In here, we 
will compare the ADOP and PDOP values on with and without 
adopting 3DMA method for the BIE and 3DMA GNSS RTK, 
which is the proposed method of this study. Table III 
summarises the average ADOP and PDOP of all experiments. 
The PDOP and ADOP of 3DMA GNSS RTK are obtained 
based on the 3DMA NLOS exclusion at ground truth location, 
labelled as 3DMA BIE@GT. 

 
TABLE III 

AMBIGUITY DILUTION OF PRECISION (ADOP) AND POSITION DILUTION 
OF PRECISION (PDOP) OF EACH EXPERIMENT 

 Average ADOP (cycle) Average PDOP 

Experiment BIE 3DMA 
BIE@GT 

BIE 3DMA 
BIE@GT  

1 0.03 0.03 0.99 1.00 
2 0.49 0.06 1.36 1.44 
3 0.05 0.05 2.01 2.03 
4 0.32 0.06 1.46 1.57 
5 0.21 0.11 3.75 4.19 

 
From the results shown in Fig. 5, a large 2D positioning error 
can be found for the BIE, especially for the large ADOP value 
at the beginning to about 200s. The positioning error can 
achieve over 10m with ADOP value exceeds 1 cycle. Besides, 
it can be observed that the ADOP value is decreased after 
applying 3DMA GNSS, with originally over 1 cycle, and 
decreased to within 0.2 cycles. While the PDOP value only 
increases a bit after the 3D building model is used to exclude 
the NLOS measurements, where PDOP value with 3DMA only 
about 0.2 larger than that of the BIE. And maximum PDOP 
value with 3DMA is about 2 at about 500s, which is 0.5 larger 
than that of BIE. After satellite exclusions, the low ADOP value 
should obtain a good RTK positioning results theoretically; 
however, not all results show the same phenomena. For 
example, the marked point at 842s in Fig. 5. The ADOP and 
PDOP value are 0.06 and 1.30, respectively. However, the 2D 
positioning error is larger over 2m here. This may cause by the 
noise from the multipath effects that contribute to the 
carrierphase measurements.  Furthermore, at about epoch 500, 
a large number of satellites are excluded by 3DMA, and the 
PDOP increased to about 3 for the 3DMA method, while PDOP 
is 2 for the BIE. However, ADOP value does not increase much 
here. And the positioning result does not increase at the same 
time. 

 



 

 
Fig. 5. (a) Positioning error, (b) ADOP value, (c) PDOP value, and (d) number of satellite (SV) on the 3DMA BIE@GT (green) and BIE (red) 

of experiment 2.  
 
This result shows that even though the PDOP value of BIE 

is low, the ADOP value is high, the RTK positioning error is 
still large. Which means the noisy measurements are 
contributing to the AR and degrade the positioning 
performance. After applying the 3DMA, only the healthy 
measurements remain, and they are precise enough to resolve 
ambiguity set for the RTK solution. 

 

D. Positioning Results 
In this section, the post-processed results will be analysed 

and compared by different positioning algorithms, including: 
1) BIE 

Position with AR by BIE estimator. 
2) BIE@EL35 

The position with AR by BIE estimator, increases the 
mask elevation angle to 35-degree. This method is selected 
because many of the existing works adopt high elevation angle 
mask assumption in urban GNSS RTK [55].  

3) 3DMA BIE RTK 
The position with AR by BIE estimator, and visibility 

estimation at accurate float position with 3DMA exclusion, 
which is the proposed method. 
4) 3DMA BIE@GT  (Theoretically the best) 

The position with AR by BIE estimator, visibility 
estimation at ground truth and 3DMA exclusion. This method 
is theoretically the best solution, as both the initial state and 
visibility are both estimated at ground truth location.  

 
The initial state estimation method, AR method, and other 

satellite selection parameters are shown in Table IV. The 
elevation cut-off angle and 𝐶𝐶/𝑁𝑁0  thresholds are empirical 
constant. This value could be diverse for different measurement 
frequencies, constellation, and equipment setup. The constant 
for continuous-LOS estimation is same as the value in [37], 
where GPS is set to 6s and BDS is set to 15s. And the first 6s 
will not exclude any satellite until the starting to exclude the 
GPS satellite.  

