August 20, 2018 21:35

This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in ACM Transactions on Cyber-Physical Systems, https://doi.org/10.1145/3226029.

Cross-Domain Noise Impact Evaluation for Black Box Two-Level Control CPS

FENG TAN and LIANSHENG LIU, Department of Computing, The Hong Kong Polytechnic University STEFAN WINTER, Department of Computer Science, TU Darmstadt QIXIN WANG, Department of Computing, The Hong Kong Polytechnic University NEERAJ SURI, Deptartment of Computer Science, TU Darmstadt LEI BU, Department of Computer Science and Technology, Nanjing University YU PENG, Department of Automatic Test and Control, Harbin Institute of Technology XUE LIU, School of Computer Science, McGill University XIYUAN PENG, Department of Automatic Test and Control, Harbin Institute of Technology

Control Cyber-Physical Systems (CPSs) constitute a major category of CPS. In control CPSs, in addition to the 4 5 well-studied noises within the physical subsystem, we are interested in evaluating the impact of cross-domain noise: the noise that comes from the physical subsystem, propagates through the cyber subsystem, and goes 6 back to the physical subsystem. Impact of cross-domain noise is hard to evaluate when the cyber subsystem 7 is a black box, which cannot be explicitly modeled. To address this challenge, this article focuses on the two-8 level control CPS, a widely adopted control CPS architecture, and proposes an emulation based evaluation 9 methodology framework. The framework uses hybrid model reachability to quantify the cross-domain noise 10 impact, and exploits Lyapunov stability theories to reduce the evaluation benchmark size. We validated the 11 effectiveness and efficiency of our proposed framework on a representative control CPS testbed. Particularly, 12 24.1% of evaluation effort is saved using the proposed benchmark shrinking technology. 13

 $CCS Concepts: \bullet Computer systems organization \rightarrow Embedded and cyber-physical systems; \bullet Software and its engineering \rightarrow Software testing and debugging; 15$

The research project related to this article is supported in part by Hong Kong RGC GRF PolyU152164/14E, RGC ECS PolyU5328/12E, RGC Germany/HK Joint Research Scheme G-PolyU503/16, and The Hong Kong Polytechnic University fund A-PJ80, A-PK46, A-PL82, G-YN37, G-UA7L, G-YBMW, G-YBXW, 1-BBWC, and 4-ZZHD. In addition, Lei Bu is also supported by the National Natural Science Foundation of China (No. 61632015, No. 61561146394, and No. 61572249); Stefan Winter and Neeraj Suri are also supported by TUD DAAD HKG Project 57335298. We thank Envan Huang from the Department of Computing, Hong Kong Polytechnic University and Professor Yao Chen from the Department of Computer Science, Southwestern University of Finance and Economics, China for their contributions to the research related to this article. We also thank anonymous reviewers and editors for their valuable comments to improve this article. Authors' addresses: F. Tan, L. Liu, and Q. Wang, Department of Computing, The Hong Kong Polytechnic University, 11 Yuk Choi Rd, Hung Hom, Hong Kong SAR; emails: {tf.uestc, liulianshenghit}@gmail.com, csqwang@comp.polyu.edu.hk; S. Winter and N. Suri, Dept. of CS, TU Darmstadt, Hochschulstr. 10, DE 64289 Darmstadt, Germany; emails: {sw, suri}@cs.tu-darmstadt.de; L. Bu, State Key Laboratory for Novel Software Technology, Department of Computer Science and Technology, Nanjing University, 22 Hankou Road, Gulou District, Nanjing, Jiangsu 210008, China; email: bulei@nju.edu.cn; Y. Peng and X. Peng, Department of Automatic Test and Control, Harbin Institute of Technology, 92 Xidazhi St, Nangang District, Harbin, Heilongjiang 150001, China; emails: pony911@163.com, pxy@hit.edu.cn; X. Liu, 3480 University Street, Room 318, Montreal, Quebec, Canada H3A 0E9; email: xueliu@cs.mcgill.ca. Q.Wang is the corresponding author of the paper. L. Liu is currently with Department of Automatic Test and Control, Harbin Institute of Technology.

This is a peer-reviewed pre-print. Final publication is made in ACM Transactions on Cyber-Physical Systems, v3, n1, article 2, Jan, 2019.

https://doi.org/10.1145/3226029

Additional Key Words and Phrases: Lyapunov stable, hybrid automata, hybrid model, testing, cyber-physical
 systems

18

19 20

21

22 23

24 1 INTRODUCTION

Cyber-Physical Systems (CPSs) (Sha et al. 2008) converge the discrete computing and continuous
 physical domains. One representative category of CPSs is control CPSs, where computer systems
 control physical objects in real time. Naturally, control CPSs demand integration of computer science and control theories.

29 This article focuses on one aspect of the integration: how to evaluate the impact of cross-domain noises in control CPSs. Specifically, this article assumes a classic control CPS architecture described 30 31 by Figure 1. It consists of a "physical" control subsystem (simplified as the "physical subsystem" 1 in the following) and a "cyber" computing subsystem (simplified as the "cyber subsystem" in the fol-32 33 lowing). The physical and cyber subsystems form a two-level control loop. The physical subsystem 34 conducts the inner control loop, which carries out fine-time-grain sensing (the "local sensing" in the figure) and actuation of the *plant* (i.e., the physical object being controlled). The cyber subsystem 35 36 conducts the outer control loop, which carries out coarse-time-grain reference point updates. For simplicity, in the following, this article calls the control CPS architecture of Figure 1 the two-level 37 38 control CPS (2L-CCPS) architecture.

More specifically, in Figure 1, the dashed box delineates the physical subsystem, which is the 39 40 same as a conventional non-CPS control system. The external input to the physical subsystem is 41 the reference point value, a vector that specifies the target state of the plant. Given the reference 42 point value, the physical subsystem takes charge of maneuvering the plant until the plant's state 43 reaches the reference point value. For example, suppose the plant is a cart, with vector $(x_1, x_2)^{T}$ 44 as its state, where x_1 is the cart's current location and x_2 is the cart's current velocity. A reference point value of $(10, 0)^{T}$ commands the physical subsystem to move the cart to location 10 and stop 45 46 there.

Besides the physical subsystem, the dash-dot box in Figure 1 delineates the cyber subsystem. Specifically, the cyber subsystem is a set of interconnected digital modules (can be both software and/or hardware; e.g., digital signal processors). These digital modules collaboratively carry out a workflow that remotely senses the plant state (see M_{rs} in Figure 1), processes the sensed state, and decides the new reference point value. The new reference point value is the output (see M_{fd} in Figure 1) of the cyber subsystem, and is fed back to the physical subsystem.

The reference point update events take place in coarse-time-grain: they happen discretely and are separated by long time intervals. In contrast, the local sensing and controller actuation in

¹Note the term "physical subsystem" is a notational convenience. Strictly speaking, it refers to the *low-level* control system (aka "*inner control loop*"), which may or may not be purely analog. For example, when a ground computer (i.e., the "cyber subsystem") uses analogwireless signals to remotely control a purely analog(consider mechanical is a kind of analogue) drone, the "physical subsystem" (i.e., the drone) is purely analogue. However, when the ground computer uses WiFi to remotely control a WiFi+analogue drone, the "physical subsystem" (i.e., the drone) is indeed a mixture of digital and analog parts.

Fig. 1. 2L-CCPS, a classic control CPS architecture. Note that the cyber subsystem digital modules can be interconnected via local or remote function calls.

the physical subsystem (i.e., the inner control loop) take place in fine-time-grain. They run in 55 continuous time, or periodically with a sufficiently small period.² 56

For example, for a 2L-CCPS to remotely fly a drone, the drone (the physical subsystem) has its57onboard fine-time-grain sensing and actuation for attitude control; whereas, the ground station58(the cyber subsystem) uses visuals to conduct remote coarse-time-grain sensing of the drone, and59to command the drone where to go. In the following, unless otherwise denoted, the "sensing" of this60article refers to the latter, i.e., the coarse-time-grain remote sensing for computing new reference point61values by the cyber subsystem.62

In practice, sensed signals are always accompanied with noises. These noises constitute a major 63 source of errors. Noises within conventional control systems (e.g., the physical subsystem of a 64 2L-CCPS) include local sensing noises, controller output disturbances, and plant modeling errors. 65 They are well-studied and can be well contained (Hovakimyan and Cao 2010). Hence, these noises 66 are not the focus of this article. Instead, this article focuses on the noise that crosses the boundaries 67 between the cyber and physical subsystems, i.e., the so-called cross-domain noise. Specifically, in 68 a 2L-CCPS, cross-domain noise (see N in Figure 1) refers to the noise that arises from the remote 69 sensing (see module $M_{\rm rs}$ in Figure 1) of the plant. It propagates through the cyber subsystem, and 70 goes back to the physical subsystem as the error component of the new reference point value. 71

Challenge and Overall Idea of the Proposed Solution Framework. In a conventional con-72 trol system, noises (i.e., sensing noises, controller output disturbances, and plant modeling errors) 73 propagate through the sensing, controller, and plant module, which can all be modeled by closed-74 form formulas. Correspondingly, the impacts of the noises can be analytically evaluated. In con-75 trast, the cross-domain noise in a 2L-CCPS propagates through the discrete cyber subsystem (see 76 Figure 1), which cannot be modeled by closed-form formulas in general. The situation is worse 77 when the cyber subsystem is black box: e.g., when the cyber subsystem is encapsulated by a third 78 party vendor. 79

 $^{^{2}}$ According to Franklin et al. (1994), when replacing an analog controller with a discrete controller, we can empirically regard the discrete controller as an analog controller, if the sampling rate is faster than 20 times the closed-loop bandwidth of the analog physical subsystem.

To address the challenge on how to evaluate cross-domain noise's impacts, this article aims to make an initial step forward: we propose a methodology framework to evaluate the impacts of

make an initial step forward: we propose a methodology framework to evaluate the impacts of the cross-domain noise in a 2L-CCPS with a black box cyber subsystem. The overall idea of our framework is as follows.

We first prepare a benchmark, i.e., a set of sample states of the plant. For each sample state of 84 85 the benchmark, we carry out Monte Carlo emulation. In each emulation trial, the benchmark sam-86 ple state, plus the cross-domain noise, are entered into the cyber subsystem. The cyber subsystem 87 then outputs the (noisy) next reference point value, which is fed across the domain boundary into a physical subsystem simulator to measure the accident risk. Via the above Monte Carlo emulation, 88 89 we establish a quantitative relationship between the cross-domain noise level and the plant acci-90 dent risk increase.³ This relationship becomes a metric to evaluate the impact of the cross-domain 91 noise. We further propose a control theory based method to shrink the benchmark size, to make 92 our evaluation more efficient.

93 Contributions and Basic Insights. In a more general sense, our proposed framework addresses a 94 subproblem of fault propagation profiling, a hot topic in system dependability research. Compared 95 to existing fault propagation profiling works, our cyber subsystem model is a black box to the users; 96 our physical subsystem model is at the granularity of differential equation level; we extensively 97 exploit interdisciplinary control theory; and we focus on evaluating cross-domain noises unique 98 to CPSs.

The framework is also related to control CPS fault diagnosis and fault tolerance. Compared to existing control CPS fault diagnosis/tolerance works, our cyber subsystem model is a black box to the users, hence the cyber subsystem does not have an accurate model. In addition, we are neither focusing on fault diagnosis (the cause of fault is known, i.e., cross-domain noise), nor on fault tolerance.

