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Abstract 

Smart product-service system (Smart PSS) is a heterogeneous and integrated system in which 25 

manufacturers/service providers deliver integrated and customized product-service bundles (PSBs) 

in a sustainable manner. Smart PSS configuration, a process of selecting proper PSBs based on user 

requirements, is expected to be further flexible to adjust the configuration results based on users’ 

straightforward requirements that contain user-preferred usage scenarios and technical attributes. 

However, the technical attributes provided by users might be inaccurate due to a lack of 30 

professional knowledge, thus prone to unaligned configuration results. Besides, sorely technical 

attributes other than a comprehensive scope of information was emphasized in the conventional 

PSS configurators. To address these problems, this paper proposes a novel hypergraph-based Smart 

PSS configuration framework. Contrary to the conventional configurators that emphasize the 

mapping between technical attributes and PSBs, the proposed framework introduces usage scenario 35 

information as the auxiliary information, which is usually straightforwardly expressed by users. To 

represent the heterogeneous information with less local information loss, a hypergraph model based 

on the requirement attribute-product-service bundles-usage scenario (RA-PSB-US) data model is 

established. Besides, a hypergraph ranking algorithm is adapted to rank the PSBs. To mitigate the 

proneness of selecting settled PSBs other than returning adaptable results (i.e., the bias of 40 

hypergraph-based Smart PSS configuration) during the configuration process, an unbiased 

hypergraph ranking algorithm is proposed by normalizing the hyperedge degree. Finally, a 

comparative study is conducted based on an online 3D printing service review dataset to validate 

its effectiveness and advantages. 

Keywords: Smart product-service systems; configuration system; hypergraph; context-aware; 45 

user-centric design 
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1 Introduction 

With the trend of digital servitization, Smart product-service systems (Smart PSS) appeared 

as an integrated system for manufacturers to deliver user-required customized and integrated 

product-service bundles (PSBs) sustainably (Li et al., 2021b; Valencia Cardona et al., 2014; Zheng 50 

et al., 2018). By offering integrated PSBs, users can obtain customized functions, 

manufacturers/service providers can achieve higher customer loyalty and more profits through the 

prolonged product lifecycle. Many Smart PSS examples can be found in both B2C market and B2B 

market (Chang et al., 2018). In the B2C market, smart mobile phone is a typical example in which 

the physical phone and the apps collaborate as inseparable PSBs. The physical phone is the medium 55 

to offer Apps, and the Apps as the services offer the customized functions to the users. In the B2B 

market, one successful Smart PSS example is the ‘power-by-the-hour’ strategy from Rolls-Royce 

that Rolls-Royce offers flexible aeroplane engine usage plan together with customized maintenance 

services to extend the products’ service life.  

To fulfil user requirements with proper customized PSBs, configuration task is conducted as 60 

a decision-making process between user requirements and the available PSBs (Long et al., 2013; 

Yang et al., 2018). Conventional PSS configuration is a direct mapping between RAs and PSBs 

(Long et al., 2013) or a multilayer mapping among requirements, product modules and service 

flows (Song & Chan, 2015), as shown in Fig.1. Two limitations exist for the extant PSS 

configuration. On the one hand, well-defined technical attributes are required from users in the 65 

conventional PSS configuration systems. However, facing the much higher complexity of the smart 

and connected PSBs, users might offer inaccurate functional attributes due to the lack of 

professional domain knowledge (Dou et al., 2016; Wang et al., 2020) so that the conventional 

configurators are prone to the unaligned configuration results. For example, while configuring a 

desktop computer, the users usually cannot clearly identify the technical attributes, such as CPU, 70 

RAM, graphic card, but only express their requirements or comment on the current PSBs by 

straightforward natural language, e.g., ‘I want a computer with Word/PowerPoint for my study 
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in university’. With inaccurate inputs, accurate outputs cannot be guaranteed in practice. On the 

other hand, solely technical attributes rather than a comprehensive scope of information are applied 

to configure PSBs (Pan et al., 2017; Yang et al., 2018), which will further reinforce the dependency 75 

on accurate technical attributes. To relieve the limitations, a more comprehensive configuration 

system is expected. 

 
Fig.1. Schematic diagrams of conventional PSS configuration 

In Smart PSS, the configuration task has become a complex decision-making process with 80 

more information involved and is required to be flexible facing the individualized user 

requirements (Dou et al., 2020). Smart PSS has the unique features of high autonomy and value 

co-creation manner with intense user participation (Zheng et al., 2019b). Specifically, high 

autonomy is reflected in the capability of context-awareness and self-adaptability (Valencia 

Cardona et al., 2014; Wang et al., 2019b). Context-awareness was emphasized in a Smart PSS 85 

survey that the end-users expect customized rather than generalized product-service bundles 

(PSBs) (Valencia Cardona et al., 2014). A widely accepted definition of context is ‘any information 

that can characterize the situation of an entity in the environment’ (Dey, 2001). When configuring 

a PSB for end-users, the contexts refer to user feelings, expectations, or experiences instead of the 

development environment of Smart PSS (Chien et al., 2016). Another autonomy capability, self-90 
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adaptability, indicates that the PSS can adjust its performance according to the change of context 

or environment (Li et al., 2021a; Rijsdijk & Hultink, 2009).  

Those Smart PSS features force Smart PSS configuration update in three aspects. First, to 

achieve context-awareness in Smart PSS, contextual information such as ‘for novice users’ can be 

involved in Smart PSS configuration, which has strength in characterizing the user requirements 95 

and the PSBs (Shen et al., 2017). Although usage scenarios have been emphasized in the previous 

studies (Valencia Cardona et al., 2014), their influence on Smart PSS configuration has not been 

clarified yet. Second, given different user requirements, Smart PSS configuration needs to offer 

personalized PSBs other than ‘off the shelf’ ones (Dou et al., 2016; Shen et al., 2017), which reflects 

the capability of self-adaptability of Smart PSS configuration. Third, to quickly respond to the 100 

users’ requests and further to achieve value co-creation manner in the early development stage and 

the usage stage (Zheng et al., 2019a), Smart PSS configuration process is also supposed to be 

conducted in an automatic way instead of a manual process (Dunke & Nickel, 2020). Under this 

situation, Smart PSS configurators, working as a decision-support tool for a complex system 

containing heterogeneous information, need to be upgraded as an IT-enabled design toolkit to 105 

return customized results beyond the product family scope (Lee & Kao, 2014). 

Faced with the above challenges, this paper proposed a hypergraph-based Smart PSS 

configuration framework by simultaneously handling technical attributes and contextual 

information in requirements. In the proposed framework, usage scenarios, as a type of contextual 

information, are allowed for end-users to express their expected or encountered usage scenarios as 110 

supplementary information to alleviate the lack of domain knowledge. A hypergraph-based model 

is proposed to organize all the multi-sourced information in Smart PSS configuration for the first 

time. Hypergraph is applied in this paper due to its strength in handling heterogeneous entities and 

complicated relationships (Zhou et al., 2007). To adapt the hypergraph into the Smart PSS 

configuration, a hypergraph ranking algorithm is exploited. To further mitigate a practical 115 

configuration issue of returning settled PSBs rather than personalized PSBs in Smart PSS, which 
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is caused by the unequal hyperedge degrees (i.e., the bias in hypergraph), an unbiased hypergraph 

ranking algorithm (UHR) is proposed by normalizing the hyperedge degrees. 

The rest of this paper is structured as follows. The related works on PSS configuration and the 

preliminary on the hypergraph model are discussed in Section 2. In Section 3, the Smart PSS 120 

configuration framework, the hypergraph data model and schema, and a hypergraph-based ranking 

algorithm for Smart PSS configuration are expounded. An experiment based on an online 3D 

printing service platform is conducted as an example, and its results are discussed in Section 4. 

Finally, we summarized the scientific contributions and the future works in Section 5. 