 
TABLE IV 

POST-PROCESSING INFORMATION AND PARAMETERS FOR DIFFERENT ALGORITHMS 

Algorithm Initial state 
estimation AR method Usage of 3D 

models 

Applying 
continuous LOS  

(C-LOS) 

Elevation cutoff 
angle (degree) 

C/N0 cutoff  
(dB-Hz) 

BIE Least square BIE No No 15 

15 
BIE@EL35 Least square BIE No No 35 

3DMA BIE RTK Accurate float 
position BIE Yes Yes 15 

3DMA BIE@GT Ground truth BIE Yes Yes 15 
 
The positioning results of Experiments 1 to 5 by the 

geodetic-grade receiver are summarized in Table V. The 2D 
positioning error statistic are categorised in root-mean-squared 
(RMS) error, mean error, standard deviation (STD), maximum 



 

(Max) error, and minimum (Min) error.  
 

TABLE V 
2D POSITIONING ERROR SUMMARY ON EXPERIMENTS 1 TO 5 BY GEODETIC-GRADE RECEIVER (UNIT: CM) 

BIE: RTK GNSS SOLUTION WITHOUT 3DMA. BIE@EL35: INCREASE THE ELEVATION CUTOFF ANGLE TO 35 DEGREES TO EXCLUDE SATELLITE. 
3DMA BIE RTK: PROPOSED METHOD OF THIS STUDY. 3DMA BIE@GT: 3DMA EXCLUSIONS WITH PERFECT CASE. 

Experiment  BIE BIE@EL35 3DMA BIE RTK 3DMA BIE@GT 

1 

RMS 1.15 1.50 1.15 1.15 
Mean 1.02 1.36 1.03 1.03 
STD 0.53 0.63 0.53 0.53 
Max 2.33 2.77 2.33 2.33 
Min 0.03 0.02 0.03 0.03 

2 

RMS 382.83 306.86 7.47 7.47 
Mean 214.33 135.43 1.91 1.91 
STD 317.39 275.51 7.22 7.22 
Max 1157.70 885.38 203.68 203.68 
Min 0.22 0.14 0.03 0.03 

3 

RMS 0.90 0.95 0.93 0.95 
Mean 0.78 0.86 0.82 0.84 
STD 0.44 0.41 0.45 0.45 
Max 2.09 1.97 2.09 2.09 
Min 0.01 0.02 0.01 0.01 

4 

RMS 241.76 30.11 7.95 8.11 
Mean 126.78 10.31 1.76 2.16 
STD 205.96 28.30 7.75 7.82 
Max 593.57 195.78 124.25 124.25 
Min 0.08 0.06 0.05 0.01 

5 

RMS 216.85 62.02 1.93 1.93 
Mean 74.46 23.43 1.37 1.37 
STD 203.75 57.45 1.37 1.37 
Max 1201.26 295.91 28.00 28.00 
Min 0.03 0.03 0.03 0.03 

 
In the first experiment, it locates in a relatively openksy 

area, most of the satellites are the LOS ones. Therefore, the 
3DMA cannot help the positioning by excluding the NLOS 
satellite, and their PDOP value are nearly the same. As a result, 
the positioning performance is identical for RTK GNSS with 
and without aiding of the 3D building model, which are BIE 
and 3DMA BIE RTK, the RMS positioning error is about 1cm 
and maximum positioning error is about 2cm. However, for the 
BIE@EL35, a larger positioning error is obtained. The RMS 
error increases to 1.5cm, with the largest position error near 
3cm. The average ADOP and PDOP value of BIE@EL35  are 
0.04 and 2.76, respectively. The ADOP value is similar to that 
of BIE, but the PDOP value is worst, resulting in a larger 
positioning error.  

