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ARTICLE INFO ABSTRACT

Human-robot collaboration (HRC) has attracted strong interests from researchers and engineers for
improved operational flexibility and efficiency towards mass personalization. Nevertheless, existing
HRC development mainly undertakes either human-centred or robot-centred manner reactively, where
operations are conducted by following the pre-defined instructions, thus far from an efficient integration
of robotic automation and human cognitions. The prevailing research on human-level information
processing of cognitive computing, the industrial IoT, and robot learning creates the possibility of
bridging the gap of knowledge distilling and information sharing between onsite operators, robots
and other manufacturing systems. Hence, a foreseeable informatics-based cognitive manufacturing
paradigm, Proactive HRC, is introduced as an advanced form of Symbiotic HRC with high-level cogni-
tive teamwork skills to be achieved stepwise, including: 1) inter-collaboration cognition, establishing
bi-directional empathy in the execution loop based on a holistic understanding of humans and robots’
situations; 2) spatio-temporal cooperation prediction, estimating human-robot-object interaction of
hierarchical sub-tasks/activities over time for the proactive planning; and 3) self-organizing teamwork,
converging knowledge of distributed HRC systems for self-organization learning and task allocation.
Except for the description of their technical cores, the main challenges and potential opportunities are
further discussed to enable the readiness towards Proactive HRC.
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robot jointly working for a common goal (e.g. co-assembly
of a gear); 2) conception, denotes the perceptual capabilities
of robot (e.g. object detection by robot vision); 3) cyber,
stands for the adaptive control of robot (e.g. collision avoid-
ance); 4) cognition, represents the cognitive understanding of
activities/tasks (e.g. human action recognition); and 5) con-
figuration, stands for the full automation level, where human
and robot co-work in a self-organized manner. Meanwhile,
the shaded block in grey denotes the unreached degree of
active role in each automation level. Following this man-
ner, the key aspects of each paradigm are summarized in
the box, together with its evaluation result highlighted in the
three-dimensional coordinate accordingly.

Ever since 1980, early researchers have explored the co-
existence of human and robots to increase welding versatility
[9], where they can only perform separate tasks indepen-
dently due to the lack of team consciousness, let alone active
engagement for partner’s execution (black dash line). Then,
human-robot interaction (HRI) [10] emerged to connect hu-
man and robotic agents firstly on the basis of communication
techniques, such as physical haptic [11], gestures [12] and
brain-computer interface [13]. This stage is still stuck in the
exploration of the supportive role of the human and robots
for their coordination (green arrow). With research activi-
ties ongoing, human and robot parties can have their own
autonomy (active role) at times in the execution loop. Those
technologies accelerated the progress of human-robot cooper-
ation [14] (pink arrow), of which the surge of research works
are further extended to the manufacturing field from 2005
onwards [15].

1. Introduction

With the prevailing implementation of advanced manufac-
turing technologies, artificial intelligence, industrial Internet-
of-Things (IIoT) and big data analytics, towards new gener-
ation of intelligent manufacturing [1], industrial companies
are striving to achieve: 1) the high efficiency and flexibil-
ity of on-demand manufacturing for mass personalization
[2]; 2) the high accuracy and reliability for producing com-
plex mechanical components [3]; and 3) the effective domain
expertise support for onsite operations [4]. To tackle these
challenges, human-robot collaboration (HRC) becomes a
prevailing implementation strategy, which combines high
accuracy, strength, and repeatability of industrial robots with
high flexibility and adaptability of human operators to realize
optimal overall productivity [5, 6].

The evolvement pathway of human-robot relationships
is shown in Fig. 1 and further evaluated from two criteria,
namely the role of human and robotic in the collaborative
work (horizontal axis), and level of automation (vertical axis).
In details, horizontal axis (i.e. the open/closed circle) depicts
the role of the human’s and robot’s engagement in the dy-
namic HRC process, including inactive role, supportive role
and active role. Hence, in an optimal HRC solution, human
reaches an intuitive manner (mental stress-free), while the
robot achieves an adaptive manner, by dynamically adjusting
their respective roles. Moreover, vertical axis represents the
automation (smartness) levels of various HRC paradigms,
derived from the 5C architecture model of cyber-physical
system [7, 8], namely 1) coordination, represents human and
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From 2008 [16], HRC has been playing an ever-critical
role to enable high-flexible manufacturing. In this context,
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HRC 5C Architecture Model

1997 - Human-Robot Cooperation

e Robots and humans share some physical
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o The parties share a partially overlapping
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e The two agents temporarily work
simultaneously

e The parties have their own autonomy at
times

1986 - Human-Robot Interaction

e Robots and humans share the same
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e Direct communication with each other

e Task are completed step by step

e Sequential order from one party (either a
robot or a human)

