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AR-assisted Digital Twin-enabled Robot
Collaborative Manufacturing System with

Human-in-the-loop
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Abstract—The teleoperation and coordination of multiple in-
dustrial robots play an important role in today’s industrial
internet-based collaborative manufacturing systems. The user-
friendly teleoperation approach allows operators from different
manufacturing domains to reduce redundant learning costs and
intuitively control the robot in advance. Nevertheless, only a
few preliminary works have been introduced very recently, let
alone its effective implementation in the manufacturing scenarios.
To address the gap, this research proposes a novel multi-
robot collaborative manufacturing system with human-in-the-
loop control by leveraging the cutting-edge augmented reality
(AR) and digital twin (DT) techniques. In the proposed system,
the DTs of industrial robots are firstly mapped to physical
robots and visualize them in the AR glasses. Meanwhile, a multi-
robot communication mechanism is designed and implemented,
to synchronize the state of robots in the twin. Moreover, a
reinforcement learning algorithm is integrated into the robot
motion planning to replace the conventional kinematics-based
robot movement with corresponding target positions. Finally,
three interactive AR-assisted DT modes, including real-time
motion control, planned motion control, and robot monitoring
mode are generated, which can be readily switched by human
operators. Two experimental studies are conducted on 1) a single
robot with a commonly used peg-in-hole experiment, and 2) the
motion planning of multi-robot collaborative tasks, respectively.
From the experimental results, it can be found that the proposed
system can well handle the multi-robot teleoperation tasks with
high efficiency and owns great potentials to be adopted in other
complicated manufacturing scenarios in the near future.

Index Terms—Augmented Reality, Digital Twin, Collaborative
Manufacturing System, Reinforcement Learning, Human-in-the-
loop Control

I. INTRODUCTION

In today’s increasingly competitive market, the manufactur-
ing paradigm is shifting toward large-scale individualization
and personalization, which accordingly, result in an ever high
level of flexible and automatic requirement of manufacturing
systems. To achieve mass personalization in manufacturing,
various manufacturing “things” and human operators are
permeated through the production loop [1], alongside with
industrial robots which have been well developed and playing
a significant role in handling complex manufacturing tasks
with high efficiency [2][3]. However, most existing robotic
systems conduct the pre-programmed tasks in a routine manner
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without much intelligence, let alone to well-handle personal-
ized tasks in a collaborative manner [4][5]. To solve this issue,
two effective human-robot collaborative approaches can be
promising. One is to train the robot by leveraging the cutting-
edge artificial intelligence, which is known as robot learning
[6], while the other is to put a human expert in-the-loop to
teach or teleoperate the robot remotely.

Integrating human intelligence in the multi-robot collabora-
tive manufacturing process plays a promising role in today’s
smart manufacturing to extend the existing capabilities of both
humans and robots. In this context, different from the broadly-
defined human-robot collaboration, multi-robot collaborative
manufacturing with human-in-the-loop neither requires work-
ers to present in the workspace, nor collaborate in the physical
space only. Rather, it can perform manufacturing activities
with other manufacturing equipment collaboratively in the dig-
italized cyber space by teleoperating the robot remotely. Such
a paradigm is spatially, safely, and technologically flexible, and
hence bridges the gap between fully automated manufacturing
and fully manual manufacturing [7]. It has great potential for
application in the current manufacturing process of large-scale
personalized products.

Nevertheless, due to the complex scenarios in manufac-
turing, there still exist several challenges to realize human-
in-the-loop collaborative manufacturing. One major challenge
is that the existing industrial robot program still requires an
experienced operator to edit or programming [8]. It is still a
great obstacle for users who are experts in the manufacturing
field but lacking experience in robot operation [9]. As one
basis for the collaborative manufacturing system, teleoperation
of industrial robots has been emphasized and investigated
much recently [10] [11]. However, how to make the robot
teleoperation user-friendly and further to collaborate with other
operators or automated robots is rarely explored, which can
largely reduce the extra workload required by human operators
and increase efficiency.