104 Main contributions and insights of this article are summarized as follows.

- (1) We propose a benchmark metric and corresponding measurement method to evaluate
 cross-domain noise impacts to 2L-CCPSs with black box cyber subsystems.
- 107 (2) We further propose a method to effectively shrink the benchmark, exploiting the interdis 108 ciplinary Lyapunov stability control theories.
- (3) We validated the effectiveness and efficiency of our proposed methodology framework
 on a representative 2L-CCPS testbed. Particularly, the benchmark shrinking technology
 reduces 24.1% of the evaluation effort.

Article Organization. The rest of the article is organized as follows. Section 2 discusses related work. Section 3 describes the overall systems model to set the context for discussion. Section 4 elaborates our basic cross-domain noise impact evaluation method. Section 5 proposes a method to effectively shrink the evaluation benchmark. Section 6 demonstrates and validates the proposed

116 methodology framework. Section 7 concludes the article.

2:4

³Again, use the aforementioned remotely flying drone example. In each Monte Carlo trial, the benchmark sample can be a video frame (i.e., a photo) of the remote drone and its nearby obstacles. The video frame plus additive white Gaussian noise (i.e., the cross-domain noise) is inputted into the ground station (i.e., the cyber subsystem). This mimics the fact that the ground station's video camera is noisy. Then the ground station conducts computer vision recognition and decision making as a black box. The decision, i.e., the outputted new reference point on where to fly the remote drone, is fed back to a drone simulator, which simulates the next step physical trajectory of the drone. Expectedly, with higher additive white Gaussian noise, the ground station would more likely make wrong decisions, and the simulated drone trajectory will have a higher probability of hitting the obstacles. By carrying out many randomized trials of such, we will establish the quantitative relationship between the additive white Gaussian noise level and the obstacle-hitting probability.

2 RELATED WORK

In a more general sense, this article addresses a sub-problem of fault propagation profiling, a hot 118 topic in system dependability research. Works of Hiller et al. (2004) propose using conditional prob-119 ability to profile the permeability, exposure, and impact of faults in a network of software modules. 120 Oliner and Aiken (2011) propose using principal component analysis and temporal correlations 121 to discover influence relationships between software modules, to profile anomaly propagation. 122 Distefano et al. (2011) propose a compositional calculus to analyze software fault propagation 123 with closed-form formulas. Jhumka and Leeke (2011) use software fault propagation profiling 124 results to guide the placement of fault detector assertions. Pham et al. (2015) propose a UML 125 based annotation and inference framework to analyze concurrent fault propagations in compo-126 nent based software systems. However, all the above works focus on pure software system, rather 127 than CPS. 128

There are works on profiling CPS fault propagation. Sierla et al. (2013) study CPS fault 129 propagation with an explicit object-oriented and event based model. Ge et al. (2009) analyze CPS 130 failure probability using the PRISM (Kwiatkowska et al. 2002) probabilistic model checker. There 131 are also works on using various artificial intelligence and/or statistics tools to quantify CPS fault 132 propagation (Augustine et al. 2012). However, the above works all assume a white box cyber 133 subsystem, or at least a cyber subsystem where the interconnection details of digital modules are 134 known to the user. 135

As cross-domain noise impact evaluation is a subtask of holistic system analysis, the solution 136 proposed by this article can be plugged into holistic system analysis frameworks, such as FMEA 137 or FMECA (US Dept. of the Army 2015). For example, for FMEA, our impact evaluation results can 138 serve as a system failure rate input related to cross-domain noise. 139

This article is also related to fault-tolerant control CPS. Conventional fault-tolerant control CPS140works deal with sensing errors, actuation errors, system parameter errors, or even system model141changes. They typically require white box models of the cyber subsystem (Gao et al. 2015a). Re-142search on fault-tolerant control CPS with black box cyber subsystems is relatively young. There143are works on using redundancy to deal with faults in such control CPS (Wang et al. 2013). Such144topic is apparently orthogonal to this article's topic.145

Model predictive control (Camacho and Bordons 2013) focuses on repeatedly deriving optimal 146 control signals to control the plant. This article, however, is not focusing on how to control the 147 plant.

There are also works on using data mining, machine learning, and/or inference to diagnose the cause of faults (Gao et al. 2015b). In contrast, our article is not about diagnosis. The cause of fault is given: the cross-domain noise. We want to evaluate its impact on the physical subsystem given different noise levels and various initial plant states. On the other hand, our evaluation results can serve as a training set for data mining, machine learning, or as the prerequisite conditional probability distribution needed by Bayesian inference. In this sense, this article's work complements the diagnosis works.

The work in Tan et al. (2014) proposes using a Bayesian network for cross-domain noise profiling 156 in control CPS. However, it is a one-page work-in-progress abstract and its proposed methodology 157 may not be valid when noise is non-Gaussian. 158

3 OVERALL SYSTEMS MODELS

We shall first set the context for our discussion by introducing the overall systems model. This 160 includes the physical and cyber aspects of the 2L-CCPS architecture, and the combined systems 161 model.

2:5

117

163 3.1 **Physical Subsystem Model**

In this article, we assume the physical subsystem of a 2L-CCPS is a Linear Time Invariant (LTI) 164 control system, which is arguably the most widely used control system. 165

For an LTI control system, the state of the plant at time t is described by an n-dimensional vector 166 $X(t) = (x_1(t), x_2(t), \dots, x_n(t))^{\mathsf{T}}$. The vector is also called the plant's state vector (in the following, 167 we use the term "plant's state" and "plant's state vector" interchangeably), and each element of 168 the state vector is also called a *state variable*. For simplicity, we often omit the parameter t when 169 170 writing state vector and/or variables, and use \dot{X} (and $\dot{x_i}$, $i = 1, \ldots, n$, respectively) to denote the derivative $\frac{dX}{dt}$ (and $\frac{dx_i}{dt}$, i = 1, ..., n, respectively). The dynamics of the plant is governed by the following systems of differential equations. 171

172

$$\frac{\mathrm{d}(X - O_{\mathrm{ref}})}{\mathrm{d}t} = \mathbf{A}(X - O_{\mathrm{ref}}) + \mathbf{B}U, \tag{1}$$

173

$$U = -\mathbf{K}(X - O_{\text{ref}}), \tag{2}$$

where $O_{\text{ref}} \in \mathbb{R}_n$ is the reference point value from the cyber subsystem: the objective of control 174 is to maneuver the plant state vector X to O_{ref} (so that $X - O_{ref} = 0$); $\mathbf{A} \in \mathbb{R}_{n \times n}$ and $\mathbf{B} \in \mathbb{R}_{n \times m}$ are 175 two constant matrices dependent on the plant's physics; $U(t) = (u_1(t), u_2(t), \dots, u_m(t))^T$ is the 176 177 controller output created as per Equation (2); $\mathbf{K} \in \mathbb{R}_{m \times n}$ is a constant matrix defining the control strategy. Denote $\tilde{X} \stackrel{\text{def}}{=} X - O_{\text{ref}}$; the system of Equations (1), (2) can be rewritten into the following 178 179 form.

$$\tilde{X} = F\tilde{X},$$
 (3)

where $\mathbf{F} = \mathbf{A} - \mathbf{B}\mathbf{K}$. 180

Besides the above systems of differential equations, the dynamics of the plant are also governed 181 by allowed region $\mathcal{A} \subseteq \mathbb{R}_n$ (or equivalently, forbidden region $\tilde{\mathcal{A}} \stackrel{\text{def}}{=} \mathbb{R}_n - \mathcal{A}$, i.e., the complement of 182 the allowed region) in the state space \mathbb{R}_n . Every time X exceeds the allowed region (i.e., reaches 183 the forbidden region), a *plant fault* happens. For example, for a drone swarm control CPS, any two 184 drones must maintain a distance of over 500 meters. Dropping below this 500 meter limit means a 185 plant fault happens. 186

187 3.2 Cyber Subsystem Model

188 We assume the following about the cyber subsystem (see Figure 1).

Assumption 1. Except for M_{rs} and M_{fd} and their interfaces to the rest of the cyber subsystem, 189 190 the cyber subsystem is a *black box* to the 2L-CCPS user. The user knows nothing about 191 the existence,⁴ interconnection details, and implementation details of all other cyber sub-192 system digital modules. This is common in practice. For example, in computer operating systems (OSs), except for some application layer modules (analogous to $M_{\rm rs}$ and $M_{\rm fd}$), the 193 194 rest of the OS modules are black boxes to OS users.

- 195 Assumption 2. The cyber subsystem, however, is a white box to the 2L-CCPS vendor. The 196 vendor can suggest to the user alternatives to upgrade (or patch, or reconfigure) the 2L-197 CCPS without revealing cyber subsystem modular details, i.e., the interconnection and
- 198 internal implementation details of digital modules. This is again a common practice, e.g.,

⁴After deployment, if the 2L-CCPS vendor requests to upgrade (or patch, or reconfigure) some of the digital modules, existence of these modules may be revealed to the user, but not the interconnection and internal implementation details of these modules.

Fig. 2. Hybrid automaton H that models 2L-CCPS.

OS vendors often suggest different ways to patch OSs to users without revealing the modular details. 200

- Assumption 3. The time cost to deliver a plant's state sample to the cyber subsystem is τ_1 201(see Figure 1); and the time cost to run the cyber subsystem and to deliver the outputted202reference point value to the physical subsystem is τ_2 (see Figure 1). Every time the cy-203ber subsystem delivers a new reference point value to the physical subsystem, we say a204*reference point update event* happens.205
- Assumption 4. The cyber subsystem decides the new reference point value purely based on
the most recent remote sensing of the plant's state. In other words, the cyber subsystem206
207
208is memoryless.208

According to Assumption 1, to users, the cyber subsystem is a black box except the known 209 existence of the "remote sensing" module $M_{\rm rs}$ and the "final decision" module $M_{\rm fd}$ (see Figure 1). 210 The single cyber subsystem input port sends the current state of the plant X into M_{rs} ; and the 211 single cyber subsystem output port sends the decision from $M_{\rm fd}$ as the new reference point value 212 O'_{ref} to the physical subsystem. M_{rs} senses the state of the physical plant, and outputs $M_{rs}(X) + N$ 213 to the rest of the cyber subsystem, where $M_{rs}(X)$ is the sensing result without noise, and N is 214 the cross-domain noise random variable (RV). The cross-domain noise RV N hence will propagate 215 throughout the black box cyber subsystem to interfere the final decision making. 216

3.3 Combined Model

217

The hybrid automaton (Tabuada 2009) of Figure 2, denoted as *H*, models the combined "cyber" and 218 "physical" aspects of 2L-CCPS. 219

H's node describes the continuous behavior of the combined model. It includes Equation (3) and 220 the continuous increase of time: $\dot{t} = 1$. *H*'s edge describes the discrete behavior of the combined 221 model. It represents a reference point update event: at time t_0 , the cyber subsystem can change the 222 value of reference point O_{ref} by delivering the cyber subsystem's output to the physical subsystem. 223 After a reference point update event, O_{ref} takes a new value (denoted as $O'_{\text{ref}}(t_0)$ in Figure 2) and 224 remains constant until the next reference point update event. Note, to comply with reality, we assume the triggering of reference point update events is non-zero. 226

4 CROSS-DOMAIN NOISE IMPACT EVALUATION FRAMEWORK

227

As mentioned in Section 1, noises in the physical subsystem, such as local sensing noises, controller 228 output disturbances, and plant modeling errors, are well studied and can be well contained by the 229 physical subsystem. Therefore, these noises are not the focus of this article. Instead, we focus on 230 cross-domain noises (i.e., the noise denoted by RV N in Figure 1), which are not contained within 231 the physical subsystem. Correspondingly, in the following, unless explicitly denoted, we use the term 232 "noise" and "cross-domain noise" interchangeably. Our goal is to propose a framework of methods to 233 evaluate the cross-domain noise's impact on a 2L-CCPS (see Figure 1). In this section, we propose 234 a hybrid automata reachability based metric to quantify the impact, and propose a corresponding 235 basic measurement method. 236

237 4.1 Elementary Trial and Reachability Probability

The physical subsystem of a 2L-CCPS is modeled by Equation (3); hence, is memoryless. That is, the future trajectory of the plant X(t) ($t \in (t_0, +\infty)$), where t_0 is the current time) is only dependent on the current state $X(t_0)$ and the current and future reference point values $O_{ref}(t)$ ($t \in [t_0, +\infty)$). In practice, the derivative on the left-hand side of Equation (3) is finite, therefore, we can also say the future trajectory of X(t) ($t \in (t_0, +\infty)$) is only dependent on the current state $X(t_0)$ and future reference point values $O_{ref}(t)$ ($t \in (t_0, +\infty)$).