The second experiment locates in the suburban 
environment which is in between two buildings. The 
positioning RMS error of BIE is about 4m, while there is still 
about 3m RMS error for BIE@EL35. The 3DMA BIE RTK 
positioning results achieve the RMS error within 10cm while 
the largest error is about 2m. Furthermore, it is identical to the 
theocratically best result, which is 3DMA BIE@GT. This 
implies this error could be caused by multipath effects, which 
currently cannot be identified by 3D models.  

The cumulative distribution function (CDF) of the 2D 
positioning error of Experiment 2 is shown in Fig. 6. From the 
meter-level accuracy CDF plot, we can observe that the 2D 
positioning error of 3DMA BIE RTK is far smaller than that of 

BIE. Looking at the centimetre-level CDF plot, BIE only 
achieves about 60% of data positioning error that is within 
10cm. After increasing the elevation cut-off angle to 35-degree, 
it is increased to about 80%. After applying 3DMA, near all 
epoch positioning error is within 10cm. This result shows that 
increasing the elevation cut-off angle can improve the 
positioning performance to a certain extent, while 3DMA 
GNSS RTK can improve performance dramatically in the urban 
environment. 

 

 
Fig. 6. Cumulative distribution function (CDF) of the 2D 
positioning error of experiment 2 in (a) metre-level and (b) 

centimetre-level. 
 
The third experiment locates in an urban environment 

surrounded by three buildings. Although the location of 
Experiment 3 is with severe NLOS and multipath effects, BIE 
and BIE@EL35 are still able to achieve a good result. All 



 

algorithms perform well, and the RMS error is within 1cm 
while the maximum error is about 2cm. The reason for this good 
positioning in this urban environment is the good ADOP value 
for all available satellites. From Table III, we can see that the 
average ADOP for experiment 3 of BIE is 0.05, which is similar 
to that of Experiment 1 (opensky). Therefore, even the PDOP 
value of experiment 3 of BIE is 2.01, the low ADOP value can 
still achieve a good RTK positioning. In this experiment, 
although a smaller RMS and mean error are found in BIE, we 
cannot conclude that BIE is outperformed others. As the 
difference between each value is within 0.05cm where the mean 
difference of experiment 3 ground truth is near 1cm with a 
standard deviation of 0.5cm, and the maximum difference is 
about 2.5cm.  

Experiments 4 and 5 located near the buildings, therefore, 
the skymask at these two locations are non-evenly distributed. 
In other words, a higher elevation cut-off angle (BIE@EL35 
solution) does not help the positioning results as much 
compared with the proposed 3DMA GNSS RTK. 3DMA BIE 
RTK outperforms BIE@EL35 more than 20cm on RMS error 
for both experiments.  

In Experiment 4, the RMS positioning error of BIE is in 
the meter-level where the positioning RMS error is about 2.4m. 
after increasing the elevation cut-off angle, the positioning error 
reduced to about 30cm. In here, the 3DMA BIE RTK perform 
the best that RMS error is about 8cm with maximum 
positioning error for about 1.2m. Although from the value 
3DMA BIE RTK is smaller than that of 3DMA BIE@GT on 
RMS and mean error, we cannot conclude the 3DMA BIE RTK 
outperforms. But it is definitely 3DMA BIE RTK achieve 
similar performance to the theoretically the best result (3DMA 
BIE@GT).  

For Experiment 5, a similar improvement in 3DMA can be 
found. The BIE obtains an RMS error over 2m. BIE@EL35 can 
reduce the RMS error to within 1m, to about 60cm. With the 
3DMA, the RMS error reduces dramatically to within 2cm, 
where maximum positioning error is about 28cm. This result is 
identical to the theoretically the best result.  

The summary of the positioning error of 3DMA GNSS 
RTK shown in Fig. 7. After applying the 3D building model, 
75% of error is within 2.5cm, and only a few outliers can be 
found. Also, the summary of 3DMA GNSS RTK improvement 
shows in Table VI. In here, only the epoch with smaller 
positioning error by 3DMA GNSS RTK is found to be 
considered as ‘improved epoch’. In urban environments like 
experiment 2, 4, and 5, more than half of the epoch are 

improved and reduce the positioning error with more than 1m 
averagely. Even on the opensky environment like experiment 1, 
3DMA GNSS is not expected to perform well, but an 
improvement of 40% epochs in observed.  