Aiming to fill this research gap, the wearable AR-assisted
system and DT technologies allow users to observe and
teleoperate the real robots accurately in an intuitive manner.
With the characteristic of intuitionistic and scalability of AR
and DT technologies, this paper proposed an AR-assisted
DT-enabled multi-robot collaborative manufacturing system
with human-in-the-loop. The rest of this paper is organized
as follows. Section II reviews related works of multi-robot
collaborative manufacturing, AR-assisted robot teleoperation,
and DT applications in the field of industrial robot control.
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Section III presents the key designs of the proposed system,
such as communication mechanism, AR-assisted teleoperation,
DT-enabled motion planning, and various designs of robot
control mode. In section IV, single-robot and multi-robot
demonstrative experiments are carried out stepwise to show
their capabilities and effectiveness in today’s manufacturing
shopfloor. Section V discusses the problems that occurred
during the implementation and other potential improvements,
while the conclusion and future research directions are high-
lighted in Section VI at last.

II. RELATED WORK

This section summarizes the recent advancements of multi-
agent collaborative manufacturing, AR-assisted robot teleop-
eration, and DT applications in the robot area as follows.

A. Multi-agent based Collaborative Manufacturing

Over the past two decades, industrial robots have gradually
taken on a more important role in the collaborative manufac-
turing domain with higher productivity and a more flexible
range of applications [12]. For instances, in the manufactur-
ing assembly process, Marvel et al. summarized multi-robot
assembly applications and methods for common industrial
robot platforms such as industrial robot arms, robot hands,
and autonomous mobile platforms [13]. Common algorithms
for simultaneous multi-robot motion and cooperative opera-
tions were recapped with future trends and insights presented
for multi-robot assembly problems. Meanwhile, Jinyu et al.
designed a series of end-effectors for assembly operations in
the 3C industry in a multi-robot collaborative manufacturing
system [14]. As for the robot-based additive manufacturing
process, Hongyao et al. proposed a large, flexible, and scalable
3D printing system consisting of multiple robots working in
concert and discusses the impact of multi-robot layouts on
the maximum reachable area and geometric adaptation in the
paper [15]. Also, Luis et al. proposed a new approach for
process automation design, enhanced implementation and real-
time monitoring of operations, in response to the need for
multi-robot collaborative systems that require the integration
of robots from different manufacturers [16]. The approach
created a DT of the manufacturing process with an immersive
virtual reality interface that can be used as a physical imple-
mentation prior to a virtual test-bed and can also be effectively
used for operator training and feasibility studies of solutions.

On the other hand, with the ever increasing complexity
of robot control strategies and personalization requests, ex-
perienced human operators have been inevitably engaged in
the collaborative manufacturing system with higher flexibility
[17]. The main research works in this field have focused on
proposing technological solutions to improve safety, produc-
tivity, and reduce costs. To address the safety issues, Martina
et al. [18] introduced a strategy which can correctly handle
human safety by combining the relative positions and veloci-
ties of the human operator and the robot with defining a safety
index. It also can satisfy the demand for increasingly strong
cooperation between humans and robots. Meanwhile, Robla
et. al [19] comprehensively reviewed the main safety systems

proposed and applied in the industrial robot environment and
reviewed the current regulations and the new concepts intro-
duced therein. To address the problem of cost-effective task
assignment in human multi-robot systems, a generic mixed-
integer linear programming problem was formulated in [20]. It
aims to minimize the overall execution time while optimizing
the quality of the executed tasks and the workload of both
humans and robots. Meanwhile, a real-time adaptive assembly
scheduling method for human-multi-robot collaboration was
proposed by modeling and incorporating the changing human
operator capabilities, and a genetic algorithm was designed to
find a feasible solution for the formulated adaptive assembly
scheduling problem [21].

B. AR-assisted Robot Teleoperation

Robot teleoperation denotes that the user remotely oper-
ates the robot manually without contact, through a suitable
interface (gamepad, keyboard, etc.). Benefiting from a close
coupling of user input to robot actions, the robot teleoperation
control paradigm is now broadly studied in the field of robot
control. Meanwhile, owing to its good adaptability (time,
spatial), robot teleoperation has been widely used in surgical
robots [22], robotic manipulators [11] to aerial robots [23],
and underwater robots [24].

Meanwhile, AR is a technology that allows the projection of
computer-generated virtual objects into a physical environment
[25]. It is an important component of the Industry 4.0 concept,
allowing workers to access physical and virtual information in
a hybrid scenario and to interact with virtual objects [26][27].
Such interaction way makes AR naturally suitable for robot
teleoperation, and it could be ad used in many applications
to bridge the gap between human and machine systems, for
example, manufacturing activity guidance [28], human-robot
collaboration assistance [29], etc.