Suppose the current time is $t_0 - \tau_1 - \tau_2$ (where τ_1 and τ_2 are the two delay time costs; see Figure 1), and the current plant state $X(t_0 - \tau_1 - \tau_2)$ is given: $X(t_0 - \tau_1 - \tau_2) = X^0$. We carry out the following *elementary trial*. At $t_0 - \tau_1 - \tau_2$, the cyber subsystem samples the current plant state and triggers the corresponding reference point update event at $t_0 - \tau_1 - \tau_2 + \tau_1 + \tau_2 = t_0$ (see Figure 2), changing O_{ref} to $O'_{\text{ref}}(t_0)$. After that, the cyber subsystem triggers no more reference point update event.

With the concept of elementary trial, we shall propose a methodology framework to evaluate the cross-domain noise impact on a 2L-CCPS. Meanwhile, to simplify our theoretical modeling and analysis, we assume the following.

253Assumption 5. Unless otherwise denoted, in the following theoretical modeling and analysis254sections (i.e., from here to the end of Section 5, including Appendices A, B, and C), we255assume $\tau_1 = \tau_2 = 0$.

Later, in Section 5.4, we will discuss the implications of **Assumption 5** to real-world systems with non-zero delays. But for now, under **Assumption 5**, suppose the current time is t_0 , and the current plant state is $X(t_0) = X^0$, then an elementary trial shall run as follows. At t_0 , the cyber subsystem samples the current plant state and triggers the corresponding reference point update event at t_0 (see Figure 2), changing O_{ref} to $O'_{ref}(t_0)$. After that, the cyber subsystem triggers no more reference point update event.

In the elementary trial, the sampling, and hence the cyber subsystem's decision making, are 262 263 interfered by the cross-domain noise RV N (see Figure 1). Therefore, whether a plant fault will 204 happen (i.e., X(t) reaches the forbidden region $\hat{\mathcal{A}}$ during $(t_0, +\infty)$) becomes random, and can be 265 represented by a Bernoulli RV of $R(N, X^0)$: $R(N, X^0) = 1$ represents that a plant fault will happen; and $R(N, X^0) = 0$ otherwise. We call $R(N, X^0)$ the reachability RV under cross-domain noise RV 266 N and given X^0 , and denote the reachability probability $Pr(R(N, X^0) = 1)$ as $p(N, X^0)$; and con-267 sequently, $Pr(R(N, X^0) = 0) = 1 - p(N, X^0)$. Intuitively, $p(N, X^0)$ reflects the risk of the 2L-CCPS 268 under cross-domain noise RV N and given X^0 (interested readers can refer to Appendix A to fur-269 270 ther understand this intuition). In the following, unless otherwise denoted, we simplify $R(N, X^0)$ 271 as R and $p(N, X^0)$ as p.

272 4.2 Measuring Reachability Probability

Next, we describe how to measure the value of $p(N, X^0)$. Under cross-domain noise RV N and given $X(t_0) = X^0$, we run a campaign of η elementary trials. The value of $p(N, X^0)$ can be estimated by averaging the results of these elementary trials.

- 276 Specifically, denote the reachability RV for the *j*th $(j = 1, ..., \eta)$ elementary trial as R_j . Denote
- 2.77 $\bar{R} \stackrel{\text{def}}{=} \frac{1}{\eta} \sum_{j=1}^{\eta} R_j$. According to the well-known central limit theorem, when η is big enough, we can
- 278 use \overline{R} to estimate $p(N, X^0)$. This is quantitatively elaborated by the following proposition.

PROPOSITION 4.1 (CAMPAIGN SCALE). Under cross-domain noise RV N, given $X(t_0) = X^0$, $\alpha \in$ [0, 1], and $\delta_p \in (0, +\infty)$,

$$f\eta \ge \left(\frac{\Phi^{-1}(1-\frac{\alpha}{2})}{2\delta_p}\right)^2,\tag{4}$$

where Φ is the cumulative distribution function of standard normal distribution and Φ^{-1} is Φ 's inverse; then \bar{R} falls within range $p \pm \delta_p$ with confidence level of $(1 - \alpha)$. That is, $\Pr(|\bar{R} - p| \leq \delta_p) \ge$ $1-\alpha$.

279 **PROOF.** Due to the memoryless assumption of the cyber and physical subsystems, R_i 's are identical independent distribution RVs, and $R_i \sim \text{Bernoulli}(p)$. According to the central limit theorem, 280 RV \bar{R} therefore conforms to the normal distribution Normal($\mu, \sigma^2/\eta$), where μ and σ^2 are respec-281 tively the expectation and variance of R_j . As $R_j \sim \text{Bernoulli}(p)$, $\mu = p$ and $\sigma^2 = p(1-p) \leq \frac{1}{4}$ (be-282 cause $p \in [0, 1]$), i.e., $\sigma \leq \frac{1}{2}$. 283

Also Inequality (4)
$$\Rightarrow \sqrt{\eta} \ge \frac{\Phi^{-1}(1-\frac{\alpha}{2})}{2\delta_p} \Rightarrow \delta_p \ge \frac{\Phi^{-1}(1-\frac{\alpha}{2})}{2\sqrt{\eta}}.$$
 (5)

Therefore,
$$\bar{R} \sim \text{Normal}(\mu, \sigma^2/\eta) \Rightarrow \Pr\left(|\bar{R} - \mu| \leqslant \frac{\sigma}{\sqrt{\eta}} \Phi^{-1} \left(1 - \frac{\alpha}{2}\right)\right) \geqslant 1 - \alpha$$

 $\Rightarrow \Pr\left(|\bar{R} - p| \leqslant \frac{1}{2\sqrt{\eta}} \Phi^{-1} \left(1 - \frac{\alpha}{2}\right)\right) \geqslant 1 - \alpha \quad (\text{as } \mu = p \text{ and } \sigma \leqslant \frac{1}{2})$
 $\Rightarrow \Pr(|\bar{R} - p| \leqslant \delta_p) \geqslant 1 - \alpha \text{ (due to Inequality (5)).}$

Proposition 4.1 implies that under cross-domain noise RV N, given $X(t_0) = X^0$, α , and δ_p , after 285 a measurement campaign of η (η satisfies Inequality (4)) elementary trials, we derive a realization 286 \bar{r} of RV \bar{R} , which can be used as an estimation of p, i.e., $\hat{p} = \bar{r}$, with confidence level of at least $(1 - \alpha)$. As \bar{R} 's realization, we have $\bar{r} = \frac{1}{\eta} \sum_{j=1}^{\eta} r_j$, where r_j is RV R_j 's realization in the corresponding 287

288 elementary trail. To get r_i , the simple way is to *emulate* the *j*th elementary trial as follows: 289

Step 1. Feed the initial plant state X^0 into the real cyber subsystem and derive O'_{ref} . 290 Step 2. Simulate the physical subsystem of Equation (3), from simulator time t_0 to simulator 291 time $+\infty$, with initial plant state X^0 , and updated reference point value O'_{ref} . If the resulted 292 trajectory X(t) ($t \in [t_0, +\infty)$) reaches the forbidden region $\overline{\mathcal{A}}$, then $r_j = 1$; otherwise 293 $r_j = 0.$ 294

In practice, infinite time simulation is impossible. Therefore, Step 2 has to be accelerated. This 295 is possible when the physical subsystem (described by Equation (3)) is an LTI control system. 296

In control engineering, it is a well established practice that LTI control systems in the form of 297 Equation (3) are designed to be stable in the sense of Lyapunov (Brogan 1991). Specifically, K of 298 Equation (2) is designed such that a positive definite symmetric matrix $\mathbf{P} \in \mathbb{R}_{n \times n}$ exists to satisfy 299

$$\mathbf{F}^{\mathsf{T}}\mathbf{P} + \mathbf{P}\mathbf{F} = -\mathbf{I},\tag{6}$$

300

where I is the $n \times n$ identity matrix.

Correspondingly, given control systems of Equation (3) that are stable in the sense of Lyapunov, 301 there are mature tools (Brogan 1991) to derive the aforementioned P. 302

```
1. ElementaryTrialEmulation(input: N, X^0; output: r_i){
              Input X(t_0) = X^0 into the cyber subsystem to generate O'_{ref}(t_0);
2.
             // or equivalently, let M_{\rm rs} output M_{\rm rs}(X(t_0)) + N to the rest // of the cyber subsystem to generate O'_{\rm ref}(t_0), where X(t_0) = X^0.
              Current simulator time t \leftarrow t_0;
3
              O_{\mathsf{ref}} \leftarrow O'_{\mathsf{ref}}(t_0);
while (true){
4.
5.
6.
7.
                     Derive X(t) according to Eq. (3);
                     if (X(t) \in \overline{\mathcal{A}}) \{ r_j \leftarrow 1; break; \}
                    if (V(X(t), O_{ref}) < inf_{Y \in \overline{\mathcal{A}}} \{V(Y, O_{ref})\}) \{ r_j \leftarrow 0; \text{ break}; \}
t \leftarrow t + \delta_t; ll \delta_t; \text{ per iteration simulator time increment}
if (t \ge T_{sim}) \{ ll T_{sim}; \text{ maximum simulation time} \}
8.
9.
10.
11.
                            r_i \leftarrow 1; break;
12.
13.
              }
14. }
```

Fig. 3. Pseudo C code to emulate an elementary trial, to calculate r_j . It is an emulation because Line 2 uses the real cyber subsystem.

303 With **P**, we can define a *Lyapunov function* $V(X(t), O_{ref}(t))$ as follows.

$$V(X(t), O_{\text{ref}}(t)) \stackrel{\text{def}}{=} (X(t) - O_{\text{ref}}(t))^{\mathsf{T}} \mathbf{P}(X(t) - O_{\text{ref}}(t)).$$
(7)

Intuitively, Lyapunov function represents a virtual "potential energy" of the physical plant. If the
 physical subsystem is stable, this potential energy should monotonically decrease. This is quanti fied by the following proposition.

PROPOSITION 4.2 (TRAJECTORY BOUNDARY). Given $X(t_0) = X^0 \in \mathbb{R}_n$ and $O'_{ref}(t_0) \in \mathbb{R}_n$, let X(t)($t \in [t_0, +\infty)$) be the trajectory of plant state evolved according to Equation (3) when $O_{ref}(t) \equiv O'_{ref}(t_0)$, then $\forall t \in [t_0, +\infty)$,

$$\frac{\mathrm{d}\,V(X(t),O_{\mathsf{ref}}(t))}{\mathrm{d}\,t} \leqslant 0. \tag{8}$$

PROOF. Proposition 4.2 is already implied in the classic proof of Lyapunov stability (Khalil 2001).
 The details are recompiled in Appendix B.