 

 
Fig. 7. (a) Box plot on 3DMA BIE RTK in different experiments. 

(b) zoom in of (a) to centimetre-level.  
 
 

TABLE VI 
SUMMARY OF POSITIONING ERROR IMPROVEMENT PERCENTAGE AND THE 
AVERAGE VALUE. ONLY THE EPOCH WITH SMALLER POSITIONING ERROR 

BY 3DMA GNSS RTK IS FOUND TO BE CONSIDERED AS IMPROVED. 

Experiment Percentage on 
improved epoch (%) 

Average 2D 
improvement (cm) 

1 40.52 0.0025 
2 79.46 267.38 
3 32.80 0.06 
4 57.79 216.42 
5 56.83 128.89 

 
RTK positioning in urban required good quality of 

carrierphase measurement. Up to here, we have shown the 
3DMA GNSS RTK can perform well in the urban area with the 
raw measurement by the geodetic-grade receiver. However, a 
different story is told by a commercial-grade receiver, where 
the measurement quality is relatively poor. As well as receiving 
the noisy measurements in an urban environment, the 
positioning results are bad. The positioning results for the u-
blox F9P are summarised in Table VII. The RTK positioning 
results for the commercial-grade receiver is large compared to 
a geodetic-grade receiver. This could be due to the receiver 
noise with bad measurement quality (coming from the 
characteristic of the high-sensitivity), results in large position 
error. 

 
TABLE VII 

SUMMERY ON POSITIONING RESULTS BY U-BLOX F9P RECEIVER (UNIT: CM) 
BIE: RTK GNSS SOLUTION WITHOUT 3DMA. BIE@EL35: INCREASE THE ELEVATION CUTOFF ANGLE TO 35 DEGREES TO EXCLUDE SATELLITE. 

3DMA BIE RTK: PROPOSED METHOD OF THIS STUDY. 3DMA BIE@GT: 3DMA EXCLUSIONS WITH PERFECT CASE. 
Experiment  BIE BIE@EL35 3DMA BIE RTK 3DMA BIE@GT 

1 

RMS 163.24 162.61 163.24 163.24 
Mean 136.08 134.45 136.08 136.08 
STD 90.21 91.52 90.21 90.21 
Max 335.98 394.53 335.98 335.98 
Min 0.61 1.35 0.61 0.61 

2 
RMS 268.41 349.87 162.72 204.76 
Mean 184.38 185.88 98.54 120.92 
STD 195.17 296.57 129.57 165.34 



 

Max 1267.36 1723.07 1154.68 1154.68 
Min 0.46 0.05 0.05 0.05 

3 

RMS 109.43 115.90 107.94 107.53 
Mean 91.49 100.54 90.74 90.33 
STD 60.07 57.68 58.49 58.36 
Max 272.46 309.98 272.46 272.46 
Min 0.42 0.43 0.42 0.42 

4 

RMS 131.74 129.68 130.66 161.18 
Mean 115.85 111.96 107.46 128.57 
STD 62.76 65.49 74.37 97.27 
Max 294.53 282.54 303.96 615.60 
Min 0.84 1.19 0.52 0.79 

5 

RMS 90.48 91.65 210.95 86.54 
Mean 73.45 74.56 90.16 72.01 
STD 52.86 53.31 190.80 48.03 
Max 245.74 245.74 3086.53 233.46 
Min 0.25 0.25 0.25 0.25 

 
Due to the noisy measurements, the commercial-grade 

receiver can only provide a metre level accuracy RTK 
positioning. However, the 3DMA BIE RTK can still improve 
the positioning accuracy on most of the case. However, a large 
positioning error found in experiment 5 due to the wrong 
satellite exclusion. In here, we use one of the epochs to explain 
the reason, which is shown in Fig. 8.  

 

 
Fig. 8. (a) position heatmap. (b) skymask at ground truth with 

available satellites. (c) skymask at 3DMA HYPO (accurate float 
position) with available satellites. NOTE: green circle represents the 

satellite used for RTK, red circle represents excluded satellite. 
 