In the last few years, an amount of work has combined
both technologies, i.e., AR technology and robot teleoperation.
Yong et al. presented an AR-based robot teleoperation system
using RGB-D imaging and a posture demonstration device.
The system sends the color and depth images of the remote
robot environment to the local area, where the operator can
perceive the environment and perform the robot teleoperation
[10]. [30] proposed an augmented reality (AR)-assisted robot
programming system that converts robot work scenes into AR
scenes to enable fast and intuitive robot path planning and task
programming. AR was also employed to help workers visu-
alize information about the robot in real time by overlaying
information related to maintenance tasks on the corresponding
objects [31]. This system can help human workers to identify
and visualize machine errors and can simplify the complexity
of robot maintenance tasks. Moreover, Stephanine et al. fa-
cilitated task performance in remote robot manipulation and
grasping by using AR to provide additional visual information
about the environment and the robot, aiming to enhance the
visual space of the robot operator with cues about the robot
gripper’s position in the workspace and in relation to the target,
thus improving task performance [32].
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C. Digital Twin in Robot Applications

In smart manufacturing, DT technology is deemed the core
to represent the physical space in the virtual replica [33][34].
The DT allows modeling the parameters of the production
system at different levels including assembly process, pro-
duction station, and line level, and DT allows dynamically
updating the twin in runtime, synthesizing data from multiple
2D–3D sensors to have up-to-date information about the actual
production process [35][36]. Except for its widely adoption in
manufacturing process, recent works began to establish the
robot DT for device control purposes. For instance, Marius et
al. created a DT of the robot arm in the Unity engine to learn
manufacturing skills virtually, where the physical robot arm
could replicate the learned skills in physical space afterwards
[37]. Richard et al. design a DT solution to provide users’
ability to predict the battery charge of the mobile robot and
designing for user a visual interface of the mobile robot’s
movements using an AR device as a medium to display this
digital data [38]. Meanwhile, the DT has been also widely
adopted in cloud robotics, of which the digital model in the
cloud may not reflect the real state of the physical robot
manufacturing system. To solve it, Wenjun et al. proposed
a DT-based framework for industrial cloud robotics and the
framework combines data from physical industrial robots,
digital industrial robots, robot control services, and DTs to
enable digital robotics and bi-directional interaction between
physical robots [39]. It can efficiently synchronize and merge
digital and physical robots, and thus ultimately enable fine-
grained sensing control of cloud robots system.

Currently, smart manufacturing systems usually avoid hu-
man intervention in the manufacturing process, and automated
control methods have proven successful in many applications
[40]. However, in some cases of high uncertainty or flexibility,
human involvement is still beneficial and even necessary. For
such "human-in-the-loop" control approaches, the issue of
human information perception and the way to interact with the
system must be addressed. Enes et al. used a combination of
DTs and virtual reality (VR) interfaces to design an immersive
human-in-the-loop robotic assembly system [41]. Meanwhile,
a DT platform for robot teleoperation with a human-in-the-
loop was presented in [42], where the DT effectively acted as
an intermediate layer between the operator and a controlled
machine (e.g., a robot arm), to interact with the operator and
monitor the quality of the remote task through an intuitive low-
latency interface. Moreover, Ridhi et al. [43]. used simulation
and control software to design DTs for manufacturing environ-
ments and utilized ant colony optimization for programming
industrial robots in DTs and transferring them to real robots
after manual inspection, which can largely reduce human
intervention in the solution of assembly tasks.

From the above literature, current studies mainly focus on
collaborative manufacturing systems which treat the worker
or robot as individual human-in-the-loop robot-robot collab-
oration considerations. Among the few studies considering
human existence, they emphasized the efficient scheduling and
allocation of different working tasks, instead of the control-
ling or guiding robots to perform manufacturing tasks. It is

certainly deserved the deep exploration of human-in-the-loop
collaborative manufacturing system.