2 Literature review 125 

To understand the state-of-the-art of the context-aware Smart PSS configuration 

models/approaches and to clarify the reason for deploying a graph-based model for Smart PSS 

configuration, this section summarizes the literature about context-aware Smart PSS (Section 2.1), 

PSS configuration (Section 2.2) and graph-based model in PSS/Smart PSS (Section 2.3). With the 

keywords ‘product-service system configuration’, all the literature was sorted from the Web of 130 

Science (WoS) database owing to the broad coverage of the academic peer-reviewed articles. It is 

worthwhile noting that although plenty of articles discussed other factors (e.g., the uncertainty in 

the supply chain) in product configuration, they are not summarized in this paper since they are out 

of the scope of context-aware Smart PSS configuration. Additionally, the preliminary knowledge 

of the hypergraph is introduced in Section 2.4. Through the discussion on the existing literature, 135 

three research gaps are derived, as addressed in Section 2.5. 

2.1 Context-aware Smart PSS 

Context-aware systems, referring to the systems that use context to provide relevant 

information and service to the user, have become pervading in academia and industry (Alegre et 

al., 2016; Bolchini et al., 2007). Context-aware Smart PSS is described as the Smart PSS that can 140 

react and adapt its results based on different contextual information. In recent years, numerous 

applications, such as personalized recommendation (Champiri et al., 2015) and smartphone 
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services (Chen et al., 2014) have been developed. To realize such a system, the context modelling 

and representation will be briefly discussed in this subsection, serving as the foundational overview 

of the proposed context-aware Smart PSS configuration framework. 145 

In context-aware Smart PSS, context information can be collected via sensors or user 

interfaces. The context information collected via sensors is usually about the surrounding 

environment, such as time, location, temperature, etc. The one collected via user interfaces is more 

advanced, which could be users’ activity logs or their feedbacks (Li et al., 2020). Typical context 

modelling techniques, such as key-value, logic-based, object-based, ontology-based, and graphical 150 

models, have already been discussed and surveyed in many studies (Alegre et al., 2016; Bolchini 

et al., 2007; Pradeep & Krishnamoorthy, 2019). Their strengths and limitations are briefly 

summarized in Table 1. To facilitate the subsequent hypergraph-based configuration process, key-

value representation is applied due to its strength in simple representation and high compatibility 

with other information. 155 

Table 1. Comparison of context representation models (derived from (Pradeep & 

Krishnamoorthy, 2019)) 
Context representation 

models 

Description  Strengths  Limitations 

Key-value Describe context information 

as a list of context factors and 

their values 

• Simple representation 

• Fast processing, storage, 

and lookup 

• Limited capability 

of handling 

dynamics  

Logic-based  Define context as rules 

Stored in the knowledge base 

• Support logical reasoning • Lack of standards 

Object-based Use objects to represent 

contexts 

• Easy integration with high-

level programming 

language 

• Lack of reasoning 

• Lack of standards 

Ontology-based Represent context concepts 

with their relations and 

• Enable dynamic relations 

among entities 

• Limited capability 

of handling 
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interdependent properties  • Higher expressiveness  uncertainty 

Graphical Use relationships modelling, 

e.g., Unified Modeling 

Language (UML) (Chen et 

al., 2014)  

and Context Dimension Tree 

(Bolchini et al., 2013; Curino 

et al., 2006; Javadian Sabet et 

al., 2020) 

• Ease of information 

retrieval 

• Supports validation using 

constraints 

• Complex querying 

 

2.2 PSS configuration 

The existing PSS configuration studies can be basically grouped as feature-based models, 160 

ontology-based models, and so on (Guillon et al., 2020). 

On the one hand, the feature-based models formalize the PSS configuration process as either 

direct mapping (Long et al., 2013) or a multilayer mapping among requirements, product modules 

and service flow (Song & Chan, 2015). They have been widely accepted because of their strength 

in matching requirements to functional attributes. Roy et al. (2009) designed a features-based PSS 165 

configuration framework throughout the PSS lifecycle. This pioneering study defined the necessary 

steps of configuring PSS, such as identifying product/service structures and PSS lifecycle, 

identifying the variants’ limitation, generating reasonable PSS variants and other associate steps. 

However, it still had the limitations that (1) aiming to satisfy the technical functions but omitting 

the customers’ perceptions; and (2) analyzing the product components and the service modules 170 

singly. Mannweiler and Aurich (2011) then reinforced the PSS configuration framework by 

defining the sub-phrases of PSS configuration as requirement identification, configuration phase 

and purchasing phase, making their proposed framework an operational and standardized structure 

for the companies to follow. But it still stays at the functional level. Long et al. (2013) further 

extend the scope of the PSS configuration framework by introducing the customers’ perceptional 175 
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requirements. They used the support vector machine to automatically generate potential PSS 

configuration solutions. It was proved effective in improving user experiences with personalized 

PSBs, whereas the way of collecting customers’ perceptional requirements was factor analysis, 

completed based on the engineers’ knowledge. Moreover, Long et al. (2016) also boosted the PSS 

configuration research by rapidly extracting configuration rules based on a rough-set-based 180 

approach.  

Recently, considering PSS’s complex organizational structure with heterogeneous entities, 

including products, services, resources, and stakeholders, graph-based models (the so-called 

complex networks) were also applied in feature-based models for PSS configuration (Chang et al., 

2018). For instance, Zhang et al. (2020) transformed the focus from the product-oriented 185 

configuration and emphasized service performance in PSS configuration. A graph-based model 

was proposed to present the interactions among PSS entities, and the corresponding algorithms 

were developed to derive the optimal solutions. Chang et al. (2018) also applied complex networks 

covering functions, product components, and services to configure the PSS’s functions with higher 

availability. However, the studies of feature-based models on configuring PSBs for user 190 

requirements with the graph-based models are still insufficient and waiting for comprehensive PSS 

studies. 

On the other hand, ontology-based approaches have also been applied to support PSS 

configuration. Shen et al. (2012) addressed that intensive and well-structured knowledge is 

necessary for the product extension services (PES) configuration. To organize the knowledge, they 195 

developed a configuration system based on three meta-ontologies, including service sub-ontology, 

product sub-ontology and customer sub-ontology. Wang et al. (2014) also built a meta-ontology of 

product-service systems, including five classes: Service Package, Function Modules, Service Flow, 

Process Modules, Service Elements, Service Resource, Interface, and Constraints. Then the 

configuration rules were expressed as general association rules to match the customer needs and 200 

the services together. Since the ontology-based methods highly depend on the comprehensive 
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ontologies/knowledge bases as the prerequisite, meanwhile, they aim to promote knowledge reuse 

and sharing for the configurator instead of the end-users, the ontology-based methods are unsuitable 

for the Smart PSS configuration with the context-aware consideration for end-users. 

As a result, based on the pioneers’ achievements on PSS configuration, the contextual 205 

information can fundamentally serve as the auxiliary information to promote context-awareness for 

end-users and improve user-friendliness. Moreover, the PSS configuration methods involving 

factor extractions (e.g., the study of Long et al. (2013)) can be further enhanced by automatically 

extracting key phrase extraction techniques (Rose et al., 2010) other than highly depending on 

engineers’ experiences/knowledge. In this way, the configuration approach in Smart PSS is hoped 210 

to be more context-aware, quickly reactive, and less domain knowledge required. 

2.3 Ordinary graph in Smart PSS vs hypergraph in Smart PSS 

Numerous extant PSS studies have shown the strength of graph models in representing 

heterogeneous entities (Ren et al., 2019). For example, Kim et al. (2009) utilized graphs and 

ontologies to represent PSS, in which the graph consists of values, products, services, and their 215 

relations. The PSS graph’s effectiveness was proved by showing the complex usage scenarios of a 

meal assembly kitchen and its compatibility with the ontology. Wang et al. (2019a) established a 

graph covering product components, service modules, and contexts in Smart PSS to explore the 

latent relations among those entities. Li et al. (2014) applied a weighted complex network 

containing product components to simulate the complex product systems. Similarly, Sheng et al. 220 

(2015) constructed a directed graph for the CNC product-service system representation and adopted 

the Design Structure Matrix (DSM) method for modularization.  