309 Due to Proposition 4.2, in an elementary trial, the plant's Lyapunov function value monotoni-310 cally drops. Particularly, if it drops below the minimum Lyapunov function value of the forbidden 311 region $\overline{\mathcal{A}}$, the plant state can never reach $\overline{\mathcal{A}}$ again. Based on this heuristics, we propose the al-312 gorithm of Figure 3 to emulate the *j*th elementary trial ($j = 1, ..., \eta$), so as to approximate r_j , the 313 realization of reachability RV R_j .

In Figure 3, Line 7 corresponds to the case that trajectory X(t) is found to reach forbidden region $\overline{\mathcal{A}}$, hence $r_j = 1$. In Line 8, as future trajectory X(t)'s Lyapunov function value drops below inf_{Y \in \overline{\mathcal{A}}}{V(Y, O_{ref})}, a simple proof with negation can show that due to Inequality (8), X(t) will never reach any points in $\overline{\mathcal{A}}$. Line 11 corresponds to the situation that after sufficiently long simulation, we still cannot decide if X(t) reaches $\overline{\mathcal{A}}$; therefore, we pessimistically overapproximate with $r_j = 1$.

320 4.3 Quantifying Impact of Cross-Domain Noise with Reachability Probability

Now we can get the η realizations $\{r_j\}$. Let $\hat{p} \stackrel{\text{def}}{=} \bar{r} \stackrel{\text{def}}{=} \frac{1}{\eta} \sum_{j=1}^{\eta} r_j$. As per Proposition 4.1, when η satisfies Inequality (4), $\hat{p} = \bar{r}$ is a $(1 - \alpha)$ confident estimation of p. By definition, p is an elementary

trial's reachability probability (i.e., probability to reach forbidden region $\overline{\mathcal{A}}$) under cross-domain 323 noise RV N and given initial plant state X^0 . That is, p's elaborative form is $p(N, X^0)$, and it measures 324 the *risk* of an elementary trial. 325

The *impact* of cross-domain noise RV N should be the *risk increase* caused by N. Let $I(N, X^0)$ 326 denote the impact of N on the 2L-CCPS with initial plant state $X(t_0) = X^0$. Then we propose to 327 quantify $I(N, X^0)$ as 328

$$I(N, X^0) \stackrel{\text{def}}{=} p(N, X^0) - p(0, X^0), \tag{9}$$

where $p(0, X^0)$ is an elementary trial's reachability probability under 0 cross-domain noise and 329 given initial plant state X^0 . 330

To holistically quantify the impact of N to the 2L-CCPS, ideally, we should evaluate $I(N, X^0)$ 331 for every $X^0 \in \mathbb{R}_n$. Obviously this is impractical. Instead, we propose to use a benchmark X = 332 $\{X_i^0\}_{i=1,...,b}$ of b sample points in the allowed region \mathcal{A} (i.e., $\forall i, X_i^0 \in \mathcal{A}$). The b sample points in X are fixed, or the sampling method is fixed (e.g., uniform sampling in \mathcal{A}). We call each sample point X_i^0 a benchmark point. 335

With benchmark $X = \{X_i^0\}_{i=1,...,b}$, we summarize our basic 2L-CCPS cross-domain noise impact 336 evaluation method as follows. Given cross-domain noise RV *N*, for each benchmark point $X_i^0 \in X$, 337 we run the elementary trial campaign described in Sections 4.1 and 4.2 to get reachability probability $p_i(N, X_i^0)$ and $p_i(0, X_i^0)$, and follow Equation (9) to get cross-domain noise impact $I_i(N, X_i^0)$. 339 The holistic impact of cross-domain noise RV *N* is thus quantified by the set $\{I_i(N, X_i^0)\}_{i=1,...,b}$. 340

5 SHRINKING BENCHMARK REGION

5.1 Refined 2L-CCPS Architecture

In Section 4, the benchmark points are sampled from the entire allowed region \mathcal{A} . This benchmark 343 sampling region (simplified as "benchmark region" in the following) is too big. On the other hand, 344 for an initial plant state $X^0 \in \mathcal{A}$ sufficiently away from the forbidden region $\hat{\mathcal{A}}$, the plant trajectory 345 may never reach $\bar{\mathcal{A}}$, even perturbed by large cross-domain noises. It is therefore meaningless to 346 include such X^0 in the benchmark. To make an analogy, to benchmark meteoroids' reachability to 347 the Earth, it is sufficient to focus on meteoroids in the solar system; meteoroids in other galaxies are 348 practically irrelevant. Based on the above heuristics, we propose to shrink the benchmark region 349 as follows. 350

We refine the classic 2L-CCPS architecture of Figure 1 by adding a *bounding filter* to the input port of the physical subsystem (see Figure 4). This bounding filter rejects extreme new reference point values from the cyber subsystem. Specifically, suppose at time t_0 a reference point update event happened, and $X(t_0) = X^0$. Then, the bounding filter will define a hyper *bounding ball* Ball(X^0, γ) in the state space, centered at X^0 with radius $\gamma > 0$. If the new reference point value O'_{ref} from the cyber subsystem is within Ball(X^0, γ), then O'_{ref} is accepted. Otherwise, O'_{ref} is struncated. Formally, the filtered new reference point value O''_{ref} is

$$O_{\rm ref}^{\prime\prime} = \begin{cases} \frac{O_{\rm ref}^{\prime} - X^{0}}{||O_{\rm ref}^{\prime} - X^{0}||_{2}} \gamma + X^{0} \ (\text{if } ||O_{\rm ref}^{\prime} - X^{0}||_{2} \ge \gamma) \\ O_{\rm ref}^{\prime} \qquad (\text{otherwise}). \end{cases}$$
(10)

Note, Equation (10) implies that the classic 2L-CCPS architecture (see Figure 1) is a special case 358 of the refined 2L-CCPS architecture (see Figure 4), where $\gamma = +\infty$. 359

With the bounding filter, no matter what the cross-domain noise RV N is, given the current 360 plant state X^0 , a reference point update event can only change reference point to a value within 361 Ball(X^0, γ). Therefore, in the refined 2L-CCPS architecture, given whatever cross-domain noise N, 362 for an elementary trial starting from plant state X^0 , the reachable state space of all possible future 363

341

Fig. 4. Refined 2L-CCPS architecture. Note under Assumption 5, $\tau_1 = \tau_2 = 0$.

364 trajectories is constrained. Denote this reachable state space as $Traj(N, X^0)$. Denote

 $\bar{\mathcal{B}}^* \stackrel{\text{def}}{=} \{X^0 | X^0 \in \mathcal{A}, \text{ and } \operatorname{Traj}(N, X^0) \cap \bar{\mathcal{A}} \equiv \emptyset \quad \text{ for whatever } \mathbb{RV} N\}.$

Then for whatever RV $N, \forall X^0 \in \bar{\mathcal{B}}^*, p(N, X^0) \equiv 0$ and $I(N, X^0) \equiv 0$. Therefore, if we can explicitly identify $\bar{\mathcal{B}}^*$, then we do not need to benchmark test any point in $\bar{\mathcal{B}}^*$. A point in $\bar{\mathcal{B}}^*$ is thus an *"irrelevant benchmark point.*"

Correspondingly, the (relevant) benchmark points only need to be sampled from $\mathcal{B}^* \stackrel{\text{def}}{=} \mathcal{A} - \bar{\mathcal{B}}^*$. More specifically, we call \mathcal{B}^* the "tight shrunk benchmark region," and call any $\mathcal{B} \supseteq \mathcal{B}^* (\mathcal{B} \subseteq \mathcal{A})$ a "shrunk benchmark region." We call $\bar{\mathcal{B}}^*$ the "tight irrelevant benchmark region," and call any $\bar{\mathcal{B}} \subseteq \bar{\mathcal{B}}^*$ $(\bar{\mathcal{B}} \subseteq \mathcal{A})$ an "irrelevant benchmark region."

372 5.2 Heuristics to Shrink Benchmark Region

Now, the question is how to find \mathcal{B} , or equivalently $\overline{\mathcal{B}}$, given the bounding filter (see Figure 4).

Our solution heuristics is still based on Proposition 4.2. Basically, for a well designed LTI physical subsystem, the plant's Lyapunov function $V(X(t), O_{ref}(t))$ exists, and is monotonically decreasing when $O_{ref}(t)$ is a constant, which is the case for elementary trials. According to Proposition 4.2, at time t_0 , given initial plant state $X(t_0) = X^0 \in \mathcal{A}$ and bounding filtered new reference point value $O_{ref}'(t_0) \in Ball(X^0, \gamma)$, the trajectory of an elementary trial X(t) ($t \in [t_0, +\infty)$) is confined by the hyper-ellipsoid $E(X^0, O_{ref}'(t_0))$ of

$$E(X^0, O_{\mathsf{ref}}^{\prime\prime}(t_0)) \stackrel{\text{def}}{=} \{Y | Y \in \mathbb{R}_n \text{ and } (Y - O_{\mathsf{ref}}^{\prime\prime}(t_0))^\mathsf{T} \mathsf{P}(Y - O_{\mathsf{ref}}^{\prime\prime}(t_0)) \leqslant V(X^0, O_{\mathsf{ref}}^{\prime\prime})\}, \tag{11}$$

where **P** is the positive definite symmetric matrix in the Lyapunov function of Equation (7). We call $E(X^0, O''_{ref}(t_0))$ a "Lyapunov hyper-ellipsoid."

As shown by Figure 5, if none of such confining Lyapunov hyper-ellipsoids intersects with \overline{A} , then $X^0 \in \overline{B}^*$. Consequently, the set of such X^0 's constitute a $\overline{B} \subseteq \overline{B}^*$.

384 Formally, let us define

 $V_{X^{0},\text{Ball}(X^{0},\gamma)}^{\sup} \stackrel{\text{def}}{=} \sup_{\forall O_{\text{ref}}^{\prime\prime} \in \text{Ball}(X^{0},\gamma)} \{V(X^{0},O_{\text{ref}}^{\prime\prime})\},\tag{12}$

and for arbitrary $\mathcal{Y} \subseteq \mathbb{R}_n$, define

$$V_{\mathcal{Y},\mathsf{Ball}(X^0,\gamma)}^{\inf} \stackrel{\text{def}}{=} \inf_{\forall O_{\mathsf{ref}}'' \in \mathsf{Ball}(X^0,\gamma)} \{V(Y,O_{\mathsf{ref}}'') | \forall Y \in \mathcal{Y}\}.$$

386 Then the intuition of Figure 5 is formalized by Lemma 5.1.

LEMMA 5.1 (IRRELEVANT BENCHMARK POINT). For any state $X^0 \in \mathcal{A}$, if $V_{X^0, \text{Ball}(X^0, \gamma)}^{\text{sup}} < V_{\overline{\mathcal{A}}, \text{Ball}(X^0, \gamma)}^{\text{inf}}$, then $X^0 \in \overline{\mathcal{B}}^*$.