III. SYSTEM DESIGN AND IMPLEMENTATION

The overall framework of the proposed AR-assisted DT-
enabled robot collaborative manufacturing system is presented
in Figure 1. Firstly, a mechanism of multi-node commu-
nication is introduced, which serves as the fundamental to
ensure the effective communication among multiple robots and
multiple clients in the same system. Next, the fundamental
design of the AR-based robot teleoperation system, including
pose registration and motion planning are presented. Then,
the model-free reinforcement learning is adopted to complete
the robot motion planning control task. Finally, the three
DT-enabled interaction approaches, including Cyber2Physical
real-time teleoperation, Cyber2Physical planning teleopera-
tion, and Physical2Cyber monitoring are developed to accom-
plish the closed-loop between the virtual and physical robot.

A. Multi-robot Multi-client Communication

The communication and state synchronization among the
multiple robot control system, which are treated as the fun-
damentals of implementing DT [40]. In this research, the
socket communication protocol is employed in a cloud-edge
industrial internet infrastructure for multi-robot multi-client
communications, as shown in Figure 2. This mechanism allows
each robots to be controlled simultaneously by a client , as well
as to allow part of the clients to observe the others without
control permissions. In essence, the states of all robots are
synchronized to a cloud server (i.e., a master node). Mean-
while, all clients send requests to a cloud server to acquire
the latest states of robots in the system. The responsibility of
Cloud master node and edge node is detailed as follows:
• Cloud node: The cloud node continuously receives the

state updates from each robot in the manufacturing sys-
tem. Meanwhile, the states of individual robots will be
distributed to each slave node that is connected to the
same network.

• Edge node: The edge nodes have two types. One type is
the node connect to the robot operator, such type of nodes
need to upload the state of the corresponding robot and
receive the latest state of other robots sent by the master
node. The other node type is for observer only, and such
type of nodes only needs to synchronize the state of all
robots in the system from the master node.

Nevertheless, the communication security issue during tele-
operation needs to take extra attention to avoid accidents
during the manufacturing process as well. To address that,
the prototype system adopted following several measures at
the user control stage and information transportation stage. In
user input stage, we not only require the authentication before
joining the industrial network, but also provides individual
username and password authentication when establishing a
socket connection to each robot. Besides these, the control
command could not be interrupted by other operating com-
mands except the protective stop command to keep operation
safety and complement. While the information transportation
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Figure 1. Overview of the proposed system framework.

stage, the control communication flow between each robot and
client is encrypted by hash table. Furthermore, in manufactur-
ing practice, the system adopts the commercial cloud servers
and the Secure Sockets Layer and Secure Socket Tunneling
Protocol series encryption approaches to ensure the system
stability and security.

B. AR-assisted Robot Teleoperation System

To meet the idea of multi-robot collaborative manufacturing
system with human-in-the-loop control, a DT of the physical
robot is modeled with the Unity game engine. Meanwhile,
the robot twin is ported to the AR glasses to increase the
immersive experience. Furthermore, it could offer a teleopera-
tion approach and an observation approach of the robot more
friendly.

Specifically, in the AR glass, the DT of robot synchronized
with the real robot is projected as a hologram at the remote
workspace. With the mapped DT of the physical robot, the
movement of the physical robot can be controlled remotely,
while the state of the physical robot can be monitored and
visualized by the robot DT. Furthermore, with integrating

the proposed communication mechanism in section III-A and
multiple AR teleoperation system, it allows users to work
together even when they are distributed in different places,
and it aligns with the collaborative manufacturing paradigm.
In general, the advantages of a robot control method aided by
AR technology are obvious compared to the direct control of
the robot. Firstly, the system provides predictability for final
posture and motion trajectories physical robot. As the physical
robot imitates the motion of the DT, the trajectories can be
visualized to avoid some potential safety issues. Besides, the
system provides a user-friendly pattern, the manufacturing
system can be manipulated not limited to spatial and human
factors. While we achieve the AR-assisted Digital-twin en-
abled collaborative manufacturing, some key functionalities
need to be detailed as follows.