However, major PSS studies using graph models merely used the ordinary graph that the edges 

only represent pairwise relations. In practice, the relations between entities can be even more 

complicated, including one-to-many, many-to-one, or many-to-many relations. For example, as 225 

shown in Fig.2, it is assumed that a user ordered a PSB to meet several requirement attributes (RAs) 

with his/her expected usage scenarios (USs). This situation will be represented as {PSB, RA1}, 
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{PSB, RA2}, {PSB, US1} and other edges based on an ordinary graph, making the relations 

between RAs and USs lost. When the number of entities increases in a PSS application, the local 

information loss will probably cause inaccurate PSB results. Nevertheless, hypergraph can 230 

integrate the multi-sourced information by using a set {PSB, RA1, RA2, US1, …} to represent the 

relationship without local information loss. 

 

Fig.2. Comparison between ordinary graph and hypergraph. 

2.4 Hypergraph model and the bias in hypergraph 235 

A hypergraph is the generalization of a graph in which a hyperedge connects a finite number 

of nodes rather than two nodes (Zhou et al., 2007). The hypergraph models have been attempted in 

many applications, for instance, mass customization-oriented recommendations (Mao et al., 2019) 

and image classification (Yu et al., 2012). However, little research has attempted to deploy the 

Smart PSS configuration task on a hypergraph. When conducting a Smart PSS configuration task, 240 

various objects are involved, including products, services, and users. The relations among Smart 

PSS objects are either pairwise or high-order, which fits into the hypergraph’s scope. 

To be more specific, in a hypergraph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸), the vertices are represented as a set 𝑉𝑉= {𝑣𝑣1, 

𝑣𝑣2, ...} and the hyperedges are denoted as 𝐸𝐸 = {𝑒𝑒1, 𝑒𝑒2, 𝑒𝑒3 … }. As aforementioned, each hyperedge 

𝑒𝑒𝑖𝑖 is a set of nodes. The hypergraph will degrade to an ordinary graph when all the hyperedges only 245 

link two nodes.  
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To mathematically operate the hypergraph, some matrices of hypergraph should be defined. 

The incident matrix 𝐻𝐻 ∈ ℝ|𝑉𝑉|×|𝐸𝐸| with element ℎ(𝑣𝑣𝑖𝑖 , 𝑒𝑒𝑗𝑗) is defined that ℎ(𝑣𝑣, 𝑒𝑒) = 1 if a vertex 𝑣𝑣 is 

in a hyperedge e, otherwise it equals to 0, denoted as:  

 ℎ�𝑣𝑣𝑖𝑖 , 𝑒𝑒𝑗𝑗� = �
1,   𝑖𝑖𝑖𝑖 𝑣𝑣𝑖𝑖 ∈ 𝑒𝑒𝑗𝑗
0, otherwise

 (1) 250 

The degree of a hypergraph 𝑒𝑒 is defined as 𝛿𝛿(𝑒𝑒) = ∑ ℎ(𝑣𝑣, 𝑒𝑒)𝑣𝑣∈𝑉𝑉 , meaning the node count in a 

hyperedge. The degree of a vertex 𝑣𝑣  is 𝑑𝑑(𝑣𝑣) = ∑ 𝑤𝑤(𝑒𝑒)ℎ(𝑣𝑣, 𝑒𝑒)𝑣𝑣∈𝑒𝑒 , referring to the number of 

hyperedges linked with the vertex. Let 𝐷𝐷𝑣𝑣 ∈ ℝ|𝑉𝑉|×|𝑉𝑉| denote the node degree matrix and let 𝐷𝐷𝑒𝑒 ∈

ℝ|𝐸𝐸|×|𝐸𝐸| denote the hyperedge degree matrix. Both are diagonal matrices whose diagonal elements 

are the nodes degrees and hyperedge degrees, respectively.  255 

In Smart PSS configuration, a bias of selecting settled PSBs cannot be neglected. It is usually 

caused by the unequal hyperedge degrees 𝛿𝛿(𝑒𝑒) in the hypergraph (i.e., the bias in hypergraph) (Mao 

et al., 2019). For instance, PSBs are differentiated by their technical attributes (Chang et al., 2018). 

Some of them are high-end among the product-service family so they contain lots of technical 

attributes, making the hyperedge presenting their relations contains lots of entities. Hence the 260 

hyperedge degree will be high. Another example can also be seen that if a PSB fits in many usage 

scenarios, then the hyperedge containing the PSB and related usage scenarios will have a higher 

degree. The unbalances on the hyperedge happens because of the essential feature of the 

multipartite hypergraph, it causes the result that the PSBs with fewer technical attributes and usage 

scenarios tend to be selected, which cannot select personalized solutions for users in Smart PSS 265 

practical application. To mitigate the problem, it is necessary to normalize the hyperedge degrees, 

making the hypergraph unbiased. 

2.5 Research gaps 

To summarize, there is still a farther way to a Smart PSS configuration approach that has a 

comprehensive representation manner. Specifically, the research gaps mainly have three-folds. 270 

First, facing the complex organizational structure of Smart PSS, although the trend of graph-based 
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models has already emerged, a comprehensive graph-based model containing contextual 

information is still a preliminary study. Second, derived from previous graph-based models in PSS 

representation and modularization, an ordinary graph illustrating pairwise relations is still 

leveraged in some tentative studies of PSS configuration, which actually neglects some essential 275 

information and hence drives the configuration ranking algorithm to select some inappropriate 

PSBs. Finally, despite the advantages of hypergraph, the hyperedge bias on the existing hypergraph 

is scarcely addressed, which is critical in the configuration process. To overcome these bottlenecks, 

a novel approach for context-aware Smart PSS configuration is significantly essential.  

3 Methodology 280 

Fig. 3 depicts the hypergraph-based Smart PSS configuration framework, which contains four 

levels in terms of the system architecture, namely, (1) data resources, (2) data model, (3) 

hypergraph construction, and (4) Smart PSS configuration application level. Particularly, Level 

(1)(2)(3) are conducted offline. They reflect the context-awareness of the proposed framework by 

defining usage scenario (US) information as one kind of significant entities in the Smart PSS 285 

configuration process. The Smart PSS configuration application level (Level (4)) undertakes the 

user query process online. Unlike the conventional PSS configuration framework that focuses on 

mapping the solutions with the technical attributes, the proposed Smart PSS configuration 

framework allows the user to express their expected usage scenarios and experiences during the 

configuration process. Given different user requests containing US information, the configuration 290 

framework can return corresponding PSB ranks, thus reflecting the context-awareness and, to some 

extent, the self-adaptability. A novel UHR algorithm is also developed at the application level to 

achieve the context-awareness of the proposed framework.  
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Fig. 3. Overview of the hypergraph-based Smart PSS configuration framework  295 

3.1 RA-PSB-US data model 

The development team needs to collect that information in order to build up a hypergraph 

model and then train the algorithm based on the accessible data. In Smart PSS, both the RAs and 

the USs are accessible. The technical RAs refers to the function parameters of the PSBs, such as 

weight, model size, brand, material, and so on. These RAs can be identified according to the 300 

functional specification documents of the PSBs. Meanwhile, the usage scenarios indicate the users’ 
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feelings/perceptions/experiences in the usage phase, such as good quality, fast delivery, easy 

installation, etc. Note that the usage scenario information can also be regarded as the perceptional 

requirements mentioned in Section 2 's literature summary. They can be formalized as key phrases 

and extracted from the user reviews. Furthermore, the PSBs are the customized solutions offered 305 

by the service providers or manufacturers. 

Hence, there are three kinds of information in the Smart PSS configuration. Two relations can 

intuitively link them, namely, the relations between the PSBs and the RAs from the functionality 

specification documents (i.e., Product-service bundle-Requirements attributes relationship 

(PSB-RA)), and the relations between the PSBs and the USs from the user reviews (Product-310 

service bundle-Usage scenario relationship (PSB-US)). Fig. 4 shows the schema of the proposed 

RA-PSB-US data model. The relations are explained as follows. 