PROOF. For any elementary trial starting with $X(t_0) = X^0$, no matter what RV N is, the resulted new reference point after bounding filtering, denoted as $O_{ref}''(t_0)$, is within Ball (X^0, y) . If 388 $V_{\bar{\mathcal{A}}, \mathsf{Ball}(X^0, \gamma)}^{\inf} > V_{X^0, \mathsf{Ball}(X^0, \gamma)}^{\sup}$, then the elementary trial plant state trajectory's initial Lyapunov 389 function value $V(X(t_0), O_{ref}''(t_0))$ is less than that of any state in $\bar{\mathcal{A}}$. As per Proposition 4.2, the 390 elementary trial plant state trajectory can never reach $\bar{\mathcal{A}}$. This is true for any elementary trial 391 starting with $X(t_0) = X^0$ under whatever RV N. Therefore, $\operatorname{Traj}(N, X^0) \cap \bar{\mathcal{A}} \equiv \emptyset$ for whatever 392 RV N. \Box 393

5.3 Closed-Form Definition of Shrunk Benchmark Region

394 395

This subsection shall extend Lemma 5.1 to find a closed-form $\tilde{\mathcal{B}}$, hence \mathcal{B} .

Our heuristics is to first find the closed-form formula for $V_{X^0,\text{Ball}(X^0,\gamma)}^{\sup}$. Using this formula, we 396 then find a sufficient condition for $V_{X^0,\text{Ball}(X^0,\gamma)}^{\sup} < V_{\bar{\mathcal{A}},\text{Ball}(X^0,\gamma)}^{\inf}$. Then any X^0 satisfying the sufficient condition should belong to $\bar{\mathcal{B}}^*$. Consequently, the set of such X^0 's constitute a $\bar{\mathcal{B}} \subseteq \bar{\mathcal{B}}^*$. 398

Figure 6 gives the intuition to find the closed-form formula to calculate $V_{X^0, \text{Ball}(X^0, \gamma)}^{\text{sup}}$. Given X^0 399 and $\forall O_{\text{ref}}^{\prime\prime} \in \text{Ball}(X^0, \gamma)$, the maximum Lyapunov function value $V(X^0, O_{\text{ref}}^{\prime\prime})$ is achieved when we 400 choose $O_{\text{ref}}^{\prime\prime} = O_1$, so that the radius of $\text{Ball}(X^0, \gamma)$ exactly overlaps with the semi-minor axis of 401 Lyapunov hyper-ellipsoid $E(X^0, O_{\text{ref}}^{\prime\prime})$ (see Equation (11)). Note the directions and lengths ratio of 402 the major and minor axes of all Lyapunov hyper-ellipsoids are fixed once P is given; and $E(X^0, O_{\text{ref}}^{\prime\prime})$ 403 is centered on $O_{\text{ref}}^{\prime\prime}$ and has X^0 on the surface. 404

2:14

405 Figure 6's intuition to find the closed-form formula of $V_{X^0, Ball(X^0, \gamma)}^{sup}$ is formalized by Lemma 5.2.

LEMMA 5.2 (CLOSED-FORM VALUE OF $V_{X^0, \text{Ball}(X^0, \gamma)}^{\text{SUP}}$). We have $V_{X^0, \text{Ball}(X^0, \gamma)}^{\text{sup}} = \lambda^{\max}(\mathbf{P})\gamma^2$, where $\lambda^{\max}(\mathbf{P})$ is the maximal eigenvalue of \mathbf{P} in Lyapunov function of Equation (7).

406 PROOF. According to Equation (12), $V_{X^0, \text{Ball}(X^0, \gamma)}^{\text{sup}}$ is the optimal objective function value for the 407 following optimization problem:

$$\max_{\substack{O_{\text{ref}}'}} f_{X^0}(O_{\text{ref}}'') = V(X^0, O_{\text{ref}}'') = (X^0 - O_{\text{ref}}'')^{\mathsf{T}} \mathbf{P}(X^0 - O_{\text{ref}}'')$$
s.t. $(X^0 - O_{\text{ref}}'')^{\mathsf{T}} (X^0 - O_{\text{ref}}'') \leq \gamma^2$, (13)

408 where $O_{ref}^{\prime\prime}$ is the only optimization variable.

Problem (13) is a typical Quadratic Constrained Quadratic Optimization (QCQP) problem (Boyd
and Vandenberghe 2004). As this problem has a single constraint and the constraint itself is a hyper
ball, a special form of quadratic function, we can solve it as follows.

412 First, denote $\tilde{O}_{ref} \stackrel{\text{def}}{=} X^0 - O''_{ref}$, and $f'_{X^0}(\tilde{O}_{ref}) \stackrel{\text{def}}{=} -f_{X^0}(O''_{ref}) = -\tilde{O}^{\mathsf{T}}_{ref} P\tilde{O}_{ref}$. Then, problem (13) is 413 equivalent to problem

$$\begin{array}{ll} \min_{\tilde{O}_{\text{ref}}} & f_{X^0}'(\tilde{O}_{\text{ref}}) \\ \text{s.t.} & \tilde{O}_{\text{ref}}^{\mathsf{T}} \tilde{O}_{\text{ref}} \leqslant \gamma^2. \end{array}$$

$$(14)$$

414 The Lagrangian of optimization problem (14) is

$$L(\tilde{O}_{ref}, \nu) = \tilde{O}_{ref}^{T}(\nu \mathbf{I} - \mathbf{P})\tilde{O}_{ref} - \nu \gamma^{2},$$

415 and the dual function is

$$g(\nu) = \inf_{\tilde{O}_{\text{ref}}} \{ L(\tilde{O}_{\text{ref}}, \nu) \} = \begin{cases} -\nu \gamma^2 \text{ (if } \nu \mathbf{I} - \mathbf{P} \ge 0) \\ -\infty \text{ (otherwise),} \end{cases}$$

416 where " \geq 0" means the matrix on the left-hand side is positive semidefinite. Using a Schur com-

417 plement (Boyd and Vandenberghe 2004), the Lagrange dual problem to problem (14) is

$$\begin{array}{l} \max_{\nu} & h \\ \text{s.t.} & \nu \ge 0 \\ & \left[\begin{array}{c} \nu \mathbf{I} - \mathbf{P} \ \mathbf{0} \\ 0 & -\nu\gamma^2 - h \end{array} \right] \ge 0. \end{array}$$
(15)

418 As problem (14) is strictly feasible, i.e., there exists some \tilde{O}_{ref} (e.g., $\tilde{O}_{ref} = 0$) s.t. $\tilde{O}_{ref}^{T}\tilde{O}_{ref} < \gamma^{2}$, 419 problem (15) holds strong duality to problem (14) (Boyd and Vandenberghe 2004). Hence, the two 420 problems' optimal values are equal. By solving problem (15), we have the optimal value

$$h^* = -\lambda^{\max}(\mathbf{P})\gamma^2,$$

421 where $\lambda^{\max}(\mathbf{P})$ is the maximal eigenvalue of matrix **P**. Then we have

$$f_{X^{0}}(O_{\text{ref}}'')^{*} = -f_{X^{0}}'(\tilde{O}_{\text{ref}})^{*} = -h^{*} = \lambda^{\max}(\mathbf{P})\gamma^{2}.$$

422 Now we know that given $X^0 \in \mathcal{A}$, $V_{X^0, \text{Ball}(X^0, \gamma)}^{\text{sup}} = \lambda^{\max}(\mathbf{P})\gamma^2$. Then, it is possible to find a suffi-423 cient condition to make $V_{X^0, \text{Ball}(X^0, \gamma)}^{\text{sup}} < V_{\overline{\mathcal{A}}, \text{Ball}(X^0, \gamma)}^{\text{inf}}$. To find such sufficient condition, let us first

define the distance between a point $X^0 \in \mathbb{R}_n$ and a region $\mathcal{Y} \subseteq \mathbb{R}_n$ as

$$Dis(X, \mathcal{Y}) \stackrel{\text{der}}{=} \inf\{||X - Y||_2 | \forall Y \in \mathcal{Y}\}.$$

Then a sufficient condition is described by Lemma 5.3.

LEMMA 5.3 (IRRELEVANCE DISTANCE). Given $\mathcal{Y} \subseteq \mathbb{R}_n$, state $X^0 \in \mathcal{A}$, and an arbitrarily small positive constant $\varepsilon > 0$, if

$$\operatorname{Dis}(X^{0}, \mathcal{Y}) > \sqrt{\frac{\lambda^{\max}(\mathbf{P})}{\lambda^{\min}(\mathbf{P})}} \gamma + \gamma + \varepsilon \stackrel{\operatorname{def}}{=} \Gamma,$$
(16)

where $\lambda^{\max}(\mathbf{P})$ and $\lambda^{\min}(\mathbf{P})$ are, respectively, the maximum and minimum eigenvalues of the positive definite symmetric matrix \mathbf{P} of Equation (7), then $V_{X^0,\mathsf{Ball}(X^0,\gamma)}^{\sup} < V_{\mathcal{Y},\mathsf{Ball}(X^0,\gamma)}^{\inf}$.

PROOF. $\forall O_{ref}^{\prime\prime} \in Ball(X^0, \gamma), \forall Y \in \mathcal{Y},$

$$V(Y, O_{\rm ref}'') = (Y - O_{\rm ref}'')^{\rm T} \mathbf{P}(Y - O_{\rm ref}'').$$
(17)

Due to the bounding filter, we know that

$$(O_{\mathrm{ref}}^{\prime\prime}-X^0)^{\mathsf{T}}(O_{\mathrm{ref}}^{\prime\prime}-X^0)\leqslant \gamma^2.$$

Also, as $Dis(X^0, \mathcal{Y}) > \Gamma$, we have

$$(Y - X^0)^{\mathsf{T}}(Y - X^0) > \Gamma^2.$$

From Equation (17), we get

V

$$\begin{split} r(Y, O_{\text{ref}}^{\prime\prime}) &\geq \lambda^{\min}(\mathbf{P})(Y - O_{\text{ref}}^{\prime\prime})^{1}(Y - O_{\text{ref}}^{\prime\prime}) \\ &= \lambda^{\min}(\mathbf{P})[(Y - X^{0}) - (O_{\text{ref}}^{\prime\prime} - X^{0})]^{\mathsf{T}}[(Y - X^{0}) - (O_{\text{ref}}^{\prime\prime} - X^{0})] \\ &> \lambda^{\min}(\mathbf{P})(\Gamma - \gamma)^{2} \qquad (\text{see Lemma C.1 in Appendix C}) \\ &> \lambda^{\max}(\mathbf{P})\gamma^{2} + \lambda^{\min}(\mathbf{P})\varepsilon^{2} = V_{X^{0},\text{Ball}(X^{0},\gamma)}^{\sup} + \lambda^{\min}(\mathbf{P})\varepsilon^{2}. \end{split}$$

That is, $\forall O_{\text{ref}}^{\prime\prime} \in \text{Ball}(X^0, \gamma), \forall Y \in \mathcal{Y}$, we have $V(Y, O_{\text{ref}}^{\prime\prime}) > V_{X^0, \text{Ball}(X^0, \gamma)}^{\sup} + \lambda^{\min}(\mathbf{P})\varepsilon^2$. Therefore, 430 $V_{X^0, \text{Ball}(X^0, \gamma)}^{\sup} < V_{\mathcal{Y}, \text{Ball}(X^0, \gamma)}^{\inf}$.

We call Γ the *irrelevance distance*. Figure 7 visualizes the intuition of Γ . Basically, if $\text{Dis}(X^0, \mathcal{Y}) > 432$ Γ , then no Lyapunov hyper-ellipsoid $E(X^0, O''_{\text{ref}})$ ($\forall O''_{\text{ref}} \in \text{Ball}(X^0, \gamma)$) can intersect with \mathcal{Y} . Hence, 433 elementary trial trajectories starting from X^0 can never reach \mathcal{Y} . In case $\mathcal{Y} = \tilde{\mathcal{A}}$ and $X^0 \in \mathcal{A}, X^0$ 434 thus is an irrelevant benchmark point: $X^0 \in \tilde{\mathcal{B}}^*$. 435

Lemma 5.3 thus helps us to find a closed-form shrunk benchmark region \mathcal{B} , as described by 436 Theorem 5.4. 437

THEOREM 5.4 (SHRUNK BENCHMARK REGION). For the refined 2L-CCPS architecture,

$$\mathcal{B} \stackrel{\text{def}}{=} \{X^0 | X^0 \in \mathcal{A}, \text{ and } \text{Dis}(X^0, \bar{\mathcal{A}}) \leqslant \Gamma\}$$
(18)
is a shrunk benchmark region.

is a shi and benennark region.