As the proposed 3DMA BIE RTK uses the visibility at 

accurate float position (light blue point in Fig. 8(a)) for the AR 
process. The position hypothesis solution obtains about 1.14m 
error, and accidentally excluded the G01 satellite with both L1- 
and L2-band measurements (as shown in Fig. 8(c)). However, 
the G01 should be a LOS satellite at ground truth and should 
not be excluded. This exclusion results in the PDOP value is 
increased from 4.7 to 18.0, and comparing MSE of the 
ambiguity set by BIE estimator between 3DMA BIE RTK and 
3DMA BIE@GT, the values are 0.3332 and 0.1075, 
respectively. The larger MSE value implies that the estimated 
ambiguity set of 3DMA BIE RTK is possibly not optimal. As a 
result, the position error increases to about 17.5m. The result 
shows that an accurate visibility estimation location is also 
important to the 3DMA GNSS RTK.  

 

E. Positioning Results using 3-Hours of Data 
A 3-hours static experiment is also conducted in Location 

3 to validate the developed 3DMA GNSS RTK. The equipment 
setup is identical to the description in section III.A. The 2D 
positioning error, ADOP, PDOP, and received satellite numbers 
are shown in Fig. 9. The overall positioning performance is 
summarised in Table VIII. 

 



 

 
Fig. 9. Comparison on BIE and 3DMA BIE RTK on (a) 2D positioning error, (b) ADOP value, (c) PDOP, and (d) number of satellite (SV) 

received.  
 
 

TABLE VIII 
SUMMARY ON 2D POSITIONING ERROR OVER 3 HOURS DATA BY 

GEODETIC-GRADE RECEIVER (UNIT: CM) 
BIE: RTK GNSS SOLUTION WITHOUT 3DMA. BIE@EL35: INCREASE 

THE ELEVATION CUTOFF ANGLE TO 35 DEGREES TO EXCLUDE SATELLITE. 
3DMA BIE RTK: PROPOSED METHOD OF THIS STUDY. 3DMA 

BIE@GT: 3DMA EXCLUSIONS WITH PERFECT CASE. 

 BIE BIE@EL35 3DMA 
BIE RTK 

3DMA 
BIE@GT 

RMS 180.59 109.07 49.05 48.54 
Mean 82.66 45.48 14.94 14.70 
STD 160.57 99.14 46.72 46.26 
Max 1689.80 774.00 369.42 353.07 
Min 0.02 0.03 0.02 0.02 

 
Comparing the ADOP and PDOP values, although the 

PDOP value of the 3DMA method increased, the ADOP value 
is decreased compared to the conventional BIE. The results 
show that the 3DMA excludes the unhealthy satellites 
successfully, and only the good measurements are used for the 
AR. The BIE@EL35, the 2D RMS error is about 1m with 

maximum positioning error about 8m. After applying 3D 
models, the RMS error of 3DMA BIE RTK is near half metre 
only. The result here is also nearly the same as theoretically the 
best result, 3DMA BIE@GT. Especially in the first half 
experiment time period (1 to about 6,000 epochs), the proposed 
method excluded a lot of satellites, and the PDOP increased 
from 1.3 to nearly 2.0. However, the satellite exclusions can 
improve the ambiguity precision much, this can be observed 
from the change of ADOP value. The ADOP value decreased 
much from about 0.5 to 0.04. As a result, the 2D positioning 
result improved.  

The accuracy of accurate float position is the key to affect 
the visibility estimation for 3DMA BIE RTK. An incorrect 
visibility estimation can bring an incorrect AR, resulting in a 
degraded positioning performance. The 2D positioning error of 
accurate float position (𝐩𝐩3𝐷𝐷𝐷𝐷𝐷𝐷 in (31)) in and 3DMA BIE RTK 
is shown in Fig. 10 (a). The percentage of visibility 
classification correctness Fig. 10 (b). We assume the visibility 
estimation is correct at the ground truth, and we compare to it 
at the accurate float position to obtain the correctness 
percentage of the visibility classification.  