 

Fig. 4. Objects and relations in the Smart PSS configuration 

To identify PSB-RA relations, a direct mapping is feasible to automatically complete this task 315 

when the functional parameters are stored in the structured tables. In the functional specification 

documents, each PSB is usually configured by the values on different functional parameters, and 

hence it can be linked with many RAs. The keyword/key phrase extraction techniques can also be 

adopted for some documents that are written with natural language. 
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A PSB can also be connected with many USs according to user reviews and user-related 320 

information. Among the user reviews, the details about the usage scenarios such as ‘using at home’ 

can be extracted and then be linked with the corresponding PSB. Since the user reviews are always 

expressed by natural language, the key phrase extraction techniques should be applied to identify 

the PSB-US relations. Moreover, the user-related information collected via the PSS configuration 

platform can also link the PSBs with potential contexts. For example, if the user’s historical 325 

configuration orders and location are collected, then the PSBs can be connected with the location 

information.  

Although the involved entities might have other relations, e.g., the relationship between USs 

and RAs, those relations will hardly be available unless depending on the experts’ professional 

knowledge or empirical experiences. For instance, given a specific usage scenario ‘for a delicate 330 

jewellery’ when configuring a 3D printing service, although it can be linked with several RAs, such 

as ‘Stereolithography or multi-jet moulding technology’ as the printing technology and ‘water-

soluble consumables’ as the material, these relations will be hard to get from users and will be 

costly to get from the experts. 

3.2 Hypergraph construction 335 

To build the hypergraph, the involved information, including PSBs, RAs, and USs, are treated 

as nodes and denoted as 𝑃𝑃𝑃𝑃𝑃𝑃 = {𝑝𝑝𝑝𝑝𝑝𝑝1,𝑝𝑝𝑝𝑝𝑝𝑝2,𝑝𝑝𝑝𝑝𝑝𝑝3, … } , 𝑈𝑈𝑃𝑃 = {𝑢𝑢𝑝𝑝1,𝑢𝑢𝑝𝑝2,𝑢𝑢𝑝𝑝3, … } , and 𝑅𝑅𝑅𝑅 =

{𝑟𝑟𝑟𝑟1, 𝑟𝑟𝑟𝑟2, 𝑟𝑟𝑟𝑟3, … }. Their union set constitutes the node-set 𝑉𝑉 for the hypergraph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) that 

𝑉𝑉 = 𝑃𝑃𝑃𝑃𝑃𝑃 ∪ 𝑈𝑈𝑃𝑃 ∪ 𝑅𝑅𝑅𝑅. 

Based on the RA-PSB-US data model, the hyperedge 𝐸𝐸 is defined by two subsets, namely 340 

𝐸𝐸(1): the PSB-RA relation and 𝐸𝐸(2): the PSB-US relation, as shown in Table 2. Each hyperedge in 

𝐸𝐸(1) will contain a PSB together with several RAs. Each hyperedge in 𝐸𝐸(2) is composed of a PSB 

and several USs, if the USs were mentioned in a piece of user review. Since we assume that each 

function specification document and each user review are equally important to the hypergraph, all 

the hyperedge weights are set as 1. 345 
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Table 2. Relations in the hypergraph model for Smart PSS configuration 

Hyperedge No. Relation notation Edge weight 𝒘𝒘(𝒆𝒆) 

𝐸𝐸(1) RA-PSB 1 

𝐸𝐸(2) SC-PSB 1 

A simple hypergraph example based on the RA-PSB-US data model is shown in Fig. 5, 

straightforwardly representing a simple Smart PSS configuration activity. The hypergraph contains 

four PSBs, seven RAs, and five usage scenarios. Totally eight hyperedges appear in the hypergraph, 

as shown below. 350 

𝐸𝐸 = { 

    ′𝑃𝑃𝑃𝑃𝑃𝑃 − 𝑅𝑅𝑅𝑅1′: (′𝑅𝑅𝑅𝑅1′, ′𝑅𝑅𝑅𝑅2′, ′𝑅𝑅𝑅𝑅3′, ′𝑃𝑃𝑃𝑃𝑃𝑃1′), 

    ′𝑃𝑃𝑃𝑃𝑃𝑃 − 𝑅𝑅𝑅𝑅2′: (′𝑅𝑅𝑅𝑅3′, ′𝑅𝑅𝑅𝑅4′, ′𝑃𝑃𝑃𝑃𝑃𝑃2′), 

    ′𝑃𝑃𝑃𝑃𝑃𝑃 − 𝑅𝑅𝑅𝑅3′: (′𝑅𝑅𝑅𝑅2′, ′𝑅𝑅𝑅𝑅3′, ′𝑅𝑅𝑅𝑅5′, ′𝑅𝑅𝑅𝑅6′, ′𝑅𝑅𝑅𝑅7′, ′𝑃𝑃𝑃𝑃𝑃𝑃3′), 

    ′𝑃𝑃𝑃𝑃𝑃𝑃 − 𝑅𝑅𝑅𝑅4′: (′𝑅𝑅𝑅𝑅3′,′ 𝑅𝑅𝑅𝑅4′, ′𝑃𝑃𝑃𝑃𝑃𝑃4′), 355 

    ′𝑃𝑃𝑃𝑃𝑃𝑃 − 𝑈𝑈𝑃𝑃1′: (′𝑈𝑈𝑃𝑃1′, ′𝑃𝑃𝑃𝑃𝑃𝑃1′), 

    ′𝑃𝑃𝑃𝑃𝑃𝑃 − 𝑈𝑈𝑃𝑃2′: (′𝑈𝑈𝑃𝑃3′, ′𝑈𝑈𝑃𝑃4′, ′𝑈𝑈𝑃𝑃5′, ′𝑃𝑃𝑃𝑃𝑃𝑃2′), 

    ′𝑃𝑃𝑃𝑃𝑃𝑃 − 𝑈𝑈𝑃𝑃3′: (′𝑈𝑈𝑃𝑃1′, ′𝑈𝑈𝑃𝑃2′, ′𝑈𝑈𝑃𝑃3′, ′𝑈𝑈𝑃𝑃4′, ′𝑃𝑃𝑃𝑃𝑃𝑃3′), 

    ′𝑃𝑃𝑃𝑃𝑃𝑃 − 𝑈𝑈𝑃𝑃4′: (′𝑈𝑈𝑃𝑃2′, ′𝑈𝑈𝑃𝑃4′, ′𝑃𝑃𝑃𝑃𝑃𝑃4′) 

}. 360 
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Fig. 5. A hypergraph example based on the RA-PSB-US data model 

3.3 Unbiased hypergraph ranking algorithm 

Essentially, Smart PSS configuration is a ranking problem to learn a scoring function given 

RAs and USs that returns sorted PSBs as outputs (Long et al., 2013). Specifically, when a user 365 

offers specific RAs or USs in the user queries, the system will sort the PSBs based on their ranking 

scores corresponding to the user queries. This problem can be solved by graph-based ranking. 

Mathematically, we aim to learn a ranking score vector 𝐟𝐟:𝑉𝑉 → ℝ based on the hypergraph 𝐺𝐺 =

(𝑉𝑉,𝐸𝐸) and the query vector 𝒚𝒚 = [𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦|𝑉𝑉|]𝑇𝑇, where 𝑦𝑦𝑖𝑖 denotes the initial scores of nodes (Tan 

et al., 2011). 370 

To keep the minimal lost for the ranking function, a cost function is defined based on the 

previous study of hypergraph ranking (Mao et al., 2019; Tan et al., 2011; Zhou et al., 2007). 