PROOF. $\forall X^0 \in \overline{\mathcal{B}} = \mathcal{A} - \mathcal{B}$, $\text{Dis}(X^0, \overline{\mathcal{A}}) > \Gamma$. Due to Lemma 5.3, we know that $V_{X^0,\text{Ball}(X^0,\gamma)}^{\text{sup}} < 438$ $V_{\overline{\mathcal{A}},\text{Ball}(X^0,\gamma)}^{\text{inf}}$. Due to Lemma 5.1, we know $X^0 \in \overline{\mathcal{B}}^*$. Therefore, $\overline{\mathcal{B}} \subseteq \overline{\mathcal{B}}^*$. That is, $\mathcal{B} \supseteq \mathcal{B}^*$. \Box 439

424 425

426

429

Fig. 7. Visual intuition of irrelevance distance Γ .

Fig. 8. A shrunk benchmark region derived via Theorem 5.4.

Figure 8 illustrates an example shrunk benchmark region derived via Theorem 5.4. Now, to build benchmark X, instead of sampling the entire allowed region \mathcal{A} , we only need to sample the shrunk benchmark region \mathcal{B} .

443 5.4 Discussions on Assumption 5

So far, unless otherwise denoted, all contents of Sections 4 and 5 are based on Assumption 5, which idealizes delay time costs as $\tau_1 = \tau_2 = 0$.

In reality, the delay time costs cannot be zero. Therefore, the evaluation methodology framework proposed in Sections 4 and 5 provides only an idealized theoretical approximation of the reality. But this does not render the theoretical evaluation results useless, because they increase our knowledge and confidence on the real system.

That said, the knowledge and confidence derived from the idealized theoretical approximation are particularly relevant when τ_1 and τ_2 are sufficiently small: e.g., several orders of magnitude smaller than the interval between consecutive reference point update events. This is corroborated by our evaluations in Section 6, where real 2L-CCPS experiment results (see Section 6.4) match idealized theoretical evaluation results (see Sections 6.2 and 6.3).

From a more generic perspective, using idealized theoretical approximation results to increase knowledge and confidence of computer systems is a well adopted engineering practice. For example, when using automata based model checking to verify complex computer systems (those involving thousands of lines of source code), the formal model can rarely exactly match all the source code (that is why we still have to test and debug the source code after model checking).

Fig. 9. Parallel-inverted-pendulum testbed.

But this does not render automata based model checking useless: we still need model checking to
know the real computer system better, and to trust the real computer systems more.460461

6 EVALUATION

In this section, we evaluate our proposed methodology framework in Sections 4 and 5. Specifically,463we evaluate the cross-domain noise impacts of two cyber subsystem upgrade alternatives for an464inverted pendulum (Brogan 1991) testbed. By comparing the two evaluation results, a better alter-465native is chosen. Runtime experiments are then carried out to verify the choice. We also show that466Section 5's benchmark region shrinking method can save 24.1% of the offline evaluation effort,467meanwhile achieving the same evaluation goal.468

6.1 Inverted Pendulum Testbed

Our testbed is a 2L-CCPS that runs computer vision assisted parallel inverted pendulums (Brogan 470 1991) (see Figure 9). In the testbed, two unmanned carts respectively maintain the standing of their 471 inverted pendulums (IPs), and maintain a certain cart-convoy formation. The physical subsystem 472 controls the unmanned IP carts' fine-grain movements, while the cyber subsystem coordinates the 473 cart-convoy formation using computer vision. This is a representative 2L-CCPS testbed, which can 474 be generalized to many real-world applications: e.g., computer vision guided driving or convoy-475 formation of unmanned automobiles (Beyeler et al. 2014), unmanned aerial vehicles (Kong et al. 476 2014), and computer vision assisted industrial robot coordination (Kim et al. 2012). All of such 477 systems involve a physical subsystem of mission-critical plants (the unmanned automobiles, the 478 unmanned aerial vehicles, the industrial robots), just like the unmanned carts with IPs; and a 479 computer vision assisted cyber subsystem that runs complex computations to decide coarse-grain 480 coordination. 481

Specifically, the physical subsystem of the testbed consists of two inverted pendulums: IP_1 and IP_2 . An inverted pendulum is a metal rod with one end hinged on a cart, and the other end free to rotate around the hinge (see Figure 9(a)). The cart can move along a piece of metal rail. The controller of the inverted pendulum takes charge of moving the cart back and forth along the rail to keep the hinged metal rod (the inverted pendulum) standing upright. 482

For IP_i (i = 1, 2), let $X_{ipi}(t)$ denote its plant state. X_{ipi} then includes four state variables (see 487 Figure 9(a)): respectively, the current location $x_{ipi}(t)$ (m) and velocity $\dot{x}_{ipi}(t)$ (m/sec) of the cart, 488 and the current angular displacement $\theta_{ipi}(t)$ (rad) and velocity $\dot{\theta}_{ipi}(t)$ (rad/sec) of the rod from the 489 upright position. That is, $X_{ipi}(t) = (x_{ipi}(t), \theta_{ipi}(t), \dot{x}_{ipi}(t), \dot{\theta}_{ipi}(t))^{T}$. 490

469

2:18

491 As an LTI control system,⁵ the physical dynamics of IP_i is governed by the following systems 492 of differential equations (Googol 2016).

$$\frac{\mathrm{d}(X_{\mathrm{ip}i} - O_{\mathrm{ipref}i})}{\mathrm{d}t} = \mathbf{A}_{\mathrm{ip}i}(X_{\mathrm{ip}i} - O_{\mathrm{ipref}i}) + \mathbf{B}_{\mathrm{ip}i}U_{\mathrm{ip}i},$$
$$U_{\mathrm{ip}i} = -\mathbf{K}_{\mathrm{ip}i}(X_{\mathrm{ip}i} - O_{\mathrm{ipref}i}),$$

493 where X_{ipi} , O_{iprefi} , U_{ipi} , A_{ipi} , B_{ipi} , and K_{ipi} respectively correspond to X, O_{ref} , U, A, B, and K in 494 Equations (1) and (2). The specific inverted pendulums we use are made by Googol (Googol 2016), 495 and have the following configurations (for both i = 1 and 2).

$$\mathbf{A}_{ipi} = \begin{pmatrix} 0.000 \ 1.000 \ 0.000 \ 0.000 \\ 0.000 \ 0.000 \ 0.000 \ 0.000 \\ 0.000 \ 0.000 \ 0.000 \ 1.000 \\ 0.000 \ 0.000 \ 29.400 \ 0.000 \end{pmatrix}, \\ \mathbf{B}_{ipi} = (0.000, 1.000, 0.000, 3.000)^{T}, \\ \mathbf{K}_{ini} = (-5.0505, -5.8249, 35.2502, 6.2750). \end{cases}$$

As we have two inverted pendulums, the holistic plant of our testbed can be described by the following differential equation systems.

$$\frac{\mathrm{d}(X_{\mathrm{tb}} - O_{\mathrm{tbref}})}{\mathrm{d}t} = \mathbf{A}_{\mathrm{tb}}(X_{\mathrm{tb}} - O_{\mathrm{tbref}}) + \mathbf{B}_{\mathrm{tb}}U_{\mathrm{tb}},\tag{19}$$

$$U_{\rm tb} = -\mathbf{K}_{\rm tb}(X_{\rm tb} - O_{\rm tbref}), \tag{20}$$

498 where $X_{tb} = \begin{pmatrix} X_{ip1} \\ X_{ip2} \end{pmatrix}$, $O_{tb} = \begin{pmatrix} O_{ipref1} \\ O_{ipref2} \end{pmatrix}$, $\mathbf{A}_{tb} = \begin{pmatrix} \mathbf{A}_{ip1} & \mathbf{0} \\ \mathbf{0} & \mathbf{A}_{ip2} \end{pmatrix}$, $\mathbf{B}_{tb} = \begin{pmatrix} \mathbf{B}_{ip1} & \mathbf{0} \\ \mathbf{0} & \mathbf{B}_{ip2} \end{pmatrix}$, and $\mathbf{K}_{tb} = \begin{pmatrix} \mathbf{K}_{ip1} & \mathbf{0} \\ \mathbf{0} & \mathbf{K}_{ip2} \end{pmatrix}$. 499 Both IPs move along the x-axis. The given allowed region \mathcal{A} for our testbed is⁶

$$\mathcal{A} = \{X_{\rm tb} | X_{\rm tb} \in \mathbb{R}_8, \text{ and } 0.15 \le x_{\rm ip2} - x_{\rm ip1} \le 0.2\}.$$
(21)

500 That is, IP_1 and IP_2 's carts cannot go too close nor too apart.⁷

The cyber subsystem of our testbed takes charge of computing new reference points for the plant (i.e., IP_1 and IP_2) using computer vision sensing inputs. Due to **Assumption 2** in Section 1, the cyber subsystem is a white box to the vendor. Figure 10 depicts the white box details.

Note that a reference point represents the equilibrium state that the user aims to achieve. For inverted pendulum IP_i (i = 1, 2), the user always wants the equilibrium taking the form $O_{iprefi} = (x_{iprefi}, 0, 0, 0)^T$. That is, at equilibrium, the inverted pendulum cart should stop at x_{iprefi} , and the rod should stand still at upright angle. Therefore, the only update the cyber subsystem should make to a reference point is the cart's equilibrium location x_{iprefi} : at different time, the cyber subsystem may want to move the cart to different locations. That is, the cyber subsystem is focusing on computing the new x_{iprefi} .

As shown in Figure 10, the cyber subsystem's computation dataflow starts from M_0 , the "remote sensing" module, where a USB 2 Mega pixel camera captures a 640 × 480 pixel raw image of IP₁ and IP₂. Denote the raw image captured as $D_0 = M_0(X) + N$, where X is the current plant state, and N is the cross-domain noise. D_0 is then fed to modules M_1 and M_2 , respectively, for red and

⁵Strictly speaking, an inverted pendulum control system is not linear, but when θ_{ipi} is reasonably small (e.g., $\leq \frac{\pi}{6}$ (rad)), the system can be regarded as linear.

 $^{^{6}}$ Here we are assuming the rails of the IPs are long enough. Otherwise, a more strict definition of $\mathcal A$ should also include the rail length constraints.

 $^{^7}$ In the actual implementation, IP₁ and IP₂ are moving along two parallel rails. Therefore, the two inverted pendulums will not really crash. However, for evaluation purposes, we still enforce the allowed region of Inequality (21), regarding IP₁ and IP₂ as if moving along a same rail.