1) AR-based Robot Registration: When implementing
Cyber-Physical synchronize functions of the proposed robot
control system, the physical robot and the twin not only
require the pose bidirectional mapping between them and
need the twin of physical robot own the motion planning
capability which could transfer to the physical robot and
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Figure 2. The Architecture of Multi-robot Multi-client Communication
Mechanism.

drive the movement. The calculation process of transferring
the pose of DT to the physical robot, which is known as
registration. It mainly consists of two stages: displayed model
alignment and joint alignment. In the model alignment stage,
with the ready-designed virtual 3D robot model, the Vuforia
Engine1 is adopted to align the model target between physical
and virtual robots to synchronize the displayed robot pose.
Then, the joint value alignment is to calculate a joint-value
transformation matrix based on pose-aligned models, which
could convert the DT’s joint values in the AR coordinate
system to the physical robot’s joint values in the real-world
coordinate system. For every iteration of the physical robot
pose update loop, the expected physical robot’s end-effector
position is set by humans in the AR glasses and the feasible
joint value solution is calculated by RL-based motion planning
algorithm (detailed in subsection III-B2). Afterward, the joint
value of the physical robot is transformed into the virtual
robot’s joint solution. By this transformation, joint values
of the virtual robot in the AR-glass scene mapping to the
corresponding joint value of the physical robot, enabling the
physical robot to synchronically operate with the DT. Lastly,
with the tiny difference between virtual and real robot model
and detection accuracy, the joint values of physical robots will
be sent back to the virtual robots after finishing movement to
revise the pose of the virtual robot. With the above procedures,
the pose synchronization can form as a closed-loop process to
remain system stable and avoid errors. The visualization is
demonstrated in Fig. 7.

2) RL-enabled Motion Planning: RL is widely used in
smart manufacturing processes and used to build intelligent
systems that can perform tasks such as path searching [44],
resource scheduling [45], and manipulation decisions making
[46]. In addition, RL-driven robot control has also been widely

1https://www.vuforia.com/

used. Hence, to drive the physical robot movement, the model-
free RL algorithm is employed to plan the movement of robot
in the proposed system. Using model-free RL approach, it
initializes the robot control policy by correlating the state of
the task environment with its own motion parameters (i.e.,
the action space of robot). Then, the corresponding control
policy is improved by RL algorithm through return reward and
continuous trial-and-error interaction with the environment to
meet the expected performance/goal (reach a specific position
in our task)[47]. In addition, the control policy is approximated
by collecting trajectory data and does not depend on the envi-
ronment model and any human prior knowledge just through
the interaction. In such way, the robot control policy function
can be approximated instead of needing the kinematic model,
which requires a lot of expertise to design. Additionally, the
planning solution doesn’t require to be calculated by inverse
kinematic but requires a forward propagation in neural network
in RL improve the time efficiency. In general, RL-based
motion planning can reduce, remove tedious calculations of
manual modeling, and improve the generalization. Afterward,
by outputed motion control policy function, the solution of
robot motion for the DT can also be applied to the physical
robot via the stated synchronized registration function. The
detailed pipeline for RL-algorithm is illustrated in following
sections.

Figure 3. RL-enabled motion planning: the robots’ end-effector attempt to
chase and touch the cube target. The position of cube can be dragged and
guided by human intention.

In the robot motion planning phase, the planning process is
treated as a sequential decision-making problem and solved as
an episodic task by model-free RL approach. In each episode,
the interaction trajectory is formulated as a Markov Decision
Process (MDP). The MDP is defined by a tuple consisting of
the following sets (S,A, Psa, R, γ), where the elements refer
to:
• State space (S) is the state/observation set of the whole

planning process. The state representation s in this set
consists of four components:
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– The existence of the robot agent.
– Setting the target position based on robot coordinate

system.
– End-effector position based on robot coordinate sys-

tem.
– The vector of the distance between above target

position and end-effector position.
The robot coordinate system is based on the base joint
center of the robot as the coordinate origin, the positive
direction of the y-axis is the direction in which the wires
extend, and the positive direction of the z-axis is the
direction in which the upward of base joint . Direction
of x-axis is determined by right-handed coordinate rules.

• Action Space(A) is the number of joints that the robot
can rotate independently (i.e. Degree of Freedom) and a
is the chosen action.

• Reward (R) is the sum of expected return reward.

Rt =
∑
t′=t

γt
′−tr (st′ , at′) (1)

The element r(s, a) of the set is determined by the state
s which the agent in and the corresponding action a
executed by the agent. The reward function is shaped
by following components:

– The absolute value of scalar distance between target
position and end-effector position.

– The end-effector reaches target position (bonus
term).

– The joint of end-effector gets out of the setting
working area (penalty term).

– The sum of each joints’ height (optional, applicable
to task series of perpendicular grasping).