 𝑄𝑄(𝐟𝐟) =  1
2
∑ ∑ 𝑤𝑤(𝑒𝑒)ℎ(𝑣𝑣𝑖𝑖,𝑒𝑒)ℎ(𝑣𝑣𝑗𝑗,𝑒𝑒)

𝛿𝛿(𝑒𝑒)
� 𝐟𝐟𝑖𝑖
�𝑑𝑑(𝑣𝑣𝑖𝑖)

− 𝐟𝐟𝑗𝑗
�𝑑𝑑(𝑣𝑣𝑗𝑗)

�
2

𝑒𝑒∈𝐸𝐸
|𝑉𝑉|
𝑖𝑖,𝑗𝑗=1 + 𝜇𝜇 ∑ ‖𝐟𝐟𝑖𝑖 − 𝑦𝑦𝑖𝑖‖2

|𝑉𝑉|
𝑖𝑖=1  (2) 

, where 𝜇𝜇 > 0 is the regularization parameter. The cost function 𝑄𝑄(𝐟𝐟) cumulates the changes of the 

scoring vector between nearby nodes over the hyperedges on the hypergraph. The optimal solution 375 

of 𝐟𝐟∗ is the one with the minimal cost 𝑄𝑄(𝑖𝑖), 𝐟𝐟∗can be derived by letting the gradient of 𝑄𝑄(𝐟𝐟) as 0: 

 𝜕𝜕𝜕𝜕
𝜕𝜕𝐟𝐟
�
𝐟𝐟= 𝐟𝐟∗

= (𝐈𝐈 − 𝐀𝐀)𝐟𝐟∗ + 𝜇𝜇(𝐟𝐟∗ − 𝒚𝒚) = 0 (3) 
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The optimal ranking function 𝐟𝐟∗ is deduced after solving Eq. (3), as shown in Eq. (4). 

 𝐟𝐟∗ = (𝐈𝐈 − 𝛼𝛼𝐀𝐀)−1𝒚𝒚 (4) 

, where 𝛼𝛼 = 1/(𝜇𝜇 + 1) ∈ (0,1) is a parameter and 𝐀𝐀 =  𝐃𝐃𝐯𝐯
−1/2𝐇𝐇𝐇𝐇𝐃𝐃𝐞𝐞

−1𝐇𝐇T𝐃𝐃𝐯𝐯
−1/2 is an intermediate 380 

matrix. 

Except for the direct derivation method, the hypergraph ranking problem can also be resolved 

by the random walk process on the hypergraph (Mao et al., 2019). Given several starting nodes 

from the vertex set 𝑉𝑉, represented as a vector 𝐪𝐪 ∈ ℝ|𝑉𝑉|, in which the starting nodes equal to 1 and 

the others equal to 0, the random walk with restart model will transit to their adjacent vertices 385 

following edges with probability 𝛼𝛼 or restart from the starting nodes with probability (1 − 𝛼𝛼). The 

starting nodes can be randomly selected during the training process. Let 𝐩𝐩(𝑡𝑡) be the vector whose 

elements are the transition probability from a node to other nodes at time 𝑡𝑡. Let 𝐓𝐓 ∈ ℝ|𝑉𝑉|×|𝑉𝑉| be the 

transition matrix. The random walk on the graph is a recursive process that follows the equation: 

 𝐩𝐩(𝑡𝑡+1) =  𝛼𝛼𝐓𝐓𝐩𝐩(𝑡𝑡) + (1 − 𝛼𝛼)𝐪𝐪 (5) 390 

The convergence of 𝐩𝐩(𝑡𝑡) will happen when 𝐩𝐩(𝑐𝑐) =  𝐩𝐩(𝑡𝑡+1) =  𝐩𝐩(𝑡𝑡) is satisfied. At this moment,  

 𝐩𝐩(𝑐𝑐) = (𝐈𝐈 − 𝛼𝛼𝐓𝐓)−1𝐪𝐪 (6) 

, where 𝐓𝐓 = 𝐃𝐃𝑣𝑣
−1𝐇𝐇𝐇𝐇𝐃𝐃𝑒𝑒

−1𝐇𝐇T. It is clear that 𝐓𝐓 has a similar structure with matrix 𝐀𝐀, and Eq. (6) has 

the same structure as Eq. (4). The equivalence has been proved in many research (Mao et al., 2019; 

Tan et al., 2011; Zhou et al., 2007). Here, 𝐓𝐓 can be regarded as the normalization of matrix 𝐀𝐀. 395 

Hence, the scoring function 𝐟𝐟 can be learned through the convergence process of random walks 

on a hypergraph. Nevertheless, the biases on the hypergraph force us to adapt the original 

hypergraph ranking algorithm. Because of the diversity on the PSBs’ technical RAs and the 

different amount of information in the user comments, the hyperedges’ degree 𝛿𝛿𝑒𝑒 will significantly 

vary, causing the bias on the hypergraph. The bias will make each transition lean towards the edges 400 
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that have fewer nodes, which can be seen by the transition probability from vertex 𝑢𝑢 to its adjacent 

vertex 𝑣𝑣: 

 𝑝𝑝(𝑢𝑢, 𝑣𝑣) =  ∑ 𝑤𝑤(𝑒𝑒)𝑒𝑒∈𝐸𝐸
ℎ(𝑣𝑣,𝑒𝑒)
𝛿𝛿(𝑒𝑒)

ℎ(𝑢𝑢,𝑒𝑒)
𝑑𝑑(𝑢𝑢)

 (7) 

As shown in Eq. (7), the transition probability is decided by three parts: the edge weight 𝑤𝑤(𝑒𝑒), 

the node degree 𝑑𝑑(𝑢𝑢) and the hyperedge degree 𝛿𝛿(𝑒𝑒). The smaller 𝛿𝛿(𝑒𝑒), the greater the 𝑝𝑝(𝑢𝑢, 𝑣𝑣). 405 

Eq (7) implies that given a node 𝑢𝑢, the random walk will firstly select a hyperedge 𝑒𝑒 linked with 

node 𝑢𝑢, then select an adjacent node 𝑣𝑣 among the selected hyperedge 𝑒𝑒. To solve the bias, the 

hyperedge degree should be averaged, where the adapted transition probability is defined as: 

 𝑝𝑝(𝑢𝑢, 𝑣𝑣)′ =  ∑ 𝑤𝑤(𝑒𝑒) ℎ(𝑢𝑢,𝑒𝑒)ℎ(𝑣𝑣,𝑒𝑒)
𝑑𝑑(𝑢𝑢)𝑒𝑒∈𝐸𝐸

�𝛿𝛿(𝑒𝑒)
∑ �𝛿𝛿(𝑒𝑒)𝑒𝑒∈𝐸𝐸

 (8) 

Correspondingly, the modified transition matrix 𝐓𝐓′  is derived 𝐃𝐃v
−1𝐇𝐇𝐇𝐇𝐃𝐃e

1
2(𝐌𝐌T𝐃𝐃e

1
2𝐌𝐌)−1𝐇𝐇T , 410 

where 𝐌𝐌 ∈ ℝ|𝐕𝐕| is an associate column vector that all the elements equal to 1. 

3.4 Multi-objective user request identification for Smart PSS configuration 

Based on the UHR algorithm, the established hypergraph and the corresponding transition 

matrix for Smart PSS configuration can be trained offline, the next step is to identify the user 

requests as online inputs and accordingly rank the PSBs.  415 

A raw user request in this study contains two parts, namely the selected RAs and the USs. 

Technically, the US information can be either manually provided by the users or automatically 

collected by the PSS system. On the one hand, the US information can be the textual information 

in user request, such as ‘good quality’ and ‘DIY for kid’. Key phrase extraction techniques, e.g., 

TextRank (Mihalcea & Tarau; Zhang et al., 2018), collaborating with some contextual information 420 

templates can achieve the contextual information extraction from the user-supplied USs. The 

extracted key phrases are supposed to be matched to the most similar usage scenario once triggered 

by the similarity threshold. On the other hand, the US information can also be the user-related 

information collected via the PSS configuration platform, e.g., location. All the extracted US 
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phrases are concatenated with the selected RAs as a vector, serving as the user request. 425 

Mathematically, the user requests containing both the RAs and/or USs can be represented as a 

query vector 𝐪𝐪 ∈ ℝ|𝑽𝑽|, where 𝑞𝑞𝑖𝑖 = 1 if the 𝑖𝑖th node on hypergraph is selected in the query vector, 

otherwise 𝑞𝑞𝑖𝑖 = 0. 

Except for the US information, the user queries can be further enriched by introducing the 

adjacent information of the user-selected nodes since they may reflect the user-preferred attributes. 430 

Specifically, the elements in initial query vector 𝐪𝐪 are still set as 1 if they are mentioned by the 

user. Note that there is no need to ask the user to configure all the RAs and USs. The transit matrix 

𝐓𝐓u,v is introduced, it presents the relatedness between 𝑢𝑢 and 𝑣𝑣. Then the final query vector will be 

𝐲𝐲 = 𝐓𝐓𝐪𝐪. Based on the final query vector 𝐲𝐲 and the trained ranking function 𝐟𝐟, the top K PSBs with 

the highest-ranking scores can be selected and recommended to the users. 435 

4 An illustrative example 

To make the proposed hypergraph-based Smart PSS configuration framework consolidate, an 

illustrative example of online 3D printing services is shown to demonstrate the configuration 

process in Smart PSS. 