‘20205 - Proactive HRC !
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2008 - Human-Robot Collaboration (HRC)
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oriented activity
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-..._ | ® Robots and humans are placed within the
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Fig. 1. An evolvement pathway towards Proactive HRC

several paradigms/concepts have been brought up to date.
Reactive HRC, as the initial phase, mainly concerns two
aspects: 1) safety issues [17] for human-robot coexistence
without fences on the factory floor [18]; and 2) non-verbal
commands for human-robot interaction [19] (yellow arrow).
One typical example of reactive HRC in manufacturing is the
scenario of human-centred assembly, where a robot follows
the human co-worker’s non-verbal instructions for perform-
ing an appointed task rather than pre-programming rigid
codes. Then, Symbiotic HRC has emerged, aiming to com-
bine the best skills of robots and humans, which “possesses
the skills and ability of perception, processing, reasoning,
decision making, adaptive execution, mutual support and
self-learning through real-time multimodal communication
for context-aware human-robot collaboration [20]”. The
prevailing development trend of Symbiotic HRC mainly ad-
dresses the following issues: 1) multimodal communication
such as voice, gesture, haptic and brainwave [21], 2) con-
text awareness of human’s motion and performing tasks [22],
and 3) adaptive control for robot programming without spe-
cialised expert knowledge [23] (blue arrow). Nevertheless,
existing HRC development exposes two critical weaknesses,
which impede efficient collaboration of robotic automation
and human cognitions. The first one is that a robot in HRC
normally needs to follow the human operator’s commands,
such as gestures or AR instructions, not attaining an opti-
mized adaptive manner of robots or an intuitive role of the
human. On the other hand, the collaboration between human

and robot is unidirectional and stuck in slave/master mode,
i.e., either human-centred or robot-centred manner, far from
adaptability and flexibility.

To address those issues, with the prevailing research on
human-level information processing of cognitive computing,
the industrial IoT, and robot learning, a foreseeable cognitive
manufacturing paradigm [24], Proactive HRC, is introduced
and defined as “a self-organizing, bi-directional collabora-
tion between human operators and robots in manufacturing
activities, where they can proactively work for a common goal
in every execution loop over time”. Following this definition,
it takes full advantage of each agent’s capabilities and can be
regarded as the final phase of Symbiotic HRC with high-level
automation level (purple arrow), which allows a long-term
bi-directional collaboration between human and robots in
manufacturing activities. Despite hierarchical sub-activities
along time, they can proactively work for a common goal
in every progression. In this context, bi-direction cognition
between humans and robots and self-organizing teamwork
in manufacturing activities can be realized. Meanwhile, par-
ticipants in the HRC system can understand each other’s
personal wellbeing or working conditions for empathy, to
reach unattained collaborative efficiency and flexibility.

2. Proactive Human-Robot Collaboration

To achieve Proactive HRC, three high-level cognitive
teamwork skills, including: 1) inter-collaboration cognition,
2) spatio-temporal cooperation prediction, and 3) self-organizing
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Fig. 2. Roadmap towards Proactive HRC

teamwork, as the stepwise goals are depicted in Fig. 2 and
further explained below. The cognitive intelligence permeat-
ing through the total control execution loop enables proactive
collaboration among robots and human operators, as shown
in Fig. 3. From bottom to up, the middle cognition module
achieves high-level knowledge learning from spatio-temporal
human-robot relationships to semantic teamwork. While
robots and human operators can collaboratively conduct exact
execution of manufacturing tasks with more specific instruc-
tions from up to bottom. At the same time, various cognitive
knowledge can be generated by different levels of the middle
cognition module to feedback proactive cooperation between
robots (left part) and human operators (right part).

2.1. Inter-collaboration cognition

Inter-collaboration cognition aims for human-robot col-
laborative execution of manufacturing activities with bidi-
rectional assistance derived from their cognitive empathy. A
holistic understanding among personal abilities of human be-
ings and working conditions of robots is crucial to the accom-
plishment of the bi-directional empathy cognition, from con-
current information exchange to holistic context-awareness.
For the former one, recent advances of Digital Twin [25] and
AR techniques [21] can greatly upgrade concurrent informa-
tion exchange in HRC, where monitoring, simulating, opti-
mizing, and planning of the physical-digital counterparts con-
tinuously changes and updates in a virtual-real fused manner.
Meanwhile, for the latter one, the holistic context awareness
of the HRC scenario provides access to semantic knowledge
understanding and reasoning for the bi-directional empathy.
For example, from the human’s motion [22], activity [26] to
his intention [27], these semantic-enriched ‘what-is-doing’
information can be learned by the robot for knowledge reason-
ing of robotic execution. Instead of a traditional slave/master
model in HRC, the inter-collaboration cognition encourages
proactively bi-directional engagement, where the roles of
human and robot are changed dynamically as required.