Fig. 10. Testbed cyber subsystem white box details in the vendor's view (note, according to **Assumption 1** in Section 1, to the user, the cyber subsystem is a black box except M_0 , M_5 and their interfaces to the rest of the cyber subsystem).

yellow color recognition. M_1 's output D_1 is a binary image: a pixel of 1 means the corresponding 515 pixel in D_0 is recognized as red; and 0 otherwise. The same applies to M_2 and D_2 , except that the color to recognize is yellow. 517

The reason why to carry out red and yellow color recognition is because IP_1 and IP_2 's carts 518 respectively bear a red and a yellow label. By recognizing the red and yellow label, the cyber 519 subsystem identifies x_{ip1} and x_{ip2} , the current locations of the two carts. This is realized by feeding 520 D_1 , D_2 respectively to M_3 and M_4 for IP_1 and IP_2 cart localization. The output of M_3 (i.e., D_3) is the estimation of x_{ip1} ; while the output of M_4 (i.e., D_4) is the estimation of x_{ip2} . D_3 and D_4 are fed to 522 M_5 , the "final decision" module, to compute the new reference point values, i.e., x_{ipref1} and x_{ipref2} .

6.2 Offline Cross-Domain Noise Impact Evaluation

In our testbed of Figure 10, raw image data (i.e., D_0) captured by M_0 are noisy. This cross-domain 525 noise propagates through the network of digital modules, and finally affects the plant. In order to 526 enhance robustness against the cross-domain noise, the testbed vendor proposes two upgrading 527 alternatives: either upgrade M_1 to a commercial-off-the-shelf (COTS) module of M'_1 ; or to upgrade 528 M_3 to a COTS module of M'_3 ; but not both, because of budget limit. Meanwhile, as both M'_1 and 529 M'_3 are COTS, their interconnection and internal implementation details are hidden to the user. 530 To independently decide which alternative to take, the testbed user carries out the cross-domain 531 noise impact evaluation framework of Sections 4 and 5. 532

As summarized by the last paragraph of Section 4, the first step of the evaluation framework is 533 to prepare a benchmark $X = \{X_i^0\}_{i=1,...,b}$. Without loss of generality, the user chooses b = 1,000. 534 For the time being, the user first tries the framework without benchmark region shrinking. That is, 535 the user sample b = 1,000 benchmark points from the entire allowed region \mathcal{A} (see Equation (21)). 536

For each benchmark point X_i^0 (i = 1, ..., b), the framework asks the user to emulate η elementary trials following the algorithm of Figure 3. Particularly, the user implements Line 2 according to the alternative way described in the comment. That is, M_0 outputs $M_0(X_i^0) + N$ to the rest of the cyber subsystem to generate $O'_{ref}(t_0)$ (note according to **Assumption 1** of Section 3.2, M_0 and its interface to the rest of the cyber subsystem is not a black box to the user). 537

2:19

Fig. 11. Statistics of cross-domain noise impact values $\{I(N, X^0)\}_{\forall X^0 \in \mathcal{X}}$, without shrinking benchmark region.

The implementation detail is as follows. For each $X_i^0 \in X$, the user prepares a high-quality 640 × 480 pixels picture P_i as M_0 's noiseless output. That is, $P_i = M_0(X_i^0)$. Let N denote the cross-domain noise RV, and $D_{0,i}$ denote the noisy output of M_0 corresponding to X_i^0 . Then $D_{0,i} = M_0(X_i^0) + N =$ $P_i + N$.

Indeed, $D_{0,i}$ is also a 640 × 480 pixel picture, with each pixel inflicted by RV N. The user generates $D_{0,i}$ pixel by pixel. Let $P_i(j,k) \in [0,255]$ (j = 1, 2, ..., 640; k = 1, 2, ..., 480) denote P_i 's red (or yellow) color value of the pixel at coordinate (j,k). Let $N(j,k) \in \mathbb{R}$ denote the component of cross-domain noise N at pixel coordinate (j,k). Let $D_{0,i}(j,k)$ denote the noisy raw image red (or yellow) color value at pixel (j,k). Then, $D_{0,i}(j,k) = P_i(j,k) + N(j,k)$ (in practice, $D_{0,i}(j,k)$'s value is rounded to the closest integer in [0, 255]).

552 Without loss of generality, the user generates the cross-domain noise RV N as per Gaussian 553 distribution, i.e., $N(j,k) \sim \text{Normal}(0, \sigma^2)$. The user defines the *level* of N, denoted as ||N||, with 554 *mean square error* (MSE), a well-known concept in image processing.

MSE
$$\stackrel{\text{def}}{=} \frac{1}{J \cdot K} \sum_{j=1}^{J} \sum_{k=1}^{K} N^2(j,k),$$
 (22)

where J and K are, respectively, the width and length of an image in pixels. It can be proven that $E(MSE) = \sigma^2$.

The user then discretizes $10 \log_{10}$ MSE's value range into five intervals; respectively, $(-\infty, -10)$, [-10, 0), [0, 10), [10, 20), and [20, 30). Suppose the $10 \log_{10}$ MSE derived from the current N falls in the *l*th ($l \in \{1, 2, ..., 5\}$) interval; then the user says ||N|| = l.

560 With the above methodology to generate $D_{0,i} = M_0(X_i^0) + N$ for each benchmark point X_i^0 , the 561 user implements the elementary trial emulation described by Figure 3.

Now the user is ready to evaluate the impact of cross-domain noise to our testbed. The user examines three cyber subsystem settings: no upgrade, upgrade M_1 only, and upgrade M_3 only.

For each setting, for each benchmark point $X_i^0 \in X$ (i = 1, ..., 1,000) and each noise level ||N|| = $l, l \in \{1, 2, ..., 5\}$, the user runs a campaign of $\eta = 1,000$ elementary trial emulations, and derives the cross-domain noise impact value as per Equation (9). According to Proposition 4.1, this guarantees a confidence level of 95% that the derived impact value error is within ±0.032. For the bounding filter in the physical subsystem, the user sets its radius $\gamma = 0.001m$ (see Figure 10). All the emulations are carried out on a HP workstation with Intel Core I7-3610QM and 8G RAM.

570 The statistics of impact values over all benchmark points are shown and compared in Figure 11.

Fig. 12. Statistics of cross-domain noise impact values $\{I(N, X^0)\}_{\forall X^0 \in \mathcal{X}}$, with shrunk benchmark region.

As the impact value indicates the increase of plant fault probability due to cross-domain noise 571 N, the smaller the impact value, the more robust the system. Therefore, Figure 11 clearly favors 572 upgrading M_1 . 573

6.3 Offline Evaluation with Shrunk Benchmark Region

In Section 6.2's evaluation, the benchmark points are sampled from the entire allowed region \mathcal{A} . 575 By applying the benchmark region shrinking methodology proposed in Section 5, the user can sample less. Specifically, using the existing LTI control Lyapunov analysis methodology (Brogan 1991), the user finds for our testbed of Equations (19), (20), 578

$$\mathbf{P} = \begin{pmatrix} \mathbf{Q} & \mathbf{0} \\ \mathbf{0} & \mathbf{Q} \end{pmatrix},$$

where

$$\mathbf{Q} = \begin{pmatrix} 190.2853 & -50.0013 & 29.3842 & 10.9965 \\ -50.0013 & 436.0298 & -10.9938 & 442.5856 \\ 29.3842 & -10.9938 & 23.9030 & -50.0135 \\ 10.9965 & 442.5856 & -50.0135 & 639.884 \end{pmatrix}.$$

The user chooses $\varepsilon = 0.0002$, so the irrelevance distance $\Gamma = \sqrt{\frac{\lambda^{\max}(\mathbf{P})}{\lambda^{\min}(\mathbf{P})}}\gamma + \gamma + \varepsilon = 0.016$ (see 580 Equation (16)), which defines the shrunk benchmark region \mathcal{B} via Equation (18). 581

The user reuses the benchmark points used in Section 6.2, but excluding all those outside of \mathcal{B} . 582 In this way, the shrunk benchmark region \mathcal{B} removes 241 of the original 1,000 benchmark points 583 (i.e., 24.1% of the evaluation computation effort is saved). The statistics of cross-domain noise 584 impact values over the reduced benchmark are shown and compared in Figure 12. The results also 585 apparently favor upgrading M_1 . 586

6.4 Runtime Experiment Validation

Through our proposed evaluation framework, Sections 6.2 and 6.3 both come to the conclusion 588 that the user should upgrade M_1 to M'_1 . To validate the user's decision, we carry out runtime 589 experiments to compare the actual results of the upgrading alternatives. 590

Specifically, we evaluate three scenarios of the testbed. In the first scenario, no digital module 591 is upgraded. In the second scenario, only M_1 is upgraded to M'_1 . In the third scenario, only M_3 is 592 upgraded to M'_3 . For each scenario, we set the cross-domain noise level ||N|| to 1, 2, 3, 4, and 5 (see 593 Section 6.2 and Equation (22) for the definition of these values; in our experiment implementation, 594

579

587

Scenario	Total Number of Faults	Faulty Trial Percentage
No Upgrade	49	49%
Upgrade M ₁	20	20%
Upgrade M_3	39	39%

 Table 1. Percentage of Trials that Encounter Plant Fault(s)

595 module M_0 , a noisy camera, is realized by appending a noise generator to a high-quality camera's 596 output). For each noise level, 20 elementary trial experiments are carried out. In each experiment, 597 IP₁ and IP₂ start from a random initial state uniformly picked from the allowed region \mathcal{A} , and run 598 for 1 minute. We record whether during this 1 minute, IP₁ and IP₂'s state ever exceeds \mathcal{A} . If so, a 599 plant fault occurs.

Table 1 lists the experiment result: the total number of plant faults and the percentage of trials that involves faults. According to the table, upgrading M_1 apparently performs better than upgrading M_3 in terms of fault reduction. This matches the prediction made by offline evaluation of Sections 6.2 and 6.3, and hence validates the usefulness of our proposed cross-domain noise impact evaluation methodology framework.

Note, as discussed in Section 5.4, the evaluation in Sections 6.2 and 6.3 is a theoretical approxi-605 mation of the reality. It assumes zero delay to deliver the plant state to the cyber subsystem, and 606 to calculate and deliver the new reference point value from the cyber subsystem to the physical 607 608 subsystem. In our real-world runtime experiment, the aforementioned delay is non-zero, and is in the order of magnitude of 10ms. The fact that the runtime experiment results still match the 609 theoretical evaluation results corroborates the following: when the delay is sufficiently small, the 610 theoretical evaluation is good enough to increase our knowledge and confidence on the real-world 611 2L-CCPS. 612

613 7 CONCLUSION

In this article, we propose a framework of methodology to evaluate the impact of cross-domain noise in a generic 2L-CCPS architecture, whose cyber subsystem is a black box to the user. Our contributions are as follows:

- 617 (1) We proposed a benchmark metric and corresponding measurement method to quantify
 618 the cross-domain noise impact to the black box 2L-CCPS.
- 619 (2) We further proposed a method to effectively shrink the benchmark, exploiting interdisci 620 plinary Lyapunov stability control theories.
- (3) We validated the effectiveness and efficiency of our proposed methodology framework
 with a representative 2L-CCPS testbed. Particularly, the proposed benchmark shrinking
 technology saves us 24.1% of the evaluation effort.

624 APPENDIX

625 A MEANING OF REACHABILITY PROBABILITY

PROPOSITION A.1 (RISK OF TRAJECTORY). Given cross-domain noise RV N, suppose during $[t_0, +\infty)$, a 2L-CCPS undergoes k ($k \ge 1$) reference point update events, which respectively happened at $t_0 < t_1 < \cdots < t_{k-1}$. Let X_i ($i = 0, \ldots, k-1$) denote the plant state right before the *i*th reference point update event. Let R_i denote the reachability RV for X_i under N, and $p_i = \Pr(R_i = 1)$. Let ∞

denote the probability that the trajectory of X(t) ($t \in [t_0, +\infty)$) never reaches $\tilde{\mathcal{A}}$ (i.e., the 2L-CCPS never encounters plant fault). Then $\omega \ge \prod_{i=0}^{k-1}(1-p_i)$.