Massive manufacturing companies have launched online 3D printing services as customized 440 

solutions to users, including the functions of instant price quotes, 3D model download, remote 3D 

printing, post-processing, delivery/shipping, etc. It is a typical PSS (Tukker, 2004) since it 

integrates both product and services, meanwhile involves multiple stakeholders’ participation (i.e., 

user participation and service provider’s contributions) via an online platform. However, there is 

still no way to achieve good context-awareness on the end-user side, let alone the quick adjustment 445 

to the customized PSS configuration results based on the contextual information. In this example, 

the online 3D printing platform can access closer to a Smart PSS on the end-user side by applying 

the proposed hypergraph-based Smart PSS configuration framework to derive automatic and 

customized configuration results with context-aware information. 
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The example simulates that the Smart PSS configuration platform collects user’s preferred 450 

RAs, their expected USs, and the other automatically collected US information as the raw inputs. 

The system will return a list of top K PSBs regarding the ranking score to fulfil the user query. The 

parameter K indicates that how many PSBs will be selected in the result list. 

 

Fig. 6. Illustration example of the hypergraph-based configuration process 455 

Fig. 6 shows the illustrative process of the proposed hypergraph-based configuration 

framework. Basically, the deployment of this framework consists of four steps, including 

hypergraph construction, UHR model training process, user query generation, and PSB ranking. 

Step 1: Historical data collection and hypergraph construction. Beginning from the database 

in Fig. 6, a hypergraph will be established using the historical user queries and configuration logs. 460 

For instance, a pair of configuration log and user query could be stored based on key-value 

representation way: {Assembled: Yes; Material: PLA; User context: for green hand} and {Name: 

Anycubic Cube Mega-x Large Size 3D Printer; Material: PLA, ABS; Size: 500x500x553mm; 

Number of nozzles: 1; Classification category: quasi-industrial grade; Assembled: Yes; Interface 

type: USB memory card; Brand: Anycubic; Time to market: 2019-12-19; Application areas: 465 
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clothing, shoes, hats, education, scientific research, jewelry, accessories, biomedical, cultural, 

broadcasting, art houses; Printing speed: 20-100mm/s}. They are organized with the format of 

𝐸𝐸(1):PSB-RA and 𝐸𝐸(2): PSB-US, respectively. The hypergraph could be established following the 

proposed RA-PSB-US data model.  

Step 2: UHR model training process based on historical data. The UHR algorithm will train 470 

the intermediate matrices of the hypergraph, such as the transition matrix 𝐓𝐓′. After the matrix T′ is 

convergent, the ranking function 𝐟𝐟 could be learned for PSB ranking. 

Step 3: User query generation. In this step, the users could generate their user queries by 

indicating their expected functions and usage scenarios. The user queries, on the one hand, will be 

stored into the database for the hypergraph updation and the UHR model training in the future. On 475 

the other hand, each initial user query will be pre-processed by aggregating some relevant 

information according to 𝐓𝐓′. For example, as shown in Fig. 6, additional information: “desktop-

level” and “with video tutorials” will be aggregated into the user query vector by multiply 𝐓𝐓′. Then 

the pre-processed user query will serve as the input of the ranking function 𝐟𝐟. 

Step 4: PSB ranking based on user query and the trained UHR. Finally, the ranking function 480 

𝐟𝐟 will only return the probabilities of each PSB being selected (e.g., 1st: 0.658, 2nd: 0.357, 3rd:0.275) 

according to the pre-processed user query. The top K (K = 3 in the illustrative example of Fig. 6) 

PSB candidates will return to the users and be saved into the database.  

5 Experiment 

To validate the proposed hypergraph-based model, the performance of the proposed algorithm 485 

is also evaluated.  

5.1 Data Collection and hypergraph construction  

Firstly, a dataset containing the online 3D printing service bundles (i.e., the PSBs), the functionality 

specifications, and the user reviews about their experience after placing orders was collected. A 

total of 28 PSBs’ functionality specification documents are collected, as listed in Table 3. From the 490 
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documents, 219 RAs on 24 kinds of parameters are extracted, including material, nozzle number, 

category, manufacturer, printing speed, printing size, additional features, etc., as shown in Fig. 7. 

Besides, 2947 USs were extracted from 1714 pieces of user reviews using a Python Package, i.e., 

TextRank (Mihalcea & Tarau; Zhang et al., 2018). TextRank was chosen since it can be extended 

for phrases and short sentences extraction. Some extracted phrases with the same/similar meanings 495 

are integrated to keep the hypergraph concise. The typical and frequently-mentioned usage 

scenarios contain ‘good quality’, ‘quick delivery’, ‘cost-effective’, ‘free-damage packaging’, ‘good 

customer service’, ‘smooth surface’, ‘for jewellery’, ‘for creative design/DIY’, ‘for rapid 

prototyping’, ‘for automobile’, etc. 

Table 3. Typical PSBs of the online 3D printing service 500 

PSB id PSB name 

psb0 Raise3d Pro2 industrial-grade large-size high-precision dual-nozzle 3D printer 

psb1 Raise3d Pro2 Plus dual-nozzle dual-color industrial-grade large-scale high-precision FDM 

3D printer 

psb2 Creative 3D LD-002R high-precision LCD large-size photosensitive resin desktop-level 

SLA 3D printer 

psb3 Chuangxiang 3D ENDER-3S pro v2 high-precision quasi-industrial household 3D printer 

…… …… 

psb24 Three green S8S desktop-level high-precision large-size printing quasi-industrial-grade 

FDM printing 3d printer 

psb25 Aurora Ervo 3d printer Z-603S industrial-grade stable high-precision printing model home 

large-size 3D printer 

psb26 Anycubic Mega-x Industrial-Grade 3D Printer Large-size Household High-precision 

Machine Z-axis Double Screw 

psb27 Formlabs Form3 high-precision SLA industrial-grade ABS/plastic/photosensitive resin 

high temperature 
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Fig. 7. RAs of the online 3D printing service 

Based on the dataset, a hypergraph for the online 3D printing service configuration was built 

up. According to the hypergraph’s statistical information in Table 4, it is clear to see a considerable 505 

difference between the edge sizes of 𝐸𝐸(1) and 𝐸𝐸(2). Especially noteworthy, the maximal hyperedge 

degree is 20 coming from 𝐸𝐸(1), whereas the minimal edge degree is 2, which belongs to 𝐸𝐸(2). The 

average edge degree is 3.9749. This phenomenon proves that the hyperedge degrees vary greatly, 

consistent with the hypergraph's bias in Section 3.3. 

Table 4. Statistics of the hypergraph on 3D printing services 510 

Element  Element name Size 

PSB Product-service bundle 28 

RA Requirement attribute 219 

US Usage scenario 2947 

𝐸𝐸(1): PSB-RA Product-service bundle-Requirement attribute relationship 28 

𝐸𝐸(2): PSB-US Product-service bundle-Usage scenario relationship 1714 
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5.2 Evaluation metrics and the compared graph-based models 

In this experiment, a total of 228 user reviews were chosen as the test dataset. Partial RAs and 

USs were hidden to simulate that the users only care about partial rather than all the PSB features. 

To evaluate the performance, several evaluation metrics were selected and applied, including 515 

precision, recall, F1-score, mean average precision (MAP) and normalized discounted cumulative 

gain (NDCG), were applied. Specifically, precision refers to the number of correctly recommended 

PSBs over the total number of recommended PSBs. Recall is denoted as the number of truly and 

correctly recommended PSBs over the total number of PSBs that should be recommended. F1-

score is the weighted average of precision and recall, which can be calculated via: 520 

 𝐹𝐹1 =  2×𝑃𝑃𝑃𝑃𝑒𝑒𝑐𝑐𝑖𝑖𝑃𝑃𝑖𝑖𝑃𝑃𝑃𝑃×𝑅𝑅𝑒𝑒𝑐𝑐𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑒𝑒𝑐𝑐𝑖𝑖𝑃𝑃𝑖𝑖𝑃𝑃𝑃𝑃+𝑅𝑅𝑒𝑒𝑐𝑐𝑅𝑅𝑅𝑅𝑅𝑅

 (9) 

MAP can be calculated through the following equations. 