A holistic understanding of the HRC scenario, such as
the real-time state of collaborative robots, human’s current
motion, and intention, can be learned by inter-collaboration
cognition in an HRC system. These states and informatics are

the feedback to the robot’s motion controller and thus enable
adaptive production execution for manufacturing tasks, as
present in the bottom part of Fig. 3. Bi-directional empathy
between a robot and human embeds in their co-work, from
haptic interaction in close proximity to a higher degree of
adaptive robot execution and intuitive human cooperation.
Among the cooperation in close or even direct physical con-
tact, physical parameters of haptic interaction and geometric
interpretation of the working environment is monitored by
resorting to sensor monitoring system. With robot controller
sensing these force/moment signals, compliance control ap-
proaches such as impedance control [28] can be adopted for
dynamically adjustment of the relating contact force and robot
position. As an example, the force/moment that object being
handled can be controlled to either avoid damaging the object
or harming human in HRC scenarios of collision-free mo-
tion planning, safety-rated monitored stop, and power/force
limiting control. As for long-range collaboration, operator
assistant system and multimodal programming and control
of robot can facilitate proactively bi-directional engagement
among humans and robots. The operator assistant system
tracks the robot’s motion and planning in order to provide
real-time information support for humans’ intuitive task exe-
cution. Multimodal programming and control of robot [29]
which combines human gestures, speeches, motion, inten-
tion, and other forms of information accessed from the sensor
monitoring system, enables the robot to adapt its behaviors
to make human operator work comfortably while trying to
decrease the time for human and robot to finish all the tasks,
increasing production efficiency.

Although the development of bi-directional HRC is still
at an early stage, it presents huge potentials in manufactur-
ing activities. The first one targets the next generation of
workforce in manufacturing. With continuous information
updates from AR-based digital worlds and proactive collabo-
ration from its counterparts in the physical space, a human
operator can solve problems in the manufacturing progress
and conduct complex industrial tasks without specific train-
ing skills. People from various educational backgrounds, not
limited to the domain of production, can ready to become the
next set of manufacturing engineers with the support of inter-
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collaboration cognitive intelligence in HRC [30]. The second
significance endows the entire HRC execution with high-level
coordination and flexible allocation, both robot-to-human and
human-to-robot. For example, the human may be conscious
of adaptive execution updates for optimal productivity during
the co-work, based on concurrent information of scheduling
systems [31] and the measurement of the robot’s capability
[32]. In turn, the robot can present better compatibility with
human in real-time operation, based on learnt knowledge of
his/her intention.

2.2. Spatio-temporal cooperation prediction

In the execution loop, a manufacturing task/activity de-
composes hierarchical and temporal sub-tasks/activities along
the time. Spatio-temporal cooperation prediction focuses on
forecasting human-robot-object relationships in these sub-
tasks/activities across time, providing foreseeable semantic
knowledge for proactive planning and control in HRC. In fact,
HRC in manufacturing is a time-sensitive task, whose func-
tion modules consist of active collision avoidance [33], deci-
sion making and path planning [34], etc. Therefore, beyond
existing adaptive control of robots, academia and industrial
practitioners nowadays aim to forecast the human operator’s
future motion, trajectory and activity, eliminating the lim-
itation of uncertainty associated with human workers [35]
during the collaboration. The next level is ‘how-to-cooperate’
among the hierarchical sub-tasks/activities as the co-work
progresses in time. Spatio-temporal cooperation of a human

and a robot in HRC consists of their temporal interaction
and the hierarchical relation in the progression of the sub-
tasks/activities [36]. The discovery of not only current a
human’s intention but also future interaction events with the
coexisting neighbours distils foreseeable semantic knowledge
for efficient cooperation in HRC. In this context, the access
of predictability of the future semantic knowledge between
these entities can facilitate time-sensitive collaboration in-
telligence for decision-making and path planning, such as
proactive assistance either from a human to a robot or from a
robot to a human.