 



 

 
Fig. 10. (a) 2D positioning error of accurate float position, 𝐩𝐩3𝐷𝐷𝐷𝐷𝐷𝐷 in (31), and 3DMA BIE RTK. (b) Correctness of the visibility estimation 

between that based on the accurate float position and ground truth.  
 
At the first half of the experiment, nearly all 2D 

positioning errors of accurate float position are within 1m, and 
3DMA BIE RTK can obtain a good positioning result. After 
epoch 7000, the error of accurate float position fluctuates 
rapidly, and the average error increases to over 1m. And the 
classification percentage start decreasing at the same time, 
which means the unhealthy measurements could be used for the 
AR in 3DMA BIE RTK. We can observe that the performance 
become worse after epoch 7000, the 2D positioning error 
increased over 1m for several numbers of epochs.  

 

F. Computation Load Evaluation 
This study has shown that 3DMA RTK GNSS can improve 

RTK GNSS positioning in urban canyon. However, the 
required computation load is a crucial factor for real-time 
applications. Table IX shows the average duration required to 
output one positioning solution for the two methods.  

 
TABLE IX 

COMPUTATIONAL LOAD FOR THE BIE AND 3DMA BIE RTK. 
 BIE 3DMA BIE RTK 

Average 
duration for one 
epoch solution 

(s) 

0.10 21.94 

Average number 
of available 

satellites 
31 23 

 
The conventional method, BIE, only uses 0.1s to output 

position solution while proposed 3DMA BIE RTK uses about 
22s. The main computational load of proposed method goes to 
the AR at each positioning candidate, sampling all candidates 
using about 21.8s in total. At the same time, obtaining final 
positioning used about 0.1s, which is same as BIE. To conclude, 
the accurate float position estimation is currently 

computationally intensive, making 3DMA GNSS RTK hard to 
implement for real-time application.  

 

IV. CONCLUSIONS AND FUTURE WORK 

In this study, a novel 3DMA GNSS RTK positioning 
algorithm is proposed. The 3DMA GNSS RTK uses the 
hypothesis position candidates for NLOS exclusions and selects 
the healthy satellites for ambiguity resolution. The positioning 
accuracy can be improved compared to conventional RTK 
positioning. Nevertheless, the analysis also shows that the 
NLOS exclusion by skymask is important for RTK in urban 
areas compared to that uses a fixed elevation cut-off angle. This 
advantage is obvious when the RTK receiver is located in the 
urban environment with non-uniform building distribution. 
Experiment results show that the satellite exclusion will slightly 
increase the PDOP value, while the ADOP value will remain 
the same or decrease dramatically. In other words, a correct 
satellite exclusion can benefit the AR for RTK positioning by 
increasing the probability of resolving the correct ambiguities, 
which is the key for RTK positioning. 3DMA GNSS RTK can 
perform RTK positioning in urban with accuracy within 10cm 
averagely with the geodetic grade receiver.  

Currently, the hypothesis candidates with ambiguity 
searching are used to find the accurate float position for 
visibility estimation. There are two main limitations to this 
method. The first limitation is the hypothesis candidates need 
to cover the ground truth location to ensure the correct visibility 
can be examined. The second limitation is the intensive 
computational load of the proposed method. These limitations 
make it difficult to implement the 3DMA GNSS RTK 
practically. Therefore, the evaluation process will soon be 
replacing with gradient-descent methods to reduce the 
computation load, such as Newton’s method to resolve the best 
position iteratively for visibility estimation.  



 

Besides, this paper only shows the feasibility of 3DMA 
GNSS RTK with a static experiment. In the near future, more 
experiment will be done in a different urban environment as 
well as the driving experiment to show the performance of 
3DMA GNSS RTK in the urban environment. Also, the cycle 
slip detection and correction scheme need to be added to 
improve the healthy satellite selection for the 3DMA GNSS 
RTK as cycle slip is one of the most common errors for the 
urban RTK. Furthermore, if the commercial-grade receiver is 
not feasible to perform RTK positioning in the urban 
environment, another satellite weighting scheme or satellite 
selection method must be performed to achieve urban RTK 
positioning. 
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