 P@K(π, l) = (∑ 𝐼𝐼 �𝑙𝑙𝜋𝜋(𝑡𝑡)
−1 = 1�𝑡𝑡≤𝑘𝑘 )/𝑘𝑘  (10) 

 AP(π, l) = (∑ 𝑃𝑃@𝑘𝑘 × 𝐼𝐼{𝑙𝑙𝜋𝜋(𝑡𝑡)
−1 = 1}𝐾𝐾

𝑘𝑘=1 )/𝑘𝑘1  (11) 

Here, π refers to the ranking result of the PSB list. 𝐼𝐼 is the indicator function. 𝑙𝑙𝜋𝜋(𝑡𝑡)
−1  means the 525 

label of the t-th PSB in the result list, in which if t-th PSB does belong to the user truly selected 

results, then its label equals 1, otherwise equals 0. P@K(π, l) indicates the ratio of the number of 

correctly recommended PSBs and the parameter K. In Equation (10), 𝐾𝐾 means the number of PSBs 

returned in the result list, 𝑘𝑘1 refers to the number of PSBs related to the query (i.e., the number of 

PSBs expected to be recommended). MAP is the mean of the AP values of all the queries. 530 

NDCG is also a frequently used metric for ranking quality measurement. It can be calculated 

by defining 

 DCG =  ∑ 𝑟𝑟𝑒𝑒𝑙𝑙𝑘𝑘/log (𝑘𝑘 + 1)𝑡𝑡
𝑘𝑘=1   (12) 
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, where 𝑟𝑟𝑒𝑒𝑙𝑙𝑘𝑘 is the graded relevance of the result at the position k. In the example of the 3D printing 

service, 𝑟𝑟𝑒𝑒𝑙𝑙𝑘𝑘 can be defined as 1 if the result at position k is related to the queries, otherwise defined 535 

as 0. Then NDCG equal to 

 NDCG =  DCG/IDCG  (13) 

, where IDCG refers to the ideal discounted cumulated gain. 

The parameter K that indicates the number of selected PSBs is set as 2, 3, 5 or 8 since the total 

PSBs count is only 28 PSBs in this example. Larger K does not comfort the practical application 540 

because it will be easy to select truly recommended PSBs that cannot prove the algorithms' 

effectiveness.  

Five algorithms are compared with the proposed approach, including a non-personalized 

approach (denoted as AVG), item-based collaborative filtering (ICF) (Sarwar et al., 2001), singular 

vector decomposition (SVD) (Brand, 2003) and two most related graph models. AVG ranks PSBs 545 

based on their average ratings. ICF and SVD, frequently used as recommendation approaches, rank 

the PSBs based on historical PSB ratings. AVG, ICF and SVD are non-context-aware models in 

this experiment since they are based on historical ratings rather than contextual information. A 

classic graph-based ranking model called PageRank (PR) was selected because it also uses the 

random walk model to learn the ranking scores. Its significant difference with hypergraph ranking 550 

lies in that PageRank is based on the ordinary graph. At the same time, the original hypergraph 

ranking (HR) algorithm was also deployed to compare with the UHR algorithm. 

5.3 Comparison of the algorithm performance 

The results of compared algorithms are displayed in Table 5. The first six rows show the 

algorithms’ performance on handling the heterogeneous data simultaneously based on MAP, 555 

NDCG and F1-score. The results show that the UHR algorithm has the highest MAP value of 0.431, 

followed by the HR’s MAP value of 0.392. Besides, the UHR also has the highest NDCG and F1-

score values whenever n equals 2, 3, 5, or 8. It proves that the hypergraph model does exceed the 
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ordinary model. Less information loss on the graph matrices leads to performance improvement on 

the ranking algorithm. Furthermore, normalizing the hypergraph degrees strengthens the original 560 

hypergraph ranking with better performance.  

Table 5. Comparison with models 
 

MAP ndcg@2 ndcg@3 ndcg@5 ndcg@8 F1@2 F1@3 F1@5 F1@8 

AVG 0.150 0.071 0.091 0.127 0.172 0.805 0.805 0.714 0.317 

ICF 0.213 0.106 0.135 0.177 0.232 0.850 0.822 0.764 0.678 

SVD 0.210 0.119 0.142 0.185 0.225 0.852 0.824 0.766 0.674 

PR 0.371 0.316 0.321 0.349 0.399 0.894 0.862 0.799 0.708 

HR 0.392 0.344 0.335 0.378 0.427 0.896 0.862 0.802 0.711 

UHR 0.431 0.357 0.394 0.447 0.494 0.900 0.875 0.817 0.726 

UHR_RA  0.419 0.323 0.381 0.446 0.505 0.875 0.856 0.804 0.720 

(UHR_RA = UHR based on only RAs without USs) 

 

Fig. 8 represents three algorithms' precision-recall curve that the UHR algorithm still has the 

best performance.  565 

 

Fig. 8. Precision- recall curve 
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The stability of the ranking algorithms is tested as well. Initially, the parameter 𝛼𝛼 was set as 

0.9 when we compared the algorithms’ performance based on the test set, meaning that during the 

iteration process of the random walk, a node will jump to its neighbor node with a probability of 570 

0.9 and restart from the starting nodes with the probability of 0.1. To check the stability of the 

tested algorithms, the parameter 𝛼𝛼 is gained from 0.60 to 0.95 with a step size of 0.05 and finally 

set as 0.999. The value of parameter 𝛼𝛼 starts from 0.60 rather than an even smaller value because 

we hope the random walk process can transverse all the nodes on the hypergraph in the recursive 

process. Fig. 9 shows the trends of MAP and NDCG values of different algorithms when the 575 

parameter 𝛼𝛼  changes. It is clearly seen that in a wide range of 𝛼𝛼 , the UHR outperforms the 

PageRank and hypergraph ranking. MAP of the UHR is stable at around 0.43, and the value of 

NDCG is around 0.45. 

 

Fig. 9. Evaluation metrics under different alpha 580 

5.4 Comparison of the effect of usage scenarios in Smart PSS configuration 

To test the effect of the usage scenarios in Smart PSS configuration, user queries without USs 

and the user queries with both RAs and USs are utilized as inputs. The last two rows of Table 5 

illustrate that the performance of the UHR was improved by adding US information. The 

improvement ratio is around 10% when the number of selected PSBs is 2. In other words, while 585 
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selecting fewer PSBs, usage scenarios will play a more prominent role in the UHR. This 

phenomenon conforms to the industrial solution configuration application that although there are 

lots of solution options among all the industries, the proper alternatives for each scenario are limited 

so that the configuration list should be short and precise.  

The performance improvements of introducing USs can also be seen from the query examples 590 

in Table 6. The PSBs in the second column are the ground-truth results from historical 

configuration logs that the users finally selected. Under various user requests, it is clear that the 

results using both RAs and USs can rank the ground-truth results as the top-ranking candidates. In 

contrast, the ones using only RAs will rank the ground-truth results in the lower-ranking positions. 

For instance, the fourth row shows that under the user request with only RAs: {Shop-assembled: 595 

Yes; Classification: Desktop level}, the hypergraph-based configuration approach will return 

{psb26, psb24, psb3} as the PSBs that the user is probability interested. However, while adding US 

information: ‘good quality’ and ‘DIY for kids’ into the user request, the proposed approach then 

will return the PSBs {psb3, psb16, psb0} as the recommended results, listing the ground-truth at 

the top 1 position. Although the user might be unclear about the 3D printers’ brand and functional 600 

specifications, they can still be recommended with proper PSBs according to their known US 

information. 