• Psa represents the transition probability distribution of
executing action a under state s, i.e.

P ass′ = P (St+1 = s′ | St = s,At = a) (2)

• γ ∈ [0, 1] is a discount factor. It defines the decay of
future accumulated rewards.

With above settings, a task episode starts from an initial
state s0 and the robot agent samples an action a ∈ A during
each decision interval from the parametric stochastic policy
π(at|st) to adjust the robot pose. Afterwards, the successor
state st+1 of next decision interval is given according to Psa,
and robot agent gains a return reward value r(s, a) from the
environment (i.e simulator). Essentially, RL algorithm is to
optimize the policy π based on performing exploratory actions
and reinforcing the actions which lead to better performance
than expectation of the agent. The expectation of the agent
is modeled by a state-value function V . The H is the time
horizon of the episodic task. The formulation of the state-value
function is shown:

V π(st) = Eπ

[
H∑
t=i

γtrt|s0 = s

]
(3)

For robot control, since the industrial robot owns continu-
ously action space, the RL algorithm with outputting the action

space distribution is more suitable for solving such problem.
Hence, the algorithm we picked is a model-free policy-based
RL algorithm named Proximal Policy Optimization (PPO)
[48]. It used to be the baseline algorithm of OpenAI and Deep-
Mind and also a classical approach in actor-critic RL algorithm
family. Comparing with other actor-critic RL algorithms, the
PPO-based agent performs exploration in the environment and
compares the actual gained reward for every state-action pair
with the estimated reward to form the advantage function, as
shown in Equation 4.

A(st, at) = Rt − V π(st) (4)

Meanwhile, PPO algorithm optimizes the sample efficiency
using importance sampling and the ρt is the ratio of the prob-
ability between the updated and original policies generated by
importance sampling. Despite that, an intuitive and effective
surrogate clip function is proposed with the constraint of the
loss function, where ε is the range of clip-term:

LCLIP(θ) == Eτ

[
T∑
t=0

min(ρt(θ),

clip(ρt(θ), 1− ε, 1 + ε))At

(5)

With the help of clip-term, the policy update offset between
the old and new strategies exceeds a predefined interval and
the clip-term clip the agent objective so that the policy function
update is limited to a certain interval to prevent the strategy
update from converging too fast or converging too slow,
which improves the training speed and implementability of the
algorithm. At the same time, the exploration method of random
strategy is retained, and the robot motion planning method
will have better exploration and robustness when the sampling
sample satisfies the maximum likelihood probability. With
the policy function update, the updated policy assigns higher
probability to state-action pairs, resulting in higher cumulative
reward. With the description of PPO RL algorithm, the training
scenario for the physical robot’s DT motion planning task is
shown in Fig. 3.

3) Workspace Monitoring: In addition to the control prob-
lem of the robot, how to observe the environmental informa-
tion of the workspace where the robot is in and its state of
performing the manufacturing task, also remain as a problem
to be solved in the system construction. In our proposed
system, the workspace is monitored by IP cameras, and the
video generated from it is further projected to the AR glasses
through the video streaming server. In this way, not only
the status of the robot, but also the real-time status of the
workspace can be presented in the AR glasses, with improving
the remote monitoring efficiency, as shown in Figure 4.

C. Digital Twin-enabled Human-in-the-loop Interaction

To meet our potential application scenarios for bridging
the state between virtual and physical industrial robots, three
DT-enabled interaction modes are developed, namely, Cy-
ber2Physical real-time control mode, Cyber2Physical plan-
ning control mode and Physical2Cyber mode. In the Cy-
ber2Physical real-time mode, the state between the physical
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Figure 4. Demonstration of workspace observation approach.

robot and the DT is replicated in real time (i.e., identical
standard teleportation). The physical robot responds to the
users’ input instantly to take actions to match the DT of the
physical robot in a standard teleoperation form. Meanwhile,
the Cyber2Physical planning mode can perform the pre-
planned execution mechanism in a synchronized manner. For
both functions, the preliminary trajectory monitoring function
is managed and shown in Figure 5. Finally, the motion of the
physical robot can be monitored via AR glass. The detail of
the three modes is detailed in the following parts.