PROOF. Starting from X_i , what happens during $[t_i, t_{i+1})$ (i = 0, ..., k-1, where $t_k \stackrel{\text{def}}{=} +\infty$ is 626 exactly what happens to an elementary trial starting from X_i during $[0, t_{i+1} - t_i)$ (suppose the elementary trial starts from time 0). Therefore, the probability of not reaching $\overline{\mathcal{A}}$ during $[t_i, t_{i+1})$ 628 is no less than $(1 - p_i)$. As per Equation (3), X(t) is continuous on $[t_0, +\infty)$, therefore, $\varpi \ge 629$ $\Pi_{i=0}^{k-1}(1-p_i)$.

Particularly, if p_i 's are upper bounded by p^{\max} , then $\omega \ge (1 - p^{\max})^k$. In the extreme case, if 631 $p^{\max} = 0$, then $\omega = 1$. That is, the control CPS has 0 probability of encountering a plant fault. 632

B PROOF OF PROPOSITION 4.2

C

$$\frac{dV(X(t), O_{ref}(t))}{dt} \quad (\text{where } O_{ref}(t) \equiv O'_{ref}(t_0)) \\
= \dot{X}^{\mathsf{T}} \mathbf{P}(X(t) - O'_{ref}(t_0)) + (X(t) - O'_{ref}(t_0))^{\mathsf{T}} \mathbf{P} \dot{X} \quad (\text{see Equation (7)}) \\
= (\mathbf{F}(X(t) - O'_{ref}(t_0)))^{\mathsf{T}} \mathbf{P}(X(t) - O'_{ref}(t_0)) \\
+ (X(t) - O'_{ref}(t_0))^{\mathsf{T}} \mathbf{P} \mathbf{F}(X(t) - O'_{ref}(t_0)) \quad (\text{see Equation (3)}) \\
= (X(t) - O'_{ref}(t_0))^{\mathsf{T}} (\mathbf{F}^{\mathsf{T}} \mathbf{P} + \mathbf{P} \mathbf{F})(X(t) - O'_{ref}(t_0)) \\
= -(X(t) - O'_{ref}(t_0))^{\mathsf{T}} \mathbf{I}(X(t) - O'_{ref}(t_0)) \quad (\text{see Equation (6)}) \\
= -(X(t) - O'_{ref}(t_0))^{\mathsf{T}} (X(t) - O'_{ref}(t_0)) \leq 0. \qquad \Box$$

C SHORTEST DISTANCE FROM A BALL TO A CONCENTRIC BALL COMPLEMENT

 $\forall X, Y \in \mathbb{R}_n$, denote dis $(X, Y) \stackrel{\text{def}}{=} ||X - Y||_2 = \sqrt{(X - Y)^{\mathsf{T}}(X - Y)}$. We have the following:

LEMMA C.1. Given $\Gamma \ge \gamma > 0$, then $\forall X, Y \in \mathbb{R}_n$ s.t. $X^{\mathsf{T}}X \leqslant \gamma^2$ and $Y^{\mathsf{T}}Y > \Gamma^2$, we have $\operatorname{dis}(X, Y) > \Gamma - \gamma$.

PROOF. Define $f_Y(X) \stackrel{\text{def}}{=} (X - Y)^{\mathsf{T}} (X - Y)$, let us first solve the following optimization problem: 636 min $f_Y(X)$

s.t.
$$X^{\mathsf{T}}X \leq \gamma^2$$
.

For this problem, we have its Lagrangian $L(X, \nu) = ||X - Y||_2^2 + \nu(||X||_2^2 - \gamma^2)$. Using the Karush-Kuhn-Tucker (KKT) conditions, we have 638

$$||X^*||_2 - \gamma \leq 0,$$
 (23)
639

$$v^* \ge 0,$$

 $v^*(||X^*||_2 - \gamma) = 0,$
(24)

640

$$(1+\nu^*)X^* - Y = 0. (25)$$

Substituting X^* from Equation (25) into Equation (24), we have

$$\nu^{*}(||X^{*}||_{2} - \gamma) = \frac{\nu^{*}}{1 + \nu^{*}}(||Y||_{2} - (1 + \nu^{*})\gamma) = 0.$$
(26)

633

Fig. 13. Minimal distance from a ball to a concentric ball complement.

642 As we know $Y^{\mathsf{T}}Y > \Gamma^2$ and $\Gamma \ge \gamma > 0$, then we have $||Y||_2 > \Gamma \ge \gamma > 0$. From Equation (26), we 643 know either $\nu^* = 0$ or $(||Y||_2 - (1 + \nu^*)\gamma) = 0$. If $\nu^* = 0$, we have $X^* = Y$ from Equation (25), and 644 $||Y||_2 = ||X^*||_2 \le \gamma$ from Equation (23), which contradicts the fact that $||Y||_2 > \gamma$. Thus, we have

$$||Y||_{2} - (1 + v^{*})\gamma = 0 \implies 1 + v^{*} = \frac{||Y||_{2}}{\gamma}.$$

645 Substituting $(1 + v^*) = ||Y||_2 / \gamma$ into Equation (25), we derive

$$X^* = \frac{Y}{||Y||_2}Y.$$

646 Then, we have

$$f_Y(X)^* = \left\| \frac{\gamma}{||Y||_2} Y - Y \right\|_2^2 = (||Y||_2 - \gamma)^2.$$

647 Here, Y is a given parameter to the optimization problem. As $||Y||_2 > \Gamma \ge \gamma > 0$, we have $f_Y(X)^* =$ 648 $(||Y||_2 - \gamma)^2 > (\Gamma - \gamma)^2$. That is, $\forall X, Y \in \mathbb{R}_n$, if $X^T X \le \gamma^2$, $Y^T Y > \Gamma^2$, and $\Gamma \ge \gamma > 0$, dis(X, Y) =649 $\sqrt{f_Y(X)} \ge \sqrt{f_Y(X)^*} > \Gamma - \gamma$.

650 The idea of Lemma C.1 is illustrated by Figure 13.

REFERENCES

- Manu Augustine, Om Prakash Yadav, Rakesh Jain, and Ajay Rathore. 2012. Cognitive map-based system modeling for
 identifying interaction failure modes. *Res. Eng. Design* 23 (2012), 105–124.
- Michael Beyeler, Florian Mirus, and Alexander Verl. 2014. Vision-based robust road lane detection in urban environments.
 Proc. of IEEE Intl. Conf. on Robotics and Automation (ICRA'14).
- 655 Stephen Boyd and Lieven Vandenberghe. 2004. Convex Optimization. Cambridge University Press.
- 656 William L. Brogan. 1991. Modern Control Theory (3rd ed.). Prentice Hall.
- Eduardo F. Camacho and Carlos Bordons. 2013. Model Predictive Control in the Process Industry (Advances in Industrial
 Control). Springer.
- Salvatore Distefano, Antonio Filieri, Carlo Ghezzi, and Raffaela Mirandola. 2011. A compositional method for reliability
 analysis of workflows affected by multiple failure modes. *Proc. of CBSE*.
- 661 Gene F. Franklin, J. David Powell, and Abbas Emami-Naeini. 1994. Feedback Control of Dynamic Systems (3rd ed.). Addison 662 Wesley Publishing Company.
- Zhiwei Gao, Carlo Cecati, and Steven X. Ding. 2015a. A survey of fault diagnosis and fault-tolerant techniques part I: Fault
 diagnosis with model-based and signal-based approaches. *IEEE Trans. Ind. Electronics* 62, 6 (2015), 3757–3767.
- Zhiwei Gao, Carlo Cecati, and Steven X. Ding. 2015b. A survey of fault diagnosis and fault-tolerant techniques part II: Fault
 diagnosis with knowledge-based and hybrid/active approaches. *IEEE Trans. Ind. Electronics* 62, 6 (2015), 3768–3774.
- Xiaocheng Ge, Richard F. Paige, and John A. McDermid. 2009. Probabilistic failure propagation and transformation analysis.
 Proc. of the 28th Intl. Conf. on Computer Safety, Reliability, and Security, 215–228.
- 669 Tech. Ltd. Googol. 2016. Linear Inverted Pendulum. Retrieved from http://www.googoltech.com.

Martin Hiller, Arshad Jhumka, and Neeraj Suri. 2004. EPIC: Profiling the propagation and effect of data errors in software. 670 IEEE Trans. Computers 53, 5 (2004), 1–19. 671

 Naira Hovakimyan and Chengyu Cao. 2010. L1 Adaptive Control Theory: Guaranteed Robustness with Fast Adaptation. SIAM.
 672

 Arshad Jhumka and Matthew Leeke. 2011. The early identification of detector locations in dependable software. Proc. of
 673

 IEEE Intl. Symp. on Software Reliability Engineering.
 674

Hassan K. Khalil. 2001. Nonlinear Systems (3rd ed.). Prentice Hall.

- Kyekyung Kim, Joongbae Kim, Sangseung Kang, Jaehong Kim, and Jaeyeon Lee. 2012. Vision-based bin picking system 676 for industrial robotics applications. Proc. of the 9th Intl. Conf. on Ubiquitous Robots and Ambient Intelligence (URAI'12), 515–516.
- Weiwei Kong, Dianle Zhou, Daibing Zhang, and Jianwei Zhang. 2014. Vision-based autonomous landing system for unmanned aerial vehicle: A survey. Proc. of Intl. Conf. on Multisensor Fusion and Inf. Integration for Intelligent Systems (MFI'14).
 681
- Marta Kwiatkowska, Gethin Norman, and David Parker. 2002. PRISM: Probabilistic symbolic model checker. TOOLS 2002 682 2324 (2002), 200–204. 683
- Adam J. Oliner and Alex Aiken. 2011. Online detection of multi-component interactions in production systems. Proc. of 684
 Dependable Systems and Networks (DSN'11), 49–60.
- Thanh-Trung Pham, Xavier Defago, and Quyet-Thang Huynh. 2015. Reliability prediction for component-based software systems: Dealing with concurrent and propagating errors. Sci. Computer Programm. 97 (2015), 426–457. 687
- Lui Sha, Sathish Gopalakrishnan, Xue Liu, and Qixin Wang. 2008. Cyber-physical systems: A new frontier. IEEE SUTC 688 (2008), 1–9. 689
- Seppo Sierla, Bryan M. O'Halloran, Tommi Karhela, Nikolaos Papakonstantinou, and Irem Y. Tumer. 2013. Common cause failure analysis of cyber-physical systems situated in constructed environments. *Res. Eng. Design* 24, 4 (2013), 375–394.
 Paulo Tabuada. 2009. Verification and Control of Hybrid Systems: A Symbolic Approach. Springer.
- Feng Tan, Liansheng Liu, Stefan Winter, Qixin Wang, Neeraj Suri, Lei Bu, Yu Peng, Xue Liu, and Xiyuan Peng. 2014. WiP
 abstract: A framework on profiling cross-domain noise propagation in control CPS. ACM/IEEE Intl. Conf. on Cyber Physical Systems (ICCPS'14), 224.
- US Dept. of the Army. 2015. TM 5-698-4: Failure Modes, Effects and Criticality Analyses (FMECA) for Command, Control, Communications, Computer, Intelligence, Surveillance, and Reconnaissance (C4ISR) Facilities. 697
- Xiaofeng Wang, Naira Hovakimyan, and Lui Sha. 2013. L1Simplex: Fault-tolerant control of cyber-physical systems. Proc. 698 of ICCPS, 41–50. 699

Received February 2017; revised February 2018; accepted April 2018

700

2:25