Table 6. Examples of ranking results 

User request with both RAs and USs Ground-truth 

result 

Top 3 PSBs 

based on RAs 

and USs 

Top 3 PSBs 

based on RAs 

{Classification: Industrial grade; Printing Speed: 

10-150mm/s; Print Size: 305x305x300mm; User 

context: Good printing quality; User context: 

mechanically beautiful; User context: clear 

printing} 

psb0  psb0 psb26  

psb26 psb0  

psb27 psb27 
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{Material: TPU, PLA, ABS; Shop-assembled: 

Yes; User context: need instructions; User 

context: easy-to-use; User context: novice user} 

psb3  psb3 psb0  

psb25  psb1 

psb12 psb2 

{Material: Photosensitive resin; Classification: 

Desktop level; User context: good customer service; 

User context: knowledgeable customer service; User 

context: good quality} 

psb3 psb3 psb26 

psb0 psb24 

psb16 psb3 

{Shop-assembled: Yes; Classification: Desktop 

level; User context: good quality; User context: DIY 

for kids} 

psb3 psb3 psb26 

psb16  psb24 

psb0 psb3 

{Model: Elfin; Shop-assembled: Yes; Material: 

Photosensitive resin; Classification: Desktop level; 

Time-to-market: 2019; User context: aesthetic 

appearance; User context: quick delivery; User 

context: precise printing} 

psb5 psb5 psb26 

psb0 psb5 

psb9 psb27 

{Shop-assembled: Yes; Material: Photosensitive 

resin; Classification: Desktop level; Time-to-market: 

2019; User context: precise printing; User context: 

hot sales; User context: good customer service} 

psb5 psb5 psb26 

psb16 psb24 

psb0 psb5 

 

5.5 Comparison to the conventional PSS configuration approaches 605 

Considering the factors related to the performance during the PSS configuration process, a 

qualitative comparison between the conventional PSS configuration methodologies and the 

proposed hypergraph-based approach was conducted using questionnaires among stakeholders. 

The factors selected in Table 7 are the ones that will affect the user experience throughout the PSS 

configuration process.  610 
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As shown in Table 7, at the beginning of the PSS configuration process, the manual 

configuration, the conventional feature-based PSS configuration, and ontology-based PSS 

configuration processes require at least basic knowledge about the PSBs; otherwise, a satisfied PSS 

configuration result cannot be guaranteed. However, the unbiased hypergraph-based approach with 

both RAs and USs relieves the reliance on domain knowledge. During the PSS configuration 615 

process, except for the quick responses to the user requests, the unbiased hypergraph-based 

approach also shows strength in the sensitivity to user-mentioned context details. Finally, as for the 

acceptance of the retrieved PSBs, all the approaches can derive proper PSBs to the users, but the 

proposed approach enables the more reasonable PSB ranks. Meanwhile, although manual 

configuration can derive precise PSB results, the configuration process duration cannot be 620 

neglected.  

Table 7. Qualitative comparison in the PSS configuration process aspect 
 Manual 

configuration by 

engineers/experts 

Conventional 

feature-based PSS 

configuration  

Ontology-based PSS 

configuration  

Hypergraph-based 

Smart PSS 

configuration  

Prerequisites 

before 

querying  

Poor:  

Need clear RAs  

Medium:  

Need domain 

knowledge of PSB 

functional 

specifications 

Medium:  

Need domain 

knowledge of PSB 

functional 

specifications 

Good:  

No specific 

requirement for the 

end-user 

Time 

consumed in 

the 

configuration 

process 

Poor: 

Take a long time to 

discuss with the 

engineers and wait 

for their responses 

Good: 

Quick to find some 

necessary PSBs 

Good: 

Quick to find some 

necessary PSBs  

Good: 

Quick to find some 

necessary PSBs 

Pertinence to 

the contextual 

Poor: 

No contextual 

Poor: 

No contextual 

Poor: 

No contextual 

Good: 

Sensitive to details in 
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information information is 

involved unless 

initially required by 

the users 

information is 

involved 

information is 

involved  

user-mentioned 

contexts 

Acceptance of 

the PSB 

results 

Good:  

Reasonable PSB are 

retrieved. 

Medium: 

Reasonable PSBs are 

retrieved. 

Medium: 

Reasonable PSBs are 

retrieved. 

Good: 

Reasonable PSBs are 

retrieved and ranked. 

6 Conclusions 

In this paper, we consider a decision-making implementation framework for Smart PSS 

configuration under a complex situation. In Smart PSS configuration, heterogeneous entities and 625 

complicated associated relations are modelled, including RAs, USs, and PSBs, based on one-to-

one, one-to-many, many-to-one, many-to-many relations. Under this situation, a hypergraph-based 

framework was proposed to handle the complexity in Smart PSS configuration. Moreover, facing 

the limitations of conventional PSS configurators and features of Smart PSS, a context-aware and 

self-adaptable manner for Smart PSS configuration is also achieved with the mature development 630 

of ICT techniques. The scientific contributions mainly lie in three aspects: 

(1) A hypergraph-based framework was designed for the complex system containing 

heterogeneous entities and complicated associated relations. The framework integrates the multi-

source information, including RAs, PSBs, and USs, in Smart PSS configuration with a hypergraph-

based model (i.e., RA-PSB-US data model), making the configuration framework more 635 

comprehensive. The data resources of the proposed RA-PSB-US are easily accessible, thus the data 

model itself is generic and able to be extended. Meanwhile, by allowing users to offer their 

preferred usage scenarios as auxiliary information, the Smart PSS configuration also became more 

user-centric and user-friendly. 

(2) An UHR algorithm was proposed to mitigate the bias in hypergraphs that are prone to 640 

select settled results. By normalizing the hyperedge degree, the proposed UHR can returns 
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personalized PSB results, thereby ensuring the validity of the practical Smart PSS configuration. 

Furthermore, the performance of the proposed UHR was proved based on two evaluation metrics, 

i.e., MAP and NDCG, compared to the other five related approaches. 

(3) This study also quantitatively demonstrates the influence of US information that it can 645 

moderately improve the ranking performance. The improvement effect is more evident under more 

restricted configuration situations that fewer PSBs are regarded as the ones that best meet user 

requirements. 

In summary, it is the first attempt to deploy the Smart PSS configuration task on hypergraph 

by clarifying the configuration process in Smart PSS, defining the RA-PSB-US data model, and 650 

offering an idea on selecting customized PSBs.  

Except for the theoretical contributions of the proposed decision-making framework within a 

complex system containing heterogeneous entities and complicated associated relations, the 

hypergraph model can also fit the features of Smart PSS. In particular, by introducing US 

information, the advances of context-awareness were proved via the comparison between non-655 

context-aware models (i.e., AVG, ICF, and SVD) and context-aware models (i.e., PR, HR, and 

UHR) quantitatively. Meanwhile, the advances were also recognized by the qualitative comparison 

with conventional feature-based PSS configuration and ontology-based PSS configuration. 

Moreover, the self-adaptability of Smart PSS was also achieved by returning personalized instead 

of ‘off the shelf’ PSB configuration results. It was proved via the examples in the case study that 660 

the proposed model can properly adjust the PSB result list given different user queries. 

This study still has some limitations. One limitation is that a more comprehensive and larger 

dataset cannot be collected and tested due to restricted data access. Even so, the dataset in this study 

still fits for the small or medium enterprises that only have dozens of PSBs in their product-service 

family. Another limitation is that hypergraph-based models are not the only ones suitable for the 665 

multi-objective decision-making problem. Integrating the information of multiple graphs is also 
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practicable to handle the heterogeneous information. In the future, we hope to explore a unified 

model to aggregate the heterogeneous information of multiple graphs for the context-aware Smart 

PSS configuration task. Furthermore, it is hoped to adopt the proposed Smart PSS configuration 

framework into the other Smart PSS cases with other smartness dimensions, e.g., a higher level of 670 

self-adaptability. To extend the hypergraph-based framework’s capability, other intelligent 

modules should be integrated as a whole. For instance, to achieve higher self-adaptability of the 

Smart PSS configuration, the hypergraph-based configuration model should be able to evolve the 

hypergraph when more configuration orders and user reviews are collected. 
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