1) Cyber2Physical Real-time Mode: The real-time control
paradigm uses AR technology to present the user with a digital
twin of the physical robot in the user’s workspace, which
has the same specifications as the physical robot in terms of
its working range and working environment. In addition, the
physical model and DOF of the digital twin robot are designed
to be identical to the physical model. In this mode, the user′s
teleoperation commands are sent to the digital twin robot and
bridged to a physical robot rather than directly control the
physical robot via robot system interface. While implementing
the real-time control, the digital twin of the physical robot‘s
pose is continuously updated by the user and sent as the real-
time target pose of the physical robot in a fixed frequency.
As the physical robot reaches a given pose, it is continuously
updated according to the latest pose command. Essentially,
the physical robot constantly imitates the real-time state of
the digital twin robot controlled by users.

2) Cyber2Physical Planning Mode: The control paradigm
could be thought as a design extension of the real-time control
paradigm, and it could provide a support for predefined motion
planning. In the real-time control mode, when the remote
operator controls the DT of a physical robot, the corresponding
physical robot will instantly mimic the DT’s pose. However,
during the planning process of this control mode, the DT
of the physical robot move, follow the real-time command,
and record the coordinate with the user manipulated in the
augmented reality coordinate system. After completing the
path design, the user sends a signal to the DT of the physical
robot to drive the physical robot to start executing the planned
trajectory. In practical usage, such design will help users to
intuitively understand and foresee how a physical robot reacts
to users’ commands, and the users own a chance to detect,
prevent and fix erroneous commands before the execution of
physical robots.

Figure 5. Visualization of past and planned trajectories. The white dot lines
are past trajectories and red dots means undergoing path.

3) Physical2Cyber Mode: This control mode is essen-
tially a reverse design of the real-time control mode, and
it is designed primarily to monitor the robot and to collect
production data. In the Cyber2Physical mode, the pose of
the physical robot (i.e., joint values) is transmitted back to
the DT of the physical robot in real time as the operator
controls the movement of the physical robot, so that the pose
of the physical robot is aligned with its DT for real-time
monitoring. In addition to the joint information, the current,
voltage information is visualized as the joint is triggered,
like shown in Fig. 8. Furthermore, the motion trajectories
of different manufacturing tasks via human demonstration in
real robot can be collected in this mode. In further robot
applications, such dataset can drive robot learning algorithms
(i.e., imitation learning [49], reinforcement learning [50]) to
gain good performance in replicated manufacturing tasks.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

The setup of the robot control module in real applications
consists of a UR5 collaborative 6-Joints robot with a Robotiq-
85 gripper; a wrist camera and a force torque sensor attached
between the connection of the robot body and the gripper;
in addition to the robotic system itself, the peripherals include
an AR headset, Microsoft HoloLens AR glasses. The proposed
AR module (see Section III-B), was developed in an external
PC workstation (Intel Core i7-6700 CPU 3.40GHz, RAM 16
GB, and a Nvidia GTX 1060 6GB GPU) with the following
software: Microsoft Windows 10 as the operating system;
Visual Studio 2019 was used as an integrated development
environment (IDE); and Unity LTS release 2020.1.10f1 by
using tools such as MixedReality Toolkit Unity. The relay
module for bridging the AR module and the robot control
module was implemented on an external PC with the following
software: Ubuntu 18.04 as the operating system; also, an
Ethernet switch router was used to connect and communicate
among the robot system, the relay module, and the AR
module. Meanwhile, the IP camera was connected to the PC of
relay module and transmitted to the AR headset via wireless
connection.
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B. Demonstration
Before deploying of the above-mentioned PPO algorithm,

the PPO algorithm is trained in a scene of Unity with ML-
Agents toolkit as shown in Fig. 3, and the position of the
red cube is the target position of the robot required to reach.
With gradient descent optimization, after 2 millions time steps’
learning, the Fig. 6 shows that the reward curve of the model
is converged and remain stable. Adopting that model powered
by RL, the success rate of reaching tasks is around 98.7% by
executing 5000 experiments. In the Fig. 6, the horizontal axis
refers to time steps, and the vertical axis refers to the value of
reward the whole training process costs around 8 hours. The
experiments were executed on a PC with Intel Core i9-9980H
8-Core Processor 2.30GHz CPU with 32GB Memory.

Figure 6. Mean episodic reward curve of training process with the DT of
robot in simulated environment. The curve is smoothed to show the learning
trends.