Spatio-temporal cooperation prediction consisting of hu-
man and robot’s motion trajectory, human’s next intention
[37], and preliminary cooperation relation of the two roles in
future sub-tasks, further guide robot motion planning and op-
erator assistant system (see the middle part of Fig. 3), along
with foreseeable and proactive robot control and information
feedback. For motion planning, the robot controller adjusts its
motion in advance for optimal performance, such as collision
avoidance between human and robot and working efficiency
improvement at the same time. Permeating with feedback in-
formation of human-robot interaction across spatio-temporal
domains, the operator assistant system helps the human to
better understand his sub-task in collaboration and prevent
operating errors [38]. To some extend, spatio-temporal co-
operation prediction also provides the proper cooperation
relation in future sub-tasks, which can be used for further
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decision making and proper task allocation for each counter-
part.

Spatio-temporal cooperation prediction plays an essential
role in the realization of Proactive HRC, as decision-making
and path planning in advance is the prerequisite for consistent
teamwork in the complicated manufacturing scenario. Specif-
ically, the current challenge is how to infer the human’s next
intention and predict human-robot-object interaction along
the time via feeding fewer temporal data streams. Lever-
aging vision-text navigation [39], a human or a robot can
percept what the counterpart in the collaboration really de-
mands among the progression of sub-tasks/activities, moving
towards long-range human-robot cooperation without misun-
derstanding. Besides, the hyperbolic embedding-based video
representation learning methods [40] offer an attractive solu-
tion that learns a hierarchy of human-robot-object interaction
of the future, to achieve Proactive HRC in every timespan.

2.3. Self-organizing teamwork

Self-organizing teamwork aims to resolve divergences
of leader/follower roles between a robot and a human by
converging prior knowledge of co-works from decentralized
HRC systems. Robots and human participators can under-
stand which manufacturing tasks/activities they are more
qualified for in terms of their capabilities and change their
roles on the fly. Similar to the manufacturing knowledge
system [41], a wider applicable knowledge representation
of HRC systems can be generated by bridging the informa-
tion island [42] between different workshops and various
factories. In case that enterprises normally struggle to share
their acquisition data, federated learning trained via model
aggregation rather than data aggregation can protect data pri-
vacy [43], while converging learned knowledge of different
decentralized HRC systems. Especially, the 5G-based I1oT
technique can greatly accelerate the knowledge convergence
progression. The next stage focuses on distilling knowledge
of self-organizing collaborative intelligence in HRC. The cur-
rent development in industrial Al, such as knowledge graph
[44], reinforce learning [45], and imitation learning [46], can
offer an attractive solution for knowledge distilling, which
enables the human and robot to know their preferable work
during collaboration based on past experiences and learning
capacities. In this context, the robot and human can make a
long-range allocation of manufacturing tasks/activities and
proactively vary their behaviours in response to different sit-
uations, achieving self-organization. Moreover, it may be
also effective in some new situations unexpected before in a
factory as convergent knowledge from other enterprises may
provide a systemic guide.

The self-organizing network determines human and robot’s
roles in collaboration and allocates the corresponding re-
sources and sub-tasks to each participant. Outputs of the
self-organizing network are the most crucial inputs of robot
motion planning and operator assistant systems, as shown in
the upper part of Fig. 3. Thus self-organizing network can
be considered as the central brain of Proactive HRC. Based
on the measured and predicted human and robot states from

inter-collaboration cognition and spatio-temporal cooperation
prediction, the specific resources and sub-tasks are allocated
to humans and robots by self-organizing teamwork accord-
ing to certain criteria such as optimal task execution time
or minimum energy consumption [47]. The robot’s motion
is optimized to perform the desired sub-task under required
policies, such as human safety, availability of resources, and
the required time of operation. The operator assistant sys-
tem looks up from the database according to the allocated
sub-task and provides useful supportive instructions for a
human worker to carry out the assigned sub-task. Despite
uncertainties arising from the presence of the human operator
in the HRC loop, the self-organizing teamwork can dynam-
ically adjust the resource and task allocation according to
the human’s behavior and ensures the fluent execution of the
overall task.

To achieve the self-organizing teamwork for Proactive
HRC, technical insights worthy of notice are given as fol-
lowing. The first one is the implementation of knowledge
convergence via federated learning in distributed manufac-
turing tasks/activities. Data generated from HRC in different
factories but in the same workshop, e.g., assembly workshop,
share the same feature space, but differ in sample space [48],
which is naturally fit for horizontal federated learning in prac-
tice. Meanwhile, data of HRC systems in different workshops
but in the same factory, such as machining workshop and as-
sembly station, coincide with vertical federated learning [49].
Secondly, the knowledge representation in this section is not
used for real-time robotic decision-making and path planning,
it focuses on the human-robot relationship management [50]
for self-organization. In this context, the system circumvents
the nature of time sensitivity of HRC execution, therefore,
some knowledge modelling methods, e.g., knowledge graph,
reinforce learning, and imitation learning are acceptable to
optimize configuration and human-robot planning.