With the RL-enabled robot controller being settled, the
first experiment is carried out to demonstrate single-robot
teleoperation, which was designed to present the functionality
and performance of the proposed method, as shown in Figure
7. Regardless of the various manufacturing scenarios, the
human operator can teleoperate the UR5 robot to perform
the peg-in-hole experiment by inserting a bear into the base.
The operator observes the task environment information via
video streaming (i.e., the position of the target workpiece and
the position of the base) and then completes the operations
accordingly.

Figure 7. Screenshots of the demonstrative Case I: a peg-in-hole experiment.

Moreover, in the second experiment, a multi-robot collabo-
rative disassemebly work was conducted in order to evaluate
the usability of the proposed collaborative control framework,
as shown in Figure 8. In this setup, a KUKA iiwa robot was
added to the experiment scene and the UR robot was equipped
with the AGV base to improve the collaboration flexibility.
The idea is to demonstrate how the dual-robot with human-
in-the-loop to carry out the collaborative disassembly work

efficiently. In this experiment, the target position of AGV
is provided and the KUKA robot autonomously finish the
predefined tasks, such as push the box, cut cable, and etc.
Meanwhile, the UR robot is under teleoperated by human to
perform assistant work for disassembly like drag, pickplace
and so on. In general, such a collaborative manufacturing
paradigm can be extended to welding, polishing and other
tasks as well.

Figure 8. Demonstrative Case II: the AR-assisted DT-enabled multi-robot
collaborative manufacturing system.

V. DISCUSSION

In this paper, the authors propose an AR-assisted DT-
enabled multi-robot collaborative manufacturing system that
provides different modes of the human teleoperation of multi-
ple industrial robots. It can be well adopted in many manufac-
turing shop-floor scenarios (e.g., personalized product assem-
bly/disassembly, welding, etc.), where human beings cannot
readily or safely carry out on-site operations, and professionals
from various manufacturing fields can be located in different
places but still collaborate in the manufacturing process.
Meanwhile, the proposed system can be also implemented
as a generic reference model for other scenarios, such as
hazardous manufacturing scenarios [51] or fully automated
plant troubleshooting. Another novelty lies in the RL-enabled
robot motion planning approach to replace the conventional
kinematics-based planning process, and such attempts provide
a solution which could fuse more information to make de-
cisions for driving robots [17]. Our proposed system, with
AR and DT technology adopted, makes an initial attempt to
integrate RL to real production scenarios.

Despite its advantages, several limitations still exist in this
research work. For instance, as the algorithm is deployed
in a real production environment, the accuracy limitation of
DT model can be reflected in some specific manufacturing
activities other than the robot reaching task. Moreover, net-
working latency and positioning accuracy remain a challenge
in our lab-based demonstration. To address the prior one, novel
communication mechanism (e.g., time sensitive network) and
technology (e.g. 5G) can be further implemented. For the latter
one, the elastic robot control mechanism should also be further
explored.

VI. CONCLUSION

In this paper, a novel AR-assisted DT-enabled multi-robot
collaborative manufacturing system with human-in-the-loop



9

control was introduced and performed in a multi-robot collab-
orative teleoperation assembly work. The main contribution
can be summarized as three-fold:
• A multi-robot multi-client-based communication mecha-

nism is presented to keep each operation state synchro-
nized among multiple clients.

• The DT of the physical robot is utilized to develop two
different teleoperation modes, i.e., Cyber2Physical real-
time mode, Cyber2Physical planning mode. The Physi-
cal2Cyber mode and the embedded display module are
also used to provide the operator with an immediate view
of the production environment.

• An RL algorithm is adopted for motion control and
planning of the multi-robots with learning intelligence.
The work also provides a bridging approach to make the
learning algorithm trained on a virtual environment but a
physical environment deployed.

Furthermore, two application cases are carried out on sin-
gle and multiple robot collaborative teleoperations, which
demonstrates the great potential of our proposed system to be
generalized in many application scenarios. Except for these
achievements, several potential future research directions are
also highlighted, namely: 1) multimodal human-robot inter-
action approaches can be further implemented other than the
button-based one, such as hand gestures, eye gaze, etc., 2)
elastic robot control mechanism should be adopted to further
improve the RL-based motion planning, and 3) the high-
fidelity synchronization of multi-robot DTs can be further
improved with cost-effectiveness.
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