3. Challenges and Opportunities

As a foreseeable cognitive manufacturing paradigm, Proac-
tive HRC stands for long-range bi-directional teamwork over
the progression of manufacturing tasks/activities, based on
bilateral empathy cognition and self-organization intelligence
among humans and robots. Despite the three technical cores,
there still lies some challenges, especially: 1) Uncertainty of
human in bi-directional collaboration cognition. Although
an AR-based Digital Twin model of the HRC system allows
a human to upgrade his temporary operation planning for
collaboration, some unexpected behaviours of the human
worker [20] in a short timespan may lead to confusion for
the bi-directional empathy development. 2) Requirement
of decision-making in advance for human-robot coopera-
tion over time. Existing HRC systems still lack the abil-
ity of spatio-temporal cooperation prediction [36], let alone
decision-making ahead of the time, which is vital for the
achievements from basic safety requirements to high-level
proactive assistant planning. 3) Information island and iso-
lated knowledge of decentralized HRC systems. As private
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data of HRC systems are normally isolated in local workshops
and cannot be shared with other enterprises [46], it impedes a
universal knowledge representation for self-organizing team-
work in HRC.

At the same time, empowered by cutting-edge technolo-
gies in computer vision, AR and IIoT, etc., multiple oppor-
tunities of the Proactive HRC emerge ahead, namely: 1)
Integration of holistic context-awareness of HRC execution
loop and concurrent information of Digital Twin models for
inter-collaboration cognition. The continuous monitoring,
perception, and cognition of an HRC scenario [51], espe-
cially the personalized behaviours, make contributions to
a bi-directional empathy model for human-robot co-work,
which even takes human’s personal wellbeing into account
during the collaboration. 2) Time-sensitive decision-making
and path planning among the spatio-temporal cooperation
prediction. Recent advances in self-driving technologies [52]
offer a natural solution for decision-making and path planning
over the progression of manufacturing sub-tasks/activities in
time, which meets the timely requirement in the Proactive
HRC execution loop. 3) Convergence and distilling of knowl-
edge representation of HRC systems for self-organizing team-
work. Distributed, parallel, and cluster computing techniques,
such as federated learning, show the potential to bridge the in-
formation island of various decentralized factories under data
privacy protection. Based on knowledge embedding methods
[53], the knowledge representation of past experience can
be learnt for self-organizing teamwork between human and
robots.

Except for those cutting-edge digital technologies, from
the collaborative robotic design level, instead of fixed robot
arms in existing HRC applications, two types of collaborative
robots are emerging as a priority, capable of performing effi-
cient and flexible collaboration in a global workspace. The
first pillar lies in the prevailing implementation of mobile
robots in industrial scenarios. The combination of a collab-
orative robot and a mobile base extends more potential ap-
plications of HRC, such as the assembly work in large-scale
complex products. The other one focuses on a symbiosis
wearable robotic arm. A human operator can proactively
interact with the third assistant arm for collaborative con-
ducting manufacturing activities in close proximity. This
collaborative mechanism is attracting more and more atten-
tion from industry practitioners, owing to its applicability
in either narrow workspace or complicated manufacturing
scenarios.

4. Conclusions

With current advances in cognitive computing, IIoT, and
robot learning, it is foreseeable that Proactive HRC will be-
come dominant in the upcoming generation of cognitive
manufacturing, which can largely facilitate industrial flex-
ible production for mass personalization. Proactive Sym-
biotic HRC enables human operators and robots to work
for a common goal in a long-term bi-directional manner,
of which three unique cognitive teamwork skills should be
achieved stepwise: 1) Inter-collaboration cognition. It en-

: A Foreseeable Cognitive Manufacturing Paradigm

ables real-time collaborative execution for shared manufac-
turing activities concerning bi-directional empathy among
robot states and human decisions; 2) Spatio-temporal coop-
eration prediction. The prediction of human-robot-object
interaction of sub-tasks/activities over time allows proac-
tive robot motion planning and intuitive human operation,
achieve ahead-of-time and foreseeable cooperation; and 3)
Self-organizing teamwork. Various HRC models in decen-
tralized factories, as the manufacturing “things” can be con-
verged into a generic knowledge representation, which al-
locates optimal self-organizing task between humans and
robots based on past experiences. Relevant technologies such
as AR, IloT, cognition computing as well as robotic mecha-
nism design, as the key enablers towards Proactive HRC are
also discussed. To this end, as a promising research topic,
this comment paper welcomes more open discussions and
future in-depth research on this forthcoming paradigm for
ever smarter manufacturing.
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